1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
<html lang="en">
<head>
<title>Polynomial Interpolation - Untitled</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="Untitled">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Polynomial-Manipulations.html#Polynomial-Manipulations" title="Polynomial Manipulations">
<link rel="prev" href="Derivatives-and-Integrals.html#Derivatives-and-Integrals" title="Derivatives and Integrals">
<link rel="next" href="Miscellaneous-Functions.html#Miscellaneous-Functions" title="Miscellaneous Functions">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Polynomial-Interpolation"></a>
Next: <a rel="next" accesskey="n" href="Miscellaneous-Functions.html#Miscellaneous-Functions">Miscellaneous Functions</a>,
Previous: <a rel="previous" accesskey="p" href="Derivatives-and-Integrals.html#Derivatives-and-Integrals">Derivatives and Integrals</a>,
Up: <a rel="up" accesskey="u" href="Polynomial-Manipulations.html#Polynomial-Manipulations">Polynomial Manipulations</a>
<hr>
</div>
<h3 class="section">27.5 Polynomial Interpolation</h3>
<p>Octave comes with good support for various kinds of interpolation,
most of which are described in <a href="Interpolation.html#Interpolation">Interpolation</a>. One simple alternative
to the functions described in the aforementioned chapter, is to fit
a single polynomial to some given data points. To avoid a highly
fluctuating polynomial, one most often wants to fit a low-order polynomial
to data. This usually means that it is necessary to fit the polynomial
in a least-squares sense, which is what the <code>polyfit</code> function does.
<!-- ./polynomial/polyfit.m -->
<p><a name="doc_002dpolyfit"></a>
<div class="defun">
— Function File: [<var>p</var>, <var>s</var>, <var>mu</var>] = <b>polyfit</b> (<var>x, y, n</var>)<var><a name="index-polyfit-2048"></a></var><br>
<blockquote><p>Return the coefficients of a polynomial <var>p</var>(<var>x</var>) of degree
<var>n</var> that minimizes the least-squares-error of the fit.
<p>The polynomial coefficients are returned in a row vector.
<p>The second output is a structure containing the following fields:
<dl>
<dt>‘<samp><span class="samp">R</span></samp>’<dd>Triangular factor R from the QR decomposition.
<br><dt>‘<samp><span class="samp">X</span></samp>’<dd>The Vandermonde matrix used to compute the polynomial coefficients.
<br><dt>‘<samp><span class="samp">df</span></samp>’<dd>The degrees of freedom.
<br><dt>‘<samp><span class="samp">normr</span></samp>’<dd>The norm of the residuals.
<br><dt>‘<samp><span class="samp">yf</span></samp>’<dd>The values of the polynomial for each value of <var>x</var>.
</dl>
<p>The second output may be used by <code>polyval</code> to calculate the
statistical error limits of the predicted values.
<p>When the third output, <var>mu</var>, is present the
coefficients, <var>p</var>, are associated with a polynomial in
<var>xhat</var> = (<var>x</var>-<var>mu</var>(1))/<var>mu</var>(2).
Where <var>mu</var>(1) = mean (<var>x</var>), and <var>mu</var>(2) = std (<var>x</var>).
This linear transformation of <var>x</var> improves the numerical
stability of the fit.
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->
<p class="noindent"><strong>See also:</strong> <a href="doc_002dpolyval.html#doc_002dpolyval">polyval</a>, <a href="doc_002dresidue.html#doc_002dresidue">residue</a>.
</p></blockquote></div>
<p>In situations where a single polynomial isn't good enough, a solution
is to use several polynomials pieced together. The function <code>mkpp</code>
creates a piece-wise polynomial, <code>ppval</code> evaluates the function
created by <code>mkpp</code>, and <code>unmkpp</code> returns detailed information
about the function.
<p>The following example shows how to combine two linear functions and a
quadratic into one function. Each of these functions is expressed
on adjoined intervals.
<pre class="example"> x = [-2, -1, 1, 2];
p = [ 0, 1, 0;
1, -2, 1;
0, -1, 1 ];
pp = mkpp(x, p);
xi = linspace(-2, 2, 50);
yi = ppval(pp, xi);
plot(xi, yi);
</pre>
<!-- ./polynomial/ppval.m -->
<p><a name="doc_002dppval"></a>
<div class="defun">
— Function File: <var>yi</var> = <b>ppval</b> (<var>pp, xi</var>)<var><a name="index-ppval-2049"></a></var><br>
<blockquote><p>Evaluate piece-wise polynomial <var>pp</var> at the points <var>xi</var>.
