1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072 28073 28074 28075 28076 28077 28078 28079 28080 28081 28082 28083 28084 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28103 28104 28105 28106 28107 28108 28109 28110 28111 28112 28113 28114 28115 28116 28117 28118 28119 28120 28121 28122 28123 28124 28125 28126 28127 28128 28129 28130 28131 28132 28133 28134 28135 28136 28137 28138 28139 28140 28141 28142 28143 28144 28145 28146 28147 28148 28149 28150 28151 28152 28153 28154 28155 28156 28157 28158 28159 28160 28161 28162 28163 28164 28165 28166 28167 28168 28169 28170 28171 28172 28173 28174 28175 28176 28177 28178 28179 28180 28181 28182 28183 28184 28185 28186 28187 28188 28189 28190 28191 28192 28193 28194 28195 28196 28197 28198 28199 28200 28201 28202 28203 28204 28205 28206 28207 28208 28209 28210 28211 28212 28213 28214 28215 28216 28217 28218 28219 28220 28221 28222 28223 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 28239 28240 28241 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 28257 28258 28259 28260 28261 28262 28263 28264 28265 28266 28267 28268 28269 28270 28271 28272 28273 28274 28275 28276 28277 28278 28279 28280 28281 28282 28283 28284 28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 28299 28300 28301 28302 28303 28304 28305 28306 28307 28308 28309 28310 28311 28312 28313 28314 28315 28316 28317 28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 28332 28333 28334 28335 28336 28337 28338 28339 28340 28341 28342 28343 28344 28345 28346 28347 28348 28349 28350 28351 28352 28353 28354 28355 28356 28357 28358 28359 28360 28361 28362 28363 28364 28365 28366 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28382 28383 28384 28385 28386 28387 28388 28389 28390 28391 28392 28393 28394 28395 28396 28397 28398 28399 28400 28401 28402 28403 28404 28405 28406 28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28418 28419 28420 28421 28422 28423 28424 28425 28426 28427 28428 28429 28430 28431 28432 28433 28434 28435 28436 28437 28438 28439 28440 28441 28442 28443 28444 28445 28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 28458 28459 28460 28461 28462 28463 28464 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 28522 28523 28524 28525 28526 28527 28528 28529 28530 28531 28532 28533 28534 28535 28536 28537 28538 28539 28540 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 28592 28593 28594 28595 28596 28597 28598 28599 28600 28601 28602 28603 28604 28605 28606 28607 28608 28609 28610 28611 28612 28613 28614 28615 28616 28617 28618 28619 28620 28621 28622 28623 28624 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 28640 28641 28642 28643 28644 28645 28646 28647 28648 28649 28650 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 28666 28667 28668 28669 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 28685 28686 28687 28688 28689 28690 28691 28692 28693 28694 28695 28696 28697 28698 28699 28700 28701 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 28730 28731 28732 28733 28734 28735 28736 28737 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 28788 28789 28790 28791 28792 28793 28794 28795 28796 28797 28798 28799 28800 28801 28802 28803 28804 28805 28806 28807 28808 28809 28810 28811 28812 28813 28814 28815 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 28831 28832 28833 28834 28835 28836 28837 28838 28839 28840 28841 28842 28843 28844 28845 28846 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 28862 28863 28864 28865 28866 28867 28868 28869 28870 28871 28872 28873 28874 28875 28876 28877 28878 28879 28880 28881 28882 28883 28884 28885 28886 28887 28888 28889 28890 28891 28892 28893 28894 28895 28896 28897 28898 28899 28900 28901 28902 28903 28904 28905 28906 28907 28908 28909 28910 28911 28912 28913 28914 28915 28916 28917 28918 28919 28920 28921 28922 28923 28924 28925 28926 28927 28928 28929 28930 28931 28932 28933 28934 28935 28936 28937 28938 28939 28940 28941 28942 28943 28944 28945 28946 28947 28948 28949 28950 28951 28952 28953 28954 28955 28956 28957 28958 28959 28960 28961 28962 28963 28964 28965 28966 28967 28968 28969 28970 28971 28972 28973 28974 28975 28976 28977 28978 28979 28980 28981 28982 28983 28984 28985 28986 28987 28988 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730 29731 29732 29733 29734 29735 29736 29737 29738 29739 29740 29741 29742 29743 29744 29745 29746 29747 29748 29749 29750 29751 29752 29753 29754 29755 29756 29757 29758 29759 29760 29761 29762 29763 29764 29765 29766 29767 29768 29769 29770 29771 29772 29773 29774 29775 29776 29777 29778 29779 29780 29781 29782 29783 29784 29785 29786 29787 29788 29789 29790 29791 29792 29793 29794 29795 29796 29797 29798 29799 29800 29801 29802 29803 29804 29805 29806 29807 29808 29809 29810 29811 29812 29813 29814 29815 29816 29817 29818 29819 29820 29821 29822 29823 29824 29825 29826 29827 29828 29829 29830 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840 29841 29842 29843 29844 29845 29846 29847 29848 29849 29850 29851 29852 29853 29854 29855 29856 29857 29858 29859 29860 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890 29891 29892 29893 29894 29895 29896 29897 29898 29899 29900 29901 29902 29903 29904 29905 29906 29907 29908 29909 29910 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920 29921 29922 29923 29924 29925 29926 29927 29928 29929 29930 29931 29932 29933 29934 29935 29936 29937 29938 29939 29940 29941 29942 29943 29944 29945 29946 29947 29948 29949 29950 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990 29991 29992 29993 29994 29995 29996 29997 29998 29999 30000 30001 30002 30003 30004 30005 30006 30007 30008 30009 30010 30011 30012 30013 30014 30015 30016 30017 30018 30019 30020 30021 30022 30023 30024 30025 30026 30027 30028 30029 30030 30031 30032 30033 30034 30035 30036 30037 30038 30039 30040 30041 30042 30043 30044 30045 30046 30047 30048 30049 30050 30051 30052 30053 30054 30055 30056 30057 30058 30059 30060 30061 30062 30063 30064 30065 30066 30067 30068 30069 30070 30071 30072 30073 30074 30075 30076 30077 30078 30079 30080 30081 30082 30083 30084 30085 30086 30087 30088 30089 30090 30091 30092 30093 30094 30095 30096 30097 30098 30099 30100 30101 30102 30103 30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30119 30120 30121 30122 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30143 30144 30145 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30159 30160 30161 30162 30163 30164 30165 30166 30167 30168 30169 30170 30171 30172 30173 30174 30175 30176 30177 30178 30179 30180 30181 30182 30183 30184 30185 30186 30187 30188 30189 30190 30191 30192 30193 30194 30195 30196 30197 30198 30199 30200 30201 30202 30203 30204 30205 30206 30207 30208 30209 30210 30211 30212 30213 30214 30215 30216 30217 30218 30219 30220 30221 30222 30223 30224 30225 30226 30227 30228 30229 30230 30231 30232 30233 30234 30235 30236 30237 30238 30239 30240 30241 30242 30243 30244 30245 30246 30247 30248 30249 30250 30251 30252 30253 30254 30255 30256 30257 30258 30259 30260 30261 30262 30263 30264 30265 30266 30267 30268 30269 30270 30271 30272 30273 30274 30275 30276 30277 30278 30279 30280 30281 30282 30283 30284 30285 30286 30287 30288 30289 30290 30291 30292 30293 30294 30295 30296 30297 30298 30299 30300 30301 30302 30303 30304 30305 30306 30307 30308 30309 30310 30311 30312 30313 30314 30315 30316 30317 30318 30319 30320 30321 30322 30323 30324 30325 30326 30327 30328 30329 30330 30331 30332 30333 30334 30335 30336 30337 30338 30339 30340 30341 30342 30343 30344 30345 30346 30347 30348 30349 30350 30351 30352 30353 30354 30355 30356 30357 30358 30359 30360 30361 30362 30363 30364 30365 30366 30367 30368 30369 30370 30371 30372 30373 30374 30375 30376 30377 30378 30379 30380 30381 30382 30383 30384 30385 30386 30387 30388 30389 30390 30391 30392 30393 30394 30395 30396 30397 30398 30399 30400 30401 30402 30403 30404 30405 30406 30407 30408 30409 30410 30411 30412 30413 30414 30415 30416 30417 30418 30419 30420 30421 30422 30423 30424 30425 30426 30427 30428 30429 30430 30431 30432 30433 30434 30435 30436 30437 30438 30439 30440 30441 30442 30443 30444 30445 30446 30447 30448 30449 30450 30451 30452 30453 30454 30455 30456 30457 30458 30459 30460 30461 30462 30463 30464 30465 30466 30467 30468 30469 30470 30471 30472 30473 30474 30475 30476 30477 30478 30479 30480 30481 30482 30483 30484 30485 30486 30487 30488 30489 30490 30491 30492 30493 30494 30495 30496 30497 30498 30499 30500 30501 30502 30503 30504 30505 30506 30507 30508 30509 30510 30511 30512 30513 30514 30515 30516 30517 30518 30519 30520 30521 30522 30523 30524 30525 30526 30527 30528 30529 30530 30531 30532 30533 30534 30535 30536 30537 30538 30539 30540 30541 30542 30543 30544 30545 30546 30547 30548 30549 30550 30551 30552 30553 30554 30555 30556 30557 30558 30559 30560 30561 30562 30563 30564 30565 30566 30567 30568 30569 30570 30571 30572 30573 30574 30575 30576 30577 30578 30579 30580 30581 30582 30583 30584 30585 30586 30587 30588 30589 30590 30591 30592 30593 30594 30595 30596 30597 30598 30599 30600 30601 30602 30603 30604 30605 30606 30607 30608 30609 30610 30611 30612 30613 30614 30615 30616 30617 30618 30619 30620 30621 30622 30623 30624 30625 30626 30627 30628 30629 30630 30631 30632 30633 30634 30635 30636 30637 30638 30639 30640 30641 30642 30643 30644 30645 30646 30647 30648 30649 30650 30651 30652 30653 30654 30655 30656 30657 30658 30659 30660 30661 30662 30663 30664 30665 30666 30667 30668 30669 30670 30671 30672 30673 30674 30675 30676 30677 30678 30679 30680 30681 30682 30683 30684 30685 30686 30687 30688 30689 30690 30691 30692 30693 30694 30695 30696 30697 30698 30699 30700 30701 30702 30703 30704 30705 30706 30707 30708 30709 30710 30711 30712 30713 30714 30715 30716 30717 30718 30719 30720 30721 30722 30723 30724 30725 30726 30727 30728 30729 30730 30731 30732 30733 30734 30735 30736 30737 30738 30739 30740 30741 30742 30743 30744 30745 30746 30747 30748 30749 30750 30751 30752 30753 30754 30755 30756 30757 30758 30759 30760 30761 30762 30763 30764 30765 30766 30767 30768 30769 30770 30771 30772 30773 30774 30775 30776 30777 30778 30779 30780 30781 30782 30783 30784 30785 30786 30787 30788 30789 30790 30791 30792 30793 30794 30795 30796 30797 30798 30799 30800 30801 30802 30803 30804 30805 30806 30807 30808 30809 30810 30811 30812 30813 30814 30815 30816 30817 30818 30819 30820 30821 30822 30823 30824 30825 30826 30827 30828 30829 30830 30831 30832 30833 30834 30835 30836 30837 30838 30839 30840 30841 30842 30843 30844 30845 30846 30847 30848 30849 30850 30851 30852 30853 30854 30855 30856 30857 30858 30859 30860 30861 30862 30863 30864 30865 30866 30867 30868 30869 30870 30871 30872 30873 30874 30875 30876 30877 30878 30879 30880 30881 30882 30883 30884 30885 30886 30887 30888 30889 30890 30891 30892 30893 30894 30895 30896 30897 30898 30899 30900 30901 30902 30903 30904 30905 30906 30907 30908 30909 30910 30911 30912 30913 30914 30915 30916 30917 30918 30919 30920 30921 30922 30923 30924 30925 30926 30927 30928 30929 30930 30931 30932 30933 30934 30935 30936 30937 30938 30939 30940 30941 30942 30943 30944 30945 30946 30947 30948 30949 30950 30951 30952 30953 30954 30955 30956 30957 30958 30959 30960 30961 30962 30963 30964 30965 30966 30967 30968 30969 30970 30971 30972 30973 30974 30975 30976 30977 30978 30979 30980 30981 30982 30983 30984 30985 30986 30987 30988 30989 30990 30991 30992 30993 30994 30995 30996 30997 30998 30999 31000 31001 31002 31003 31004 31005 31006 31007 31008 31009 31010 31011 31012 31013 31014 31015 31016 31017 31018 31019 31020 31021 31022 31023 31024 31025 31026 31027 31028 31029 31030 31031 31032 31033 31034 31035 31036 31037 31038 31039 31040 31041 31042 31043 31044 31045 31046 31047 31048 31049 31050 31051 31052 31053 31054 31055 31056 31057 31058 31059 31060 31061 31062 31063 31064 31065 