File: arith.texi

package info (click to toggle)
octave3.2 3.2.4-8
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 62,936 kB
  • ctags: 37,353
  • sloc: cpp: 219,497; fortran: 116,336; ansic: 10,264; sh: 5,508; makefile: 4,245; lex: 3,573; yacc: 3,062; objc: 2,042; lisp: 1,692; awk: 860; perl: 844
file content (2195 lines) | stat: -rw-r--r-- 65,034 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
@c DO NOT EDIT!  Generated automatically by munge-texi.

@c Copyright (C) 1996, 1997, 1999, 2000, 2001, 2002, 2007, 2008,
@c               2009 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c 
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
@c for more details.
@c 
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <http://www.gnu.org/licenses/>.

@node Arithmetic
@chapter Arithmetic

Unless otherwise noted, all of the functions described in this chapter
will work for real and complex scalar, vector, or matrix arguments.  Functions
described as @dfn{mapping functions} apply the given operation individually to 
each element when given a matrix argument.  For example,

@example
@group
sin ([1, 2; 3, 4])
     @result{}  0.84147   0.90930
         0.14112  -0.75680
@end group
@end example

@menu
* Exponents and Logarithms::
* Complex Arithmetic::          
* Trigonometry::                
* Sums and Products::           
* Utility Functions::           
* Special Functions::           
* Coordinate Transformations::
* Mathematical Constants::      
@end menu

@node Exponents and Logarithms
@section Exponents and Logarithms

@c mappers.cc
@anchor{doc-exp}
@deftypefn {Mapping Function} {} exp (@var{x})
Compute
@tex
$e^{x}$
@end tex
@ifnottex
@code{e^x}
@end ifnottex
for each element of @var{x}.  To compute the matrix
exponential, see @ref{Linear Algebra}.
@seealso{@ref{doc-log,,log}}
@end deftypefn


@c mappers.cc
@anchor{doc-expm1}
@deftypefn {Mapping Function} {} expm1 (@var{x})
Compute
@tex
$ e^{x} - 1 $
@end tex
@ifnottex
@code{exp (@var{x}) - 1}
@end ifnottex
accurately in the neighborhood of zero.
@seealso{@ref{doc-exp,,exp}}
@end deftypefn


@c mappers.cc
@anchor{doc-log}
@deftypefn {Mapping Function} {} log (@var{x})
Compute the natural logarithm,
@tex
$\ln{(x)},$
@end tex
@ifnottex
@code{ln (@var{x})},
@end ifnottex
for each element of @var{x}.  To compute the
matrix logarithm, see @ref{Linear Algebra}.
@seealso{@ref{doc-exp,,exp}, @ref{doc-log1p,,log1p}, @ref{doc-log2,,log2}, @ref{doc-log10,,log10}, @ref{doc-logspace,,logspace}}
@end deftypefn


@c mappers.cc
@anchor{doc-log1p}
@deftypefn {Mapping Function} {} log1p (@var{x})
Compute
@tex
$\ln{(1 + x)}$
@end tex
@ifnottex
@code{log (1 + @var{x})}
@end ifnottex
accurately in the neighborhood of zero.
@seealso{@ref{doc-log,,log}, @ref{doc-exp,,exp}, @ref{doc-expm1,,expm1}}
@end deftypefn


@c mappers.cc
@anchor{doc-log10}
@deftypefn {Mapping Function} {} log10 (@var{x})
Compute the base-10 logarithm of each element of @var{x}.
@seealso{@ref{doc-log,,log}, @ref{doc-log2,,log2}, @ref{doc-logspace,,logspace}, @ref{doc-exp,,exp}}
@end deftypefn


@c data.cc
@anchor{doc-log2}
@deftypefn {Mapping Function} {} log2 (@var{x})
@deftypefnx {Mapping Function} {[@var{f}, @var{e}] =} log2 (@var{x})
Compute the base-2 logarithm of each element of @var{x}.

If called with two output arguments, split @var{x} into
binary mantissa and exponent so that
@tex
${1 \over 2} \le \left| f \right| < 1$
@end tex
@ifnottex
@code{1/2 <= abs(f) < 1}
@end ifnottex
and @var{e} is an integer.  If
@tex
$x = 0$, $f = e = 0$.
@end tex
@ifnottex
@code{x = 0}, @code{f = e = 0}.
@end ifnottex
@seealso{@ref{doc-pow2,,pow2}, @ref{doc-log,,log}, @ref{doc-log10,,log10}, @ref{doc-exp,,exp}}
@end deftypefn


@c ./general/nextpow2.m
@anchor{doc-nextpow2}
@deftypefn {Function File} {} nextpow2 (@var{x})
If @var{x} is a scalar, return the first integer @var{n} such that
@tex
$2^n \ge |x|$.
@end tex
@ifnottex
2^n >= abs (x).
@end ifnottex

If @var{x} is a vector, return @code{nextpow2 (length (@var{x}))}.
@seealso{@ref{doc-pow2,,pow2}, @ref{doc-log2,,log2}}
@end deftypefn


@c ./general/nthroot.m
@anchor{doc-nthroot}
@deftypefn {Function File} {} nthroot (@var{x}, @var{n})

Compute the n-th root of @var{x}, returning real results for real 
components of @var{x}.  For example

@example
@group
nthroot (-1, 3)
@result{} -1
(-1) ^ (1 / 3)
@result{} 0.50000 - 0.86603i
@end group
@end example

@end deftypefn


@c ./specfun/pow2.m
@anchor{doc-pow2}
@deftypefn {Mapping Function} {} pow2 (@var{x})
@deftypefnx {Mapping Function} {} pow2 (@var{f}, @var{e})
With one argument, computes
@tex
$2^x$
@end tex
@ifnottex
2 .^ x
@end ifnottex
for each element of @var{x}.

With two arguments, returns
@tex
$f \cdot 2^e$.
@end tex
@ifnottex
f .* (2 .^ e).
@end ifnottex
@seealso{@ref{doc-log2,,log2}, @ref{doc-nextpow2,,nextpow2}}
@end deftypefn


@c ./specfun/reallog.m
@anchor{doc-reallog}
@deftypefn {Function File} {} reallog (@var{x})
Return the real-valued natural logarithm of each element of @var{x}.  Report 
an error if any element results in a complex return value.
@seealso{@ref{doc-log,,log}, @ref{doc-realpow,,realpow}, @ref{doc-realsqrt,,realsqrt}}
@end deftypefn


@c ./specfun/realpow.m
@anchor{doc-realpow}
@deftypefn {Function File} {} realpow (@var{x}, @var{y})
Compute the real-valued, element-by-element power operator.  This is 
equivalent to @w{@code{@var{x} .^ @var{y}}}, except that @code{realpow}
reports an error if any return value is complex.
@seealso{@ref{doc-reallog,,reallog}, @ref{doc-realsqrt,,realsqrt}}
@end deftypefn


@c ./specfun/realsqrt.m
@anchor{doc-realsqrt}
@deftypefn {Function File} {} realsqrt (@var{x})
Return the real-valued square root of each element of @var{x}.  Report an
error if any element results in a complex return value.
@seealso{@ref{doc-sqrt,,sqrt}, @ref{doc-realpow,,realpow}, @ref{doc-reallog,,reallog}}
@end deftypefn


@c mappers.cc
@anchor{doc-sqrt}
@deftypefn {Mapping Function} {} sqrt (@var{x})
Compute the square root of each element of @var{x}.  If @var{x} is negative,
a complex result is returned.  To compute the matrix square root, see
@ref{Linear Algebra}.
@seealso{@ref{doc-realsqrt,,realsqrt}}
@end deftypefn


@node Complex Arithmetic
@section Complex Arithmetic

In the descriptions of the following functions,
@tex
$z$ is the complex number $x + iy$, where $i$ is defined as
$\sqrt{-1}$.
@end tex
@ifinfo
@var{z} is the complex number @var{x} + @var{i}@var{y}, where @var{i} is
defined as @code{sqrt (-1)}.
@end ifinfo

@c mappers.cc
@anchor{doc-abs}
@deftypefn {Mapping Function} {} abs (@var{z})
Compute the magnitude of @var{z}, defined as
@tex
$|z| = \sqrt{x^2 + y^2}$.
@end tex
@ifnottex
|@var{z}| = @code{sqrt (x^2 + y^2)}.
@end ifnottex

For example,

@example
@group
abs (3 + 4i)
     @result{} 5
@end group
@end example
@end deftypefn


@c mappers.cc
@anchor{doc-arg}
@deftypefn {Mapping Function} {} arg (@var{z})
@deftypefnx {Mapping Function} {} angle (@var{z})
Compute the argument of @var{z}, defined as,
@tex
$\theta = atan2 (y, x),$
@end tex
@ifnottex
@var{theta} = @code{atan2 (@var{y}, @var{x})},
@end ifnottex
in radians.

For example,

@example
@group
arg (3 + 4i)
     @result{} 0.92730
@end group
@end example
@end deftypefn


@c mappers.cc
@anchor{doc-conj}
@deftypefn {Mapping Function} {} conj (@var{z})
Return the complex conjugate of @var{z}, defined as
@tex
$\bar{z} = x - iy$.
@end tex
@ifnottex
@code{conj (@var{z})} = @var{x} - @var{i}@var{y}.
@end ifnottex
@seealso{@ref{doc-real,,real}, @ref{doc-imag,,imag}}
@end deftypefn


@c ./general/cplxpair.m
@anchor{doc-cplxpair}
@deftypefn  {Function File} {} cplxpair (@var{z})
@deftypefnx {Function File} {} cplxpair (@var{z}, @var{tol})
@deftypefnx {Function File} {} cplxpair (@var{z}, @var{tol}, @var{dim})
Sort the numbers @var{z} into complex conjugate pairs ordered by 
increasing real part.  Place the negative imaginary complex number
first within each pair.  Place all the real numbers (those with
@code{abs (imag (@var{z}) / @var{z}) < @var{tol})}) after the
complex pairs.

