1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
<html lang="en">
<head>
<title>Special Functions - Untitled</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="Untitled">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Arithmetic.html#Arithmetic" title="Arithmetic">
<link rel="prev" href="Utility-Functions.html#Utility-Functions" title="Utility Functions">
<link rel="next" href="Coordinate-Transformations.html#Coordinate-Transformations" title="Coordinate Transformations">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Special-Functions"></a>
Next: <a rel="next" accesskey="n" href="Coordinate-Transformations.html#Coordinate-Transformations">Coordinate Transformations</a>,
Previous: <a rel="previous" accesskey="p" href="Utility-Functions.html#Utility-Functions">Utility Functions</a>,
Up: <a rel="up" accesskey="u" href="Arithmetic.html#Arithmetic">Arithmetic</a>
<hr>
</div>
<h3 class="section">17.6 Special Functions</h3>
<!-- ./DLD-FUNCTIONS/besselj.cc -->
<p><a name="doc_002dairy"></a>
<div class="defun">
— Loadable Function: [<var>a</var>, <var>ierr</var>] = <b>airy</b> (<var>k, z, opt</var>)<var><a name="index-airy-1482"></a></var><br>
<blockquote><p>Compute Airy functions of the first and second kind, and their
derivatives.
<pre class="example"> K Function Scale factor (if 'opt' is supplied)
--- -------- ---------------------------------------
0 Ai (Z) exp ((2/3) * Z * sqrt (Z))
1 dAi(Z)/dZ exp ((2/3) * Z * sqrt (Z))
2 Bi (Z) exp (-abs (real ((2/3) * Z *sqrt (Z))))
3 dBi(Z)/dZ exp (-abs (real ((2/3) * Z *sqrt (Z))))
</pre>
<p>The function call <code>airy (</code><var>z</var><code>)</code> is equivalent to
<code>airy (0, </code><var>z</var><code>)</code>.
<p>The result is the same size as <var>z</var>.
<p>If requested, <var>ierr</var> contains the following status information and
is the same size as the result.
<ol type=1 start=0>
<li>Normal return.
<li>Input error, return <code>NaN</code>.
<li>Overflow, return <code>Inf</code>.
<li>Loss of significance by argument reduction results in less than half
of machine accuracy.
<li>Complete loss of significance by argument reduction, return <code>NaN</code>.
<li>Error—no computation, algorithm termination condition not met,
return <code>NaN</code>.
</ol>
</p></blockquote></div>
<!-- ./DLD-FUNCTIONS/besselj.cc -->
<p><a name="doc_002dbesselj"></a>
<div class="defun">
— Loadable Function: [<var>j</var>, <var>ierr</var>] = <b>besselj</b> (<var>alpha, x, opt</var>)<var><a name="index-besselj-1483"></a></var><br>
— Loadable Function: [<var>y</var>, <var>ierr</var>] = <b>bessely</b> (<var>alpha, x, opt</var>)<var><a name="index-bessely-1484"></a></var><br>
— Loadable Function: [<var>i</var>, <var>ierr</var>] = <b>besseli</b> (<var>alpha, x, opt</var>)<var><a name="index-besseli-1485"></a></var><br>
— Loadable Function: [<var>k</var>, <var>ierr</var>] = <b>besselk</b> (<var>alpha, x, opt</var>)<var><a name="index-besselk-1486"></a></var><br>
— Loadable Function: [<var>h</var>, <var>ierr</var>] = <b>besselh</b> (<var>alpha, k, x, opt</var>)<var><a name="index-besselh-1487"></a></var><br>
<blockquote><p>Compute Bessel or Hankel functions of various kinds:
<dl>
<dt><code>besselj</code><dd>Bessel functions of the first kind. If the argument <var>opt</var> is supplied,
the result is multiplied by <code>exp(-abs(imag(x)))</code>.
<br><dt><code>bessely</code><dd>Bessel functions of the second kind. If the argument <var>opt</var> is supplied,
the result is multiplied by <code>exp(-abs(imag(x)))</code>.
<br><dt><code>besseli</code><dd>Modified Bessel functions of the first kind. If the argument <var>opt</var> is supplied,
the result is multiplied by <code>exp(-abs(real(x)))</code>.
<br><dt><code>besselk</code><dd>Modified Bessel functions of the second kind. If the argument <var>opt</var> is supplied,
the result is multiplied by <code>exp(x)</code>.
