File: Basic-Statistical-Functions.html

package info (click to toggle)
octave3.2 3.2.4-8
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 62,936 kB
  • ctags: 37,353
  • sloc: cpp: 219,497; fortran: 116,336; ansic: 10,264; sh: 5,508; makefile: 4,245; lex: 3,573; yacc: 3,062; objc: 2,042; lisp: 1,692; awk: 860; perl: 844
file content (335 lines) | stat: -rw-r--r-- 15,075 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
<html lang="en">
<head>
<title>Basic Statistical Functions - Untitled</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="Untitled">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Statistics.html#Statistics" title="Statistics">
<link rel="prev" href="Descriptive-Statistics.html#Descriptive-Statistics" title="Descriptive Statistics">
<link rel="next" href="Statistical-Plots.html#Statistical-Plots" title="Statistical Plots">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Basic-Statistical-Functions"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Statistical-Plots.html#Statistical-Plots">Statistical Plots</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="Descriptive-Statistics.html#Descriptive-Statistics">Descriptive Statistics</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Statistics.html#Statistics">Statistics</a>
<hr>
</div>

<h3 class="section">25.2 Basic Statistical Functions</h3>

<p>Octave also supports various helpful statistical functions.

<!-- ./statistics/base/mahalanobis.m -->
   <p><a name="doc_002dmahalanobis"></a>

<div class="defun">
&mdash; Function File:  <b>mahalanobis</b> (<var>x, y</var>)<var><a name="index-mahalanobis-1840"></a></var><br>
<blockquote><p>Return the Mahalanobis' D-square distance between the multivariate
samples <var>x</var> and <var>y</var>, which must have the same number of
components (columns), but may have a different number of observations
(rows). 
</p></blockquote></div>

<!-- ./statistics/base/center.m -->
   <p><a name="doc_002dcenter"></a>

<div class="defun">
&mdash; Function File:  <b>center</b> (<var>x</var>)<var><a name="index-center-1841"></a></var><br>
&mdash; Function File:  <b>center</b> (<var>x, dim</var>)<var><a name="index-center-1842"></a></var><br>
<blockquote><p>If <var>x</var> is a vector, subtract its mean. 
If <var>x</var> is a matrix, do the above for each column. 
If the optional argument <var>dim</var> is given, perform the above
operation along this dimension
</p></blockquote></div>

<!-- ./statistics/base/studentize.m -->
   <p><a name="doc_002dstudentize"></a>

<div class="defun">
&mdash; Function File:  <b>studentize</b> (<var>x, dim</var>)<var><a name="index-studentize-1843"></a></var><br>
<blockquote><p>If <var>x</var> is a vector, subtract its mean and divide by its standard
deviation.

        <p>If <var>x</var> is a matrix, do the above along the first non-singleton
dimension.  If the optional argument <var>dim</var> is given then operate
along this dimension. 
</p></blockquote></div>

<!-- ./specfun/nchoosek.m -->
   <p><a name="doc_002dnchoosek"></a>

<div class="defun">
&mdash; Function File: <var>c</var> = <b>nchoosek</b> (<var>n, k</var>)<var><a name="index-nchoosek-1844"></a></var><br>
<blockquote>
        <p>Compute the binomial coefficient or all combinations of <var>n</var>. 
If <var>n</var> is a scalar then, calculate the binomial coefficient
of <var>n</var> and <var>k</var>, defined as

     <pre class="example">           /   \
           | n |    n (n-1) (n-2) ... (n-k+1)       n!
           |   |  = ------------------------- =  ---------
           | k |               k!                k! (n-k)!
           \   /
</pre>
        <p>If <var>n</var> is a vector generate all combinations of the elements
of <var>n</var>, taken <var>k</var> at a time, one row per combination.  The
resulting <var>c</var> has size <code>[nchoosek (length (</code><var>n</var><code>),
</code><var>k</var><code>), </code><var>k</var><code>]</code>.

        <p><code>nchoosek</code> works only for non-negative integer arguments; use
<code>bincoeff</code> for non-integer scalar arguments and for using vector
arguments to compute many coefficients at once.

     <!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
     <!-- A simple blank line produces the correct behavior. -->
     <!-- @sp 1 -->
     <p class="noindent"><strong>See also:</strong> <a href="doc_002dbincoeff.html#doc_002dbincoeff">bincoeff</a>. 
</p></blockquote></div>

<!-- ./statistics/base/histc.m -->
   <p><a name="doc_002dhistc"></a>

<div class="defun">
&mdash; Function File: <var>n</var> = <b>histc</b> (<var>y, edges</var>)<var><a name="index-histc-1845"></a></var><br>
&mdash; Function File: <var>n</var> = <b>histc</b> (<var>y, edges, dim</var>)<var><a name="index-histc-1846"></a></var><br>
&mdash; Function File: [<var>n</var>, <var>idx</var>] = <b>histc</b> (<var><small class="dots">...</small></var>)<var><a name="index-histc-1847"></a></var><br>
<blockquote><p>Produce histogram counts.