If @var{tol} is unspecified the default value is 100*@code{eps}.

By default the complex pairs are sorted along the first non-singleton
dimension of @var{z}.  If @var{dim} is specified, then the complex
pairs are sorted along this dimension.

Signal an error if some complex numbers could not be paired.  Signal an
error if all complex numbers are not exact conjugates (to within
@var{tol}).  Note that there is no defined order for pairs with identical
real parts but differing imaginary parts.

@c Set example in small font to prevent overfull line
@smallexample
cplxpair (exp(2i*pi*[0:4]'/5)) == exp(2i*pi*[3; 2; 4; 1; 0]/5)
@end smallexample
@end deftypefn


@c mappers.cc
@anchor{doc-imag}
@deftypefn {Mapping Function} {} imag (@var{z})
Return the imaginary part of @var{z} as a real number.
@seealso{@ref{doc-real,,real}, @ref{doc-conj,,conj}}
@end deftypefn


@c mappers.cc
@anchor{doc-real}
@deftypefn {Mapping Function} {} real (@var{z})
Return the real part of @var{z}.
@seealso{@ref{doc-imag,,imag}, @ref{doc-conj,,conj}}
@end deftypefn


@node Trigonometry
@section Trigonometry

Octave provides the following trigonometric functions where angles are
specified in radians.  To convert from degrees to radians multiply by
@tex
$\pi/180$
@end tex
@ifnottex
@code{pi/180}
@end ifnottex
(e.g., @code{sin (30 * pi/180)} returns the sine of 30 degrees).  As
an alternative, Octave provides a number of trigonometric functions
which work directly on an argument specified in degrees.  These functions
are named after the base trigonometric function with a @samp{d} suffix.  For
example, @code{sin} expects an angle in radians while @code{sind} expects an
angle in degrees.

@c mappers.cc
@anchor{doc-sin}
@deftypefn {Mapping Function} {} sin (@var{x})
Compute the sine for each element of @var{x} in radians.
@seealso{@ref{doc-asin,,asin}, @ref{doc-sind,,sind}, @ref{doc-sinh,,sinh}}
@end deftypefn

@c mappers.cc
@anchor{doc-cos}
@deftypefn {Mapping Function} {} cos (@var{x})
Compute the cosine for each element of @var{x} in radians.
@seealso{@ref{doc-acos,,acos}, @ref{doc-cosd,,cosd}, @ref{doc-cosh,,cosh}}
@end deftypefn

@c mappers.cc
@anchor{doc-tan}
@deftypefn {Mapping Function} {} tan (@var{z})
Compute the tangent for each element of @var{x} in radians.
@seealso{@ref{doc-atan,,atan}, @ref{doc-tand,,tand}, @ref{doc-tanh,,tanh}}
@end deftypefn

@c ./elfun/sec.m
@anchor{doc-sec}
@deftypefn {Mapping Function} {} sec (@var{x})
Compute the secant for each element of @var{x} in radians.
@seealso{@ref{doc-asec,,asec}, @ref{doc-secd,,secd}, @ref{doc-sech,,sech}}
@end deftypefn

@c ./elfun/csc.m
@anchor{doc-csc}
@deftypefn {Mapping Function} {} csc (@var{x})
Compute the cosecant for each element of @var{x} in radians.
@seealso{@ref{doc-acsc,,acsc}, @ref{doc-cscd,,cscd}, @ref{doc-csch,,csch}}
@end deftypefn

@c ./elfun/cot.m
@anchor{doc-cot}
@deftypefn {Mapping Function} {} cot (@var{x})
Compute the cotangent for each element of @var{x} in radians.
@seealso{@ref{doc-acot,,acot}, @ref{doc-cotd,,cotd}, @ref{doc-coth,,coth}}
@end deftypefn


@c mappers.cc
@anchor{doc-asin}
@deftypefn {Mapping Function} {} asin (@var{x})
Compute the inverse sine in radians for each element of @var{x}.
@seealso{@ref{doc-sin,,sin}, @ref{doc-asind,,asind}}
@end deftypefn

@c mappers.cc
@anchor{doc-acos}
@deftypefn {Mapping Function} {} acos (@var{x})
Compute the inverse cosine in radians for each element of @var{x}.
@seealso{@ref{doc-cos,,cos}, @ref{doc-acosd,,acosd}}
@end deftypefn

@c mappers.cc
@anchor{doc-atan}
@deftypefn {Mapping Function} {} atan (@var{x})
Compute the inverse tangent in radians for each element of @var{x}.
@seealso{@ref{doc-tan,,tan}, @ref{doc-atand,,atand}}
@end deftypefn

@c ./elfun/asec.m
@anchor{doc-asec}
@deftypefn {Mapping Function} {} asec (@var{x})
Compute the inverse secant in radians for each element of @var{x}.
@seealso{@ref{doc-sec,,sec}, @ref{doc-asecd,,asecd}}
@end deftypefn

@c ./elfun/acsc.m
@anchor{doc-acsc}
@deftypefn {Mapping Function} {} acsc (@var{x})
Compute the inverse cosecant in radians for each element of @var{x}.
@seealso{@ref{doc-csc,,csc}, @ref{doc-acscd,,acscd}}
@end deftypefn

@c ./elfun/acot.m
@anchor{doc-acot}
@deftypefn {Mapping Function} {} acot (@var{x})
Compute the inverse cotangent in radians for each element of @var{x}.
@seealso{@ref{doc-cot,,cot}, @ref{doc-acotd,,acotd}}
@end deftypefn


@c mappers.cc
@anchor{doc-sinh}
@deftypefn {Mapping Function} {} sinh (@var{x})
Compute the hyperbolic sine for each element of @var{x}.
@seealso{@ref{doc-asinh,,asinh}, @ref{doc-cosh,,cosh}, @ref{doc-tanh,,tanh}}
@end deftypefn

@c mappers.cc
@anchor{doc-cosh}
@deftypefn {Mapping Function} {} cosh (@var{x})
Compute the hyperbolic cosine for each element of @var{x}.
@seealso{@ref{doc-acosh,,acosh}, @ref{doc-sinh,,sinh}, @ref{doc-tanh,,tanh}}
@end deftypefn

@c mappers.cc
@anchor{doc-tanh}
@deftypefn {Mapping Function} {} tanh (@var{x})
Compute hyperbolic tangent for each element of @var{x}.
@seealso{@ref{doc-atanh,,atanh}, @ref{doc-sinh,,sinh}, @ref{doc-cosh,,cosh}}
@end deftypefn

@c ./elfun/sech.m
@anchor{doc-sech}
@deftypefn {Mapping Function} {} sech (@var{x})
Compute the hyperbolic secant of each element of @var{x}.
@seealso{@ref{doc-asech,,asech}}
@end deftypefn

@c ./elfun/csch.m
@anchor{doc-csch}
@deftypefn {Mapping Function} {} csch (@var{x})
Compute the hyperbolic cosecant of each element of @var{x}.
@seealso{@ref{doc-acsch,,acsch}}
@end deftypefn

@c ./elfun/coth.m
@anchor{doc-coth}
@deftypefn {Mapping Function} {} coth (@var{x})
Compute the hyperbolic cotangent of each element of @var{x}.
@seealso{@ref{doc-acoth,,acoth}}
@end deftypefn


@c mappers.cc
@anchor{doc-asinh}
@deftypefn {Mapping Function} {} asinh (@var{x})
Compute the inverse hyperbolic sine for each element of @var{x}.
@seealso{@ref{doc-sinh,,sinh}}
@end deftypefn

@c mappers.cc
@anchor{doc-acosh}
@deftypefn {Mapping Function} {} acosh (@var{x})
Compute the inverse hyperbolic cosine for each element of @var{x}.
@seealso{@ref{doc-cosh,,cosh}}
@end deftypefn

@c mappers.cc
@anchor{doc-atanh}
@deftypefn {Mapping Function} {} atanh (@var{x})
Compute the inverse hyperbolic tangent for each element of @var{x}.
@seealso{@ref{doc-tanh,,tanh}}
@end deftypefn

@c ./elfun/asech.m
@anchor{doc-asech}
@deftypefn {Mapping Function} {} asech (@var{x})
Compute the inverse hyperbolic secant of each element of @var{x}.
@seealso{@ref{doc-sech,,sech}}
@end deftypefn

@c ./elfun/acsch.m
@anchor{doc-acsch}
@deftypefn {Mapping Function} {} acsch (@var{x})
Compute the inverse hyperbolic cosecant of each element of @var{x}.
@seealso{@ref{doc-csch,,csch}}
@end deftypefn

@c ./elfun/acoth.m
@anchor{doc-acoth}
@deftypefn {Mapping Function} {} acoth (@var{x})
Compute the inverse hyperbolic cotangent of each element of @var{x}.
@seealso{@ref{doc-coth,,coth}}
@end deftypefn