31066 31067 31068 31069 31070 31071 31072 31073 31074 31075 31076 31077 31078 31079 31080 31081 31082 31083 31084 31085 31086 31087 31088 31089 31090 31091 31092 31093 31094 31095 31096 31097 31098 31099 31100 31101 31102 31103 31104 31105 31106 31107 31108 31109 31110 31111 31112 31113 31114 31115 31116 31117 31118 31119 31120 31121 31122 31123 31124 31125 31126 31127 31128 31129 31130 31131 31132 31133 31134 31135 31136 31137 31138 31139 31140 31141 31142 31143 31144 31145 31146 31147 31148 31149 31150 31151 31152 31153 31154 31155 31156 31157 31158 31159 31160 31161 31162 31163 31164 31165 31166 31167 31168 31169 31170 31171 31172 31173 31174 31175 31176 31177 31178 31179 31180 31181 31182 31183 31184 31185 31186 31187 31188 31189 31190 31191 31192 31193 31194 31195 31196 31197 31198 31199 31200 31201 31202 31203 31204 31205 31206 31207 31208 31209 31210 31211 31212 31213 31214 31215 31216 31217 31218 31219 31220 31221 31222 31223 31224 31225 31226 31227 31228 31229 31230 31231 31232 31233 31234 31235 31236 31237 31238 31239 31240 31241 31242 31243 31244 31245 31246 31247 31248 31249 31250 31251 31252 31253 31254 31255 31256 31257 31258 31259 31260 31261 31262 31263 31264 31265 31266 31267 31268 31269 31270 31271 31272 31273 31274 31275 31276 31277 31278 31279 31280 31281 31282 31283 31284 31285 31286 31287 31288 31289 31290 31291 31292 31293 31294 31295 31296 31297 31298 31299 31300 31301 31302 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31321 31322 31323 31324 31325 31326 31327 31328 31329 31330 31331 31332 31333 31334 31335 31336 31337 31338 31339 31340 31341 31342 31343 31344 31345 31346 31347 31348 31349 31350 31351 31352 31353 31354 31355 31356 31357 31358 31359 31360 31361 31362 31363 31364 31365 31366 31367 31368 31369 31370 31371 31372 31373 31374 31375 31376 31377 31378 31379 31380 31381 31382 31383 31384 31385 31386 31387 31388 31389 31390 31391 31392 31393 31394 31395 31396 31397 31398 31399 31400 31401 31402 31403 31404 31405 31406 31407 31408 31409 31410 31411 31412 31413 31414 31415 31416 31417 31418 31419 31420 31421 31422 31423 31424 31425 31426 31427 31428 31429 31430 31431 31432 31433 31434 31435 31436 31437 31438 31439 31440 31441 31442 31443 31444 31445 31446 31447 31448 31449 31450 31451 31452 31453 31454 31455 31456 31457 31458 31459 31460 31461 31462 31463 31464 31465 31466 31467 31468 31469 31470 31471 31472 31473 31474 31475 31476 31477 31478 31479 31480 31481 31482 31483 31484 31485 31486 31487 31488 31489 31490 31491 31492 31493 31494 31495 31496 31497 31498 31499 31500 31501 31502 31503 31504 31505 31506 31507 31508 31509 31510 31511 31512 31513 31514 31515 31516 31517 31518 31519 31520 31521 31522 31523 31524 31525 31526 31527 31528 31529 31530 31531 31532 31533 31534 31535 31536 31537 31538 31539 31540 31541 31542 31543 31544 31545 31546 31547 31548 31549 31550 31551 31552 31553 31554 31555 31556 31557 31558 31559 31560 31561 31562 31563 31564 31565 31566 31567 31568 31569 31570 31571 31572 31573 31574 31575 31576 31577 31578 31579 31580 31581 31582 31583 31584 31585 31586 31587 31588 31589 31590 31591 31592 31593 31594 31595 31596 31597 31598 31599 31600 31601 31602 31603 31604 31605 31606 31607 31608 31609 31610 31611 31612 31613 31614 31615 31616 31617 31618 31619 31620 31621 31622 31623 31624 31625 31626 31627 31628 31629 31630 31631 31632 31633 31634 31635 31636 31637 31638 31639 31640 31641 31642 31643 31644 31645 31646 31647 31648 31649 31650 31651 31652 31653 31654 31655 31656 31657 31658 31659 31660 31661 31662 31663 31664 31665 31666 31667 31668 31669 31670 31671 31672 31673 31674 31675 31676 31677 31678 31679 31680 31681 31682 31683 31684 31685 31686 31687 31688 31689 31690 31691 31692 31693 31694 31695 31696 31697 31698 31699 31700 31701 31702 31703 31704 31705 31706 31707 31708 31709 31710 31711 31712 31713 31714 31715 31716 31717 31718 31719 31720 31721 31722 31723 31724 31725 31726 31727 31728 31729 31730 31731 31732 31733 31734 31735 31736 31737 31738 31739 31740 31741 31742 31743 31744 31745 31746 31747 31748 31749 31750 31751 31752 31753 31754 31755 31756 31757 31758 31759 31760 31761 31762 31763 31764 31765 31766 31767 31768 31769 31770 31771 31772 31773 31774 31775 31776 31777 31778 31779 31780 31781 31782 31783 31784 31785 31786 31787 31788 31789 31790 31791 31792 31793 31794 31795 31796 31797 31798 31799 31800 31801 31802 31803 31804 31805 31806 31807 31808 31809 31810 31811 31812 31813 31814 31815 31816 31817 31818 31819 31820 31821 31822 31823 31824 31825 31826 31827 31828 31829 31830 31831 31832 31833 31834 31835 31836 31837 31838 31839 31840 31841 31842 31843 31844 31845 31846 31847 31848 31849 31850 31851 31852 31853 31854 31855 31856 31857 31858 31859 31860 31861 31862 31863 31864 31865 31866 31867 31868 31869 31870 31871 31872 31873 31874 31875 31876 31877 31878 31879 31880 31881 31882 31883 31884 31885 31886 31887 31888 31889 31890 31891 31892 31893 31894 31895 31896 31897 31898 31899 31900 31901 31902 31903 31904 31905 31906 31907 31908 31909 31910 31911 31912 31913 31914 31915 31916 31917 31918 31919 31920 31921 31922 31923 31924 31925 31926 31927 31928 31929 31930 31931 31932 31933 31934 31935 31936 31937 31938 31939 31940 31941 31942 31943 31944 31945 31946 31947 31948 31949 31950 31951 31952 31953 31954 31955 31956 31957 31958 31959 31960 31961 31962 31963 31964 31965 31966 31967 31968 31969 31970 31971 31972 31973 31974 31975 31976 31977 31978 31979 31980 31981 31982 31983 31984 31985 31986 31987 31988 31989 31990 31991 31992 31993 31994 31995 31996 31997 31998 31999 32000 32001 32002 32003 32004 32005 32006 32007 32008 32009 32010 32011 32012 32013 32014 32015 32016 32017 32018 32019 32020 32021 32022 32023 32024 32025 32026 32027 32028 32029 32030 32031 32032 32033 32034 32035 32036 32037 32038 32039 32040 32041 32042 32043 32044 32045 32046 32047 32048 32049 32050 32051 32052 32053 32054 32055 32056 32057 32058 32059 32060 32061 32062 32063 32064 32065 32066 32067 32068 32069 32070 32071 32072 32073 32074 32075 32076 32077 32078 32079 32080 32081 32082 32083 32084 32085 32086 32087 32088 32089 32090 32091 32092 32093 32094 32095 32096 32097 32098 32099 32100 32101 32102 32103 32104 32105 32106 32107 32108 32109 32110 32111 32112 32113 32114 32115 32116 32117 32118 32119 32120 32121 32122 32123 32124 32125 32126 32127 32128 32129 32130 32131 32132 32133 32134 32135 32136 32137 32138 32139 32140 32141 32142 32143 32144 32145 32146 32147 32148 32149 32150 32151 32152 32153 32154 32155 32156 32157 32158 32159 32160 32161 32162 32163 32164 32165 32166 32167 32168 32169 32170 32171 32172 32173 32174 32175 32176 32177 32178 32179 32180 32181 32182 32183 32184 32185 32186 32187 32188 32189 32190 32191 32192 32193 32194 32195 32196 32197 32198 32199 32200 32201 32202 32203 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32223 32224 32225 32226 32227 32228 32229 32230 32231 32232 32233 32234 32235 32236 32237 32238 32239 32240 32241 32242 32243 32244 32245 32246 32247 32248 32249 32250 32251 32252 32253 32254 32255 32256 32257 32258 32259 32260 32261 32262 32263 32264 32265 32266 32267 32268 32269 32270 32271 32272 32273 32274 32275 32276 32277 32278 32279 32280 32281 32282 32283 32284 32285 32286 32287 32288 32289 32290 32291 32292 32293 32294 32295 32296 32297 32298 32299 32300 32301 32302 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32323 32324 32325 32326 32327 32328 32329 32330 32331 32332 32333 32334 32335 32336 32337 32338 32339 32340 32341 32342 32343 32344 32345 32346 32347 32348 32349 32350 32351 32352 32353 32354 32355 32356 32357 32358 32359 32360 32361 32362 32363 32364 32365 32366 32367 32368 32369 32370 32371 32372 32373 32374 32375 32376 32377 32378 32379 32380 32381 32382 32383 32384 32385 32386 32387 32388 32389 32390 32391 32392 32393 32394 32395 32396 32397 32398 32399 32400 32401 32402 32403 32404 32405 32406 32407 32408 32409 32410 32411 32412 32413 32414 32415 32416 32417 32418 32419 32420 32421 32422 32423 32424 32425 32426 32427 32428 32429 32430 32431 32432 32433 32434 32435 32436 32437 32438 32439 32440 32441 32442 32443 32444 32445 32446 32447 32448 32449 32450 32451 32452 32453 32454 32455 32456 32457 32458 32459 32460 32461 32462 32463 32464 32465 32466 32467 32468 32469 32470 32471 32472 32473 32474 32475 32476 32477 32478 32479 32480 32481 32482 32483 32484 32485 32486 32487 32488 32489 32490 32491 32492 32493 32494 32495 32496 32497 32498 32499 32500 32501 32502 32503 32504 32505 32506 32507 32508 32509 32510 32511 32512 32513 32514 32515 32516 32517 32518 32519 32520 32521 32522 32523 32524 32525 32526 32527 32528 32529 32530 32531 32532 32533 32534 32535 32536 32537 32538 32539 32540 32541 32542 32543 32544 32545 32546 32547 32548 32549 32550 32551 32552 32553 32554 32555 32556 32557 32558 32559 32560 32561 32562 32563 32564 32565 32566 32567 32568 32569 32570 32571 32572 32573 32574 32575 32576 32577 32578 32579 32580 32581 32582 32583 32584 32585 32586 32587 32588 32589 32590 32591 32592 32593 32594 32595 32596 32597 32598 32599 32600 32601 32602 32603 32604 32605 32606 32607 32608 32609 32610 32611 32612 32613 32614 32615 32616 32617 32618 32619 32620 32621 32622 32623 32624 32625 32626 32627 32628 32629 32630 32631 32632 32633 32634 32635 32636 32637 32638 32639 32640 32641 32642 32643 32644 32645 32646 32647 32648 32649 32650 32651 32652 32653 32654 32655 32656 32657 32658 32659 32660 32661 32662 32663 32664 32665 32666 32667 32668 32669 32670 32671 32672 32673 32674 32675 32676 32677 32678 32679 32680 32681 32682 32683 32684 32685 32686 32687 32688 32689 32690 32691 32692 32693 32694 32695 32696 32697 32698 32699 32700 32701 32702 32703 32704 32705 32706 32707 32708 32709 32710 32711 32712 32713 32714 32715 32716 32717 32718 32719 32720 32721 32722 32723 32724 32725 32726 32727 32728 32729 32730 32731 32732 32733 32734 32735 32736 32737 32738 32739 32740 32741 32742 32743 32744 32745 32746 32747 32748 32749 32750 32751 32752 32753 32754 32755 32756 32757 32758 32759 32760 32761 32762 32763 32764 32765 32766 32767 32768 32769 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779 32780 32781 32782 32783 32784 32785 32786 32787 32788 32789 32790 32791 32792 32793 32794 32795 32796 32797 32798 32799 32800 32801 32802 32803 32804 32805 32806 32807 32808 32809 32810 32811 32812 32813 32814 32815 32816 32817 32818 32819 32820 32821 32822 32823 32824 32825 32826 32827 32828 32829 32830 32831 32832 32833 32834 32835 32836 32837 32838 32839 32840 32841 32842 32843 32844 32845 32846 32847 32848 32849 32850 32851 32852 32853 32854 32855 32856 32857 32858 32859 32860 32861 32862 32863 32864 32865 32866 32867 32868 32869 32870 32871 32872 32873 32874 32875 32876 32877 32878 32879 32880 32881 32882 32883 32884 32885 32886 32887 32888 32889 32890 32891 32892 32893 32894 32895 32896 32897 32898 32899 32900 32901 32902 32903 32904 32905 32906 32907 32908 32909 32910 32911 32912 32913 32914 32915 32916 32917 32918 32919 32920 32921 32922 32923 32924 32925 32926 32927 32928 32929 32930 32931 32932 32933 32934 32935 32936 32937 32938 32939 32940 32941 32942 32943 32944 32945 32946 32947 32948 32949 32950 32951 32952 32953 32954 32955 32956 32957 32958 32959 32960 32961 32962 32963 32964 32965 32966 32967 32968 32969 32970 32971 32972 32973 32974 32975 32976 32977 32978 32979 32980 32981 32982 32983 32984 32985 32986 32987 32988 32989 32990 32991 32992 32993 32994 32995 32996 32997 32998 32999 33000 33001 33002 33003 33004 33005 33006 33007 33008 33009 33010 33011 33012 33013 33014 33015 33016 33017 33018 33019 33020 33021 33022 33023 33024 33025 33026 33027 33028 33029 33030 33031 33032 33033 33034 33035 33036 33037 33038 33039 33040 33041 33042 33043 33044 33045 33046 33047 33048 33049 33050 33051 33052 33053 33054 33055 33056 33057 33058 33059 33060 33061 33062 33063 33064 33065 33066 33067 33068 33069 33070 33071 33072 