1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
|
/*
Copyright (C) 2006, 2007, 2008 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
*/
/*
A C-program for MT19937, with initialization improved 2002/2/10.
Coded by Takuji Nishimura and Makoto Matsumoto.
This is a faster version by taking Shawn Cokus's optimization,
Matthe Bellew's simplification, Isaku Wada's real version.
David Bateman added normal and exponential distributions following
Marsaglia and Tang's Ziggurat algorithm.
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
Copyright (C) 2004, David Bateman
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp
* 2006-04-01 David Bateman
* * convert for use in octave, declaring static functions only used
* here and adding oct_ to functions visible externally
* * inverse sense of ALLBITS
* 2004-01-19 Paul Kienzle
* * comment out main
* add init_by_entropy, get_state, set_state
* * converted to allow compiling by C++ compiler
*
* 2004-01-25 David Bateman
* * Add Marsaglia and Tsang Ziggurat code
*
* 2004-07-13 Paul Kienzle
* * make into an independent library with some docs.
* * introduce new main and test code.
*
* 2004-07-28 Paul Kienzle & David Bateman
* * add -DALLBITS flag for 32 vs. 53 bits of randomness in mantissa
* * make the naming scheme more uniform
* * add -DHAVE_X86 for faster support of 53 bit mantissa on x86 arch.
*
* 2005-02-23 Paul Kienzle
* * fix -DHAVE_X86_32 flag and add -DUSE_X86_32=0|1 for explicit control
*/
/*
=== Build instructions ===
Compile with -DHAVE_GETTIMEOFDAY if the gettimeofday function is
available. This is not necessary if your architecture has
/dev/urandom defined.
Compile with -DALLBITS to disable 53-bit random numbers. This is about
50% slower than using 32-bit random numbers.
Uses implicit -Di386 or explicit -DHAVE_X86_32 to determine if CPU=x86.
You can force X86 behaviour with -DUSE_X86_32=1, or suppress it with
-DUSE_X86_32=0. You should also consider -march=i686 or similar for
extra performance. Check whether -DUSE_X86_32=0 is faster on 64-bit
x86 architectures.
If you want to replace the Mersenne Twister with another
generator then redefine randi32 appropriately.
=== Usage instructions ===
Before using any of the generators, initialize the state with one of
oct_init_by_int, oct_init_by_array or oct_init_by_entropy.
All generators share the same state vector.
=== Mersenne Twister ===
void oct_init_by_int(uint32_t s) 32-bit initial state
void oct_init_by_array(uint32_t k[],int m) m*32-bit initial state
void oct_init_by_entropy(void) random initial state
void oct_get_state(uint32_t save[MT_N+1]) saves state in array
void oct_set_state(uint32_t save[MT_N+1]) restores state from array
static uint32_t randmt(void) returns 32-bit unsigned int
=== inline generators ===
static uint32_t randi32(void) returns 32-bit unsigned int
static uint64_t randi53(void) returns 53-bit unsigned int
static uint64_t randi54(void) returns 54-bit unsigned int
static uint64_t randi64(void) returns 64-bit unsigned int
static double randu32(void) returns 32-bit uniform in (0,1)
static double randu53(void) returns 53-bit uniform in (0,1)
double oct_randu(void) returns M-bit uniform in (0,1)
double oct_randn(void) returns M-bit standard normal
double oct_rande(void) returns N-bit standard exponential
=== Array generators ===
void oct_fill_randi32(octave_idx_type, uint32_t [])
void oct_fill_randi64(octave_idx_type, uint64_t [])
void oct_fill_randu(octave_idx_type, double [])
void oct_fill_randn(octave_idx_type, double [])
void oct_fill_rande(octave_idx_type, double [])