@c data.cc
@anchor{doc-atan2}
@deftypefn {Mapping Function} {} atan2 (@var{y}, @var{x})
Compute atan (@var{y} / @var{x}) for corresponding elements of @var{y}
and @var{x}.  Signal an error if @var{y} and @var{x} do not match in size
and orientation.
@end deftypefn


Octave provides the following trigonometric functions where angles are
specified in degrees.  These functions produce true zeros at the appropriate
intervals rather than the small roundoff error that occurs when using
radians.  For example:
@example
@group
cosd (90)
     @result{} 0
cos (pi/2)
     @result{} 6.1230e-17
@end group
@end example

@c ./elfun/sind.m
@anchor{doc-sind}
@deftypefn {Function File} {} sind (@var{x})
Compute the sine for each element of @var{x} in degrees.  Returns zero 
for elements where @code{@var{x}/180} is an integer.
@seealso{@ref{doc-asind,,asind}, @ref{doc-sin,,sin}}
@end deftypefn

@c ./elfun/cosd.m
@anchor{doc-cosd}
@deftypefn {Function File} {} cosd (@var{x})
Compute the cosine for each element of @var{x} in degrees.  Returns zero 
for elements where @code{(@var{x}-90)/180} is an integer.
@seealso{@ref{doc-acosd,,acosd}, @ref{doc-cos,,cos}}
@end deftypefn

@c ./elfun/tand.m
@anchor{doc-tand}
@deftypefn {Function File} {} tand (@var{x})
Compute the tangent for each element of @var{x} in degrees.  Returns zero 
for elements where @code{@var{x}/180} is an integer and @code{Inf} for
elements where @code{(@var{x}-90)/180} is an integer.
@seealso{@ref{doc-atand,,atand}, @ref{doc-tan,,tan}}
@end deftypefn

@c ./elfun/secd.m
@anchor{doc-secd}
@deftypefn {Function File} {} secd (@var{x})
Compute the secant for each element of @var{x} in degrees.
@seealso{@ref{doc-asecd,,asecd}, @ref{doc-sec,,sec}}
@end deftypefn

@c ./elfun/cscd.m
@anchor{doc-cscd}
@deftypefn {Function File} {} cscd (@var{x})
Compute the cosecant for each element of @var{x} in degrees.
@seealso{@ref{doc-acscd,,acscd}, @ref{doc-csc,,csc}}
@end deftypefn

@c ./elfun/cotd.m
@anchor{doc-cotd}
@deftypefn {Function File} {} cotd (@var{x})
Compute the cotangent for each element of @var{x} in degrees.
@seealso{@ref{doc-acotd,,acotd}, @ref{doc-cot,,cot}}
@end deftypefn


@c ./elfun/asind.m
@anchor{doc-asind}
@deftypefn {Function File} {} asind (@var{x})
Compute the inverse sine in degrees for each element of @var{x}.
@seealso{@ref{doc-sind,,sind}, @ref{doc-asin,,asin}}
@end deftypefn

@c ./elfun/acosd.m
@anchor{doc-acosd}
@deftypefn {Function File} {} acosd (@var{x})
Compute the inverse cosine in degrees for each element of @var{x}.
@seealso{@ref{doc-cosd,,cosd}, @ref{doc-acos,,acos}}
@end deftypefn

@c ./elfun/atand.m
@anchor{doc-atand}
@deftypefn {Function File} {} atand (@var{x})
Compute the inverse tangent in degrees for each element of @var{x}.
@seealso{@ref{doc-tand,,tand}, @ref{doc-atan,,atan}}
@end deftypefn

@c ./elfun/asecd.m
@anchor{doc-asecd}
@deftypefn {Function File} {} asecd (@var{x})
Compute the inverse secant in degrees for each element of @var{x}.
@seealso{@ref{doc-secd,,secd}, @ref{doc-asec,,asec}}
@end deftypefn

@c ./elfun/acscd.m
@anchor{doc-acscd}
@deftypefn {Function File} {} acscd (@var{x})
Compute the inverse cosecant in degrees for each element of @var{x}.
@seealso{@ref{doc-cscd,,cscd}, @ref{doc-acsc,,acsc}}
@end deftypefn

@c ./elfun/acotd.m
@anchor{doc-acotd}
@deftypefn {Function File} {} acotd (@var{x})
Compute the inverse cotangent in degrees for each element of @var{x}.
@seealso{@ref{doc-cotd,,cotd}, @ref{doc-acot,,acot}}
@end deftypefn


@node Sums and Products
@section Sums and Products

@c data.cc
@anchor{doc-sum}
@deftypefn  {Built-in Function} {} sum (@var{x})
@deftypefnx {Built-in Function} {} sum (@var{x}, @var{dim})
@deftypefnx {Built-in Function} {} sum (@dots{}, 'native')
Sum of elements along dimension @var{dim}.  If @var{dim} is
omitted, it defaults to 1 (column-wise sum).

As a special case, if @var{x} is a vector and @var{dim} is omitted,
return the sum of the elements.

If the optional argument 'native' is given, then the sum is performed
in the same type as the original argument, rather than in the default
double type.  For example

@example
@group
sum ([true, true])
  @result{} 2
sum ([true, true], 'native')
  @result{} true
@end group
@end example
@seealso{@ref{doc-cumsum,,cumsum}, @ref{doc-sumsq,,sumsq}, @ref{doc-prod,,prod}}
@end deftypefn


@c data.cc
@anchor{doc-prod}
@deftypefn  {Built-in Function} {} prod (@var{x})
@deftypefnx {Built-in Function} {} prod (@var{x}, @var{dim})
Product of elements along dimension @var{dim}.  If @var{dim} is
omitted, it defaults to 1 (column-wise products).

As a special case, if @var{x} is a vector and @var{dim} is omitted,
return the product of the elements.
@seealso{@ref{doc-cumprod,,cumprod}, @ref{doc-sum,,sum}}
@end deftypefn


@c data.cc
@anchor{doc-cumsum}
@deftypefn  {Built-in Function} {} cumsum (@var{x})
@deftypefnx {Built-in Function} {} cumsum (@var{x}, @var{dim})
@deftypefnx {Built-in Function} {} cumsum (@dots{}, 'native')
Cumulative sum of elements along dimension @var{dim}.  If @var{dim}
is omitted, it defaults to 1 (column-wise cumulative sums).

As a special case, if @var{x} is a vector and @var{dim} is omitted,
return the cumulative sum of the elements as a vector with the
same orientation as @var{x}.

The "native" argument implies the summation is performed in native type.
 See @code{sum} for a complete description and example of the use of
"native".
@seealso{@ref{doc-sum,,sum}, @ref{doc-cumprod,,cumprod}}
@end deftypefn


@c data.cc
@anchor{doc-cumprod}
@deftypefn  {Built-in Function} {} cumprod (@var{x})
@deftypefnx {Built-in Function} {} cumprod (@var{x}, @var{dim})
Cumulative product of elements along dimension @var{dim}.  If
@var{dim} is omitted, it defaults to 1 (column-wise cumulative
products).

As a special case, if @var{x} is a vector and @var{dim} is omitted,
return the cumulative product of the elements as a vector with the
same orientation as @var{x}.
@seealso{@ref{doc-prod,,prod}, @ref{doc-cumsum,,cumsum}}
@end deftypefn


@c data.cc
@anchor{doc-sumsq}
@deftypefn  {Built-in Function} {} sumsq (@var{x})
@deftypefnx {Built-in Function} {} sumsq (@var{x}, @var{dim})
Sum of squares of elements along dimension @var{dim}.  If @var{dim}
is omitted, it defaults to 1 (column-wise sum of squares).

As a special case, if @var{x} is a vector and @var{dim} is omitted,
return the sum of squares of the elements.

This function is conceptually equivalent to computing
@example
sum (x .* conj (x), dim)
@end example
but it uses less memory and avoids calling @code{conj} if @var{x} is real.
@seealso{@ref{doc-sum,,sum}}
@end deftypefn


@c ./general/accumarray.m
@anchor{doc-accumarray}
@deftypefn {Function File} {} accumarray (@var{subs}, @var{vals}, @var{sz}, @var{func}, @var{fillval}, @var{issparse})
@deftypefnx {Function File} {} accumarray (@var{csubs}, @var{vals}, @dots{})

Create an array by accumulating the elements of a vector into the
positions defined by their subscripts.  The subscripts are defined by
the rows of the matrix @var{subs} and the values by @var{vals}.  Each row
of @var{subs} corresponds to one of the values in @var{vals}.

The size of the matrix will be determined by the subscripts themselves.
However, if @var{sz} is defined it determines the matrix size.  The length
of @var{sz} must correspond to the number of columns in @var{subs}.

The default action of @code{accumarray} is to sum the elements with the
same subscripts.  This behavior can be modified by defining the @var{func}
function.  This should be a function or function handle that accepts a 
column vector and returns a scalar.  The result of the function should not
depend on the order of the subscripts.

The elements of the returned array that have no subscripts associated with
them are set to zero.  Defining @var{fillval} to some other value allows
these values to be defined.

By default @code{accumarray} returns a full matrix.  If @var{issparse} is
logically true, then a sparse matrix is returned instead.