33073 33074 33075 33076 33077 33078 33079 33080 33081 33082 33083 33084 33085 33086 33087 33088 33089 33090 33091 33092 33093 33094 33095 33096 33097 33098 33099 33100 33101 33102 33103 33104 33105 33106 33107 33108 33109 33110 33111 33112 33113 33114 33115 33116 33117 33118 33119 33120 33121 33122 33123 33124 33125 33126 33127 33128 33129 33130 33131 33132 33133 33134 33135 33136 33137 33138 33139 33140 33141 33142 33143 33144 33145 33146 33147 33148 33149 33150 33151 33152 33153 33154 33155 33156 33157 33158 33159 33160 33161 33162 33163 33164 33165 33166 33167 33168 33169 33170 33171 33172 33173 33174 33175 33176 33177 33178 33179 33180 33181 33182 33183 33184 33185 33186 33187 33188 33189 33190 33191 33192 33193 33194 33195 33196 33197 33198 33199 33200 33201 33202 33203 33204 33205 33206 33207 33208 33209 33210 33211 33212 33213 33214 33215 33216 33217 33218 33219 33220 33221 33222 33223 33224 33225 33226 33227 33228 33229 33230 33231 33232 33233 33234 33235 33236 33237 33238 33239 33240 33241 33242 33243 33244 33245 33246 33247 33248 33249 33250 33251 33252 33253 33254 33255 33256 33257 33258 33259 33260 33261 33262 33263 33264 33265 33266 33267 33268 33269 33270 33271 33272 33273 33274 33275 33276 33277 33278 33279 33280 33281 33282 33283 33284 33285 33286 33287 33288 33289 33290 33291 33292 33293 33294 33295 33296 33297 33298 33299 33300 33301 33302 33303 33304 33305 33306 33307 33308 33309 33310 33311 33312 33313 33314 33315 33316 33317 33318 33319 33320 33321 33322 33323 33324 33325 33326 33327 33328 33329 33330 33331 33332 33333 33334 33335 33336 33337 33338 33339 33340 33341 33342 33343 33344 33345 33346 33347 33348 33349 33350 33351 33352 33353 33354 33355 33356 33357 33358 33359 33360 33361 33362 33363 33364 33365 33366 33367 33368 33369 33370 33371 33372 33373 33374 33375 33376 33377 33378 33379 33380 33381 33382 33383 33384 33385 33386 33387 33388 33389 33390 33391 33392 33393 33394 33395 33396 33397 33398 33399 33400 33401 33402 33403 33404 33405 33406 33407 33408 33409 33410 33411 33412 33413 33414 33415 33416 33417 33418 33419 33420 33421 33422 33423 33424 33425 33426 33427 33428 33429 33430 33431 33432 33433 33434 33435 33436 33437 33438 33439 33440 33441 33442 33443 33444 33445 33446 33447 33448 33449 33450 33451 33452 33453 33454 33455 33456 33457 33458 33459 33460 33461 33462 33463 33464 33465 33466 33467 33468 33469 33470 33471 33472 33473 33474 33475 33476 33477 33478 33479 33480 33481 33482 33483 33484 33485 33486 33487 33488 33489 33490 33491 33492 33493 33494 33495 33496 33497 33498 33499 33500 33501 33502 33503 33504 33505 33506 33507 33508 33509 33510 33511 33512 33513 33514 33515 33516 33517 33518 33519 33520 33521 33522 33523 33524 33525 33526 33527 33528 33529 33530 33531 33532 33533 33534 33535 33536 33537 33538 33539 33540 33541 33542 33543 33544 33545 33546 33547 33548 33549 33550 33551 33552 33553 33554 33555 33556 33557 33558 33559 33560 33561 33562 33563 33564 33565 33566 33567 33568 33569 33570 33571 33572 33573 33574 33575 33576 33577 33578 33579 33580 33581 33582 33583 33584 33585 33586 33587 33588 33589 33590 33591 33592 33593 33594 33595 33596 33597 33598 33599 33600 33601 33602 33603 33604 33605 33606 33607 33608 33609 33610 33611 33612 33613 33614 33615 33616 33617 33618 33619 33620 33621 33622 33623 33624 33625 33626 33627 33628 33629 33630 33631 33632 33633 33634 33635 33636 33637 33638 33639 33640 33641 33642 33643 33644 33645 33646 33647 33648 33649 33650 33651 33652 33653 33654 33655 33656 33657 33658 33659 33660 33661 33662 33663 33664 33665 33666 33667 33668 33669 33670 33671 33672 33673 33674 33675 33676 33677 33678 33679 33680 33681 33682 33683 33684 33685 33686 33687 33688 33689 33690 33691 33692 33693 33694 33695 33696 33697 33698 33699 33700 33701 33702 33703 33704 33705 33706 33707 33708 33709 33710 33711 33712 33713 33714 33715 33716 33717 33718 33719 33720 33721 33722 33723 33724 33725 33726 33727 33728 33729 33730 33731 33732 33733 33734 33735 33736 33737 33738 33739 33740 33741 33742 33743 33744 33745 33746 33747 33748 33749 33750 33751 33752 33753 33754 33755 33756 33757 33758 33759 33760 33761 33762 33763 33764 33765 33766 33767 33768 33769 33770 33771 33772 33773 33774 33775 33776 33777 33778 33779 33780 33781 33782 33783 33784 33785 33786 33787 33788 33789 33790 33791 33792 33793 33794 33795 33796 33797 33798 33799 33800 33801 33802 33803 33804 33805 33806 33807 33808 33809 33810 33811 33812 33813 33814 33815 33816 33817 33818 33819 33820 33821 33822 33823 33824 33825 33826 33827 33828 33829 33830 33831 33832 33833 33834 33835 33836 33837 33838 33839 33840 33841 33842 33843 33844 33845 33846 33847 33848 33849 33850 33851 33852 33853 33854 33855 33856 33857 33858 33859 33860 33861 33862 33863 33864 33865 33866 33867 33868 33869 33870 33871 33872 33873 33874 33875 33876 33877 33878 33879 33880 33881 33882 33883 33884 33885 33886 33887 33888 33889 33890 33891 33892 33893 33894 33895 33896 33897 33898 33899 33900 33901 33902 33903 33904 33905 33906 33907 33908 33909 33910 33911 33912 33913 33914 33915 33916 33917 33918 33919 33920 33921 33922 33923 33924 33925 33926 33927 33928 33929 33930 33931 33932 33933 33934 33935 33936 33937 33938 33939 33940 33941 33942 33943 33944 33945 33946 33947 33948 33949 33950 33951 33952 33953 33954 33955 33956 33957 33958 33959 33960 33961 33962 33963 33964 33965 33966 33967 33968 33969 33970 33971 33972 33973 33974 33975 33976 33977 33978 33979 33980 33981 33982 33983 33984 33985 33986 33987 33988 33989 33990 33991 33992 33993 33994 33995 33996 33997 33998 33999 34000 34001 34002 34003 34004 34005 34006 34007 34008 34009 34010 34011 34012 34013 34014 34015 34016 34017 34018 34019 34020 34021 34022 34023 34024 34025 34026 34027 34028 34029 34030 34031 34032 34033 34034 34035 34036 34037 34038 34039 34040 34041 34042 34043 34044 34045 34046 34047 34048 34049 34050 34051 34052 34053 34054 34055 34056 34057 34058 34059 34060 34061 34062 34063 34064 34065 34066 34067 34068 34069 34070 34071 34072 34073 34074 34075 34076 34077 34078 34079 34080 34081 34082 34083 34084 34085 34086 34087 34088 34089 34090 34091 34092 34093 34094 34095 34096 34097 34098 34099 34100 34101 34102 34103 34104 34105 34106 34107 34108 34109 34110 34111 34112 34113 34114 34115 34116 34117 34118 34119 34120 34121 34122 34123 34124 34125 34126 34127 34128 34129 34130 34131 34132 34133 34134 34135 34136 34137 34138 34139 34140 34141 34142 34143 34144 34145 34146 34147 34148 34149 34150 34151 34152 34153 34154 34155 34156 34157 34158 34159 34160 34161 34162 34163 34164 34165 34166 34167 34168 34169 34170 34171 34172 34173 34174 34175 34176 34177 34178 34179 34180 34181 34182 34183 34184 34185 34186 34187 34188 34189 34190 34191 34192 34193 34194 34195 34196 34197 34198 34199 34200 34201 34202 34203 34204 34205 34206 34207 34208 34209 34210 34211 34212 34213 34214 34215 34216 34217 34218 34219 34220 34221 34222 34223 34224 34225 34226 34227 34228 34229 34230 34231 34232 34233 34234 34235 34236 34237 34238 34239 34240 34241 34242 34243 34244 34245 34246 34247 34248 34249 34250 34251 34252 34253 34254 34255 34256 34257 34258 34259 34260 34261 34262 34263 34264 34265 34266 34267 34268 34269 34270 34271 34272 34273 34274 34275 34276 34277 34278 34279 34280 34281 34282 34283 34284 34285 34286 34287 34288 34289 34290 34291 34292 34293 34294 34295 34296 34297 34298 34299 34300 34301 34302 34303 34304 34305 34306 34307 34308 34309 34310 34311 34312 34313 34314 34315 34316 34317 34318 34319 34320 34321 34322 34323 34324 34325 34326 34327 34328 34329 34330 34331 34332 34333 34334 34335 34336 34337 34338 34339 34340 34341 34342 34343 34344 34345 34346 34347 34348 34349 34350 34351 34352 34353 34354 34355 34356 34357 34358 34359 34360 34361 34362 34363 34364 34365 34366 34367 34368 34369 34370 34371 34372 34373 34374 34375 34376 34377 34378 34379 34380 34381 34382 34383 34384 34385 34386 34387 34388 34389 34390 34391 34392 34393 34394 34395 34396 34397 34398 34399 34400 34401 34402 34403 34404 34405 34406 34407 34408 34409 34410 34411 34412 34413 34414 34415 34416 34417 34418 34419 34420 34421 34422 34423 34424 34425 34426 34427 34428 34429 34430 34431 34432 34433 34434 34435 34436 34437 34438 34439 34440 34441 34442 34443 34444 34445 34446 34447 34448 34449 34450 34451 34452 34453 34454 34455 34456 34457 34458 34459 34460 34461 34462 34463 34464 34465 34466 34467 34468 34469 34470 34471 34472 34473 34474 34475 34476 34477 34478 34479 34480 34481 34482 34483 34484 34485 34486 34487 34488 34489 34490 34491 34492 34493 34494 34495 34496 34497 34498 34499 34500 34501 34502 34503 34504 34505 34506 34507 34508 34509 34510 34511 34512 34513 34514 34515 34516 34517 34518 34519 34520 34521 34522 34523 34524 34525 34526 34527 34528 34529 34530 34531 34532 34533 34534 34535 34536 34537 34538 34539 34540 34541 34542 34543 34544 34545 34546 34547 34548 34549 34550 34551 34552 34553 34554 34555 34556 34557 34558 34559 34560 34561 34562 34563 34564 34565 34566 34567 34568 34569 34570 34571 34572 34573 34574 34575 34576 34577 34578 34579 34580 34581 34582 34583 34584 34585 34586 34587 34588 34589 34590 34591 34592 34593 34594 34595 34596 34597 34598 34599 34600 34601 34602 34603 34604 34605 34606 34607 34608 34609 34610 34611 34612 34613 34614 34615 34616 34617 34618 34619 34620 34621 34622 34623 34624 34625 34626 34627 34628 34629 34630 34631 34632 34633 34634 34635 34636 34637 34638 34639 34640 34641 34642 34643 34644 34645 34646 34647 34648 34649 34650 34651 34652 34653 34654 34655 34656 34657 34658 34659 34660 34661 34662 34663 34664 34665 34666 34667 34668 34669 34670 34671 34672 34673 34674 34675 34676 34677 34678 34679 34680 34681 34682 34683 34684 34685 34686 34687 34688 34689 34690 34691 34692 34693 34694 34695 34696 34697 34698 34699 34700 34701 34702 34703 34704 34705 34706 34707 34708 34709 34710 34711 34712 34713 34714 34715 34716 34717 34718 34719 34720 34721 34722 34723 34724 34725 34726 34727 34728 34729 34730 34731 34732 34733 34734 34735 34736 34737 34738 34739 34740 34741 34742 34743 34744 34745 34746 34747 34748 34749 34750 34751 34752 34753 34754 34755 34756 34757 34758 34759 34760 34761 34762 34763 34764 34765 34766 34767 34768 34769 34770 34771 34772 34773 34774 34775 34776 34777 34778 34779 34780 34781 34782 34783 34784 34785 34786 34787 34788 34789 34790 34791 34792 34793 34794 34795 34796 34797 34798 34799 34800 34801 34802 34803 34804 34805 34806 34807 34808 34809 34810 34811 34812 34813 34814 34815 34816 34817 34818 34819 34820 34821 34822 34823 34824 34825 34826 34827 34828 34829 34830 34831 34832 34833 34834 34835 34836 34837 34838 34839 34840 34841 34842 34843 34844 34845 34846 34847 34848 34849 34850 34851 34852 34853 34854 34855 34856 34857 34858 34859 34860 34861 34862 34863 34864 34865 34866 34867 34868 34869 34870 34871 34872 34873 34874 34875 34876 34877 34878 34879 34880 34881 34882 34883 34884 34885 34886 34887 34888 34889 34890 34891 34892 34893 34894 34895 34896 34897 34898 34899 34900 34901 34902 34903 34904 34905 34906 34907 34908 34909 34910 34911 34912 34913 34914 34915 34916 34917 34918 34919 34920 34921 34922 34923 34924 34925 34926 34927 34928 34929 34930 34931 34932 34933 34934 34935 34936 34937 34938 34939 34940 34941 34942 34943 34944 34945 34946 34947 34948 34949 34950 34951 34952 34953 34954 34955 34956 34957 34958 34959 34960 34961 34962 34963 34964 34965 34966 34967 34968 34969 34970 34971 34972 34973 34974 34975 34976 34977 34978 34979 34980 34981 34982 34983 34984 34985 34986 34987 34988 34989 34990 34991 34992 34993 34994 34995 34996 34997 34998 34999 35000 35001 35002 35003 35004 35005 35006 35007 35008 35009 35010 35011 35012 35013 35014 35015 35016 35017 35018 35019 35020 35021 35022 35023 35024 35025 35026 35027 35028 35029 35030 35031 35032 35033 35034 35035 35036 35037 35038 35039 35040 35041 35042 35043 35044 35045 35046 35047 35048 35049 