1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
<html lang="en">
<head>
<title>Descriptive Statistics - Untitled</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="Untitled">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Statistics.html#Statistics" title="Statistics">
<link rel="next" href="Basic-Statistical-Functions.html#Basic-Statistical-Functions" title="Basic Statistical Functions">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Descriptive-Statistics"></a>
Next: <a rel="next" accesskey="n" href="Basic-Statistical-Functions.html#Basic-Statistical-Functions">Basic Statistical Functions</a>,
Up: <a rel="up" accesskey="u" href="Statistics.html#Statistics">Statistics</a>
<hr>
</div>
<h3 class="section">25.1 Descriptive Statistics</h3>
<p>Octave can compute various statistics such as the moments of a data set.
<!-- ./statistics/base/mean.m -->
<p><a name="doc_002dmean"></a>
<div class="defun">
— Function File: <b>mean</b> (<var>x, dim, opt</var>)<var><a name="index-mean-1819"></a></var><br>
<blockquote><p>If <var>x</var> is a vector, compute the mean of the elements of <var>x</var>
<pre class="example"> mean (x) = SUM_i x(i) / N
</pre>
<p>If <var>x</var> is a matrix, compute the mean for each column and return them
in a row vector.
<p>With the optional argument <var>opt</var>, the kind of mean computed can be
selected. The following options are recognized:
<dl>
<dt><code>"a"</code><dd>Compute the (ordinary) arithmetic mean. This is the default.
<br><dt><code>"g"</code><dd>Compute the geometric mean.
<br><dt><code>"h"</code><dd>Compute the harmonic mean.
</dl>
<p>If the optional argument <var>dim</var> is supplied, work along dimension
<var>dim</var>.
<p>Both <var>dim</var> and <var>opt</var> are optional. If both are supplied,
either may appear first.
</p></blockquote></div>
<!-- ./statistics/base/median.m -->
<p><a name="doc_002dmedian"></a>
<div class="defun">
— Function File: <b>median</b> (<var>x, dim</var>)<var><a name="index-median-1820"></a></var><br>
<blockquote><p>If <var>x</var> is a vector, compute the median value of the elements of
<var>x</var>. If the elements of <var>x</var> are sorted, the median is defined
as
<pre class="example"> x(ceil(N/2)), N odd
median(x) =
(x(N/2) + x((N/2)+1))/2, N even
</pre>
<p>If <var>x</var> is a matrix, compute the median value for each
column and return them in a row vector. If the optional <var>dim</var>
argument is given, operate along this dimension.
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->
<p class="noindent"><strong>See also:</strong> <a href="doc_002dstd.html#doc_002dstd">std</a>, <a href="doc_002dmean.html#doc_002dmean">mean</a>.
</p></blockquote></div>
<!-- ./statistics/base/quantile.m -->
<p><a name="doc_002dquantile"></a>
<div class="defun">
— Function File: <var>q</var> = <b>quantile</b> (<var>x, p</var>)<var><a name="index-quantile-1821"></a></var><br>
— Function File: <var>q</var> = <b>quantile</b> (<var>x, p, dim</var>)<var><a name="index-quantile-1822"></a></var><br>
— Function File: <var>q</var> = <b>quantile</b> (<var>x, p, dim, method</var>)<var><a name="index-quantile-1823"></a></var><br>
<blockquote><p>For a sample, <var>x</var>, calculate the quantiles, <var>q</var>, corresponding to
the cumulative probability values in <var>p</var>. All non-numeric values (NaNs) of
<var>x</var> are ignored.
<p>If <var>x</var> is a matrix, compute the quantiles for each column and
return them in a matrix, such that the i-th row of <var>q</var> contains
the <var>p</var>(i)th quantiles of each column of <var>x</var>.
<p>The optional argument <var>dim</var> determines the dimension along which
the percentiles are calculated. If <var>dim</var> is omitted, and <var>x</var> is
a vector or matrix, it defaults to 1 (column wise quantiles). In the
instance that <var>x</var> is a N-d array, <var>dim</var> defaults to the first
dimension whose size greater than unity.