An example of the use of @code{accumarray} is:

@example
@group
accumarray ([1,1,1;2,1,2;2,3,2;2,1,2;2,3,2], 101:105)
@result{} ans(:,:,1) = [101, 0, 0; 0, 0, 0]
   ans(:,:,2) = [0, 0, 0; 206, 0, 208]
@end group
@end example
@end deftypefn


@node Utility Functions
@section Utility Functions

@c mappers.cc
@anchor{doc-ceil}
@deftypefn {Mapping Function} {} ceil (@var{x})
Return the smallest integer not less than @var{x}.  This is equivalent to
rounding towards positive infinity.  If @var{x} is
complex, return @code{ceil (real (@var{x})) + ceil (imag (@var{x})) * I}.
@example
@group
ceil ([-2.7, 2.7])
   @result{}  -2   3
@end group
@end example
@seealso{@ref{doc-floor,,floor}, @ref{doc-round,,round}, @ref{doc-fix,,fix}}
@end deftypefn


@c ./linear-algebra/cross.m
@anchor{doc-cross}
@deftypefn  {Function File} {} cross (@var{x}, @var{y})
@deftypefnx {Function File} {} cross (@var{x}, @var{y}, @var{dim})
Compute the vector cross product of two 3-dimensional vectors
@var{x} and @var{y}.

@example
@group
cross ([1,1,0], [0,1,1])
     @result{} [ 1; -1; 1 ]
@end group
@end example

If @var{x} and @var{y} are matrices, the cross product is applied 
along the first dimension with 3 elements.  The optional argument 
@var{dim} forces the cross product to be calculated along
the specified dimension.
@seealso{@ref{doc-dot,,dot}}
@end deftypefn


@c ./general/del2.m
@anchor{doc-del2}
@deftypefn  {Function File} {@var{d} =} del2 (@var{m})
@deftypefnx {Function File} {@var{d} =} del2 (@var{m}, @var{h})
@deftypefnx {Function File} {@var{d} =} del2 (@var{m}, @var{dx}, @var{dy}, @dots{})

Calculate the discrete Laplace
@tex
operator $( \nabla^2 )$.
@end tex
@ifnottex
operator.
@end ifnottex
For a 2-dimensional matrix @var{m} this is defined as

@tex
$$d = {1 \over 4} \left( {d^2 \over dx^2} M(x,y) + {d^2 \over dy^2} M(x,y) \right)$$
@end tex
@ifnottex
@example
@group
      1    / d^2            d^2         \
D  = --- * | ---  M(x,y) +  ---  M(x,y) | 
      4    \ dx^2           dy^2        /
@end group
@end example
@end ifnottex

For N-dimensional arrays the sum in parentheses is expanded to include second derivatives 
over the additional higher dimensions.

The spacing between evaluation points may be defined by @var{h}, which is a
scalar defining the equidistant spacing in all dimensions.  Alternatively, 
the spacing in each dimension may be defined separately by @var{dx}, @var{dy},
etc.  A scalar spacing argument defines equidistant spacing, whereas a vector
argument can be used to specify variable spacing.  The length of the spacing vectors
must match the respective dimension of @var{m}.  The default spacing value
is 1.

At least 3 data points are needed for each dimension.  Boundary points are
calculated from the linear extrapolation of interior points.

@seealso{@ref{doc-gradient,,gradient}, @ref{doc-diff,,diff}}
@end deftypefn


@c ./specfun/factor.m
@anchor{doc-factor}
@deftypefn  {Function File} {@var{p} =} factor (@var{q})
@deftypefnx {Function File} {[@var{p}, @var{n}] =} factor (@var{q})

Return prime factorization of @var{q}.  That is, @code{prod (@var{p})
== @var{q}} and every element of @var{p} is a prime number.  If
@code{@var{q} == 1}, returns 1. 

With two output arguments, return the unique primes @var{p} and
their multiplicities.  That is, @code{prod (@var{p} .^ @var{n}) ==
@var{q}}.
@seealso{@ref{doc-gcd,,gcd}, @ref{doc-lcm,,lcm}}
@end deftypefn


@c ./specfun/factorial.m
@anchor{doc-factorial}
@deftypefn {Function File} {} factorial (@var{n})
Return the factorial of @var{n} where @var{n} is a positive integer.  If
@var{n} is a scalar, this is equivalent to @code{prod (1:@var{n})}.  For
vector or matrix arguments, return the factorial of each element in the
array.  For non-integers see the generalized factorial function
@code{gamma}.
@seealso{@ref{doc-prod,,prod}, @ref{doc-gamma,,gamma}}
@end deftypefn


@c mappers.cc
@anchor{doc-fix}
@deftypefn {Mapping Function} {} fix (@var{x})
Truncate fractional portion of @var{x} and return the integer portion.  This
is equivalent to rounding towards zero.  If @var{x} is complex, return
@code{fix (real (@var{x})) + fix (imag (@var{x})) * I}.
@example
@group
fix ([-2.7, 2.7])
   @result{} -2   2
@end group
@end example
@seealso{@ref{doc-ceil,,ceil}, @ref{doc-floor,,floor}, @ref{doc-round,,round}}
@end deftypefn


@c mappers.cc
@anchor{doc-floor}
@deftypefn {Mapping Function} {} floor (@var{x})
Return the largest integer not greater than @var{x}.  This is equivalent to
rounding towards negative infinity.  If @var{x} is
complex, return @code{floor (real (@var{x})) + floor (imag (@var{x})) * I}.
@example
@group
floor ([-2.7, 2.7])
     @result{} -3   2
@end group
@end example
@seealso{@ref{doc-ceil,,ceil}, @ref{doc-round,,round}, @ref{doc-fix,,fix}}
@end deftypefn


@c data.cc
@anchor{doc-fmod}
@deftypefn {Mapping Function} {} fmod (@var{x}, @var{y})
Compute the floating point remainder of dividing @var{x} by @var{y}
using the C library function @code{fmod}.  The result has the same
sign as @var{x}.  If @var{y} is zero, the result is implementation-dependent.
@seealso{@ref{doc-mod,,mod}, @ref{doc-rem,,rem}}
@end deftypefn


@c ./DLD-FUNCTIONS/gcd.cc
@anchor{doc-gcd}
@deftypefn  {Loadable Function} {@var{g} =} gcd (@var{a})
@deftypefnx {Loadable Function} {@var{g} =} gcd (@var{a1}, @var{a2}, @dots{})
@deftypefnx {Loadable Function} {[@var{g}, @var{v1}, @dots{}] =} gcd (@var{a1}, @var{a2}, @dots{})

Compute the greatest common divisor of the elements of @var{a}.  If more
than one argument is given all arguments must be the same size or scalar.
  In this case the greatest common divisor is calculated for each element
individually.  All elements must be integers.  For example,

@example
@group
gcd ([15, 20])
    @result{}  5
@end group
@end example

@noindent
and

@example
@group
gcd ([15, 9], [20, 18])
    @result{}  5  9
@end group
@end example

Optional return arguments @var{v1}, etc., contain integer vectors such
that,

@tex
$g = v_1 a_1 + v_2 a_2 + \cdots$
@end tex
@ifnottex
@example
@var{g} = @var{v1} .* @var{a1} + @var{v2} .* @var{a2} + @dots{}
@end example
@end ifnottex

For backward compatibility with previous versions of this function, when
all arguments are scalar, a single return argument @var{v1} containing
all of the values of @var{v1}, @dots{} is acceptable.
@seealso{@ref{doc-lcm,,lcm}, @ref{doc-factor,,factor}}
@end deftypefn


@c ./general/gradient.m
@anchor{doc-gradient}
@deftypefn {Function File} {@var{dx} =} gradient (@var{m})
@deftypefnx {Function File} {[@var{dx}, @var{dy}, @var{dz}, @dots{}] =} gradient (@var{m})
@deftypefnx {Function File} {[@dots{}] =} gradient (@var{m}, @var{s})
@deftypefnx {Function File} {[@dots{}] =} gradient (@var{m}, @var{x}, @var{y}, @var{z}, @dots{})
@deftypefnx {Function File} {[@dots{}] =} gradient (@var{f}, @var{x0})
@deftypefnx {Function File} {[@dots{}] =} gradient (@var{f}, @var{x0}, @var{s})
@deftypefnx {Function File} {[@dots{}] =} gradient (@var{f}, @var{x0}, @var{x}, @var{y}, @dots{})

Calculate the gradient of sampled data or a function.  If @var{m}
is a vector, calculate the one-dimensional gradient of @var{m}.  If
@var{m} is a matrix the gradient is calculated for each dimension.

@code{[@var{dx}, @var{dy}] = gradient (@var{m})} calculates the one
dimensional gradient for @var{x} and @var{y} direction if @var{m} is a
matrix.  Additional return arguments can be use for multi-dimensional
matrices.

A constant spacing between two points can be provided by the
@var{s} parameter.  If @var{s} is a scalar, it is assumed to be the spacing
for all dimensions. 
Otherwise, separate values of the spacing can be supplied by
the @var{x}, @dots{} arguments.  Scalar values specify an equidistant spacing.
Vector values for the @var{x}, @dots{} arguments specify the coordinate for that
dimension.  The length must match their respective dimension of @var{m}.