35050 35051 35052 35053 35054 35055 35056 35057 35058 35059 35060 35061 35062 35063 35064 35065 35066 35067 35068 35069 35070 35071 35072 35073 35074 35075 35076 35077 35078 35079 35080 35081 35082 35083 35084 35085 35086 35087 35088 35089 35090 35091 35092 35093 35094 35095 35096 35097 35098 35099 35100 35101 35102 35103 35104 35105 35106 35107 35108 35109 35110 35111 35112 35113 35114 35115 35116 35117 35118 35119 35120 35121 35122 35123 35124 35125 35126 35127 35128 35129 35130 35131 35132 35133 35134 35135 35136 35137 35138 35139 35140 35141 35142 35143 35144 35145 35146 35147 35148 35149 35150 35151 35152 35153 35154 35155 35156 35157 35158 35159 35160 35161 35162 35163 35164 35165 35166 35167 35168 35169 35170 35171 35172 35173 35174 35175 35176 35177 35178 35179 35180 35181 35182 35183 35184 35185 35186 35187 35188 35189 35190 35191 35192 35193 35194 35195 35196 35197 35198 35199 35200 35201 35202 35203 35204 35205 35206 35207 35208 35209 35210 35211 35212 35213 35214 35215 35216 35217 35218 35219 35220 35221 35222 35223 35224 35225 35226 35227 35228 35229 35230 35231 35232 35233 35234 35235 35236 35237 35238 35239 35240 35241 35242 35243 35244 35245 35246 35247 35248 35249 35250 35251 35252 35253 35254 35255 35256 35257 35258 35259 35260 35261 35262 35263 35264 35265 35266 35267 35268 35269 35270 35271 35272 35273 35274 35275 35276 35277 35278 35279 35280 35281 35282 35283 35284 35285 35286 35287 35288 35289 35290 35291 35292 35293 35294 35295 35296 35297 35298 35299 35300 35301 35302 35303 35304 35305 35306 35307 35308 35309 35310 35311 35312 35313 35314 35315 35316 35317 35318 35319 35320 35321 35322 35323 35324 35325 35326 35327 35328 35329 35330 35331 35332 35333 35334 35335 35336 35337 35338 35339 35340 35341 35342 35343 35344 35345 35346 35347 35348 35349 35350 35351 35352 35353 35354 35355 35356 35357 35358 35359 35360 35361 35362 35363 35364 35365 35366 35367 35368 35369 35370 35371 35372 35373 35374 35375 35376 35377 35378 35379 35380 35381 35382 35383 35384 35385 35386 35387 35388 35389 35390 35391 35392 35393 35394 35395 35396 35397 35398 35399 35400 35401 35402 35403 35404 35405 35406 35407 35408 35409 35410 35411 35412 35413 35414 35415 35416 35417 35418 35419 35420 35421 35422 35423 35424 35425 35426 35427 35428 35429 35430 35431 35432 35433 35434 35435 35436 35437 35438 35439 35440 35441 35442 35443 35444 35445 35446 35447 35448 35449 35450 35451 35452 35453 35454 35455 35456 35457 35458 35459 35460 35461 35462 35463 35464 35465 35466 35467 35468 35469 35470 35471 35472 35473 35474 35475 35476 35477 35478 35479 35480 35481 35482 35483 35484 35485 35486 35487 35488 35489 35490 35491 35492 35493 35494 35495 35496 35497 35498 35499 35500 35501 35502 35503 35504 35505 35506 35507 35508 35509 35510 35511 35512 35513 35514 35515 35516 35517 35518 35519 35520 35521 35522 35523 35524 35525 35526 35527 35528 35529 35530 35531 35532 35533 35534 35535 35536 35537 35538 35539 35540 35541 35542 35543 35544 35545 35546 35547 35548 35549 35550 35551 35552 35553 35554 35555 35556 35557 35558 35559 35560 35561 35562 35563 35564 35565 35566 35567 35568 35569 35570 35571 35572 35573 35574 35575 35576 35577 35578 35579 35580 35581 35582 35583 35584 35585 35586 35587 35588 35589 35590 35591 35592 35593 35594 35595 35596 35597 35598 35599 35600 35601 35602 35603 35604 35605 35606 35607 35608 35609 35610 35611 35612 35613 35614 35615 35616 35617 35618 35619 35620 35621 35622 35623 35624 35625 35626 35627 35628 35629 35630 35631 35632 35633 35634 35635 35636 35637 35638 35639 35640 35641 35642 35643 35644 35645 35646 35647 35648 35649 35650 35651 35652 35653 35654 35655 35656 35657 35658 35659 35660 35661 35662 35663 35664 35665 35666 35667 35668 35669 35670 35671 35672 35673 35674 35675 35676 35677 35678 35679 35680 35681 35682 35683 35684 35685 35686 35687 35688 35689 35690 35691 35692 35693 35694 35695 35696 35697 35698 35699 35700 35701 35702 35703 35704 35705 35706 35707 35708 35709 35710 35711 35712 35713 35714 35715 35716 35717 35718 35719
|
# Created by Octave 3.2.4, Fri Jan 22 10:34:21 2010 CET <hajek@hajek>
# name: cache
# type: cell
# rows: 3
# columns: 1422
# name: <cell-element>
# type: string
# elements: 1
# length: 3
amd
# name: <cell-element>
# type: string
# elements: 1
# length: 1170
-- Loadable Function: P = amd (S)
-- Loadable Function: P = amd (S, OPTS)
Returns the approximate minimum degree permutation of a matrix. This permutation such that the Cholesky factorization of `S (P, P)' tends to be sparser than the Cholesky factorization of S itself. `amd' is typically faster than `symamd' but serves a similar purpose.
The optional parameter OPTS is a structure that controls the behavior of `amd'. The fields of these structure are
opts.dense
Determines what `amd' considers to be a dense row or column of the input matrix. Rows or columns with more than `max(16, (dense * sqrt (N)' entries, where N is the order of the matrix S, are ignored by `amd' during the calculation of the permutation The value of dense must be a positive scalar and its default value is 10.0
opts.aggressive
If this value is a non zero scalar, then `amd' performs aggressive absorption. The default is not to perform aggressive absorption.
The author of the code itself is Timothy A. Davis (davis@cise.ufl.edu), University of Florida (see `http://www.cise.ufl.edu/research/sparse/amd'). See also: symamd, colamd.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Returns the approximate minimum degree permutation of a matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
balance
# name: <cell-element>
# type: string
# elements: 1
# length: 1424
-- Loadable Function: AA = balance (A, OPT)
-- Loadable Function: [DD, AA] = balance (A, OPT)
-- Loadable Function: [D, P, AA] = balance (A, OPT)
-- Loadable Function: [CC, DD, AA, BB] = balance (A, B, OPT)
Compute `aa = dd \ a * dd' in which `aa' is a matrix whose row and column norms are roughly equal in magnitude, and `dd' = `p * d', in which `p' is a permutation matrix and `d' is a diagonal matrix of powers of two. This allows the equilibration to be computed without roundoff. Results of eigenvalue calculation are typically improved by balancing first.
If two output values are requested, `balance' returns the diagonal `d' and the permutation `p' separately as vectors. In this case, `dd = eye(n)(:,p) * diag (d)', where `n' is the matrix size.
If four output values are requested, compute `aa = cc*a*dd' and `bb = cc*b*dd)', in which `aa' and `bb' have non-zero elements of approximately the same magnitude and `cc' and `dd' are permuted diagonal matrices as in `dd' for the algebraic eigenvalue problem.
The eigenvalue balancing option `opt' may be one of:
`"noperm"', `"S"'
Scale only; do not permute.
`"noscal"', `"P"'
Permute only; do not scale.
Algebraic eigenvalue balancing uses standard LAPACK routines.
Generalized eigenvalue problem balancing uses Ward's algorithm (SIAM Journal on Scientific and Statistical Computing, 1981).
# name: <cell-element>
# type: string
# elements: 1
# length: 215
Compute `aa = dd \ a * dd' in which `aa' is a matrix whose row and column norms are roughly equal in magnitude, and `dd' = `p * d', in which `p' is a permutation matrix and `d' is a diagonal matrix of powers of two.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
besselj
# name: <cell-element>
# type: string
# elements: 1
# length: 2013
-- Loadable Function: [J, IERR] = besselj (ALPHA, X, OPT)
-- Loadable Function: [Y, IERR] = bessely (ALPHA, X, OPT)
-- Loadable Function: [I, IERR] = besseli (ALPHA, X, OPT)
-- Loadable Function: [K, IERR] = besselk (ALPHA, X, OPT)
-- Loadable Function: [H, IERR] = besselh (ALPHA, K, X, OPT)
Compute Bessel or Hankel functions of various kinds:
`besselj'
Bessel functions of the first kind. If the argument OPT is supplied, the result is multiplied by `exp(-abs(imag(x)))'.
`bessely'
Bessel functions of the second kind. If the argument OPT is supplied, the result is multiplied by `exp(-abs(imag(x)))'.
`besseli'
Modified Bessel functions of the first kind. If the argument OPT is supplied, the result is multiplied by `exp(-abs(real(x)))'.
`besselk'
Modified Bessel functions of the second kind. If the argument OPT is supplied, the result is multiplied by `exp(x)'.
`besselh'
Compute Hankel functions of the first (K = 1) or second (K = 2) kind. If the argument OPT is supplied, the result is multiplied by `exp (-I*X)' for K = 1 or `exp (I*X)' for K = 2.
If ALPHA is a scalar, the result is the same size as X. If X is a scalar, the result is the same size as ALPHA. If ALPHA is a row vector and X is a column vector, the result is a matrix with `length (X)' rows and `length (ALPHA)' columns. Otherwise, ALPHA and X must conform and the result will be the same size.
The value of ALPHA must be real. The value of X may be complex.
If requested, IERR contains the following status information and is the same size as the result.
0. Normal return.
1. Input error, return `NaN'.
2. Overflow, return `Inf'.
3. Loss of significance by argument reduction results in less than half of machine accuracy.
4. Complete loss of significance by argument reduction, return `NaN'.
5. Error--no computation, algorithm termination condition not met, return `NaN'.
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Compute Bessel or Hankel functions of various kinds:
# name: <cell-element>
# type: string
# elements: 1
# length: 7
bessely
# name: <cell-element>
# type: string
# elements: 1
# length: 80
-- Loadable Function: [Y, IERR] = bessely (ALPHA, X, OPT)
See besselj.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
See besselj.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
besseli
# name: <cell-element>
# type: string
# elements: 1
# length: 80
-- Loadable Function: [I, IERR] = besseli (ALPHA, X, OPT)
See besselj.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
See besselj.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
besselk
# name: <cell-element>
# type: string
# elements: 1
# length: 80
-- Loadable Function: [K, IERR] = besselk (ALPHA, X, OPT)
See besselj.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
See besselj.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
besselh
# name: <cell-element>
# type: string
# elements: 1
# length: 83
-- Loadable Function: [H, IERR] = besselh (ALPHA, K, X, OPT)
See besselj.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
See besselj.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
airy
# name: <cell-element>
# type: string
# elements: 1
# length: 1078
-- Loadable Function: [A, IERR] = airy (K, Z, OPT)
Compute Airy functions of the first and second kind, and their derivatives.
K Function Scale factor (if 'opt' is supplied)
--- -------- ---------------------------------------
0 Ai (Z) exp ((2/3) * Z * sqrt (Z))
1 dAi(Z)/dZ exp ((2/3) * Z * sqrt (Z))
2 Bi (Z) exp (-abs (real ((2/3) * Z *sqrt (Z))))
3 dBi(Z)/dZ exp (-abs (real ((2/3) * Z *sqrt (Z))))
The function call `airy (Z)' is equivalent to `airy (0, Z)'.
The result is the same size as Z.
If requested, IERR contains the following status information and is the same size as the result.
0. Normal return.
1. Input error, return `NaN'.
2. Overflow, return `Inf'.
3. Loss of significance by argument reduction results in less than half of machine accuracy.
4. Complete loss of significance by argument reduction, return `NaN'.
5. Error--no computation, algorithm termination condition not met, return `NaN'.
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Compute Airy functions of the first and second kind, and their derivatives.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
betainc
# name: <cell-element>
# type: string
# elements: 1
# length: 487
-- Mapping Function: betainc (X, A, B)
Return the incomplete Beta function,
x
/
betainc (x, a, b) = beta (a, b)^(-1) | t^(a-1) (1-t)^(b-1) dt.