If <var>pp</var><code>.d</code> is a scalar greater than 1, or an array,
then the returned value <var>yi</var> will be an array that is
<code>d1, d1, ..., dk, length (</code><var>xi</var><code>)]</code>.
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->
<p class="noindent"><strong>See also:</strong> <a href="doc_002dmkpp.html#doc_002dmkpp">mkpp</a>, <a href="doc_002dunmkpp.html#doc_002dunmkpp">unmkpp</a>, <a href="doc_002dspline.html#doc_002dspline">spline</a>.
</p></blockquote></div>
<!-- ./polynomial/mkpp.m -->
<p><a name="doc_002dmkpp"></a>
<div class="defun">
— Function File: <var>pp</var> = <b>mkpp</b> (<var>x, p</var>)<var><a name="index-mkpp-2050"></a></var><br>
— Function File: <var>pp</var> = <b>mkpp</b> (<var>x, p, d</var>)<var><a name="index-mkpp-2051"></a></var><br>
<blockquote>
<p>Construct a piece-wise polynomial structure from sample points
<var>x</var> and coefficients <var>p</var>. The i-th row of <var>p</var>,
<var>p</var><code> (</code><var>i</var><code>,:)</code>, contains the coefficients for the polynomial
over the <var>i</var>-th interval, ordered from highest to
lowest. There must be one row for each interval in <var>x</var>, so
<code>rows (</code><var>p</var><code>) == length (</code><var>x</var><code>) - 1</code>.
<p>You can concatenate multiple polynomials of the same order over the
same set of intervals using <var>p</var><code> = [ </code><var>p1</var><code>; </code><var>p2</var><code>;
...; </code><var>pd</var><code> ]</code>. In this case, <code>rows (</code><var>p</var><code>) == </code><var>d</var><code>
* (length (</code><var>x</var><code>) - 1)</code>.
<p><var>d</var> specifies the shape of the matrix <var>p</var> for all except the
last dimension. If <var>d</var> is not specified it will be computed as
<code>round (rows (</code><var>p</var><code>) / (length (</code><var>x</var><code>) - 1))</code> instead.
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->
<p class="noindent"><strong>See also:</strong> <a href="doc_002dunmkpp.html#doc_002dunmkpp">unmkpp</a>, <a href="doc_002dppval.html#doc_002dppval">ppval</a>, <a href="doc_002dspline.html#doc_002dspline">spline</a>.
</p></blockquote></div>
<!-- ./polynomial/unmkpp.m -->
<p><a name="doc_002dunmkpp"></a>
<div class="defun">
— Function File: [<var>x</var>, <var>p</var>, <var>n</var>, <var>k</var>, <var>d</var>] = <b>unmkpp</b> (<var>pp</var>)<var><a name="index-unmkpp-2052"></a></var><br>
<blockquote>
<p>Extract the components of a piece-wise polynomial structure <var>pp</var>.
These are as follows:
<dl>
<dt><var>x</var><dd>Sample points.
<br><dt><var>p</var><dd>Polynomial coefficients for points in sample interval. <var>p</var><code>
(</code><var>i</var><code>, :)</code> contains the coefficients for the polynomial over
interval <var>i</var> ordered from highest to lowest. If <var>d</var><code> >
1</code>, <var>p</var><code> (</code><var>r</var><code>, </code><var>i</var><code>, :)</code> contains the coefficients for
the r-th polynomial defined on interval <var>i</var>. However, this is
stored as a 2-D array such that <var>c</var><code> = reshape (</code><var>p</var><code> (:,
</code><var>j</var><code>), </code><var>n</var><code>, </code><var>d</var><code>)</code> gives <var>c</var><code> (</code><var>i</var><code>, </code><var>r</var><code>)</code>
is the j-th coefficient of the r-th polynomial over the i-th interval.
<br><dt><var>n</var><dd>Number of polynomial pieces.
<br><dt><var>k</var><dd>Order of the polynomial plus 1.
<br><dt><var>d</var><dd>Number of polynomials defined for each interval.
</dl>
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->
<p class="noindent"><strong>See also:</strong> <a href="doc_002dmkpp.html#doc_002dmkpp">mkpp</a>, <a href="doc_002dppval.html#doc_002dppval">ppval</a>, <a href="doc_002dspline.html#doc_002dspline">spline</a>.
</p></blockquote></div>
</body></html>
|