1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
<html lang="en">
<head>
<title>Functions of a Matrix - Untitled</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="Untitled">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Linear-Algebra.html#Linear-Algebra" title="Linear Algebra">
<link rel="prev" href="Matrix-Factorizations.html#Matrix-Factorizations" title="Matrix Factorizations">
<link rel="next" href="Specialized-Solvers.html#Specialized-Solvers" title="Specialized Solvers">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Functions-of-a-Matrix"></a>
Next: <a rel="next" accesskey="n" href="Specialized-Solvers.html#Specialized-Solvers">Specialized Solvers</a>,
Previous: <a rel="previous" accesskey="p" href="Matrix-Factorizations.html#Matrix-Factorizations">Matrix Factorizations</a>,
Up: <a rel="up" accesskey="u" href="Linear-Algebra.html#Linear-Algebra">Linear Algebra</a>
<hr>
</div>
<h3 class="section">18.4 Functions of a Matrix</h3>
<!-- ./linear-algebra/expm.m -->
<p><a name="doc_002dexpm"></a>
<div class="defun">
— Function File: <b>expm</b> (<var>a</var>)<var><a name="index-expm-1622"></a></var><br>
<blockquote><p>Return the exponential of a matrix, defined as the infinite Taylor
series
<pre class="example"> expm(a) = I + a + a^2/2! + a^3/3! + ...
</pre>
<p>The Taylor series is <em>not</em> the way to compute the matrix
exponential; see Moler and Van Loan, <cite>Nineteen Dubious Ways to
Compute the Exponential of a Matrix</cite>, SIAM Review, 1978. This routine
uses Ward's diagonal
Pade'
approximation method with three step preconditioning (SIAM Journal on
Numerical Analysis, 1977). Diagonal
Pade'
approximations are rational polynomials of matrices
<pre class="example"> -1
D (a) N (a)
</pre>
<p>whose Taylor series matches the first
<code>2q+1</code>
terms of the Taylor series above; direct evaluation of the Taylor series
(with the same preconditioning steps) may be desirable in lieu of the
Pade'
approximation when
<code>Dq(a)</code>
is ill-conditioned.
</p></blockquote></div>
<!-- ./linear-algebra/logm.m -->
<p><a name="doc_002dlogm"></a>
<div class="defun">
— Function File: <b>logm</b> (<var>a</var>)<var><a name="index-logm-1623"></a></var><br>
<blockquote><p>Compute the matrix logarithm of the square matrix <var>a</var>. Note that
this is currently implemented in terms of an eigenvalue expansion and
needs to be improved to be more robust.
</p></blockquote></div>
<!-- ./DLD-FUNCTIONS/sqrtm.cc -->
<p><a name="doc_002dsqrtm"></a>
<div class="defun">
— Loadable Function: [<var>result</var>, <var>error_estimate</var>] = <b>sqrtm</b> (<var>a</var>)<var><a name="index-sqrtm-1624"></a></var><br>
<blockquote><p>Compute the matrix square root of the square matrix <var>a</var>.
<p>Ref: Nicholas J. Higham. A new sqrtm for <span class="sc">matlab</span>. Numerical Analysis
Report No. 336, Manchester Centre for Computational Mathematics,
Manchester, England, January 1999.
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->
<p class="noindent"><strong>See also:</strong> <a href="doc_002dexpm.html#doc_002dexpm">expm</a>, <a href="doc_002dlogm.html#doc_002dlogm">logm</a>.
</p></blockquote></div>
<!-- ./DLD-FUNCTIONS/kron.cc -->
<p><a name="doc_002dkron"></a>
<div class="defun">
— Loadable Function: <b>kron</b> (<var>a, b</var>)<var><a name="index-kron-1625"></a></var><br>
<blockquote><p>Form the kronecker product of two matrices, defined block by block as
<pre class="example"> x = [a(i, j) b]
</pre>
<p>For example,
<pre class="example"> kron (1:4, ones (3, 1))
1 2 3 4
1 2 3 4
1 2 3 4
</pre>
</blockquote></div>
<!-- ./DLD-FUNCTIONS/syl.cc -->
<p><a name="doc_002dsyl"></a>
<div class="defun">
— Loadable Function: <var>x</var> = <b>syl</b> (<var>a, b, c</var>)<var><a name="index-syl-1626"></a></var><br>
<blockquote><p>Solve the Sylvester equation
<pre class="example"> A X + X B + C = 0
</pre>
<p>using standard <span class="sc">lapack</span> subroutines. For example,
<pre class="example"> syl ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])
[ -0.50000, -0.66667; -0.66667, -0.50000 ]
</pre>
</blockquote></div>
</body></html>
|