/
t=0
If x has more than one component, both A and B must be scalars. If X is a scalar, A and B must be of compatible dimensions.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Return the incomplete Beta function,
# name: <cell-element>
# type: string
# elements: 1
# length: 6
bitand
# name: <cell-element>
# type: string
# elements: 1
# length: 200
-- Built-in Function: bitand (X, Y)
Return the bitwise AND of non-negative integers. X, Y must be in the range [0,bitmax] See also: bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return the bitwise AND of non-negative integers.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
bitor
# name: <cell-element>
# type: string
# elements: 1
# length: 198
-- Built-in Function: bitor (X, Y)
Return the bitwise OR of non-negative integers. X, Y must be in the range [0,bitmax] See also: bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Return the bitwise OR of non-negative integers.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
bitxor
# name: <cell-element>
# type: string
# elements: 1
# length: 200
-- Built-in Function: bitxor (X, Y)
Return the bitwise XOR of non-negative integers. X, Y must be in the range [0,bitmax] See also: bitand, bitor, bitset, bitget, bitcmp, bitshift, bitmax.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return the bitwise XOR of non-negative integers.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
bitshift
# name: <cell-element>
# type: string
# elements: 1
# length: 565
-- Built-in Function: bitshift (A, K)
-- Built-in Function: bitshift (A, K, N)
Return a K bit shift of N-digit unsigned integers in A. A positive K leads to a left shift. A negative value to a right shift. If N is omitted it defaults to log2(bitmax)+1. N must be in the range [1,log2(bitmax)+1] usually [1,33]
bitshift (eye (3), 1)
=>
2 0 0
0 2 0
0 0 2
bitshift (10, [-2, -1, 0, 1, 2])
=> 2 5 10 20 40
See also: bitand, bitor, bitxor, bitset, bitget, bitcmp, bitmax.
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Return a K bit shift of N-digit unsigned integers in A.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
bitmax
# name: <cell-element>
# type: string
# elements: 1
# length: 177
-- Built-in Function: bitmax ()
Return the largest integer that can be represented as a floating point value. On IEEE-754 compatible systems, `bitmax' is `2^53 - 1'.
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Return the largest integer that can be represented as a floating point value.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
intmax
# name: <cell-element>
# type: string
# elements: 1
# length: 586
-- Built-in Function: intmax (TYPE)
Return the largest integer that can be represented in an integer type. The variable TYPE can be
`int8'
signed 8-bit integer.
`int16'
signed 16-bit integer.
`int32'
signed 32-bit integer.
`int64'
signed 64-bit integer.
`uint8'
unsigned 8-bit integer.
`uint16'
unsigned 16-bit integer.
`uint32'
unsigned 32-bit integer.
`uint64'
unsigned 64-bit integer.
The default for TYPE is `uint32'. See also: intmin, bitmax.
# name: <cell-element>
# type: string
# elements: 1
# length: 70
Return the largest integer that can be represented in an integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
intmin
# name: <cell-element>
# type: string
# elements: 1
# length: 587
-- Built-in Function: intmin (TYPE)
Return the smallest integer that can be represented in an integer type. The variable TYPE can be
`int8'
signed 8-bit integer.
`int16'
signed 16-bit integer.
`int32'
signed 32-bit integer.
`int64'
signed 64-bit integer.
`uint8'
unsigned 8-bit integer.
`uint16'
unsigned 16-bit integer.
`uint32'
unsigned 32-bit integer.
`uint64'
unsigned 64-bit integer.
The default for TYPE is `uint32'. See also: intmax, bitmax.
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Return the smallest integer that can be represented in an integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
bsxfun
# name: <cell-element>
# type: string
# elements: 1
# length: 459
-- Loadable Function: bsxfun (F, A, B)
Applies a binary function F element-wise to two matrix arguments A and B. The function F must be capable of accepting two column vector arguments of equal length, or one column vector argument and a scalar.
The dimensions of A and B must be equal or singleton. The singleton dimensions of the matrices will be expanded to the same dimensionality as the other matrix.
See also: arrayfun, cellfun.
# name: <cell-element>
# type: string
# elements: 1
# length: 73
Applies a binary function F element-wise to two matrix arguments A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
ccolamd
# name: <cell-element>
# type: string
# elements: 1
# length: 3636
-- Loadable Function: P = ccolamd (S)
-- Loadable Function: P = ccolamd (S, KNOBS)
-- Loadable Function: P = ccolamd (S, KNOBS, CMEMBER)
-- Loadable Function: [P, STATS] = ccolamd (...)
Constrained column approximate minimum degree permutation. `P = ccolamd (S)' returns the column approximate minimum degree permutation vector for the sparse matrix S. For a non-symmetric matrix S, `S (:, P)' tends to have sparser LU factors than S. `chol (S (:, P)' * S (:, P))' also tends to be sparser than `chol (S' * S)'. `P = ccolamd (S, 1)' optimizes the ordering for `lu (S (:, P))'. The ordering is followed by a column elimination tree post-ordering.
KNOBS is an optional one- to five-element input vector, with a default value of `[0 10 10 1 0]' if not present or empty. Entries not present are set to their defaults.
`KNOBS(1)'
if nonzero, the ordering is optimized for `lu (S (:, p))'. It will be a poor ordering for `chol (S (:, P)' * S (:, P))'. This is the most important knob for ccolamd.
`KNOB(2)'
if S is m-by-n, rows with more than `max (16, KNOBS (2) * sqrt (n))' entries are ignored.
`KNOB(3)'
columns with more than `max (16, KNOBS (3) * sqrt (min (M, N)))' entries are ignored and ordered last in the output permutation (subject to the cmember constraints).
`KNOB(4)'
if nonzero, aggressive absorption is performed.
`KNOB(5)'
if nonzero, statistics and knobs are printed.
CMEMBER is an optional vector of length n. It defines the constraints on the column ordering. If `CMEMBER (j) = C', then column J is in constraint set C (C must be in the range 1 to N). In the output permutation P, all columns in set 1 appear first, followed by all columns in set 2, and so on. `CMEMBER = ones(1,n)' if not present or empty. `ccolamd (S, [], 1 : N)' returns `1 : N'
`P = ccolamd (S)' is about the same as `P = colamd (S)'. KNOBS and its default values differ. `colamd' always does aggressive absorption, and it finds an ordering suitable for both `lu (S (:, P))' and `chol (S (:, P)' * S (:, P))'; it cannot optimize its ordering for `lu (S (:, P))' to the extent that `ccolamd (S, 1)' can.
STATS is an optional 20-element output vector that provides data about the ordering and the validity of the input matrix S. Ordering statistics are in `STATS (1 : 3)'. `STATS (1)' and `STATS (2)' are the number of dense or empty rows and columns ignored by CCOLAMD and `STATS (3)' is the number of garbage collections performed on the internal data structure used by CCOLAMD (roughly of size `2.2 * nnz (S) + 4 * M + 7 * N' integers).
`STATS (4 : 7)' provide information if CCOLAMD was able to continue. The matrix is OK if `STATS (4)' is zero, or 1 if invalid. `STATS (5)' is the rightmost column index that is unsorted or contains duplicate entries, or zero if no such column exists. `STATS (6)' is the last seen duplicate or out-of-order row index in the column index given by `STATS (5)', or zero if no such row index exists. `STATS (7)' is the number of duplicate or out-of-order row indices. `STATS (8 : 20)' is always zero in the current version of CCOLAMD (reserved for future use).
The authors of the code itself are S. Larimore, T. Davis (Uni of Florida) and S. Rajamanickam in collaboration with J. Bilbert and E. Ng. Supported by the National Science Foundation (DMS-9504974, DMS-9803599, CCR-0203270), and a grant from Sandia National Lab. See `http://www.cise.ufl.edu/research/sparse' for ccolamd, csymamd, amd, colamd, symamd, and other related orderings. See also: colamd, csymamd.
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Constrained column approximate minimum degree permutation.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
csymamd
# name: <cell-element>
# type: string
# elements: 1
# length: 2582
-- Loadable Function: P = csymamd (S)
-- Loadable Function: P = csymamd (S, KNOBS)
-- Loadable Function: P = csymamd (S, KNOBS, CMEMBER)
-- Loadable Function: [P, STATS] = csymamd (...)
For a symmetric positive definite matrix S, returns the permutation vector P such that `S(P,P)' tends to have a sparser Cholesky factor than S. Sometimes `csymamd' works well for symmetric indefinite matrices too. The matrix S is assumed to be symmetric; only the strictly lower triangular part is referenced. S must be square. The ordering is followed by an elimination tree post-ordering.
KNOBS is an optional one- to three-element input vector, with a default value of `[10 1 0]' if present or empty. Entries not present are set to their defaults.
`KNOBS(1)'
If S is n-by-n, then rows and columns with more than `max(16,KNOBS(1)*sqrt(n))' entries are ignored, and ordered last in the output permutation (subject to the cmember constraints).
`KNOBS(2)'
If nonzero, aggressive absorption is performed.
`KNOBS(3)'
If nonzero, statistics and knobs are printed.
CMEMBER is an optional vector of length n. It defines the constraints on the ordering. If `CMEMBER(j) = S', then row/column j is in constraint set C (C must be in the range 1 to n). In the output permutation P, rows/columns in set 1 appear first, followed by all rows/columns in set 2, and so on. `CMEMBER = ones(1,n)' if not present or empty. `csymamd(S,[],1:n)' returns `1:n'.
`P = csymamd(S)' is about the same as `P = symamd(S)'. KNOBS and its default values differ.
`STATS (4:7)' provide information if CCOLAMD was able to continue. The matrix is OK if `STATS (4)' is zero, or 1 if invalid. `STATS (5)' is the rightmost column index that is unsorted or contains duplicate entries, or zero if no such column exists. `STATS (6)' is the last seen duplicate or out-of-order row index in the column index given by `STATS (5)', or zero if no such row index exists. `STATS (7)' is the number of duplicate or out-of-order row indices. `STATS (8:20)' is always zero in the current version of CCOLAMD (reserved for future use).
The authors of the code itself are S. Larimore, T. Davis (Uni of Florida) and S. Rajamanickam in collaboration with J. Bilbert and E. Ng. Supported by the National Science Foundation (DMS-9504974, DMS-9803599, CCR-0203270), and a grant from Sandia National Lab. See `http://www.cise.ufl.edu/research/sparse' for ccolamd, csymamd, amd, colamd, symamd, and other related orderings. See also: symamd, ccolamd.
# name: <cell-element>
# type: string
# elements: 1
# length: 143
For a symmetric positive definite matrix S, returns the permutation vector P such that `S(P,P)' tends to have a sparser Cholesky factor than S.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
cellfun
# name: <cell-element>
# type: string
# elements: 1
# length: 2862
-- Loadable Function: cellfun (NAME, C)
-- Loadable Function: cellfun ("size", C, K)
-- Loadable Function: cellfun ("isclass", C, CLASS)
-- Loadable Function: cellfun (FUNC, C)
-- Loadable Function: cellfun (FUNC, C, D)
-- Loadable Function: [A, B] = cellfun (...)
-- Loadable Function: cellfun (..., 'ErrorHandler', ERRFUNC)
-- Loadable Function: cellfun (..., 'UniformOutput', VAL)
Evaluate the function named NAME on the elements of the cell array C. Elements in C are passed on to the named function individually. The function NAME can be one of the functions
`isempty'
Return 1 for empty elements.
`islogical'
Return 1 for logical elements.
`isreal'
Return 1 for real elements.
`length'
Return a vector of the lengths of cell elements.
`ndims'
Return the number of dimensions of each element.
`prodofsize'
Return the product of dimensions of each element.
`size'
Return the size along the K-th dimension.
`isclass'
Return 1 for elements of CLASS.
Additionally, `cellfun' accepts an arbitrary function FUNC in the form of an inline function, function handle, or the name of a function (in a character string). In the case of a character string argument, the function must accept a single argument named X, and it must return a string value. The function can take one or more arguments, with the inputs args given by C, D, etc. Equally the function can return one or more output arguments. For example
cellfun (@atan2, {1, 0}, {0, 1})
=>ans = [1.57080 0.00000]
Note that the default output argument is an array of the same size as the input arguments.
If the parameter 'UniformOutput' is set to true (the default), then the function must return a single element which will be concatenated into the return value. If 'UniformOutput' is false, the outputs are concatenated in a cell array. For example
cellfun ("tolower(x)", {"Foo", "Bar", "FooBar"},
"UniformOutput",false)
=> ans = {"foo", "bar", "foobar"}
Given the parameter 'ErrorHandler', then ERRFUNC defines a function to call in case FUNC generates an error. The form of the function is
function [...] = errfunc (S, ...)
where there is an additional input argument to ERRFUNC relative to FUNC, given by S. This is a structure with the elements 'identifier', 'message' and 'index', giving respectively the error identifier, the error message, and the index into the input arguments of the element that caused the error. For example
function y = foo (s, x), y = NaN; endfunction
cellfun (@factorial, {-1,2},'ErrorHandler',@foo)
=> ans = [NaN 2]
See also: isempty, islogical, isreal, length, ndims, numel, size.