        <p>When <var>y</var> is a vector, the function counts the number of elements of
<var>y</var> that fall in the histogram bins defined by <var>edges</var>.  This must be
a vector of monotonically non-decreasing values that define the edges of the
histogram bins.  So, <var>n</var><code> (k)</code> contains the number of elements in
<var>y</var> for which <var>edges</var><code> (k) &lt;= </code><var>y</var><code> &lt; </code><var>edges</var><code> (k+1)</code>. 
The final element of <var>n</var> contains the number of elements of <var>y</var>
that was equal to the last element of <var>edges</var>.

        <p>When <var>y</var> is a N-dimensional array, the same operation as above is
repeated along dimension <var>dim</var>.  If this argument is given, the operation
is performed along the first non-singleton dimension.

        <p>If a second output argument is requested an index matrix is also returned. 
The <var>idx</var> matrix has same size as <var>y</var>.  Each element of <var>idx</var>
contains the index of the histogram bin in which the corresponding element
of <var>y</var> was counted.

     <!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
     <!-- A simple blank line produces the correct behavior. -->
     <!-- @sp 1 -->
     <p class="noindent"><strong>See also:</strong> <a href="doc_002dhist.html#doc_002dhist">hist</a>. 
</p></blockquote></div>

<!-- ./specfun/perms.m -->
   <p><a name="doc_002dperms"></a>

<div class="defun">
&mdash; Function File:  <b>perms</b> (<var>v</var>)<var><a name="index-perms-1848"></a></var><br>
<blockquote>
        <p>Generate all permutations of <var>v</var>, one row per permutation.  The
result has size <code>factorial (</code><var>n</var><code>) * </code><var>n</var>, where <var>n</var>
is the length of <var>v</var>.

        <p>As an example, <code>perms([1, 2, 3])</code> returns the matrix
     <pre class="example">            1   2   3
            2   1   3
            1   3   2
            2   3   1
            3   1   2
            3   2   1
</pre>
        </blockquote></div>

<!-- ./statistics/base/values.m -->
   <p><a name="doc_002dvalues"></a>

<div class="defun">
&mdash; Function File:  <b>values</b> (<var>x</var>)<var><a name="index-values-1849"></a></var><br>
<blockquote><p>Return the different values in a column vector, arranged in ascending
order.

        <p>As an example, <code>values([1, 2, 3, 1])</code> returns the vector
<code>[1, 2, 3]</code>. 
</p></blockquote></div>

<!-- ./statistics/base/table.m -->
   <p><a name="doc_002dtable"></a>

<div class="defun">
&mdash; Function File: [<var>t</var>, <var>l_x</var>] = <b>table</b> (<var>x</var>)<var><a name="index-table-1850"></a></var><br>
&mdash; Function File: [<var>t</var>, <var>l_x</var>, <var>l_y</var>] = <b>table</b> (<var>x, y</var>)<var><a name="index-table-1851"></a></var><br>
<blockquote><p>Create a contingency table <var>t</var> from data vectors.  The <var>l</var>
vectors are the corresponding levels.

        <p>Currently, only 1- and 2-dimensional tables are supported. 
</p></blockquote></div>

<!-- ./statistics/base/spearman.m -->
   <p><a name="doc_002dspearman"></a>

<div class="defun">
&mdash; Function File:  <b>spearman</b> (<var>x, y</var>)<var><a name="index-spearman-1852"></a></var><br>
<blockquote><p>Compute Spearman's rank correlation coefficient <var>rho</var> for each of
the variables specified by the input arguments.

        <p>For matrices, each row is an observation and each column a variable;
vectors are always observations and may be row or column vectors.

        <p><code>spearman (</code><var>x</var><code>)</code> is equivalent to <code>spearman (</code><var>x</var><code>,
</code><var>x</var><code>)</code>.

        <p>For two data vectors <var>x</var> and <var>y</var>, Spearman's <var>rho</var> is the
correlation of the ranks of <var>x</var> and <var>y</var>.

        <p>If <var>x</var> and <var>y</var> are drawn from independent distributions,
<var>rho</var> has zero mean and variance <code>1 / (n - 1)</code>, and is
asymptotically normally distributed. 
</p></blockquote></div>

<!-- ./statistics/base/run_count.m -->
   <p><a name="doc_002drun_005fcount"></a>

<div class="defun">
&mdash; Function File:  <b>run_count</b> (<var>x, n</var>)<var><a name="index-run_005fcount-1853"></a></var><br>
<blockquote><p>Count the upward runs along the first non-singleton dimension of
<var>x</var> of length 1, 2, <small class="dots">...</small>, <var>n</var>-1 and greater than or equal
to <var>n</var>.  If the optional argument <var>dim</var> is given operate
along this dimension
</p></blockquote></div>

<!-- ./statistics/base/ranks.m -->
   <p><a name="doc_002dranks"></a>

<div class="defun">
&mdash; Function File:  <b>ranks</b> (<var>x, dim</var>)<var><a name="index-ranks-1854"></a></var><br>
<blockquote><p>Return the ranks of <var>x</var> along the first non-singleton dimension
adjust for ties.  If the optional argument <var>dim</var> is
given, operate along this dimension. 
</p></blockquote></div>

<!-- ./statistics/base/range.m -->
   <p><a name="doc_002drange"></a>

<div class="defun">
&mdash; Function File:  <b>range</b> (<var>x</var>)<var><a name="index-range-1855"></a></var><br>
&mdash; Function File:  <b>range</b> (<var>x, dim</var>)<var><a name="index-range-1856"></a></var><br>
<blockquote><p>If <var>x</var> is a vector, return the range, i.e., the difference
between the maximum and the minimum, of the input data.

