1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
<html lang="en">
<head>
<title>Nonlinear Programming - Untitled</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="Untitled">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Optimization.html#Optimization" title="Optimization">
<link rel="prev" href="Quadratic-Programming.html#Quadratic-Programming" title="Quadratic Programming">
<link rel="next" href="Linear-Least-Squares.html#Linear-Least-Squares" title="Linear Least Squares">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Nonlinear-Programming"></a>
Next: <a rel="next" accesskey="n" href="Linear-Least-Squares.html#Linear-Least-Squares">Linear Least Squares</a>,
Previous: <a rel="previous" accesskey="p" href="Quadratic-Programming.html#Quadratic-Programming">Quadratic Programming</a>,
Up: <a rel="up" accesskey="u" href="Optimization.html#Optimization">Optimization</a>
<hr>
</div>
<h3 class="section">24.3 Nonlinear Programming</h3>
<p>Octave can also perform general nonlinear minimization using a
successive quadratic programming solver.
<!-- ./optimization/sqp.m -->
<p><a name="doc_002dsqp"></a>
<div class="defun">
— Function File: [<var>x</var>, <var>obj</var>, <var>info</var>, <var>iter</var>, <var>nf</var>, <var>lambda</var>] = <b>sqp</b> (<var>x, phi, g, h, lb, ub, maxiter, tolerance</var>)<var><a name="index-sqp-1803"></a></var><br>
<blockquote><p>Solve the nonlinear program
<pre class="example"> min phi (x)
x
</pre>
<p>subject to
<pre class="example"> g(x) = 0
h(x) >= 0
lb <= x <= ub
</pre>
<p class="noindent">using a successive quadratic programming method.
<p>The first argument is the initial guess for the vector <var>x</var>.
<p>The second argument is a function handle pointing to the objective
function. The objective function must be of the form
<pre class="example"> y = phi (x)
</pre>
<p class="noindent">in which <var>x</var> is a vector and <var>y</var> is a scalar.
<p>The second argument may also be a 2- or 3-element cell array of
function handles. The first element should point to the objective
function, the second should point to a function that computes the
gradient of the objective function, and the third should point to a
function to compute the hessian of the objective function. If the
gradient function is not supplied, the gradient is computed by finite
differences. If the hessian function is not supplied, a BFGS update
formula is used to approximate the hessian.
<p>If supplied, the gradient function must be of the form
<pre class="example"> g = gradient (x)
</pre>
<p class="noindent">in which <var>x</var> is a vector and <var>g</var> is a vector.
<p>If supplied, the hessian function must be of the form
<pre class="example"> h = hessian (x)
</pre>
<p class="noindent">in which <var>x</var> is a vector and <var>h</var> is a matrix.
<p>The third and fourth arguments are function handles pointing to
functions that compute the equality constraints and the inequality
constraints, respectively.
<p>If your problem does not have equality (or inequality) constraints,
you may pass an empty matrix for <var>cef</var> (or <var>cif</var>).
<p>If supplied, the equality and inequality constraint functions must be
of the form
<pre class="example"> r = f (x)
</pre>
<p class="noindent">in which <var>x</var> is a vector and <var>r</var> is a vector.
<p>The third and fourth arguments may also be 2-element cell arrays of
function handles. The first element should point to the constraint
function and the second should point to a function that computes the
gradient of the constraint function:
<pre class="example"> [ d f(x) d f(x) d f(x) ]
transpose ( [ ------ ----- ... ------ ] )
[ dx_1 dx_2 dx_N ]
</pre>
<p>The fifth and sixth arguments are vectors containing lower and upper bounds
on <var>x</var>. These must be consistent with equality and inequality
constraints <var>g</var> and <var>h</var>. If the bounds are not specified, or are
empty, they are set to -<var>realmax</var> and <var>realmax</var> by default.
<p>The seventh argument is max. number of iterations. If not specified,
the default value is 100.
<p>The eighth argument is tolerance for stopping criteria. If not specified,
the default value is <var>eps</var>.
<p>Here is an example of calling <code>sqp</code>:
<pre class="example"> function r = g (x)
r = [ sumsq(x)-10;
x(2)*x(3)-5*x(4)*x(5);
x(1)^3+x(2)^3+1 ];
endfunction
function obj = phi (x)
obj = exp(prod(x)) - 0.5*(x(1)^3+x(2)^3+1)^2;
endfunction
x0 = [-1.8; 1.7; 1.9; -0.8; -0.8];
[x, obj, info, iter, nf, lambda] = sqp (x0, @phi, @g, [])
x =
-1.71714
1.59571
1.82725
-0.76364
-0.76364
obj = 0.053950
info = 101
iter = 8
nf = 10
lambda =
-0.0401627
0.0379578
-0.0052227
</pre>
<p>The value returned in <var>info</var> may be one of the following:
<dl>
<dt>101<dd>The algorithm terminated because the norm of the last step was less
than <code>tol * norm (x))</code> (the value of tol is currently fixed at
<code>sqrt (eps)</code>—edit <samp><span class="file">sqp.m</span></samp> to modify this value.
<br><dt>102<dd>The BFGS update failed.
<br><dt>103<dd>The maximum number of iterations was reached (the maximum number of
allowed iterations is currently fixed at 100—edit <samp><span class="file">sqp.m</span></samp> to
increase this value).
</dl>
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->
<p class="noindent"><strong>See also:</strong> <a href="doc_002dqp.html#doc_002dqp">qp</a>.
</p></blockquote></div>
</body></html>
|