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Evaluate the function named NAME on the elements of the cell array C.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
num2cell
# name: <cell-element>
# type: string
# elements: 1
# length: 269
-- Loadable Function: C = num2cell (M)
-- Loadable Function: C = num2cell (M, DIM)
Convert the matrix M to a cell array. If DIM is defined, the value C is of dimension 1 in this dimension and the elements of M are placed in slices in C. See also: mat2cell.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Convert the matrix M to a cell array.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
mat2cell
# name: <cell-element>
# type: string
# elements: 1
# length: 956
-- Loadable Function: B = mat2cell (A, M, N)
-- Loadable Function: B = mat2cell (A, D1, D2, ...)
-- Loadable Function: B = mat2cell (A, R)
Convert the matrix A to a cell array. If A is 2-D, then it is required that `sum (M) == size (A, 1)' and `sum (N) == size (A, 2)'. Similarly, if A is a multi-dimensional and the number of dimensional arguments is equal to the dimensions of A, then it is required that `sum (DI) == size (A, i)'.
Given a single dimensional argument R, the other dimensional arguments are assumed to equal `size (A,I)'.
An example of the use of mat2cell is
mat2cell (reshape(1:16,4,4),[3,1],[3,1])
=> {
[1,1] =
1 5 9
2 6 10
3 7 11
[2,1] =
4 8 12
[1,2] =
13
14
15
[2,2] = 16
}
See also: num2cell, cell2mat.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Convert the matrix A to a cell array.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
cellslices
# name: <cell-element>
# type: string
# elements: 1
# length: 516
-- Loadable Function: SL = cellslices (X, LB, UB)
Given a vector X, this function produces a cell array of slices from the vector determined by the index vectors LB, UB, for lower and upper bounds, respectively. In other words, it is equivalent to the following code:
n = length (lb);
sl = cell (1, n);
for i = 1:length (lb)
sl{i} = x(lb(i):ub(i));
endfor
If X is a matrix or array, indexing is done along the last dimension. See also: mat2cell.
# name: <cell-element>
# type: string
# elements: 1
# length: 161
Given a vector X, this function produces a cell array of slices from the vector determined by the index vectors LB, UB, for lower and upper bounds, respectively.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
chol
# name: <cell-element>
# type: string
# elements: 1
# length: 1362
-- Loadable Function: R = chol (A)
-- Loadable Function: [R, P] = chol (A)
-- Loadable Function: [R, P, Q] = chol (S)
-- Loadable Function: [R, P, Q] = chol (S, 'vector')
-- Loadable Function: [L, ...] = chol (..., 'lower')
Compute the Cholesky factor, R, of the symmetric positive definite matrix A, where
R' * R = A.
Called with one output argument `chol' fails if A or S is not positive definite. With two or more output arguments P flags whether the matrix was positive definite and `chol' does not fail. A zero value indicated that the matrix was positive definite and the R gives the factorization, and P will have a positive value otherwise.
If called with 3 outputs then a sparsity preserving row/column permutation is applied to A prior to the factorization. That is R is the factorization of `A(Q,Q)' such that
R' * R = Q' * A * Q.
The sparsity preserving permutation is generally returned as a matrix. However, given the flag 'vector', Q will be returned as a vector such that
R' * R = a (Q, Q).
Called with either a sparse or full matrix and using the 'lower' flag, `chol' returns the lower triangular factorization such that
L * L' = A.
In general the lower triangular factorization is significantly faster for sparse matrices. See also: cholinv, chol2inv.
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Compute the Cholesky factor, R, of the symmetric positive definite matrix A, where
# name: <cell-element>
# type: string
# elements: 1
# length: 7
cholinv
# name: <cell-element>
# type: string
# elements: 1
# length: 170
-- Loadable Function: cholinv (A)
Use the Cholesky factorization to compute the inverse of the symmetric positive definite matrix A. See also: chol, chol2inv.
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Use the Cholesky factorization to compute the inverse of the symmetric positive definite matrix A.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
chol2inv
# name: <cell-element>
# type: string
# elements: 1
# length: 320
-- Loadable Function: chol2inv (U)
Invert a symmetric, positive definite square matrix from its Cholesky decomposition, U. Note that U should be an upper-triangular matrix with positive diagonal elements. `chol2inv (U)' provides `inv (U'*U)' but it is much faster than using `inv'. See also: chol, cholinv.
# name: <cell-element>
# type: string
# elements: 1
# length: 87
Invert a symmetric, positive definite square matrix from its Cholesky decomposition, U.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
cholupdate
# name: <cell-element>
# type: string
# elements: 1
# length: 592
-- Loadable Function: [R1, INFO] = cholupdate (R, U, OP)
Update or downdate a Cholesky factorization. Given an upper triangular matrix R and a column vector U, attempt to determine another upper triangular matrix R1 such that
* R1'*R1 = R'*R + U*U' if OP is "+"
* R1'*R1 = R'*R - U*U' if OP is "-"
If OP is "-", INFO is set to
* 0 if the downdate was successful,
* 1 if R'*R - U*U' is not positive definite,
* 2 if R is singular.
If INFO is not present, an error message is printed in cases 1 and 2. See also: chol, qrupdate.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Update or downdate a Cholesky factorization.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
cholinsert
# name: <cell-element>
# type: string
# elements: 1
# length: 591
-- Loadable Function: [R1, INFO] = cholinsert (R, J, U)
Given a Cholesky factorization of a real symmetric or complex hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A1, where A1(p,p) = A, A1(:,j) = A1(j,:)' = u and p = [1:j-1,j+1:n+1]. u(j) should be positive. On return, INFO is set to
* 0 if the insertion was successful,
* 1 if A1 is not positive definite,
* 2 if R is singular.
If INFO is not present, an error message is printed in cases 1 and 2. See also: chol, cholupdate, choldelete.
# name: <cell-element>
# type: string
# elements: 1
# length: 234
Given a Cholesky factorization of a real symmetric or complex hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A1, where A1(p,p) = A, A1(:,j) = A1(j,:)' = u and p = [1:j-1,j+1:n+1].
# name: <cell-element>
# type: string
# elements: 1
# length: 10
choldelete
# name: <cell-element>
# type: string
# elements: 1
# length: 294
-- Loadable Function: R1 = choldelete (R, J)
Given a Cholesky factorization of a real symmetric or complex hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A(p,p), where p = [1:j-1,j+1:n+1]. See also: chol, cholupdate, cholinsert.
# name: <cell-element>
# type: string
# elements: 1
# length: 198
Given a Cholesky factorization of a real symmetric or complex hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A(p,p), where p = [1:j-1,j+1:n+1].
# name: <cell-element>
# type: string
# elements: 1
# length: 9
cholshift
# name: <cell-element>
# type: string
# elements: 1
# length: 409
-- Loadable Function: R1 = cholshift (R, I, J)
Given a Cholesky factorization of a real symmetric or complex hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A(p,p), where p is the permutation
`p = [1:i-1, shift(i:j, 1), j+1:n]' if I < J
or
`p = [1:j-1, shift(j:i,-1), i+1:n]' if J < I.
See also: chol, cholinsert, choldelete.
# name: <cell-element>
# type: string
# elements: 1
# length: 295
Given a Cholesky factorization of a real symmetric or complex hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A(p,p), where p is the permutation `p = [1:i-1, shift(i:j, 1), j+1:n]' if I < J or `p = [1:j-1, shift(j:i,-1), i+1:n]' if J < I.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
colamd
# name: <cell-element>
# type: string
# elements: 1
# length: 3341
-- Loadable Function: P = colamd (S)
-- Loadable Function: P = colamd (S, KNOBS)
-- Loadable Function: [P, STATS] = colamd (S)
-- Loadable Function: [P, STATS] = colamd (S, KNOBS)
Column approximate minimum degree permutation. `P = colamd (S)' returns the column approximate minimum degree permutation vector for the sparse matrix S. For a non-symmetric matrix S, `S (:,P)' tends to have sparser LU factors than S. The Cholesky factorization of `S (:,P)' * S (:,P)' also tends to be sparser than that of `S' * S'.
KNOBS is an optional one- to three-element input vector. If S is m-by-n, then rows with more than `max(16,KNOBS(1)*sqrt(n))' entries are ignored. Columns with more than `max(16,knobs(2)*sqrt(min(m,n)))' entries are removed prior to ordering, and ordered last in the output permutation P. Only completely dense rows or columns are removed if `KNOBS (1)' and `KNOBS (2)' are < 0, respectively. If `KNOBS (3)' is nonzero, STATS and KNOBS are printed. The default is `KNOBS = [10 10 0]'. Note that KNOBS differs from earlier versions of colamd
STATS is an optional 20-element output vector that provides data about the ordering and the validity of the input matrix S. Ordering statistics are in `STATS (1:3)'. `STATS (1)' and `STATS (2)' are the number of dense or empty rows and columns ignored by COLAMD and `STATS (3)' is the number of garbage collections performed on the internal data structure used by COLAMD (roughly of size `2.2 * nnz(S) + 4 * M + 7 * N' integers).
Octave built-in functions are intended to generate valid sparse matrices, with no duplicate entries, with ascending row indices of the nonzeros in each column, with a non-negative number of entries in each column (!) and so on. If a matrix is invalid, then COLAMD may or may not be able to continue. If there are duplicate entries (a row index appears two or more times in the same column) or if the row indices in a column are out of order, then COLAMD can correct these errors by ignoring the duplicate entries and sorting each column of its internal copy of the matrix S (the input matrix S is not repaired, however). If a matrix is invalid in other ways then COLAMD cannot continue, an error message is printed, and no output arguments (P or STATS) are returned. COLAMD is thus a simple way to check a sparse matrix to see if it's valid.
`STATS (4:7)' provide information if COLAMD was able to continue. The matrix is OK if `STATS (4)' is zero, or 1 if invalid. `STATS (5)' is the rightmost column index that is unsorted or contains duplicate entries, or zero if no such column exists. `STATS (6)' is the last seen duplicate or out-of-order row index in the column index given by `STATS (5)', or zero if no such row index exists. `STATS (7)' is the number of duplicate or out-of-order row indices. `STATS (8:20)' is always zero in the current version of COLAMD (reserved for future use).
The ordering is followed by a column elimination tree post-ordering.
The authors of the code itself are Stefan I. Larimore and Timothy A. Davis (davis@cise.ufl.edu), University of Florida. The algorithm was developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory. (see `http://www.cise.ufl.edu/research/sparse/colamd') See also: colperm, symamd.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Column approximate minimum degree permutation.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
symamd
# name: <cell-element>
# type: string
# elements: 1
# length: 3207
-- Loadable Function: P = symamd (S)
-- Loadable Function: P = symamd (S, KNOBS)
-- Loadable Function: [P, STATS] = symamd (S)
-- Loadable Function: [P, STATS] = symamd (S, KNOBS)
For a symmetric positive definite matrix S, returns the permutation vector p such that `S (P, P)' tends to have a sparser Cholesky factor than S. Sometimes SYMAMD works well for symmetric indefinite matrices too. The matrix S is assumed to be symmetric; only the strictly lower triangular part is referenced. S must be square.
KNOBS is an optional one- to two-element input vector. If S is n-by-n, then rows and columns with more than `max(16,KNOBS(1)*sqrt(n))' entries are removed prior to ordering, and ordered last in the output permutation P. No rows/columns are removed if `KNOBS(1) < 0'. If `KNOBS (2)' is nonzero, `stats' and KNOBS are printed. The default is `KNOBS = [10 0]'. Note that KNOBS differs from earlier versions of symamd.
STATS is an optional 20-element output vector that provides data about the ordering and the validity of the input matrix S. Ordering statistics are in `STATS (1:3)'. `STATS (1) = STATS (2)' is the number of dense or empty rows and columns ignored by SYMAMD and `STATS (3)' is the number of garbage collections performed on the internal data structure used by SYMAMD (roughly of size `8.4 * nnz (tril (S, -1)) + 9 * N' integers).
Octave built-in functions are intended to generate valid sparse matrices, with no duplicate entries, with ascending row indices of the nonzeros in each column, with a non-negative number of entries in each column (!) and so on. If a matrix is invalid, then SYMAMD may or may not be able to continue. If there are duplicate entries (a row index appears two or more times in the same column) or if the row indices in a column are out of order, then SYMAMD can correct these errors by ignoring the duplicate entries and sorting each column of its internal copy of the matrix S (the input matrix S is not repaired, however). If a matrix is invalid in other ways then SYMAMD cannot continue, an error message is printed, and no output arguments (P or STATS) are returned. SYMAMD is thus a simple way to check a sparse matrix to see if it's valid.
`STATS (4:7)' provide information if SYMAMD was able to continue. The matrix is OK if `STATS (4)' is zero, or 1 if invalid. `STATS (5)' is the rightmost column index that is unsorted or contains duplicate entries, or zero if no such column exists. `STATS (6)' is the last seen duplicate or out-of-order row index in the column index given by `STATS (5)', or zero if no such row index exists. `STATS (7)' is the number of duplicate or out-of-order row indices. `STATS (8:20)' is always zero in the current version of SYMAMD (reserved for future use).
The ordering is followed by a column elimination tree post-ordering.
The authors of the code itself are Stefan I. Larimore and Timothy A. Davis (davis@cise.ufl.edu), University of Florida. The algorithm was developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory. (see `http://www.cise.ufl.edu/research/sparse/colamd') See also: colperm, colamd.