At boundary points a linear extrapolation is applied.  Interior points
are calculated with the first approximation of the numerical gradient

@example
y'(i) = 1/(x(i+1)-x(i-1)) * (y(i-1)-y(i+1)).
@end example

If the first argument @var{f} is a function handle, the gradient of the
function at the points in @var{x0} is approximated using central
difference.  For example, @code{gradient (@@cos, 0)} approximates the
gradient of the cosine function in the point @math{x0 = 0}.  As with
sampled data, the spacing values between the points from which the
gradient is estimated can be set via the @var{s} or @var{dx},
@var{dy}, @dots{} arguments.  By default a spacing of 1 is used.
@seealso{@ref{doc-diff,,diff}, @ref{doc-del2,,del2}}
@end deftypefn


@c data.cc
@anchor{doc-hypot}
@deftypefn {Built-in Function} {} hypot (@var{x}, @var{y})
Compute the element-by-element square root of the sum of the squares of
@var{x} and @var{y}.  This is equivalent to
@code{sqrt (@var{x}.^2 + @var{y}.^2)}, but calculated in a manner that
avoids overflows for large values of @var{x} or @var{y}.
@end deftypefn


@c ./elfun/lcm.m
@anchor{doc-lcm}
@deftypefn  {Mapping Function} {} lcm (@var{x})
@deftypefnx {Mapping Function} {} lcm (@var{x}, @dots{})
Compute the least common multiple of the elements of @var{x}, or
of the list of all arguments.  For example,

@example
lcm (a1, @dots{}, ak)
@end example

@noindent
is the same as

@example
lcm ([a1, @dots{}, ak]).
@end example

All elements must be the same size or scalar.
@seealso{@ref{doc-factor,,factor}, @ref{doc-gcd,,gcd}}
@end deftypefn


@c ./miscellaneous/list_primes.m
@anchor{doc-list_primes}
@deftypefn {Function File} {} list_primes (@var{n})
List the first @var{n} primes.  If @var{n} is unspecified, the first
25 primes are listed.

The algorithm used is from page 218 of the @TeX{}book.
@seealso{@ref{doc-primes,,primes}, @ref{doc-isprime,,isprime}}
@end deftypefn


@c ./DLD-FUNCTIONS/max.cc
@anchor{doc-max}
@deftypefn  {Loadable Function} {} max (@var{x})
@deftypefnx {Loadable Function} {} max (@var{x}, @var{y})
@deftypefnx {Loadable Function} {} max (@var{x}, @var{y}, @var{dim})
@deftypefnx {Loadable Function} {[@var{w}, @var{iw}] =} max (@var{x})
For a vector argument, return the maximum value.  For a matrix
argument, return the maximum value from each column, as a row
vector, or over the dimension @var{dim} if defined.  For two matrices
(or a matrix and scalar), return the pair-wise maximum.
Thus,

@example
max (max (@var{x}))
@end example

@noindent
returns the largest element of the matrix @var{x}, and

@example
@group
max (2:5, pi)
    @result{}  3.1416  3.1416  4.0000  5.0000
@end group
@end example
@noindent
compares each element of the range @code{2:5} with @code{pi}, and
returns a row vector of the maximum values.

For complex arguments, the magnitude of the elements are used for
comparison.

If called with one input and two output arguments,
@code{max} also returns the first index of the
maximum value(s).  Thus,

@example
@group
[x, ix] = max ([1, 3, 5, 2, 5])
    @result{}  x = 5
        ix = 3
@end group
@end example
@seealso{@ref{doc-min,,min}, @ref{doc-cummax,,cummax}, @ref{doc-cummin,,cummin}}
@end deftypefn


@c ./DLD-FUNCTIONS/max.cc
@anchor{doc-min}
@deftypefn  {Loadable Function} {} min (@var{x})
@deftypefnx {Loadable Function} {} min (@var{x}, @var{y})
@deftypefnx {Loadable Function} {} min (@var{x}, @var{y}, @var{dim})
@deftypefnx {Loadable Function} {[@var{w}, @var{iw}] =} min (@var{x})
For a vector argument, return the minimum value.  For a matrix
argument, return the minimum value from each column, as a row
vector, or over the dimension @var{dim} if defined.  For two matrices
(or a matrix and scalar), return the pair-wise minimum.
Thus,

@example
min (min (@var{x}))
@end example

@noindent
returns the smallest element of @var{x}, and

@example
@group
min (2:5, pi)
    @result{}  2.0000  3.0000  3.1416  3.1416
@end group
@end example
@noindent
compares each element of the range @code{2:5} with @code{pi}, and
returns a row vector of the minimum values.

For complex arguments, the magnitude of the elements are used for
comparison.

If called with one input and two output arguments,
@code{min} also returns the first index of the
minimum value(s).  Thus,

@example
@group
[x, ix] = min ([1, 3, 0, 2, 0])
    @result{}  x = 0
        ix = 3
@end group
@end example
@seealso{@ref{doc-max,,max}, @ref{doc-cummin,,cummin}, @ref{doc-cummax,,cummax}}
@end deftypefn


@c ./DLD-FUNCTIONS/max.cc
@anchor{doc-cummax}
@deftypefn  {Loadable Function} {} cummax (@var{x})
@deftypefnx {Loadable Function} {} cummax (@var{x}, @var{dim})
@deftypefnx {Loadable Function} {[@var{w}, @var{iw}] =} cummax (@var{x})
Return the cumulative maximum values along dimension @var{dim}.  If @var{dim}
is unspecified it defaults to column-wise operation.  For example,

@example
@group
cummax ([1 3 2 6 4 5])
    @result{}  1  3  3  6  6  6
@end group
@end example

The call
@example
[w, iw] = cummax (x, dim)
@end example

@noindent
is equivalent to the following code:
@example
@group
w = iw = zeros (size (x));
idxw = idxx = repmat (@{':'@}, 1, ndims (x));
for i = 1:size (x, dim)
  idxw@{dim@} = i; idxx@{dim@} = 1:i;
  [w(idxw@{:@}), iw(idxw@{:@})] = max(x(idxx@{:@}), [], dim);
endfor
@end group
@end example

@noindent
but computed in a much faster manner.
@seealso{@ref{doc-cummin,,cummin}, @ref{doc-max,,max}, @ref{doc-min,,min}}
@end deftypefn


@c ./DLD-FUNCTIONS/max.cc
@anchor{doc-cummin}
@deftypefn  {Loadable Function} {} cummin (@var{x})
@deftypefnx {Loadable Function} {} cummin (@var{x}, @var{dim})
@deftypefnx {Loadable Function} {[@var{w}, @var{iw}] =} cummin (@var{x})
Return the cumulative minimum values along dimension @var{dim}.  If @var{dim}
is unspecified it defaults to column-wise operation.  For example,

@example
@group
cummin ([5 4 6 2 3 1])
    @result{}  5  4  4  2  2  1
@end group
@end example


The call
@example
  [w, iw] = cummin (x, dim)
@end example

@noindent
is equivalent to the following code:
@example
@group
w = iw = zeros (size (x));
idxw = idxx = repmat (@{':'@}, 1, ndims (x));
for i = 1:size (x, dim)
  idxw@{dim@} = i; idxx@{dim@} = 1:i;
  [w(idxw@{:@}), iw(idxw@{:@})] = min(x(idxx@{:@}), [], dim);
endfor
@end group
@end example

@noindent
but computed in a much faster manner.
@seealso{@ref{doc-cummax,,cummax}, @ref{doc-min,,min}, @ref{doc-max,,max}}
@end deftypefn


@c ./general/mod.m
@anchor{doc-mod}
@deftypefn {Mapping Function} {} mod (@var{x}, @var{y})
Compute the modulo of @var{x} and @var{y}.  Conceptually this is given by

@example
x - y .* floor (x ./ y)
@end example

and is written such that the correct modulus is returned for
integer types.  This function handles negative values correctly.  That
is, @code{mod (-1, 3)} is 2, not -1, as @code{rem (-1, 3)} returns.
@code{mod (@var{x}, 0)} returns @var{x}.

An error results if the dimensions of the arguments do not agree, or if
either of the arguments is complex.
@seealso{@ref{doc-rem,,rem}, @ref{doc-fmod,,fmod}}
@end deftypefn


@c ./specfun/primes.m
@anchor{doc-primes}
@deftypefn {Function File} {} primes (@var{n})

Return all primes up to @var{n}.  

The algorithm used is the Sieve of Erastothenes.

Note that if you need a specific number of primes you can use the
fact the distance from one prime to the next is, on average,
proportional to the logarithm of the prime.  Integrating, one finds
that there are about @math{k} primes less than
@tex
$k \log (5 k)$.
@end tex
@ifnottex
k*log(5*k).
@end ifnottex
@seealso{@ref{doc-list_primes,,list_primes}, @ref{doc-isprime,,isprime}}
@end deftypefn


@c ./general/rem.m
@anchor{doc-rem}
@deftypefn {Mapping Function} {} rem (@var{x}, @var{y})
Return the remainder of the division @code{@var{x} / @var{y}}, computed 
using the expression

@example
x - y .* fix (x ./ y)
@end example

An error message is printed if the dimensions of the arguments do not
agree, or if either of the arguments is complex.
@seealso{@ref{doc-mod,,mod}, @ref{doc-fmod,,fmod}}
@end deftypefn


@c mappers.cc
@anchor{doc-round}
@deftypefn {Mapping Function} {} round (@var{x})
Return the integer nearest to @var{x}.  If @var{x} is complex, return
@code{round (real (@var{x})) + round (imag (@var{x})) * I}.
@example
@group
round ([-2.7, 2.7])
     @result{} -3   3
@end group
@end example
@seealso{@ref{doc-ceil,,ceil}, @ref{doc-floor,,floor}, @ref{doc-fix,,fix}}
@end deftypefn


@c mappers.cc
@anchor{doc-roundb}
@deftypefn {Mapping Function} {} roundb (@var{x})
Return the integer nearest to @var{x}.  If there are two nearest
integers, return the even one (banker's rounding).  If @var{x} is complex,
return @code{roundb (real (@var{x})) + roundb (imag (@var{x})) * I}.
@seealso{@ref{doc-round,,round}}
@end deftypefn


@c mappers.cc
@anchor{doc-sign}
@deftypefn {Mapping Function} {} sign (@var{x})
Compute the @dfn{signum} function, which is defined as
@tex
$$
{\rm sign} (@var{x}) = \cases{1,&$x>0$;\cr 0,&$x=0$;\cr -1,&$x<0$.\cr}
$$
@end tex
@ifnottex

@example
@group
           -1, x < 0;
sign (x) =  0, x = 0;
            1, x > 0.
@end group
@end example
@end ifnottex

For complex arguments, @code{sign} returns @code{x ./ abs (@var{x})}.
@end deftypefn


@node Special Functions
@section Special Functions

@c ./DLD-FUNCTIONS/besselj.cc
@anchor{doc-airy}
@deftypefn {Loadable Function} {[@var{a}, @var{ierr}] =} airy (@var{k}, @var{z}, @var{opt})
Compute Airy functions of the first and second kind, and their
derivatives.