<br><dt><code>besselh</code><dd>Compute Hankel functions of the first (<var>k</var> = 1) or second (<var>k</var>
= 2) kind. If the argument <var>opt</var> is supplied, the result is multiplied by
<code>exp (-I*</code><var>x</var><code>)</code> for <var>k</var> = 1 or <code>exp (I*</code><var>x</var><code>)</code> for
<var>k</var> = 2.
</dl>
<p>If <var>alpha</var> is a scalar, the result is the same size as <var>x</var>.
If <var>x</var> is a scalar, the result is the same size as <var>alpha</var>.
If <var>alpha</var> is a row vector and <var>x</var> is a column vector, the
result is a matrix with <code>length (</code><var>x</var><code>)</code> rows and
<code>length (</code><var>alpha</var><code>)</code> columns. Otherwise, <var>alpha</var> and
<var>x</var> must conform and the result will be the same size.
<p>The value of <var>alpha</var> must be real. The value of <var>x</var> may be
complex.
<p>If requested, <var>ierr</var> contains the following status information
and is the same size as the result.
<ol type=1 start=0>
<li>Normal return.
<li>Input error, return <code>NaN</code>.
<li>Overflow, return <code>Inf</code>.
<li>Loss of significance by argument reduction results in less than
half of machine accuracy.
<li>Complete loss of significance by argument reduction, return <code>NaN</code>.
<li>Error—no computation, algorithm termination condition not met,
return <code>NaN</code>.
</ol>
</p></blockquote></div>
<!-- ./specfun/beta.m -->
<p><a name="doc_002dbeta"></a>
<div class="defun">
— Mapping Function: <b>beta</b> (<var>a, b</var>)<var><a name="index-beta-1488"></a></var><br>
<blockquote><p>For real inputs, return the Beta function,
<pre class="example"> beta (a, b) = gamma (a) * gamma (b) / gamma (a + b).
</pre>
</blockquote></div>
<!-- ./DLD-FUNCTIONS/betainc.cc -->
<p><a name="doc_002dbetainc"></a>
<div class="defun">
— Mapping Function: <b>betainc</b> (<var>x, a, b</var>)<var><a name="index-betainc-1489"></a></var><br>
<blockquote><p>Return the incomplete Beta function,
<!-- Set example in small font to prevent overfull line -->
<pre class="smallexample"> x
/
betainc (x, a, b) = beta (a, b)^(-1) | t^(a-1) (1-t)^(b-1) dt.
/
t=0
</pre>
<p>If x has more than one component, both <var>a</var> and <var>b</var> must be
scalars. If <var>x</var> is a scalar, <var>a</var> and <var>b</var> must be of
compatible dimensions.
</p></blockquote></div>
<!-- ./specfun/betaln.m -->
<p><a name="doc_002dbetaln"></a>
<div class="defun">
— Mapping Function: <b>betaln</b> (<var>a, b</var>)<var><a name="index-betaln-1490"></a></var><br>
<blockquote><p>Return the log of the Beta function,
<pre class="example"> betaln (a, b) = gammaln (a) + gammaln (b) - gammaln (a + b)
</pre>
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->
<p class="noindent"><strong>See also:</strong> <a href="doc_002dbeta.html#doc_002dbeta">beta</a>, <a href="doc_002dbetainc.html#doc_002dbetainc">betainc</a>, <a href="doc_002dgammaln.html#doc_002dgammaln">gammaln</a>.
</p></blockquote></div>
<!-- ./miscellaneous/bincoeff.m -->
<p><a name="doc_002dbincoeff"></a>
<div class="defun">
— Mapping Function: <b>bincoeff</b> (<var>n, k</var>)<var><a name="index-bincoeff-1491"></a></var><br>
<blockquote><p>Return the binomial coefficient of <var>n</var> and <var>k</var>, defined as
<pre class="example"> / \
| n | n (n-1) (n-2) ... (n-k+1)
| | = -------------------------
| k | k!
\ /
</pre>
<p>For example,
<pre class="example"> bincoeff (5, 2)
10
</pre>
<p>In most cases, the <code>nchoosek</code> function is faster for small
scalar integer arguments. It also warns about loss of precision for
big arguments.
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->
<p class="noindent"><strong>See also:</strong> <a href="doc_002dnchoosek.html#doc_002dnchoosek">nchoosek</a>.
