File: Permutation-Matrix-Functions.html

package info (click to toggle)
octave3.2 3.2.4-8
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 62,936 kB
  • ctags: 37,353
  • sloc: cpp: 219,497; fortran: 116,336; ansic: 10,264; sh: 5,508; makefile: 4,245; lex: 3,573; yacc: 3,062; objc: 2,042; lisp: 1,692; awk: 860; perl: 844
file content (48 lines) | stat: -rw-r--r-- 2,197 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
<html lang="en">
<head>
<title>Permutation Matrix Functions - Untitled</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="Untitled">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Function-Support.html#Function-Support" title="Function Support">
<link rel="prev" href="Diagonal-Matrix-Functions.html#Diagonal-Matrix-Functions" title="Diagonal Matrix Functions">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Permutation-Matrix-Functions"></a>
Previous:&nbsp;<a rel="previous" accesskey="p" href="Diagonal-Matrix-Functions.html#Diagonal-Matrix-Functions">Diagonal Matrix Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Function-Support.html#Function-Support">Function Support</a>
<hr>
</div>

<h4 class="subsection">20.3.2 Permutation Matrix Functions</h4>

<p><dfn>inv</dfn> and <dfn>pinv</dfn> will invert a permutation matrix, preserving its
specialness.  <dfn>det</dfn> can be applied to a permutation matrix, efficiently
calculating the sign of the permutation (which is equal to the determinant).

   <p>A permutation matrix can also be returned from the built-in functions
<dfn>lu</dfn> and <dfn>qr</dfn>, if a pivoted factorization is requested.

   <p>The <dfn>sparse</dfn> function will convert a permutation matrix efficiently to a
sparse matrix. 
The <dfn>find</dfn> function will also work efficiently with a permutation matrix,
making it possible to conveniently obtain the permutation indices.

   </body></html>