@example
@group
 K   Function   Scale factor (if 'opt' is supplied)
---  --------   ---------------------------------------
 0   Ai (Z)     exp ((2/3) * Z * sqrt (Z))
 1   dAi(Z)/dZ  exp ((2/3) * Z * sqrt (Z))
 2   Bi (Z)     exp (-abs (real ((2/3) * Z *sqrt (Z))))
 3   dBi(Z)/dZ  exp (-abs (real ((2/3) * Z *sqrt (Z))))
@end group
@end example

The function call @code{airy (@var{z})} is equivalent to
@code{airy (0, @var{z})}.

The result is the same size as @var{z}.

If requested, @var{ierr} contains the following status information and
is the same size as the result.

@enumerate 0
@item
Normal return.
@item
Input error, return @code{NaN}.
@item
Overflow, return @code{Inf}.
@item
Loss of significance by argument reduction results in less than half
 of machine accuracy.
@item
Complete loss of significance by argument reduction, return @code{NaN}.
@item
Error---no computation, algorithm termination condition not met,
return @code{NaN}.
@end enumerate
@end deftypefn


@c ./DLD-FUNCTIONS/besselj.cc
@anchor{doc-besselj}
@deftypefn {Loadable Function} {[@var{j}, @var{ierr}] =} besselj (@var{alpha}, @var{x}, @var{opt})
@deftypefnx {Loadable Function} {[@var{y}, @var{ierr}] =} bessely (@var{alpha}, @var{x}, @var{opt})
@deftypefnx {Loadable Function} {[@var{i}, @var{ierr}] =} besseli (@var{alpha}, @var{x}, @var{opt})
@deftypefnx {Loadable Function} {[@var{k}, @var{ierr}] =} besselk (@var{alpha}, @var{x}, @var{opt})
@deftypefnx {Loadable Function} {[@var{h}, @var{ierr}] =} besselh (@var{alpha}, @var{k}, @var{x}, @var{opt})
Compute Bessel or Hankel functions of various kinds:

@table @code
@item besselj
Bessel functions of the first kind.  If the argument @var{opt} is supplied, 
the result is multiplied by @code{exp(-abs(imag(x)))}.
@item bessely
Bessel functions of the second kind.  If the argument @var{opt} is supplied,
the result is multiplied by @code{exp(-abs(imag(x)))}.
@item besseli
Modified Bessel functions of the first kind.  If the argument @var{opt} is supplied,
the result is multiplied by @code{exp(-abs(real(x)))}.
@item besselk
Modified Bessel functions of the second kind.  If the argument @var{opt} is supplied,
the result is multiplied by @code{exp(x)}.
@item besselh
Compute Hankel functions of the first (@var{k} = 1) or second (@var{k}
= 2) kind.  If the argument @var{opt} is supplied, the result is multiplied by
@code{exp (-I*@var{x})} for @var{k} = 1 or @code{exp (I*@var{x})} for
@var{k} = 2.
@end table

If @var{alpha} is a scalar, the result is the same size as @var{x}.
If @var{x} is a scalar, the result is the same size as @var{alpha}.
If @var{alpha} is a row vector and @var{x} is a column vector, the
result is a matrix with @code{length (@var{x})} rows and
@code{length (@var{alpha})} columns.  Otherwise, @var{alpha} and
@var{x} must conform and the result will be the same size.

The value of @var{alpha} must be real.  The value of @var{x} may be
complex.

If requested, @var{ierr} contains the following status information
and is the same size as the result.

@enumerate 0
@item
Normal return.
@item
Input error, return @code{NaN}.
@item
Overflow, return @code{Inf}.
@item
Loss of significance by argument reduction results in less than
half of machine accuracy.
@item
Complete loss of significance by argument reduction, return @code{NaN}.
@item
Error---no computation, algorithm termination condition not met,
return @code{NaN}.
@end enumerate
@end deftypefn


@c ./specfun/beta.m
@anchor{doc-beta}
@deftypefn {Mapping Function} {} beta (@var{a}, @var{b})
For real inputs, return the Beta function,
@tex
$$
 B (a, b) = {\Gamma (a) \Gamma (b) \over \Gamma (a + b)}.
$$
@end tex
@ifnottex

@example
beta (a, b) = gamma (a) * gamma (b) / gamma (a + b).
@end example
@end ifnottex
@end deftypefn


@c ./DLD-FUNCTIONS/betainc.cc
@anchor{doc-betainc}
@deftypefn {Mapping Function} {} betainc (@var{x}, @var{a}, @var{b})
Return the incomplete Beta function,
@iftex
@tex
$$
 \beta (x, a, b) = B (a, b)^{-1} \int_0^x t^{(a-z)} (1-t)^{(b-1)} dt.
$$
@end tex
@end iftex
@ifnottex

@c Set example in small font to prevent overfull line
@smallexample
                                      x
                                     /
betainc (x, a, b) = beta (a, b)^(-1) | t^(a-1) (1-t)^(b-1) dt.
                                     /
                                  t=0
@end smallexample
@end ifnottex

If x has more than one component, both @var{a} and @var{b} must be
scalars.  If @var{x} is a scalar, @var{a} and @var{b} must be of
compatible dimensions.
@end deftypefn


@c ./specfun/betaln.m
@anchor{doc-betaln}
@deftypefn {Mapping Function} {} betaln (@var{a}, @var{b})
Return the log of the Beta function,
@tex
$$
 B (a, b) = \log {\Gamma (a) \Gamma (b) \over \Gamma (a + b)}.
$$
@end tex
@ifnottex

@example
betaln (a, b) = gammaln (a) + gammaln (b) - gammaln (a + b)
@end example
@end ifnottex
@seealso{@ref{doc-beta,,beta}, @ref{doc-betainc,,betainc}, @ref{doc-gammaln,,gammaln}}
@end deftypefn


@c ./miscellaneous/bincoeff.m
@anchor{doc-bincoeff}
@deftypefn {Mapping Function} {} bincoeff (@var{n}, @var{k})
Return the binomial coefficient of @var{n} and @var{k}, defined as
@tex
$$
 {n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!}
$$
@end tex
@ifnottex

@example
@group
 /   \
 | n |    n (n-1) (n-2) @dots{} (n-k+1)
 |   |  = -------------------------
 | k |               k!
 \   /
@end group
@end example
@end ifnottex

For example,

@example
@group
bincoeff (5, 2)
     @result{} 10
@end group
@end example

In most cases, the @code{nchoosek} function is faster for small
scalar integer arguments.  It also warns about loss of precision for
big arguments.

@seealso{@ref{doc-nchoosek,,nchoosek}}
@end deftypefn


@c ./linear-algebra/commutation_matrix.m
@anchor{doc-commutation_matrix}
@deftypefn {Function File} {} commutation_matrix (@var{m}, @var{n})
Return the commutation matrix
@tex
 $K_{m,n}$
@end tex
@ifnottex
 K(m,n)
@end ifnottex
 which is the unique
@tex
 $m n \times m n$
@end tex
@ifnottex
@var{m}*@var{n} by @var{m}*@var{n}
@end ifnottex
 matrix such that
@tex
 $K_{m,n} \cdot {\rm vec} (A) = {\rm vec} (A^T)$
@end tex
@ifnottex
@math{K(m,n) * vec(A) = vec(A')}
@end ifnottex
 for all
@tex
 $m\times n$
@end tex
@ifnottex
@math{m} by @math{n}
@end ifnottex
 matrices
@tex
 $A$.
@end tex
@ifnottex
@math{A}.
@end ifnottex

If only one argument @var{m} is given,
@tex
 $K_{m,m}$
@end tex
@ifnottex
@math{K(m,m)}
@end ifnottex
 is returned.