# name: <cell-element>
# type: string
# elements: 1
# length: 145
For a symmetric positive definite matrix S, returns the permutation vector p such that `S (P, P)' tends to have a sparser Cholesky factor than S.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
etree
# name: <cell-element>
# type: string
# elements: 1
# length: 550
-- Loadable Function: P = etree (S)
-- Loadable Function: P = etree (S, TYP)
-- Loadable Function: [P, Q] = etree (S, TYP)
Returns the elimination tree for the matrix S. By default S is assumed to be symmetric and the symmetric elimination tree is returned. The argument TYP controls whether a symmetric or column elimination tree is returned. Valid values of TYP are 'sym' or 'col', for symmetric or column elimination tree respectively
Called with a second argument, "etree" also returns the postorder permutations on the tree.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Returns the elimination tree for the matrix S.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
colloc
# name: <cell-element>
# type: string
# elements: 1
# length: 292
-- Loadable Function: [R, AMAT, BMAT, Q] = colloc (N, "left", "right")
Compute derivative and integral weight matrices for orthogonal collocation using the subroutines given in J. Villadsen and M. L. Michelsen, `Solution of Differential Equation Models by Polynomial Approximation'.
# name: <cell-element>
# type: string
# elements: 1
# length: 108
Compute derivative and integral weight matrices for orthogonal collocation using the subroutines given in J.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
conv2
# name: <cell-element>
# type: string
# elements: 1
# length: 576
-- Loadable Function: y = conv2 (A, B, SHAPE)
-- Loadable Function: y = conv2 (V1, V2, M, SHAPE)
Returns 2D convolution of A and B where the size of C is given by
SHAPE= 'full'
returns full 2-D convolution
SHAPE= 'same'
same size as a. 'central' part of convolution
SHAPE= 'valid'
only parts which do not include zero-padded edges
By default SHAPE is 'full'. When the third argument is a matrix returns the convolution of the matrix M by the vector V1 in the column direction and by vector V2 in the row direction
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Returns 2D convolution of A and B where the size of C is given by
# name: <cell-element>
# type: string
# elements: 1
# length: 9
convhulln
# name: <cell-element>
# type: string
# elements: 1
# length: 640
-- Loadable Function: H = convhulln (P)
-- Loadable Function: H = convhulln (P, OPT)
-- Loadable Function: [H, V] = convhulln (...)
Return an index vector to the points of the enclosing convex hull. The input matrix of size [n, dim] contains n points of dimension dim.
If a second optional argument is given, it must be a string or cell array of strings containing options for the underlying qhull command. (See the Qhull documentation for the available options.) The default options are "s Qci Tcv". If the second output V is requested the volume of the convex hull is calculated.
See also: convhull, delaunayn.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Return an index vector to the points of the enclosing convex hull.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
daspk_options
# name: <cell-element>
# type: string
# elements: 1
# length: 5703
-- Loadable Function: daspk_options (OPT, VAL)
When called with two arguments, this function allows you set options parameters for the function `daspk'. Given one argument, `daspk_options' returns the value of the corresponding option. If no arguments are supplied, the names of all the available options and their current values are displayed.
Options include
`"absolute tolerance"'
Absolute tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector, and the relative tolerance must also be a vector of the same length.
`"relative tolerance"'
Relative tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector, and the absolute tolerance must also be a vector of the same length.
The local error test applied at each integration step is
abs (local error in x(i))
<= rtol(i) * abs (Y(i)) + atol(i)
`"compute consistent initial condition"'
Denoting the differential variables in the state vector by `Y_d' and the algebraic variables by `Y_a', `ddaspk' can solve one of two initialization problems:
1. Given Y_d, calculate Y_a and Y'_d
2. Given Y', calculate Y.
In either case, initial values for the given components are input, and initial guesses for the unknown components must also be provided as input. Set this option to 1 to solve the first problem, or 2 to solve the second (the default is 0, so you must provide a set of initial conditions that are consistent).
If this option is set to a nonzero value, you must also set the `"algebraic variables"' option to declare which variables in the problem are algebraic.
`"use initial condition heuristics"'
Set to a nonzero value to use the initial condition heuristics options described below.
`"initial condition heuristics"'
A vector of the following parameters that can be used to control the initial condition calculation.
`MXNIT'
Maximum number of Newton iterations (default is 5).
`MXNJ'
Maximum number of Jacobian evaluations (default is 6).
`MXNH'
Maximum number of values of the artificial stepsize parameter to be tried if the `"compute consistent initial condition"' option has been set to 1 (default is 5).
Note that the maximum total number of Newton iterations allowed is `MXNIT*MXNJ*MXNH' if the `"compute consistent initial condition"' option has been set to 1 and `MXNIT*MXNJ' if it is set to 2.
`LSOFF'
Set to a nonzero value to disable the linesearch algorithm (default is 0).
`STPTOL'
Minimum scaled step in linesearch algorithm (default is eps^(2/3)).
`EPINIT'
Swing factor in the Newton iteration convergence test. The test is applied to the residual vector, premultiplied by the approximate Jacobian. For convergence, the weighted RMS norm of this vector (scaled by the error weights) must be less than `EPINIT*EPCON', where `EPCON' = 0.33 is the analogous test constant used in the time steps. The default is `EPINIT' = 0.01.
`"print initial condition info"'
Set this option to a nonzero value to display detailed information about the initial condition calculation (default is 0).
`"exclude algebraic variables from error test"'
Set to a nonzero value to exclude algebraic variables from the error test. You must also set the `"algebraic variables"' option to declare which variables in the problem are algebraic (default is 0).
`"algebraic variables"'
A vector of the same length as the state vector. A nonzero element indicates that the corresponding element of the state vector is an algebraic variable (i.e., its derivative does not appear explicitly in the equation set.
This option is required by the `compute consistent initial condition"' and `"exclude algebraic variables from error test"' options.
`"enforce inequality constraints"'
Set to one of the following values to enforce the inequality constraints specified by the `"inequality constraint types"' option (default is 0).
1. To have constraint checking only in the initial condition calculation.
2. To enforce constraint checking during the integration.
3. To enforce both options 1 and 2.
`"inequality constraint types"'
A vector of the same length as the state specifying the type of inequality constraint. Each element of the vector corresponds to an element of the state and should be assigned one of the following codes
-2
Less than zero.
-1
Less than or equal to zero.
0
Not constrained.
1
Greater than or equal to zero.
2
Greater than zero.
This option only has an effect if the `"enforce inequality constraints"' option is nonzero.
`"initial step size"'
Differential-algebraic problems may occasionally suffer from severe scaling difficulties on the first step. If you know a great deal about the scaling of your problem, you can help to alleviate this problem by specifying an initial stepsize (default is computed automatically).
`"maximum order"'
Restrict the maximum order of the solution method. This option must be between 1 and 5, inclusive (default is 5).
`"maximum step size"'
Setting the maximum stepsize will avoid passing over very large regions (default is not specified).
# name: <cell-element>
# type: string
# elements: 1
# length: 105
When called with two arguments, this function allows you set options parameters for the function `daspk'.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
daspk
# name: <cell-element>
# type: string
# elements: 1
# length: 2443
-- Loadable Function: [X, XDOT, ISTATE, MSG] = daspk (FCN, X_0, XDOT_0, T, T_CRIT)
Solve the set of differential-algebraic equations
0 = f (x, xdot, t)
with
x(t_0) = x_0, xdot(t_0) = xdot_0
The solution is returned in the matrices X and XDOT, with each row in the result matrices corresponding to one of the elements in the vector T. The first element of T should be t_0 and correspond to the initial state of the system X_0 and its derivative XDOT_0, so that the first row of the output X is X_0 and the first row of the output XDOT is XDOT_0.
The first argument, FCN, is a string, inline, or function handle that names the function f to call to compute the vector of residuals for the set of equations. It must have the form
RES = f (X, XDOT, T)
in which X, XDOT, and RES are vectors, and T is a scalar.
If FCN is a two-element string array or a two-element cell array of strings, inline functions, or function handles, the first element names the function f described above, and the second element names a function to compute the modified Jacobian
df df
jac = -- + c ------
dx d xdot
The modified Jacobian function must have the form
JAC = j (X, XDOT, T, C)
The second and third arguments to `daspk' specify the initial condition of the states and their derivatives, and the fourth argument specifies a vector of output times at which the solution is desired, including the time corresponding to the initial condition.
The set of initial states and derivatives are not strictly required to be consistent. If they are not consistent, you must use the `daspk_options' function to provide additional information so that `daspk' can compute a consistent starting point.
The fifth argument is optional, and may be used to specify a set of times that the DAE solver should not integrate past. It is useful for avoiding difficulties with singularities and points where there is a discontinuity in the derivative.
After a successful computation, the value of ISTATE will be greater than zero (consistent with the Fortran version of DASPK).
If the computation is not successful, the value of ISTATE will be less than zero and MSG will contain additional information.
You can use the function `daspk_options' to set optional parameters for `daspk'. See also: dassl.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Solve the set of differential-algebraic equations
# name: <cell-element>
# type: string
# elements: 1
# length: 13
dasrt_options
# name: <cell-element>
# type: string
# elements: 1
# length: 1641
-- Loadable Function: dasrt_options (OPT, VAL)
When called with two arguments, this function allows you set options parameters for the function `dasrt'. Given one argument, `dasrt_options' returns the value of the corresponding option. If no arguments are supplied, the names of all the available options and their current values are displayed.
Options include
`"absolute tolerance"'
Absolute tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector, and the relative tolerance must also be a vector of the same length.
`"relative tolerance"'
Relative tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector, and the absolute tolerance must also be a vector of the same length.
The local error test applied at each integration step is
abs (local error in x(i)) <= ...
rtol(i) * abs (Y(i)) + atol(i)
`"initial step size"'
Differential-algebraic problems may occasionally suffer from severe scaling difficulties on the first step. If you know a great deal about the scaling of your problem, you can help to alleviate this problem by specifying an initial stepsize.
`"maximum order"'
Restrict the maximum order of the solution method. This option must be between 1 and 5, inclusive.
`"maximum step size"'
Setting the maximum stepsize will avoid passing over very large regions.
`"step limit"'
Maximum number of integration steps to attempt on a single call to the underlying Fortran code.
# name: <cell-element>
# type: string
# elements: 1
# length: 105
When called with two arguments, this function allows you set options parameters for the function `dasrt'.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
dasrt
# name: <cell-element>
# type: string
# elements: 1
# length: 3942
-- Loadable Function: [X, XDOT, T_OUT, ISTAT, MSG] = dasrt (FCN [, G], X_0, XDOT_0, T [, T_CRIT])
Solve the set of differential-algebraic equations
0 = f (x, xdot, t)
with
x(t_0) = x_0, xdot(t_0) = xdot_0
with functional stopping criteria (root solving).
The solution is returned in the matrices X and XDOT, with each row in the result matrices corresponding to one of the elements in the vector T_OUT. The first element of T should be t_0 and correspond to the initial state of the system X_0 and its derivative XDOT_0, so that the first row of the output X is X_0 and the first row of the output XDOT is XDOT_0.
The vector T provides an upper limit on the length of the integration. If the stopping condition is met, the vector T_OUT will be shorter than T, and the final element of T_OUT will be the point at which the stopping condition was met, and may not correspond to any element of the vector T.
The first argument, FCN, is a string, inline, or function handle that names the function f to call to compute the vector of residuals for the set of equations. It must have the form
RES = f (X, XDOT, T)
in which X, XDOT, and RES are vectors, and T is a scalar.
If FCN is a two-element string array or a two-element cell array of strings, inline functions, or function handles, the first element names the function f described above, and the second element names a function to compute the modified Jacobian
df df
jac = -- + c ------
dx d xdot
The modified Jacobian function must have the form
JAC = j (X, XDOT, T, C)
The optional second argument names a function that defines the constraint functions whose roots are desired during the integration. This function must have the form
G_OUT = g (X, T)
and return a vector of the constraint function values. If the value of any of the constraint functions changes sign, DASRT will attempt to stop the integration at the point of the sign change.
If the name of the constraint function is omitted, `dasrt' solves the same problem as `daspk' or `dassl'.
Note that because of numerical errors in the constraint functions due to roundoff and integration error, DASRT may return false roots, or return the same root at two or more nearly equal values of T. If such false roots are suspected, the user should consider smaller error tolerances or higher precision in the evaluation of the constraint functions.
If a root of some constraint function defines the end of the problem, the input to DASRT should nevertheless allow integration to a point slightly past that root, so that DASRT can locate the root by interpolation.
The third and fourth arguments to `dasrt' specify the initial condition of the states and their derivatives, and the fourth argument specifies a vector of output times at which the solution is desired, including the time corresponding to the initial condition.
The set of initial states and derivatives are not strictly required to be consistent. In practice, however, DASSL is not very good at determining a consistent set for you, so it is best if you ensure that the initial values result in the function evaluating to zero.
The sixth argument is optional, and may be used to specify a set of times that the DAE solver should not integrate past. It is useful for avoiding difficulties with singularities and points where there is a discontinuity in the derivative.
After a successful computation, the value of ISTATE will be greater than zero (consistent with the Fortran version of DASSL).
If the computation is not successful, the value of ISTATE will be less than zero and MSG will contain additional information.
You can use the function `dasrt_options' to set optional parameters for `dasrt'. See also: daspk, dasrt, lsode.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Solve the set of differential-algebraic equations
# name: <cell-element>
# type: string
# elements: 1
# length: 13
dassl_options
# name: <cell-element>
# type: string
# elements: 1
# length: 2248
-- Loadable Function: dassl_options (OPT, VAL)
When called with two arguments, this function allows you set options parameters for the function `dassl'. Given one argument, `dassl_options' returns the value of the corresponding option. If no arguments are supplied, the names of all the available options and their current values are displayed.
