File: Models.html

package info (click to toggle)
octave3.2 3.2.4-8
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 62,936 kB
  • ctags: 37,353
  • sloc: cpp: 219,497; fortran: 116,336; ansic: 10,264; sh: 5,508; makefile: 4,245; lex: 3,573; yacc: 3,062; objc: 2,042; lisp: 1,692; awk: 860; perl: 844
file content (88 lines) | stat: -rw-r--r-- 3,958 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
<html lang="en">
<head>
<title>Models - Untitled</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="Untitled">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Statistics.html#Statistics" title="Statistics">
<link rel="prev" href="Tests.html#Tests" title="Tests">
<link rel="next" href="Distributions.html#Distributions" title="Distributions">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Models"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Distributions.html#Distributions">Distributions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="Tests.html#Tests">Tests</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Statistics.html#Statistics">Statistics</a>
<hr>
</div>

<h3 class="section">25.5 Models</h3>

<!-- ./statistics/models/logistic_regression.m -->
<p><a name="doc_002dlogistic_005fregression"></a>

<div class="defun">
&mdash; Function File: [<var>theta</var>, <var>beta</var>, <var>dev</var>, <var>dl</var>, <var>d2l</var>, <var>p</var>] = <b>logistic_regression</b> (<var>y, x, print, theta, beta</var>)<var><a name="index-logistic_005fregression-1890"></a></var><br>
<blockquote><p>Perform ordinal logistic regression.

        <p>Suppose <var>y</var> takes values in <var>k</var> ordered categories, and let
<code>gamma_i (</code><var>x</var><code>)</code> be the cumulative probability that <var>y</var>
falls in one of the first <var>i</var> categories given the covariate
<var>x</var>.  Then

     <pre class="example">          [theta, beta] = logistic_regression (y, x)
</pre>
        <p class="noindent">fits the model

     <pre class="example">          logit (gamma_i (x)) = theta_i - beta' * x,   i = 1 ... k-1
</pre>
        <p>The number of ordinal categories, <var>k</var>, is taken to be the number
of distinct values of <code>round (</code><var>y</var><code>)</code>.  If <var>k</var> equals 2,
<var>y</var> is binary and the model is ordinary logistic regression.  The
matrix <var>x</var> is assumed to have full column rank.

        <p>Given <var>y</var> only, <code>theta = logistic_regression (y)</code>
fits the model with baseline logit odds only.

        <p>The full form is

     <pre class="example">          [theta, beta, dev, dl, d2l, gamma]
             = logistic_regression (y, x, print, theta, beta)
</pre>
        <p class="noindent">in which all output arguments and all input arguments except <var>y</var>
are optional.

        <p>Setting <var>print</var> to 1 requests summary information about the fitted
model to be displayed.  Setting <var>print</var> to 2 requests information
about convergence at each iteration.  Other values request no
information to be displayed.  The input arguments <var>theta</var> and
<var>beta</var> give initial estimates for <var>theta</var> and <var>beta</var>.

        <p>The returned value <var>dev</var> holds minus twice the log-likelihood.

        <p>The returned values <var>dl</var> and <var>d2l</var> are the vector of first
and the matrix of second derivatives of the log-likelihood with
respect to <var>theta</var> and <var>beta</var>.

        <p><var>p</var> holds estimates for the conditional distribution of <var>y</var>
given <var>x</var>. 
</p></blockquote></div>

   </body></html>