See Magnus and Neudecker (1988), Matrix differential calculus with
applications in statistics and econometrics.
@end deftypefn


@c ./linear-algebra/duplication_matrix.m
@anchor{doc-duplication_matrix}
@deftypefn {Function File} {} duplication_matrix (@var{n})
Return the duplication matrix
@tex
 $D_n$
@end tex
@ifnottex
@math{Dn}
@end ifnottex
 which is the unique
@tex
 $n^2 \times n(n+1)/2$
@end tex
@ifnottex
@math{n^2} by @math{n*(n+1)/2}
@end ifnottex
 matrix such that
@tex
 $D_n * {\rm vech} (A) = {\rm vec} (A)$
@end tex
@ifnottex
@math{Dn vech (A) = vec (A)}
@end ifnottex
 for all symmetric
@tex
 $n \times n$
@end tex
@ifnottex
@math{n} by @math{n}
@end ifnottex
 matrices
@tex
 $A$.
@end tex
@ifnottex
@math{A}.
@end ifnottex

See Magnus and Neudecker (1988), Matrix differential calculus with
applications in statistics and econometrics.
@end deftypefn


@c mappers.cc
@anchor{doc-erf}
@deftypefn {Mapping Function} {} erf (@var{z})
Computes the error function,
@iftex
@tex
$$
 {\rm erf} (z) = {2 \over \sqrt{\pi}}\int_0^z e^{-t^2} dt
$$
@end tex
@end iftex
@ifnottex

@example
@group
                         z
                        /
erf (z) = (2/sqrt (pi)) | e^(-t^2) dt
                        /
                     t=0
@end group
@end example
@end ifnottex
@seealso{@ref{doc-erfc,,erfc}, @ref{doc-erfinv,,erfinv}}
@end deftypefn


@c mappers.cc
@anchor{doc-erfc}
@deftypefn {Mapping Function} {} erfc (@var{z})
Computes the complementary error function,
@iftex
@tex
$1 - {\rm erf} (z)$.
@end tex
@end iftex
@ifnottex
@code{1 - erf (@var{z})}.
@end ifnottex
@seealso{@ref{doc-erf,,erf}, @ref{doc-erfinv,,erfinv}}
@end deftypefn


@c ./specfun/erfinv.m
@anchor{doc-erfinv}
@deftypefn {Mapping Function} {} erfinv (@var{z})
Computes the inverse of the error function.
@seealso{@ref{doc-erf,,erf}, @ref{doc-erfc,,erfc}}
@end deftypefn


@c mappers.cc
@anchor{doc-gamma}
@deftypefn {Mapping Function} {} gamma (@var{z})
Computes the Gamma function,
@iftex
@tex
$$
 \Gamma (z) = \int_0^\infty t^{z-1} e^{-t} dt.
$$
@end tex
@end iftex
@ifnottex

@example
@group
            infinity
            /
gamma (z) = | t^(z-1) exp (-t) dt.
            /
         t=0
@end group
@end example
@end ifnottex
@seealso{@ref{doc-gammainc,,gammainc}, @ref{doc-lgamma,,lgamma}}
@end deftypefn


@c ./DLD-FUNCTIONS/gammainc.cc
@anchor{doc-gammainc}
@deftypefn {Mapping Function} {} gammainc (@var{x}, @var{a})
Compute the normalized incomplete gamma function,
@iftex
@tex
$$
 \gamma (x, a) = {\displaystyle\int_0^x e^{-t} t^{a-1} dt \over \Gamma (a)}
$$
@end tex
@end iftex
@ifnottex

@smallexample
                                x
                      1        /
gammainc (x, a) = ---------    | exp (-t) t^(a-1) dt
                  gamma (a)    /
                            t=0
@end smallexample

@end ifnottex
with the limiting value of 1 as @var{x} approaches infinity.
The standard notation is @math{P(a,x)}, e.g., Abramowitz and Stegun (6.5.1).

If @var{a} is scalar, then @code{gammainc (@var{x}, @var{a})} is returned
for each element of @var{x} and vice versa.

If neither @var{x} nor @var{a} is scalar, the sizes of @var{x} and
@var{a} must agree, and @var{gammainc} is applied element-by-element.
@seealso{@ref{doc-gamma,,gamma}, @ref{doc-lgamma,,lgamma}}
@end deftypefn


@c ./specfun/legendre.m
@anchor{doc-legendre}
@deftypefn {Function File} {@var{l} =} legendre (@var{n}, @var{x})
@deftypefnx {Function File} {@var{l} =} legendre (@var{n}, @var{x}, @var{normalization})
Compute the Legendre function of degree @var{n} and order 
@var{m} = 0 @dots{} N.  The optional argument, @var{normalization}, 
may be one of @code{"unnorm"}, @code{"sch"}, or @code{"norm"}.
The default is @code{"unnorm"}.  The value of @var{n} must be a 
non-negative scalar integer.  

If the optional argument @var{normalization} is missing or is
@code{"unnorm"}, compute the Legendre function of degree @var{n} and
order @var{m} and return all values for @var{m} = 0 @dots{} @var{n}.
The return value has one dimension more than @var{x}.

The Legendre Function of degree @var{n} and order @var{m}:

@example
@group
 m        m       2  m/2   d^m
P(x) = (-1) * (1-x  )    * ----  P (x)
 n                         dx^m   n
@end group
@end example

@noindent
with Legendre polynomial of degree @var{n}:

@example
@group
          1     d^n   2    n
P (x) = ------ [----(x - 1)  ]
 n      2^n n!  dx^n
@end group
@end example

@noindent
@code{legendre (3, [-1.0, -0.9, -0.8])} returns the matrix:

@example
@group
 x  |   -1.0   |   -0.9   |  -0.8
------------------------------------
m=0 | -1.00000 | -0.47250 | -0.08000
m=1 |  0.00000 | -1.99420 | -1.98000
m=2 |  0.00000 | -2.56500 | -4.32000
m=3 |  0.00000 | -1.24229 | -3.24000 
@end group
@end example

If the optional argument @code{normalization} is @code{"sch"}, 
compute the Schmidt semi-normalized associated Legendre function.
The Schmidt semi-normalized associated Legendre function is related
to the unnormalized Legendre functions by the following:

For Legendre functions of degree n and order 0:

@example
@group
  0       0
SP (x) = P (x)
  n       n
@end group
@end example

For Legendre functions of degree n and order m:

@example
@group
  m       m          m    2(n-m)! 0.5
SP (x) = P (x) * (-1)  * [-------]
  n       n               (n+m)!
@end group
@end example

If the optional argument @var{normalization} is @code{"norm"}, 
compute the fully normalized associated Legendre function.
The fully normalized associated Legendre function is related
to the unnormalized Legendre functions by the following:

For Legendre functions of degree @var{n} and order @var{m}

@example
@group
  m       m          m    (n+0.5)(n-m)! 0.5
NP (x) = P (x) * (-1)  * [-------------]
  n       n                   (n+m)!    
@end group
@end example
@end deftypefn


@anchor{doc-gammaln}
@c mappers.cc
@anchor{doc-lgamma}
@deftypefn {Mapping Function} {} lgamma (@var{x})
@deftypefnx {Mapping Function} {} gammaln (@var{x})
Return the natural logarithm of the gamma function of @var{x}.
@seealso{@ref{doc-gamma,,gamma}, @ref{doc-gammainc,,gammainc}}
@end deftypefn


@node Coordinate Transformations
@section Coordinate Transformations

@c ./general/cart2pol.m
@anchor{doc-cart2pol}
@deftypefn  {Function File} {[@var{theta}, @var{r}] =} cart2pol (@var{x}, @var{y})
@deftypefnx {Function File} {[@var{theta}, @var{r}, @var{z}] =} cart2pol (@var{x}, @var{y}, @var{z})
Transform Cartesian to polar or cylindrical coordinates.
@var{x}, @var{y} (and @var{z}) must be the same shape, or scalar.
@var{theta} describes the angle relative to the positive x-axis.
@var{r} is the distance to the z-axis (0, 0, z).
@seealso{@ref{doc-pol2cart,,pol2cart}, @ref{doc-cart2sph,,cart2sph}, @ref{doc-sph2cart,,sph2cart}}
@end deftypefn


@c ./general/pol2cart.m
@anchor{doc-pol2cart}
@deftypefn {Function File} {[@var{x}, @var{y}] =} pol2cart (@var{theta}, @var{r})
@deftypefnx {Function File} {[@var{x}, @var{y}, @var{z}] =} pol2cart (@var{theta}, @var{r}, @var{z})
Transform polar or cylindrical to Cartesian coordinates.
@var{theta}, @var{r} (and @var{z}) must be the same shape, or scalar.
@var{theta} describes the angle relative to the positive x-axis.
@var{r} is the distance to the z-axis (0, 0, z).
@seealso{@ref{doc-cart2pol,,cart2pol}, @ref{doc-cart2sph,,cart2sph}, @ref{doc-sph2cart,,sph2cart}}
@end deftypefn


@c ./general/cart2sph.m
@anchor{doc-cart2sph}
@deftypefn {Function File} {[@var{theta}, @var{phi}, @var{r}] =} cart2sph (@var{x}, @var{y}, @var{z})
Transform Cartesian to spherical coordinates.
@var{x}, @var{y} and @var{z} must be the same shape, or scalar.
@var{theta} describes the angle relative to the positive x-axis.
@var{phi} is the angle relative to the xy-plane.
@var{r} is the distance to the origin (0, 0, 0).
@seealso{@ref{doc-pol2cart,,pol2cart}, @ref{doc-cart2pol,,cart2pol}, @ref{doc-sph2cart,,sph2cart}}
@end deftypefn