*/
#if defined (HAVE_CONFIG_H)
#include <config.h>
#endif
#include <stdio.h>
#include <time.h>
#ifdef HAVE_GETTIMEOFDAY
#include <sys/time.h>
#endif
#include "lo-math.h"
#include "randmtzig.h"
/* FIXME may want to suppress X86 if sizeof(long)>4 */
#if !defined(USE_X86_32)
# if defined(i386) || defined(HAVE_X86_32)
# define USE_X86_32 1
# else
# define USE_X86_32 0
# endif
#endif
/* ===== Mersenne Twister 32-bit generator ===== */
#define MT_M 397
#define MATRIX_A 0x9908b0dfUL /* constant vector a */
#define UMASK 0x80000000UL /* most significant w-r bits */
#define LMASK 0x7fffffffUL /* least significant r bits */
#define MIXBITS(u,v) ( ((u) & UMASK) | ((v) & LMASK) )
#define TWIST(u,v) ((MIXBITS(u,v) >> 1) ^ ((v)&1UL ? MATRIX_A : 0UL))
static uint32_t *next;
static uint32_t state[MT_N]; /* the array for the state vector */
static int left = 1;
static int initf = 0;
static int initt = 1;
/* initializes state[MT_N] with a seed */
void
oct_init_by_int (uint32_t s)
{
int j;
state[0] = s & 0xffffffffUL;
for (j = 1; j < MT_N; j++) {
state[j] = (1812433253UL * (state[j-1] ^ (state[j-1] >> 30)) + j);
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
/* In the previous versions, MSBs of the seed affect */
/* only MSBs of the array state[]. */
/* 2002/01/09 modified by Makoto Matsumoto */
state[j] &= 0xffffffffUL; /* for >32 bit machines */
}
left = 1;
initf = 1;
}
/* initialize by an array with array-length */
/* init_key is the array for initializing keys */
/* key_length is its length */
void
oct_init_by_array (uint32_t *init_key, int key_length)
{
int i, j, k;
oct_init_by_int (19650218UL);
i = 1;
j = 0;
k = (MT_N > key_length ? MT_N : key_length);
for (; k; k--)
{
state[i] = (state[i] ^ ((state[i-1] ^ (state[i-1] >> 30)) * 1664525UL))
+ init_key[j] + j; /* non linear */
state[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
i++;
j++;
if (i >= MT_N)
{
state[0] = state[MT_N-1];
i = 1;
}
if (j >= key_length)
j = 0;
}
for (k = MT_N - 1; k; k--)
{
state[i] = (state[i] ^ ((state[i-1] ^ (state[i-1] >> 30)) * 1566083941UL))
- i; /* non linear */
state[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
i++;
if (i >= MT_N)
{
state[0] = state[MT_N-1];
i = 1;
}
}
state[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
left = 1;
initf = 1;
}
void
oct_init_by_entropy (void)
{
uint32_t entropy[MT_N];
int n = 0;
/* Look for entropy in /dev/urandom */
FILE* urandom =fopen("/dev/urandom", "rb");
if (urandom)
{
while (n < MT_N)
{
unsigned char word[4];
if (fread(word, 4, 1, urandom) != 1)
break;
entropy[n++] = word[0]+(word[1]<<8)+(word[2]<<16)+(word[3]<<24);
}
fclose(urandom);
}
/* If there isn't enough entropy, gather some from various sources */
if (n < MT_N)
entropy[n++] = time(NULL); /* Current time in seconds */
if (n < MT_N)
entropy[n++] = clock(); /* CPU time used (usec) */
#ifdef HAVE_GETTIMEOFDAY
if (n < MT_N)
{
struct timeval tv;
if (gettimeofday(&tv, NULL) != -1)
entropy[n++] = tv.tv_usec; /* Fractional part of current time */
}
#endif
/* Send all the entropy into the initial state vector */
oct_init_by_array(entropy,n);
}
void
oct_set_state (uint32_t *save)
{
int i;
for (i = 0; i < MT_N; i++)
state[i] = save[i];
left = save[MT_N];
next = state + (MT_N - left + 1);
}
void
oct_get_state (uint32_t *save)
{
int i;
for (i = 0; i < MT_N; i++)
save[i] = state[i];
save[MT_N] = left;
}
static void
next_state (void)
{
uint32_t *p = state;
int j;
/* if init_by_int() has not been called, */
/* a default initial seed is used */
/* if (initf==0) init_by_int(5489UL); */