        <p>If <var>x</var> is a matrix, do the above for each column of <var>x</var>.

        <p>If the optional argument <var>dim</var> is supplied, work along dimension
<var>dim</var>. 
</p></blockquote></div>

<!-- ./statistics/base/probit.m -->
   <p><a name="doc_002dprobit"></a>

<div class="defun">
&mdash; Function File:  <b>probit</b> (<var>p</var>)<var><a name="index-probit-1857"></a></var><br>
<blockquote><p>For each component of <var>p</var>, return the probit (the quantile of the
standard normal distribution) of <var>p</var>. 
</p></blockquote></div>

<!-- ./statistics/base/logit.m -->
   <p><a name="doc_002dlogit"></a>

<div class="defun">
&mdash; Function File:  <b>logit</b> (<var>p</var>)<var><a name="index-logit-1858"></a></var><br>
<blockquote><p>For each component of <var>p</var>, return the logit of <var>p</var> defined as
     <pre class="example">          logit(<var>p</var>) = log (<var>p</var> / (1-<var>p</var>))
</pre>
        </blockquote></div>

<!-- ./statistics/base/cloglog.m -->
   <p><a name="doc_002dcloglog"></a>

<div class="defun">
&mdash; Function File:  <b>cloglog</b> (<var>x</var>)<var><a name="index-cloglog-1859"></a></var><br>
<blockquote><p>Return the complementary log-log function of <var>x</var>, defined as

     <pre class="example">          cloglog(x) = - log (- log (<var>x</var>))
</pre>
        </blockquote></div>

<!-- ./statistics/base/kendall.m -->
   <p><a name="doc_002dkendall"></a>

<div class="defun">
&mdash; Function File:  <b>kendall</b> (<var>x, y</var>)<var><a name="index-kendall-1860"></a></var><br>
<blockquote><p>Compute Kendall's <var>tau</var> for each of the variables specified by
the input arguments.

        <p>For matrices, each row is an observation and each column a variable;
vectors are always observations and may be row or column vectors.

        <p><code>kendall (</code><var>x</var><code>)</code> is equivalent to <code>kendall (</code><var>x</var><code>,
</code><var>x</var><code>)</code>.

        <p>For two data vectors <var>x</var>, <var>y</var> of common length <var>n</var>,
Kendall's <var>tau</var> is the correlation of the signs of all rank
differences of <var>x</var> and <var>y</var>;  i.e., if both <var>x</var> and
<var>y</var> have distinct entries, then

     <pre class="example">                   1
          tau = -------   SUM sign (q(i) - q(j)) * sign (r(i) - r(j))
                n (n-1)   i,j
</pre>
        <p class="noindent">in which the
<var>q</var>(<var>i</var>) and <var>r</var>(<var>i</var>)
 are the ranks of
<var>x</var> and <var>y</var>, respectively.

        <p>If <var>x</var> and <var>y</var> are drawn from independent distributions,
Kendall's <var>tau</var> is asymptotically normal with mean 0 and variance
<code>(2 * (2</code><var>n</var><code>+5)) / (9 * </code><var>n</var><code> * (</code><var>n</var><code>-1))</code>. 
</p></blockquote></div>

<!-- ./statistics/base/iqr.m -->
   <p><a name="doc_002diqr"></a>

<div class="defun">
&mdash; Function File:  <b>iqr</b> (<var>x, dim</var>)<var><a name="index-iqr-1861"></a></var><br>
<blockquote><p>If <var>x</var> is a vector, return the interquartile range, i.e., the
difference between the upper and lower quartile, of the input data.

        <p>If <var>x</var> is a matrix, do the above for first non-singleton
dimension of <var>x</var>.  If the option <var>dim</var> argument is given,
then operate along this dimension. 
</p></blockquote></div>

<!-- ./statistics/base/cut.m -->
   <p><a name="doc_002dcut"></a>

<div class="defun">
&mdash; Function File:  <b>cut</b> (<var>x, breaks</var>)<var><a name="index-cut-1862"></a></var><br>
<blockquote><p>Create categorical data out of numerical or continuous data by
cutting into intervals.

        <p>If <var>breaks</var> is a scalar, the data is cut into that many
equal-width intervals.  If <var>breaks</var> is a vector of break points,
the category has <code>length (</code><var>breaks</var><code>) - 1</code> groups.

        <p>The returned value is a vector of the same size as <var>x</var> telling
which group each point in <var>x</var> belongs to.  Groups are labelled
from 1 to the number of groups; points outside the range of
<var>breaks</var> are labelled by <code>NaN</code>. 
</p></blockquote></div>

   </body></html>