</p></blockquote></div>
<!-- ./linear-algebra/commutation_matrix.m -->
<p><a name="doc_002dcommutation_005fmatrix"></a>
<div class="defun">
— Function File: <b>commutation_matrix</b> (<var>m, n</var>)<var><a name="index-commutation_005fmatrix-1492"></a></var><br>
<blockquote><p>Return the commutation matrix
K(m,n)
which is the unique
<var>m</var>*<var>n</var> by <var>m</var>*<var>n</var>
matrix such that
K(m,n) * vec(A) = vec(A')
for all
m by n
matrices
A.
<p>If only one argument <var>m</var> is given,
K(m,m)
is returned.
<p>See Magnus and Neudecker (1988), Matrix differential calculus with
applications in statistics and econometrics.
</p></blockquote></div>
<!-- ./linear-algebra/duplication_matrix.m -->
<p><a name="doc_002dduplication_005fmatrix"></a>
<div class="defun">
— Function File: <b>duplication_matrix</b> (<var>n</var>)<var><a name="index-duplication_005fmatrix-1493"></a></var><br>
<blockquote><p>Return the duplication matrix
Dn
which is the unique
n^2 by n*(n+1)/2
matrix such that
Dn vech (A) = vec (A)
for all symmetric
n by n
matrices
A.
<p>See Magnus and Neudecker (1988), Matrix differential calculus with
applications in statistics and econometrics.
</p></blockquote></div>
<!-- mappers.cc -->
<p><a name="doc_002derf"></a>
<div class="defun">
— Mapping Function: <b>erf</b> (<var>z</var>)<var><a name="index-erf-1494"></a></var><br>
<blockquote><p>Computes the error function,
<pre class="example"> z
/
erf (z) = (2/sqrt (pi)) | e^(-t^2) dt
/
t=0
</pre>
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->
<p class="noindent"><strong>See also:</strong> <a href="doc_002derfc.html#doc_002derfc">erfc</a>, <a href="doc_002derfinv.html#doc_002derfinv">erfinv</a>.
</p></blockquote></div>
<!-- mappers.cc -->
<p><a name="doc_002derfc"></a>
<div class="defun">
— Mapping Function: <b>erfc</b> (<var>z</var>)<var><a name="index-erfc-1495"></a></var><br>
<blockquote><p>Computes the complementary error function,
<code>1 - erf (</code><var>z</var><code>)</code>.
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->
<p class="noindent"><strong>See also:</strong> <a href="doc_002derf.html#doc_002derf">erf</a>, <a href="doc_002derfinv.html#doc_002derfinv">erfinv</a>.
</p></blockquote></div>
<!-- ./specfun/erfinv.m -->
<p><a name="doc_002derfinv"></a>
<div class="defun">
— Mapping Function: <b>erfinv</b> (<var>z</var>)<var><a name="index-erfinv-1496"></a></var><br>
<blockquote><p>Computes the inverse of the error function.
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->
<p class="noindent"><strong>See also:</strong> <a href="doc_002derf.html#doc_002derf">erf</a>, <a href="doc_002derfc.html#doc_002derfc">erfc</a>.
</p></blockquote></div>
<!-- mappers.cc -->
<p><a name="doc_002dgamma"></a>
<div class="defun">
— Mapping Function: <b>gamma</b> (<var>z</var>)<var><a name="index-gamma-1497"></a></var><br>
<blockquote><p>Computes the Gamma function,
<pre class="example"> infinity
/
gamma (z) = | t^(z-1) exp (-t) dt.
/
t=0
</pre>
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->
<p class="noindent"><strong>See also:</strong> <a href="doc_002dgammainc.html#doc_002dgammainc">gammainc</a>, <a href="doc_002dlgamma.html#doc_002dlgamma">lgamma</a>.
</p></blockquote></div>
<!-- ./DLD-FUNCTIONS/gammainc.cc -->
<p><a name="doc_002dgammainc"></a>
<div class="defun">
— Mapping Function: <b>gammainc</b> (<var>x, a</var>)<var><a name="index-gammainc-1498"></a></var><br>
<blockquote><p>Compute the normalized incomplete gamma function,
<pre class="smallexample"> x
1 /
gammainc (x, a) = --------- | exp (-t) t^(a-1) dt
gamma (a) /
t=0
</pre>
<p>with the limiting value of 1 as <var>x</var> approaches infinity.
The standard notation is P(a,x), e.g., Abramowitz and Stegun (6.5.1).
<p>If <var>a</var> is scalar, then <code>gammainc (</code><var>x</var><code>, </code><var>a</var><code>)</code> is returned
for each element of <var>x</var> and vice versa.