/* Or better yet, a random seed! */
if (initf == 0)
oct_init_by_entropy();
left = MT_N;
next = state;
for (j = MT_N - MT_M + 1; --j; p++)
*p = p[MT_M] ^ TWIST(p[0], p[1]);
for (j = MT_M; --j; p++)
*p = p[MT_M-MT_N] ^ TWIST(p[0], p[1]);
*p = p[MT_M-MT_N] ^ TWIST(p[0], state[0]);
}
/* generates a random number on [0,0xffffffff]-interval */
static uint32_t
randmt (void)
{
register uint32_t y;
if (--left == 0)
next_state();
y = *next++;
/* Tempering */
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680UL;
y ^= (y << 15) & 0xefc60000UL;
return (y ^ (y >> 18));
}
/* ===== Uniform generators ===== */
/* Select which 32 bit generator to use */
#define randi32 randmt
static uint64_t
randi53 (void)
{
const uint32_t lo = randi32();
const uint32_t hi = randi32()&0x1FFFFF;
#if HAVE_X86_32
uint64_t u;
uint32_t *p = (uint32_t *)&u;
p[0] = lo;
p[1] = hi;
return u;
#else
return (((uint64_t)hi<<32)|lo);
#endif
}
static uint64_t
randi54 (void)
{
const uint32_t lo = randi32();
const uint32_t hi = randi32()&0x3FFFFF;
#if HAVE_X86_32
uint64_t u;
uint32_t *p = (uint32_t *)&u;
p[0] = lo;
p[1] = hi;
return u;
#else
return (((uint64_t)hi<<32)|lo);
#endif
}
#if 0
// FIXME -- this doesn't seem to be used anywhere; should it be removed?
static uint64_t
randi64 (void)
{
const uint32_t lo = randi32();
const uint32_t hi = randi32();
#if HAVE_X86_32
uint64_t u;
uint32_t *p = (uint32_t *)&u;
p[0] = lo;
p[1] = hi;
return u;
#else
return (((uint64_t)hi<<32)|lo);
#endif
}
#endif
#ifdef ALLBITS
/* generates a random number on (0,1)-real-interval */
static double
randu32 (void)
{
return ((double)randi32() + 0.5) * (1.0/4294967296.0);
/* divided by 2^32 */
}
#else
/* generates a random number on (0,1) with 53-bit resolution */
static double
randu53 (void)
{
const uint32_t a=randi32()>>5;
const uint32_t b=randi32()>>6;
return (a*67108864.0+b+0.4) * (1.0/9007199254740992.0);
}
#endif
/* Determine mantissa for uniform doubles */
double
oct_randu (void)
{
#ifdef ALLBITS
return randu32 ();
#else
return randu53 ();
#endif
}
/* ===== Ziggurat normal and exponential generators ===== */
#ifdef ALLBITS
# define ZIGINT uint32_t
# define EMANTISSA 4294967296.0 /* 32 bit mantissa */
# define ERANDI randi32() /* 32 bits for mantissa */
# define NMANTISSA 2147483648.0 /* 31 bit mantissa */
# define NRANDI randi32() /* 31 bits for mantissa + 1 bit sign */
# define RANDU randu32()
#else
# define ZIGINT uint64_t
# define EMANTISSA 9007199254740992.0 /* 53 bit mantissa */
# define ERANDI randi53() /* 53 bits for mantissa */
# define NMANTISSA EMANTISSA
# define NRANDI randi54() /* 53 bits for mantissa + 1 bit sign */
# define RANDU randu53()
#endif
#define ZIGGURAT_TABLE_SIZE 256
#define ZIGGURAT_NOR_R 3.6541528853610088
#define ZIGGURAT_NOR_INV_R 0.27366123732975828
#define NOR_SECTION_AREA 0.00492867323399
#define ZIGGURAT_EXP_R 7.69711747013104972
#define ZIGGURAT_EXP_INV_R 0.129918765548341586
#define EXP_SECTION_AREA 0.0039496598225815571993
static ZIGINT ki[ZIGGURAT_TABLE_SIZE];
static double wi[ZIGGURAT_TABLE_SIZE], fi[ZIGGURAT_TABLE_SIZE];
static ZIGINT ke[ZIGGURAT_TABLE_SIZE];
static double we[ZIGGURAT_TABLE_SIZE], fe[ZIGGURAT_TABLE_SIZE];
/*
This code is based on the paper Marsaglia and Tsang, "The ziggurat method
for generating random variables", Journ. Statistical Software. Code was
presented in this paper for a Ziggurat of 127 levels and using a 32 bit
integer random number generator. This version of the code, uses the
Mersenne Twister as the integer generator and uses 256 levels in the
Ziggurat. This has several advantages.