<p>The methods available to calculate sample quantiles are the nine methods
used by R (http://www.r-project.org/). The default value is METHOD = 5.
<p>Discontinuous sample quantile methods 1, 2, and 3
<ol type=1 start=1>
<li>Method 1: Inverse of empirical distribution function.
<li>Method 2: Similar to method 1 but with averaging at discontinuities.
<li>Method 3: SAS definition: nearest even order statistic.
</ol>
<p>Continuous sample quantile methods 4 through 9, where p(k) is the linear
interpolation function respecting each methods' representative cdf.
<ol type=1 start=4>
<li>Method 4: p(k) = k / n. That is, linear interpolation of the empirical cdf.
<li>Method 5: p(k) = (k - 0.5) / n. That is a piecewise linear function where
the knots are the values midway through the steps of the empirical cdf.
<li>Method 6: p(k) = k / (n + 1).
<li>Method 7: p(k) = (k - 1) / (n - 1).
<li>Method 8: p(k) = (k - 1/3) / (n + 1/3). The resulting quantile estimates
are approximately median-unbiased regardless of the distribution of <var>x</var>.
<li>Method 9: p(k) = (k - 3/8) / (n + 1/4). The resulting quantile estimates
are approximately unbiased for the expected order statistics if <var>x</var> is
normally distributed.
</ol>
<p>Hyndman and Fan (1996) recommend method 8. Maxima, S, and R
(versions prior to 2.0.0) use 7 as their default. Minitab and SPSS
use method 6. <span class="sc">matlab</span> uses method 5.
<p>References:
<ul>
<li>Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New
S Language. Wadsworth & Brooks/Cole.
<li>Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in
statistical packages, American Statistician, 50, 361–365.
<li>R: A Language and Environment for Statistical Computing;
<a href="http://cran.r-project.org/doc/manuals/fullrefman.pdf">http://cran.r-project.org/doc/manuals/fullrefman.pdf</a>.
</ul>
</p></blockquote></div>
<!-- ./statistics/base/prctile.m -->
<p><a name="doc_002dprctile"></a>
<div class="defun">
— Function File: <var>y</var> = <b>prctile</b> (<var>x, p</var>)<var><a name="index-prctile-1824"></a></var><br>
— Function File: <var>q</var> = <b>prctile</b> (<var>x, p, dim</var>)<var><a name="index-prctile-1825"></a></var><br>
<blockquote><p>For a sample <var>x</var>, compute the quantiles, <var>y</var>, corresponding
to the cumulative probability values, P, in percent. All non-numeric
values (NaNs) of X are ignored.
<p>If <var>x</var> is a matrix, compute the percentiles for each column and
return them in a matrix, such that the i-th row of <var>y</var> contains the
<var>p</var>(i)th percentiles of each column of <var>x</var>.
<p>The optional argument <var>dim</var> determines the dimension along which
the percentiles are calculated. If <var>dim</var> is omitted, and <var>x</var> is
a vector or matrix, it defaults to 1 (column wise quantiles). In the
instance that <var>x</var> is a N-d array, <var>dim</var> defaults to the first
dimension whose size greater than unity.
</blockquote></div>
<!-- ./statistics/base/meansq.m -->
<p><a name="doc_002dmeansq"></a>
<div class="defun">
— Function File: <b>meansq</b> (<var>x</var>)<var><a name="index-meansq-1826"></a></var><br>
— Function File: <b>meansq</b> (<var>x, dim</var>)<var><a name="index-meansq-1827"></a></var><br>
<blockquote><p>For vector arguments, return the mean square of the values.
For matrix arguments, return a row vector containing the mean square
of each column. With the optional <var>dim</var> argument, returns the
mean squared of the values along this dimension.
</p></blockquote></div>
<!-- ./statistics/base/std.m -->
<p><a name="doc_002dstd"></a>
<div class="defun">
— Function File: <b>std</b> (<var>x</var>)<var><a name="index-std-1828"></a></var><br>
— Function File: <b>std</b> (<var>x, opt</var>)<var><a name="index-std-1829"></a></var><br>
— Function File: <b>std</b> (<var>x, opt, dim</var>)<var><a name="index-std-1830"></a></var><br>
<blockquote><p>If <var>x</var> is a vector, compute the standard deviation of the elements
of <var>x</var>.