@c ./general/sph2cart.m
@anchor{doc-sph2cart}
@deftypefn {Function File} {[@var{x}, @var{y}, @var{z}] =} sph2cart (@var{theta}, @var{phi}, @var{r})
Transform spherical to Cartesian coordinates.
@var{x}, @var{y} and @var{z} must be the same shape, or scalar.
@var{theta} describes the angle relative to the positive x-axis.
@var{phi} is the angle relative to the xy-plane.
@var{r} is the distance to the origin (0, 0, 0).
@seealso{@ref{doc-pol2cart,,pol2cart}, @ref{doc-cart2pol,,cart2pol}, @ref{doc-cart2sph,,cart2sph}}
@end deftypefn


@node Mathematical Constants
@section Mathematical Constants

@c data.cc
@anchor{doc-e}
@deftypefn  {Built-in Function} {} e
@deftypefnx {Built-in Function} {} e (@var{n})
@deftypefnx {Built-in Function} {} e (@var{n}, @var{m})
@deftypefnx {Built-in Function} {} e (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {Built-in Function} {} e (@dots{}, @var{class})
Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the base of natural logarithms.  The constant
@tex
$e$ satisfies the equation $\log (e) = 1$.
@end tex
@ifnottex
@samp{e} satisfies the equation @code{log} (e) = 1.
@end ifnottex

When called with no arguments, return a scalar with the value @math{e}.  When
called with a single argument, return a square matrix with the dimension
specified.  When called with more than one scalar argument the first two
arguments are taken as the number of rows and columns and any further
arguments specify additional matrix dimensions.
The optional argument @var{class} specifies the return type and may be
either "double" or "single".
@end deftypefn


@c data.cc
@anchor{doc-pi}
@deftypefn  {Built-in Function} {} pi
@deftypefnx {Built-in Function} {} pi (@var{n})
@deftypefnx {Built-in Function} {} pi (@var{n}, @var{m})
@deftypefnx {Built-in Function} {} pi (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {Built-in Function} {} pi (@dots{}, @var{class})
Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the ratio of the circumference of a circle to its
@tex
diameter($\pi$).
@end tex
@ifnottex
diameter.
@end ifnottex
Internally, @code{pi} is computed as @samp{4.0 * atan (1.0)}.

When called with no arguments, return a scalar with the value of
@tex
$\pi$.
@end tex
@ifnottex
pi.
@end ifnottex
When called with a single argument, return a square matrix with the dimension
specified.  When called with more than one scalar argument the first two
arguments are taken as the number of rows and columns and any further
arguments specify additional matrix dimensions.
The optional argument @var{class} specifies the return type and may be
either "double" or "single".
@end deftypefn


@c data.cc
@anchor{doc-I}
@deftypefn  {Built-in Function} {} I
@deftypefnx {Built-in Function} {} I (@var{n})
@deftypefnx {Built-in Function} {} I (@var{n}, @var{m})
@deftypefnx {Built-in Function} {} I (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {Built-in Function} {} I (@dots{}, @var{class})
Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the pure imaginary unit, defined as
@tex
$\sqrt{-1}$.
@end tex
@ifnottex
@code{sqrt (-1)}.
@end ifnottex
 I, and its equivalents i, J, and j, are functions so any of the names may
be reused for other purposes (such as i for a counter variable).

When called with no arguments, return a scalar with the value @math{i}.  When
called with a single argument, return a square matrix with the dimension
specified.  When called with more than one scalar argument the first two
arguments are taken as the number of rows and columns and any further
arguments specify additional matrix dimensions.
The optional argument @var{class} specifies the return type and may be
either "double" or "single".
@end deftypefn


@c data.cc
@anchor{doc-Inf}
@deftypefn  {Built-in Function} {} Inf
@deftypefnx {Built-in Function} {} Inf (@var{n})
@deftypefnx {Built-in Function} {} Inf (@var{n}, @var{m})
@deftypefnx {Built-in Function} {} Inf (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {Built-in Function} {} Inf (@dots{}, @var{class})
Return a scalar, matrix or N-dimensional array whose elements are all equal
to the IEEE representation for positive infinity.

Infinity is produced when results are too large to be represented using the
the IEEE floating point format for numbers.  Two common examples which
produce infinity are division by zero and overflow.
@example
@group
[1/0 e^800]
@result{}
Inf   Inf
@end group
@end example

When called with no arguments, return a scalar with the value @samp{Inf}.
When called with a single argument, return a square matrix with the dimension
specified.  When called with more than one scalar argument the first two
arguments are taken as the number of rows and columns and any further
arguments specify additional matrix dimensions.
The optional argument @var{class} specifies the return type and may be
either "double" or "single".
@seealso{@ref{doc-isinf,,isinf}}
@end deftypefn


@c data.cc
@anchor{doc-NaN}
@deftypefn  {Built-in Function} {} NaN
@deftypefnx {Built-in Function} {} NaN (@var{n})
@deftypefnx {Built-in Function} {} NaN (@var{n}, @var{m})
@deftypefnx {Built-in Function} {} NaN (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {Built-in Function} {} NaN (@dots{}, @var{class})
Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the IEEE symbol NaN (Not a Number).
NaN is the result of operations which do not produce a well defined numerical
result.  Common operations which produce a NaN are arithmetic with infinity
@tex
($\infty - \infty$), zero divided by zero ($0/0$),
@end tex
@ifnottex
(Inf - Inf), zero divided by zero (0/0),
@end ifnottex
and any operation involving another NaN value (5 + NaN).

Note that NaN always compares not equal to NaN (NaN != NaN).  This behavior
is specified by the IEEE standard for floating point arithmetic.  To
find NaN values, use the @code{isnan} function.

When called with no arguments, return a scalar with the value @samp{NaN}.
When called with a single argument, return a square matrix with the dimension
specified.  When called with more than one scalar argument the first two
arguments are taken as the number of rows and columns and any further
arguments specify additional matrix dimensions.
The optional argument @var{class} specifies the return type and may be
either "double" or "single".
@seealso{@ref{doc-isnan,,isnan}}
@end deftypefn


@c data.cc
@anchor{doc-eps}
@deftypefn  {Built-in Function} {} eps
@deftypefnx {Built-in Function} {} eps (@var{x})
@deftypefnx {Built-in Function} {} eps (@var{n}, @var{m})
@deftypefnx {Built-in Function} {} eps (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {Built-in Function} {} eps (@dots{}, @var{class})
Return a scalar, matrix or N-dimensional array whose elements are all eps,
the machine precision.  More precisely, @code{eps} is the relative spacing
between any two adjacent numbers in the machine's floating point system.
This number is obviously system dependent.  On machines that support IEEE
floating point arithmetic, @code{eps} is approximately
@tex
$2.2204\times10^{-16}$ for double precision and $1.1921\times10^{-7}$
@end tex
@ifnottex
2.2204e-16 for double precision and 1.1921e-07
@end ifnottex
for single precision.

When called with no arguments, return a scalar with the value
@code{eps(1.0)}.
Given a single argument @var{x}, return the distance between @var{x} and
the next largest value.
When called with more than one argument the first two arguments are taken as
the number of rows and columns and any further
arguments specify additional matrix dimensions.
The optional argument @var{class} specifies the return type and may be
either "double" or "single".
@end deftypefn


@c data.cc
@anchor{doc-realmax}
@deftypefn  {Built-in Function} {} realmax
@deftypefnx {Built-in Function} {} realmax (@var{n})
@deftypefnx {Built-in Function} {} realmax (@var{n}, @var{m})
@deftypefnx {Built-in Function} {} realmax (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {Built-in Function} {} realmax (@dots{}, @var{class})
Return a scalar, matrix or N-dimensional array whose elements are all equal
to the largest floating point number that is representable.  The actual
value is system dependent.  On machines that support IEEE
floating point arithmetic, @code{realmax} is approximately
@tex
$1.7977\times10^{308}$ for double precision and $3.4028\times10^{38}$
@end tex
@ifnottex
1.7977e+308 for double precision and 3.4028e+38
@end ifnottex
for single precision.

When called with no arguments, return a scalar with the value
@code{realmax("double")}.
When called with a single argument, return a square matrix with the dimension
specified.  When called with more than one scalar argument the first two
arguments are taken as the number of rows and columns and any further
arguments specify additional matrix dimensions.
The optional argument @var{class} specifies the return type and may be
either "double" or "single".
@seealso{@ref{doc-realmin,,realmin}, @ref{doc-intmax,,intmax}, @ref{doc-bitmax,,bitmax}}
@end deftypefn


@c data.cc
@anchor{doc-realmin}
@deftypefn  {Built-in Function} {} realmin
@deftypefnx {Built-in Function} {} realmin (@var{n})
@deftypefnx {Built-in Function} {} realmin (@var{n}, @var{m})
@deftypefnx {Built-in Function} {} realmin (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {Built-in Function} {} realmin (@dots{}, @var{class})
Return a scalar, matrix or N-dimensional array whose elements are all equal
to the smallest normalized floating point number that is representable.
The actual value is system dependent.  On machines that support
IEEE floating point arithmetic, @code{realmin} is approximately
@tex
$2.2251\times10^{-308}$ for double precision and $1.1755\times10^{-38}$
@end tex
@ifnottex
2.2251e-308 for double precision and 1.1755e-38
@end ifnottex
for single precision.

When called with no arguments, return a scalar with the value
@code{realmin("double")}.
When called with a single argument, return a square matrix with the dimension
specified.  When called with more than one scalar argument the first two
arguments are taken as the number of rows and columns and any further
arguments specify additional matrix dimensions.
The optional argument @var{class} specifies the return type and may be
either "double" or "single".
@seealso{@ref{doc-realmax,,realmax}, @ref{doc-intmin,,intmin}}
@end deftypefn