1) As Marsaglia and Tsang themselves states, the more levels the few
times the expensive tail algorithm must be called
2) The cycle time of the generator is determined by the integer
generator, thus the use of a Mersenne Twister for the core random
generator makes this cycle extremely long.
3) The license on the original code was unclear, thus rewriting the code
from the article means we are free of copyright issues.
4) Compile flag for full 53-bit random mantissa.
It should be stated that the authors made my life easier, by the fact that
the algorithm developed in the text of the article is for a 256 level
ziggurat, even if the code itself isn't...
One modification to the algorithm developed in the article, is that it is
assumed that 0 <= x < Inf, and "unsigned long"s are used, thus resulting in
terms like 2^32 in the code. As the normal distribution is defined between
-Inf < x < Inf, we effectively only have 31 bit integers plus a sign. Thus
in Marsaglia and Tsang, terms like 2^32 become 2^31. We use NMANTISSA for
this term. The exponential distribution is one sided so we use the
full 32 bits. We use EMANTISSA for this term.
It appears that I'm slightly slower than the code in the article, this
is partially due to a better generator of random integers than they
use. But might also be that the case of rapid return was optimized by
inlining the relevant code with a #define. As the basic Mersenne
Twister is only 25% faster than this code I suspect that the main
reason is just the use of the Mersenne Twister and not the inlining,
so I'm not going to try and optimize further.
*/
static void
create_ziggurat_tables (void)
{
int i;
double x, x1;
/* Ziggurat tables for the normal distribution */
x1 = ZIGGURAT_NOR_R;
wi[255] = x1 / NMANTISSA;
fi[255] = exp (-0.5 * x1 * x1);
/* Index zero is special for tail strip, where Marsaglia and Tsang
* defines this as
* k_0 = 2^31 * r * f(r) / v, w_0 = 0.5^31 * v / f(r), f_0 = 1,
* where v is the area of each strip of the ziggurat.
*/
ki[0] = (ZIGINT) (x1 * fi[255] / NOR_SECTION_AREA * NMANTISSA);
wi[0] = NOR_SECTION_AREA / fi[255] / NMANTISSA;
fi[0] = 1.;
for (i = 254; i > 0; i--)
{
/* New x is given by x = f^{-1}(v/x_{i+1} + f(x_{i+1})), thus
* need inverse operator of y = exp(-0.5*x*x) -> x = sqrt(-2*ln(y))
*/
x = sqrt(-2. * log(NOR_SECTION_AREA / x1 + fi[i+1]));
ki[i+1] = (ZIGINT)(x / x1 * NMANTISSA);
wi[i] = x / NMANTISSA;
fi[i] = exp (-0.5 * x * x);
x1 = x;
}
ki[1] = 0;
/* Zigurrat tables for the exponential distribution */
x1 = ZIGGURAT_EXP_R;
we[255] = x1 / EMANTISSA;
fe[255] = exp (-x1);
/* Index zero is special for tail strip, where Marsaglia and Tsang
* defines this as
* k_0 = 2^32 * r * f(r) / v, w_0 = 0.5^32 * v / f(r), f_0 = 1,
* where v is the area of each strip of the ziggurat.
*/
ke[0] = (ZIGINT) (x1 * fe[255] / EXP_SECTION_AREA * EMANTISSA);
we[0] = EXP_SECTION_AREA / fe[255] / EMANTISSA;
fe[0] = 1.;
for (i = 254; i > 0; i--)
{
/* New x is given by x = f^{-1}(v/x_{i+1} + f(x_{i+1})), thus
* need inverse operator of y = exp(-x) -> x = -ln(y)
*/
x = - log(EXP_SECTION_AREA / x1 + fe[i+1]);
ke[i+1] = (ZIGINT)(x / x1 * EMANTISSA);
we[i] = x / EMANTISSA;
fe[i] = exp (-x);
x1 = x;
}
ke[1] = 0;
initt = 0;
}
/*
* Here is the guts of the algorithm. As Marsaglia and Tsang state the
* algorithm in their paper
*
* 1) Calculate a random signed integer j and let i be the index
* provided by the rightmost 8-bits of j
* 2) Set x = j * w_i. If j < k_i return x
* 3) If i = 0, then return x from the tail
* 4) If [f(x_{i-1}) - f(x_i)] * U < f(x) - f(x_i), return x
* 5) goto step 1
*
* Where f is the functional form of the distribution, which for a normal
* distribution is exp(-0.5*x*x)
*/
double
oct_randn (void)
{
if (initt)
create_ziggurat_tables();
while (1)
{
/* The following code is specialized for 32-bit mantissa.