<p>If neither <var>x</var> nor <var>a</var> is scalar, the sizes of <var>x</var> and
<var>a</var> must agree, and <var>gammainc</var> is applied element-by-element.
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->
<p class="noindent"><strong>See also:</strong> <a href="doc_002dgamma.html#doc_002dgamma">gamma</a>, <a href="doc_002dlgamma.html#doc_002dlgamma">lgamma</a>.
</p></blockquote></div>
<!-- ./specfun/legendre.m -->
<p><a name="doc_002dlegendre"></a>
<div class="defun">
— Function File: <var>l</var> = <b>legendre</b> (<var>n, x</var>)<var><a name="index-legendre-1499"></a></var><br>
— Function File: <var>l</var> = <b>legendre</b> (<var>n, x, normalization</var>)<var><a name="index-legendre-1500"></a></var><br>
<blockquote><p>Compute the Legendre function of degree <var>n</var> and order
<var>m</var> = 0 <small class="dots">...</small> N. The optional argument, <var>normalization</var>,
may be one of <code>"unnorm"</code>, <code>"sch"</code>, or <code>"norm"</code>.
The default is <code>"unnorm"</code>. The value of <var>n</var> must be a
non-negative scalar integer.
<p>If the optional argument <var>normalization</var> is missing or is
<code>"unnorm"</code>, compute the Legendre function of degree <var>n</var> and
order <var>m</var> and return all values for <var>m</var> = 0 <small class="dots">...</small> <var>n</var>.
The return value has one dimension more than <var>x</var>.
<p>The Legendre Function of degree <var>n</var> and order <var>m</var>:
<pre class="example"> m m 2 m/2 d^m
P(x) = (-1) * (1-x ) * ---- P (x)
n dx^m n
</pre>
<p class="noindent">with Legendre polynomial of degree <var>n</var>:
<pre class="example"> 1 d^n 2 n
P (x) = ------ [----(x - 1) ]
n 2^n n! dx^n
</pre>
<p class="noindent"><code>legendre (3, [-1.0, -0.9, -0.8])</code> returns the matrix:
<pre class="example"> x | -1.0 | -0.9 | -0.8
------------------------------------
m=0 | -1.00000 | -0.47250 | -0.08000
m=1 | 0.00000 | -1.99420 | -1.98000
m=2 | 0.00000 | -2.56500 | -4.32000
m=3 | 0.00000 | -1.24229 | -3.24000
</pre>
<p>If the optional argument <code>normalization</code> is <code>"sch"</code>,
compute the Schmidt semi-normalized associated Legendre function.
The Schmidt semi-normalized associated Legendre function is related
to the unnormalized Legendre functions by the following:
<p>For Legendre functions of degree n and order 0:
<pre class="example"> 0 0
SP (x) = P (x)
n n
</pre>
<p>For Legendre functions of degree n and order m:
<pre class="example"> m m m 2(n-m)! 0.5
SP (x) = P (x) * (-1) * [-------]
n n (n+m)!
</pre>
<p>If the optional argument <var>normalization</var> is <code>"norm"</code>,
compute the fully normalized associated Legendre function.
The fully normalized associated Legendre function is related
to the unnormalized Legendre functions by the following:
<p>For Legendre functions of degree <var>n</var> and order <var>m</var>
<pre class="example"> m m m (n+0.5)(n-m)! 0.5
NP (x) = P (x) * (-1) * [-------------]
n n (n+m)!
</pre>
</blockquote></div>
<p><a name="doc_002dgammaln"></a><!-- mappers.cc -->
<a name="doc_002dlgamma"></a>
<div class="defun">
— Mapping Function: <b>lgamma</b> (<var>x</var>)<var><a name="index-lgamma-1501"></a></var><br>
— Mapping Function: <b>gammaln</b> (<var>x</var>)<var><a name="index-gammaln-1502"></a></var><br>
<blockquote><p>Return the natural logarithm of the gamma function of <var>x</var>.
<!-- Texinfo @sp should work but in practice produces ugly results for HTML. -->
<!-- A simple blank line produces the correct behavior. -->
<!-- @sp 1 -->
<p class="noindent"><strong>See also:</strong> <a href="doc_002dgamma.html#doc_002dgamma">gamma</a>, <a href="doc_002dgammainc.html#doc_002dgammainc">gammainc</a>.
</p></blockquote></div>
</body></html>
|