<pre class="example"> std (x) = sqrt (sumsq (x - mean (x)) / (n - 1))
</pre>
<p>If <var>x</var> is a matrix, compute the standard deviation for
each column and return them in a row vector.
<p>The argument <var>opt</var> determines the type of normalization to use. Valid values
are
<dl>
<dt>0:<dd> normalizes with N-1, provides the square root of best unbiased estimator of
the variance [default]
<br><dt>1:<dd> normalizes with N, this provides the square root of the second moment around
the mean
</dl>
<p>The third argument <var>dim</var> determines the dimension along which the standard
deviation is calculated.
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->
<p class="noindent"><strong>See also:</strong> <a href="doc_002dmean.html#doc_002dmean">mean</a>, <a href="doc_002dmedian.html#doc_002dmedian">median</a>.
</p></blockquote></div>
<!-- ./statistics/base/var.m -->
<p><a name="doc_002dvar"></a>
<div class="defun">
— Function File: <b>var</b> (<var>x</var>)<var><a name="index-var-1831"></a></var><br>
<blockquote><p>For vector arguments, return the (real) variance of the values.
For matrix arguments, return a row vector containing the variance for
each column.
<p>The argument <var>opt</var> determines the type of normalization to use.
Valid values are
<dl>
<dt>0:<dd>Normalizes with N-1, provides the best unbiased estimator of the
variance [default].
<br><dt>1:<dd>Normalizes with N, this provides the second moment around the mean.
</dl>
<p>The third argument <var>dim</var> determines the dimension along which the
variance is calculated.
</p></blockquote></div>
<!-- ./statistics/base/mode.m -->
<p><a name="doc_002dmode"></a>
<div class="defun">
— Function File: [<var>m</var>, <var>f</var>, <var>c</var>] = <b>mode</b> (<var>x, dim</var>)<var><a name="index-mode-1832"></a></var><br>
<blockquote><p>Count the most frequently appearing value. <code>mode</code> counts the
frequency along the first non-singleton dimension and if two or more
values have the same frequency returns the smallest of the two in
<var>m</var>. The dimension along which to count can be specified by the
<var>dim</var> parameter.
<p>The variable <var>f</var> counts the frequency of each of the most frequently
occurring elements. The cell array <var>c</var> contains all of the elements
with the maximum frequency .
</p></blockquote></div>
<!-- ./statistics/base/cov.m -->
<p><a name="doc_002dcov"></a>
<div class="defun">
— Function File: <b>cov</b> (<var>x, y</var>)<var><a name="index-cov-1833"></a></var><br>
<blockquote><p>Compute covariance.
<p>If each row of <var>x</var> and <var>y</var> is an observation and each column is
a variable, the (<var>i</var>, <var>j</var>)-th entry of
<code>cov (</code><var>x</var><code>, </code><var>y</var><code>)</code> is the covariance between the <var>i</var>-th
variable in <var>x</var> and the <var>j</var>-th variable in <var>y</var>.
If called with one argument, compute <code>cov (</code><var>x</var><code>, </code><var>x</var><code>)</code>.
</p></blockquote></div>
<!-- ./statistics/base/cor.m -->
<p><a name="doc_002dcor"></a>
<div class="defun">
— Function File: <b>cor</b> (<var>x, y</var>)<var><a name="index-cor-1834"></a></var><br>
<blockquote><p>Compute correlation.
<p>The (<var>i</var>, <var>j</var>)-th entry of <code>cor (</code><var>x</var><code>, </code><var>y</var><code>)</code> is
the correlation between the <var>i</var>-th variable in <var>x</var> and the
<var>j</var>-th variable in <var>y</var>.
<pre class="example"> corrcoef(x,y) = cov(x,y)/(std(x)*std(y))
</pre>
<p>For matrices, each row is an observation and each column a variable;
vectors are always observations and may be row or column vectors.