* Compared to the arbitrary mantissa code, there is a performance
* gain for 32-bits: PPC: 2%, MIPS: 8%, x86: 40%
* There is a bigger performance gain compared to using a full
* 53-bit mantissa: PPC: 60%, MIPS: 65%, x86: 240%
* Of course, different compilers and operating systems may
* have something to do with this.
*/
#if !defined(ALLBITS)
# if HAVE_X86_32
/* 53-bit mantissa, 1-bit sign, x86 32-bit architecture */
double x;
int si,idx;
register uint32_t lo, hi;
int64_t rabs;
uint32_t *p = (uint32_t *)&rabs;
lo = randi32();
idx = lo&0xFF;
hi = randi32();
si = hi&UMASK;
p[0] = lo;
p[1] = hi&0x1FFFFF;
x = ( si ? -rabs : rabs ) * wi[idx];
# else /* !HAVE_X86_32 */
/* arbitrary mantissa (selected by NRANDI, with 1 bit for sign) */
const uint64_t r = NRANDI;
const int64_t rabs=r>>1;
const int idx = (int)(rabs&0xFF);
const double x = ( r&1 ? -rabs : rabs) * wi[idx];
# endif /* !HAVE_X86_32 */
if (rabs < (int64_t)ki[idx])
#else /* ALLBITS */
/* 32-bit mantissa */
const uint32_t r = randi32();
const uint32_t rabs = r&LMASK;
const int idx = (int)(r&0xFF);
const double x = ((int32_t)r) * wi[idx];
if (rabs < ki[idx])
#endif /* ALLBITS */
return x; /* 99.3% of the time we return here 1st try */
else if (idx == 0)
{
/* As stated in Marsaglia and Tsang
*
* For the normal tail, the method of Marsaglia[5] provides:
* generate x = -ln(U_1)/r, y = -ln(U_2), until y+y > x*x,
* then return r+x. Except that r+x is always in the positive
* tail!!!! Any thing random might be used to determine the
* sign, but as we already have r we might as well use it
*
* [PAK] but not the bottom 8 bits, since they are all 0 here!
*/
double xx, yy;
do
{
xx = - ZIGGURAT_NOR_INV_R * log (RANDU);
yy = - log (RANDU);
}
while ( yy+yy <= xx*xx);
return (rabs&0x100 ? -ZIGGURAT_NOR_R-xx : ZIGGURAT_NOR_R+xx);
}
else if ((fi[idx-1] - fi[idx]) * RANDU + fi[idx] < exp(-0.5*x*x))
return x;
}
}
double
oct_rande (void)
{
if (initt)
create_ziggurat_tables();
while (1)
{
ZIGINT ri = ERANDI;
const int idx = (int)(ri & 0xFF);
const double x = ri * we[idx];
if (ri < ke[idx])
return x; // 98.9% of the time we return here 1st try
else if (idx == 0)
{
/* As stated in Marsaglia and Tsang
*
* For the exponential tail, the method of Marsaglia[5] provides:
* x = r - ln(U);
*/
return ZIGGURAT_EXP_R - log(RANDU);
}
else if ((fe[idx-1] - fe[idx]) * RANDU + fe[idx] < exp(-x))
return x;
}
}
/* Array generators */
void
oct_fill_randu (octave_idx_type n, double *p)
{
octave_idx_type i;
for (i = 0; i < n; i++)
p[i] = oct_randu();
}
void
oct_fill_randn (octave_idx_type n, double *p)
{
octave_idx_type i;
for (i = 0; i < n; i++)
p[i] = oct_randn();
}
void
oct_fill_rande (octave_idx_type n, double *p)
{
octave_idx_type i;
for (i = 0; i < n; i++)
p[i] = oct_rande();
}
/*
;;; Local Variables: ***
;;; mode: C ***
;;; End: ***
*/
|