<p><code>cor (</code><var>x</var><code>)</code> is equivalent to <code>cor (</code><var>x</var><code>, </code><var>x</var><code>)</code>.
<p>Note that the <code>corrcoef</code> function does the same as <code>cor</code>.
</p></blockquote></div>
<!-- ./statistics/base/corrcoef.m -->
<p><a name="doc_002dcorrcoef"></a>
<div class="defun">
— Function File: <b>corrcoef</b> (<var>x, y</var>)<var><a name="index-corrcoef-1835"></a></var><br>
<blockquote><p>Compute correlation.
<p>If each row of <var>x</var> and <var>y</var> is an observation and each column is
a variable, the (<var>i</var>, <var>j</var>)-th entry of
<code>corrcoef (</code><var>x</var><code>, </code><var>y</var><code>)</code> is the correlation between the
<var>i</var>-th variable in <var>x</var> and the <var>j</var>-th variable in <var>y</var>.
<pre class="example"> corrcoef(x,y) = cov(x,y)/(std(x)*std(y))
</pre>
<p>If called with one argument, compute <code>corrcoef (</code><var>x</var><code>, </code><var>x</var><code>)</code>.
</p></blockquote></div>
<!-- ./statistics/base/kurtosis.m -->
<p><a name="doc_002dkurtosis"></a>
<div class="defun">
— Function File: <b>kurtosis</b> (<var>x, dim</var>)<var><a name="index-kurtosis-1836"></a></var><br>
<blockquote><p>If <var>x</var> is a vector of length N, return the kurtosis
<pre class="example"> kurtosis (x) = N^(-1) std(x)^(-4) sum ((x - mean(x)).^4) - 3
</pre>
<p class="noindent">of <var>x</var>. If <var>x</var> is a matrix, return the kurtosis over the
first non-singleton dimension. The optional argument <var>dim</var>
can be given to force the kurtosis to be given over that
dimension.
</p></blockquote></div>
<!-- ./statistics/base/skewness.m -->
<p><a name="doc_002dskewness"></a>
<div class="defun">
— Function File: <b>skewness</b> (<var>x, dim</var>)<var><a name="index-skewness-1837"></a></var><br>
<blockquote><p>If <var>x</var> is a vector of length n, return the skewness
<pre class="example"> skewness (x) = N^(-1) std(x)^(-3) sum ((x - mean(x)).^3)
</pre>
<p class="noindent">of <var>x</var>. If <var>x</var> is a matrix, return the skewness along the
first non-singleton dimension of the matrix. If the optional
<var>dim</var> argument is given, operate along this dimension.
</p></blockquote></div>
<!-- ./statistics/base/statistics.m -->
<p><a name="doc_002dstatistics"></a>
<div class="defun">
— Function File: <b>statistics</b> (<var>x</var>)<var><a name="index-statistics-1838"></a></var><br>
<blockquote><p>If <var>x</var> is a matrix, return a matrix with the minimum, first
quartile, median, third quartile, maximum, mean, standard deviation,
skewness and kurtosis of the columns of <var>x</var> as its columns.
<p>If <var>x</var> is a vector, calculate the statistics along the
non-singleton dimension.
</p></blockquote></div>
<!-- ./statistics/base/moment.m -->
<p><a name="doc_002dmoment"></a>
<div class="defun">
— Function File: <b>moment</b> (<var>x, p, opt, dim</var>)<var><a name="index-moment-1839"></a></var><br>
<blockquote><p>If <var>x</var> is a vector, compute the <var>p</var>-th moment of <var>x</var>.
<p>If <var>x</var> is a matrix, return the row vector containing the
<var>p</var>-th moment of each column.
<p>With the optional string opt, the kind of moment to be computed can
be specified. If opt contains <code>"c"</code> or <code>"a"</code>, central
and/or absolute moments are returned. For example,
<pre class="example"> moment (x, 3, "ac")
</pre>
<p class="noindent">computes the third central absolute moment of <var>x</var>.
<p>If the optional argument <var>dim</var> is supplied, work along dimension
<var>dim</var>.
</p></blockquote></div>
</body></html>
|