Options include
`"absolute tolerance"'
Absolute tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector, and the relative tolerance must also be a vector of the same length.
`"relative tolerance"'
Relative tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector, and the absolute tolerance must also be a vector of the same length.
The local error test applied at each integration step is
abs (local error in x(i))
<= rtol(i) * abs (Y(i)) + atol(i)
`"compute consistent initial condition"'
If nonzero, `dassl' will attempt to compute a consistent set of initial conditions. This is generally not reliable, so it is best to provide a consistent set and leave this option set to zero.
`"enforce nonnegativity constraints"'
If you know that the solutions to your equations will always be nonnegative, it may help to set this parameter to a nonzero value. However, it is probably best to try leaving this option set to zero first, and only setting it to a nonzero value if that doesn't work very well.
`"initial step size"'
Differential-algebraic problems may occasionally suffer from severe scaling difficulties on the first step. If you know a great deal about the scaling of your problem, you can help to alleviate this problem by specifying an initial stepsize.
`"maximum order"'
Restrict the maximum order of the solution method. This option must be between 1 and 5, inclusive.
`"maximum step size"'
Setting the maximum stepsize will avoid passing over very large regions (default is not specified).
`"step limit"'
Maximum number of integration steps to attempt on a single call to the underlying Fortran code.
# name: <cell-element>
# type: string
# elements: 1
# length: 105
When called with two arguments, this function allows you set options parameters for the function `dassl'.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
dassl
# name: <cell-element>
# type: string
# elements: 1
# length: 2477
-- Loadable Function: [X, XDOT, ISTATE, MSG] = dassl (FCN, X_0, XDOT_0, T, T_CRIT)
Solve the set of differential-algebraic equations
0 = f (x, xdot, t)
with
x(t_0) = x_0, xdot(t_0) = xdot_0
The solution is returned in the matrices X and XDOT, with each row in the result matrices corresponding to one of the elements in the vector T. The first element of T should be t_0 and correspond to the initial state of the system X_0 and its derivative XDOT_0, so that the first row of the output X is X_0 and the first row of the output XDOT is XDOT_0.
The first argument, FCN, is a string, inline, or function handle that names the function f to call to compute the vector of residuals for the set of equations. It must have the form
RES = f (X, XDOT, T)
in which X, XDOT, and RES are vectors, and T is a scalar.
If FCN is a two-element string array or a two-element cell array of strings, inline functions, or function handles, the first element names the function f described above, and the second element names a function to compute the modified Jacobian
df df
jac = -- + c ------
dx d xdot
The modified Jacobian function must have the form
JAC = j (X, XDOT, T, C)
The second and third arguments to `dassl' specify the initial condition of the states and their derivatives, and the fourth argument specifies a vector of output times at which the solution is desired, including the time corresponding to the initial condition.
The set of initial states and derivatives are not strictly required to be consistent. In practice, however, DASSL is not very good at determining a consistent set for you, so it is best if you ensure that the initial values result in the function evaluating to zero.
The fifth argument is optional, and may be used to specify a set of times that the DAE solver should not integrate past. It is useful for avoiding difficulties with singularities and points where there is a discontinuity in the derivative.
After a successful computation, the value of ISTATE will be greater than zero (consistent with the Fortran version of DASSL).
If the computation is not successful, the value of ISTATE will be less than zero and MSG will contain additional information.
You can use the function `dassl_options' to set optional parameters for `dassl'. See also: daspk, dasrt, lsode.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Solve the set of differential-algebraic equations
# name: <cell-element>
# type: string
# elements: 1
# length: 3
all
# name: <cell-element>
# type: string
# elements: 1
# length: 229
-- Built-in Function: all (X, DIM)
The function `all' behaves like the function `any', except that it returns true only if all the elements of a vector, or all the elements along dimension DIM of a matrix, are nonzero.
# name: <cell-element>
# type: string
# elements: 1
# length: 183
The function `all' behaves like the function `any', except that it returns true only if all the elements of a vector, or all the elements along dimension DIM of a matrix, are nonzero.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
any
# name: <cell-element>
# type: string
# elements: 1
# length: 515
-- Built-in Function: any (X, DIM)
For a vector argument, return 1 if any element of the vector is nonzero.
For a matrix argument, return a row vector of ones and zeros with each element indicating whether any of the elements of the corresponding column of the matrix are nonzero. For example,
any (eye (2, 4))
=> [ 1, 1, 0, 0 ]
If the optional argument DIM is supplied, work along dimension DIM. For example,
any (eye (2, 4), 2)
=> [ 1; 1 ]
# name: <cell-element>
# type: string
# elements: 1
# length: 72
For a vector argument, return 1 if any element of the vector is nonzero.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
atan2
# name: <cell-element>
# type: string
# elements: 1
# length: 170
-- Mapping Function: atan2 (Y, X)
Compute atan (Y / X) for corresponding elements of Y and X. Signal an error if Y and X do not match in size and orientation.
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Compute atan (Y / X) for corresponding elements of Y and X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
hypot
# name: <cell-element>
# type: string
# elements: 1
# length: 248
-- Built-in Function: hypot (X, Y)
Compute the element-by-element square root of the sum of the squares of X and Y. This is equivalent to `sqrt (X.^2 + Y.^2)', but calculated in a manner that avoids overflows for large values of X or Y.
# name: <cell-element>
# type: string
# elements: 1
# length: 80
Compute the element-by-element square root of the sum of the squares of X and Y.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
log2
# name: <cell-element>
# type: string
# elements: 1
# length: 325
-- Mapping Function: log2 (X)
-- Mapping Function: [F, E] = log2 (X)
Compute the base-2 logarithm of each element of X.
If called with two output arguments, split X into binary mantissa and exponent so that `1/2 <= abs(f) < 1' and E is an integer. If `x = 0', `f = e = 0'. See also: pow2, log, log10, exp.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Compute the base-2 logarithm of each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
fmod
# name: <cell-element>
# type: string
# elements: 1
# length: 248
-- Mapping Function: fmod (X, Y)
Compute the floating point remainder of dividing X by Y using the C library function `fmod'. The result has the same sign as X. If Y is zero, the result is implementation-dependent. See also: mod, rem.
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Compute the floating point remainder of dividing X by Y using the C library function `fmod'.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
cumprod
# name: <cell-element>
# type: string
# elements: 1
# length: 386
-- Built-in Function: cumprod (X)
-- Built-in Function: cumprod (X, DIM)
Cumulative product of elements along dimension DIM. If DIM is omitted, it defaults to 1 (column-wise cumulative products).
As a special case, if X is a vector and DIM is omitted, return the cumulative product of the elements as a vector with the same orientation as X. See also: prod, cumsum.
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Cumulative product of elements along dimension DIM.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
cumsum
# name: <cell-element>
# type: string
# elements: 1
# length: 573
-- Built-in Function: cumsum (X)
-- Built-in Function: cumsum (X, DIM)
-- Built-in Function: cumsum (..., 'native')
Cumulative sum of elements along dimension DIM. If DIM is omitted, it defaults to 1 (column-wise cumulative sums).
As a special case, if X is a vector and DIM is omitted, return the cumulative sum of the elements as a vector with the same orientation as X.
The "native" argument implies the summation is performed in native type. See `sum' for a complete description and example of the use of "native". See also: sum, cumprod.
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Cumulative sum of elements along dimension DIM.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
diag
# name: <cell-element>
# type: string
# elements: 1
# length: 604
-- Built-in Function: diag (V, K)
Return a diagonal matrix with vector V on diagonal K. The second argument is optional. If it is positive, the vector is placed on the K-th super-diagonal. If it is negative, it is placed on the -K-th sub-diagonal. The default value of K is 0, and the vector is placed on the main diagonal. For example,
diag ([1, 2, 3], 1)
=> 0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0
Given a matrix argument, instead of a vector, `diag' extracts the K-th diagonal of the matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Return a diagonal matrix with vector V on diagonal K.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
prod
# name: <cell-element>
# type: string
# elements: 1
# length: 304
-- Built-in Function: prod (X)
-- Built-in Function: prod (X, DIM)
Product of elements along dimension DIM. If DIM is omitted, it defaults to 1 (column-wise products).
As a special case, if X is a vector and DIM is omitted, return the product of the elements. See also: cumprod, sum.
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Product of elements along dimension DIM.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
horzcat
# name: <cell-element>
# type: string
# elements: 1
# length: 200
-- Built-in Function: horzcat (ARRAY1, ARRAY2, ..., ARRAYN)
Return the horizontal concatenation of N-d array objects, ARRAY1, ARRAY2, ..., ARRAYN along dimension 2. See also: cat, vertcat.
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Return the horizontal concatenation of N-d array objects, ARRAY1, ARRAY2, .
# name: <cell-element>
# type: string
# elements: 1
# length: 7
vertcat
# name: <cell-element>
# type: string
# elements: 1
# length: 198
-- Built-in Function: vertcat (ARRAY1, ARRAY2, ..., ARRAYN)
Return the vertical concatenation of N-d array objects, ARRAY1, ARRAY2, ..., ARRAYN along dimension 1. See also: cat, horzcat.
# name: <cell-element>
# type: string
# elements: 1
# length: 73
Return the vertical concatenation of N-d array objects, ARRAY1, ARRAY2, .
# name: <cell-element>
# type: string
# elements: 1
# length: 3
cat
# name: <cell-element>
# type: string
# elements: 1
# length: 803
-- Built-in Function: cat (DIM, ARRAY1, ARRAY2, ..., ARRAYN)
Return the concatenation of N-d array objects, ARRAY1, ARRAY2, ..., ARRAYN along dimension DIM.
A = ones (2, 2);
B = zeros (2, 2);
cat (2, A, B)
=> ans =
1 1 0 0
1 1 0 0
Alternatively, we can concatenate A and B along the second dimension the following way:
[A, B].
DIM can be larger than the dimensions of the N-d array objects and the result will thus have DIM dimensions as the following example shows:
cat (4, ones(2, 2), zeros (2, 2))
=> ans =
ans(:,:,1,1) =
1 1
1 1
ans(:,:,1,2) =
0 0
0 0
See also: horzcat, vertcat.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return the concatenation of N-d array objects, ARRAY1, ARRAY2, .
# name: <cell-element>
# type: string
# elements: 1
# length: 7
permute
# name: <cell-element>
# type: string
# elements: 1
# length: 255
-- Built-in Function: permute (A, PERM)
Return the generalized transpose for an N-d array object A. The permutation vector PERM must contain the elements `1:ndims(a)' (in any order, but each element must appear just once). See also: ipermute.
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Return the generalized transpose for an N-d array object A.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
ipermute
# name: <cell-element>
# type: string
# elements: 1
# length: 208
-- Built-in Function: ipermute (A, IPERM)
The inverse of the `permute' function. The expression
ipermute (permute (a, perm), perm)
returns the original array A. See also: permute.
# name: <cell-element>
# type: string
# elements: 1
# length: 38
The inverse of the `permute' function.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
length
# name: <cell-element>
# type: string
# elements: 1
# length: 228
-- Built-in Function: length (A)
Return the `length' of the object A. For matrix objects, the length is the number of rows or columns, whichever is greater (this odd definition is used for compatibility with MATLAB).
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Return the `length' of the object A.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
ndims
# name: <cell-element>
# type: string
# elements: 1
# length: 204
-- Built-in Function: ndims (A)
Returns the number of dimensions of array A. For any array, the result will always be larger than or equal to 2. Trailing singleton dimensions are not counted.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Returns the number of dimensions of array A.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
numel
# name: <cell-element>
# type: string
# elements: 1
# length: 107
-- Built-in Function: numel (A)
Returns the number of elements in the object A. See also: size.
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Returns the number of elements in the object A.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
size
# name: <cell-element>
# type: string
# elements: 1
# length: 730
-- Built-in Function: size (A, N)
Return the number rows and columns of A.
With one input argument and one output argument, the result is returned in a row vector. If there are multiple output arguments, the number of rows is assigned to the first, and the number of columns to the second, etc. For example,
size ([1, 2; 3, 4; 5, 6])
=> [ 3, 2 ]
[nr, nc] = size ([1, 2; 3, 4; 5, 6])
=> nr = 3
=> nc = 2
If given a second argument, `size' will return the size of the corresponding dimension. For example
size ([1, 2; 3, 4; 5, 6], 2)
=> 2
returns the number of columns in the given matrix. See also: numel.
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Return the number rows and columns of A.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
size_equal
# name: <cell-element>
# type: string
# elements: 1
# length: 234
-- Built-in Function: size_equal (A, B, ...)
Return true if the dimensions of all arguments agree. Trailing singleton dimensions are ignored. Called with a single argument, size_equal returns true. See also: size, numel.
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Return true if the dimensions of all arguments agree.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
nnz
# name: <cell-element>
# type: string
# elements: 1
# length: 113
-- Built-in Function: SCALAR = nnz (A)
Returns the number of non zero elements in A. See also: sparse.
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Returns the number of non zero elements in A.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
nzmax
# name: <cell-element>
# type: string
# elements: 1
# length: 401
-- Built-in Function: SCALAR = nzmax (SM)
Return the amount of storage allocated to the sparse matrix SM. Note that Octave tends to crop unused memory at the first opportunity for sparse objects. There are some cases of user created sparse objects where the value returned by "nzmax" will not be the same as "nnz", but in general they will give the same result. See also: sparse, spalloc.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return the amount of storage allocated to the sparse matrix SM.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
rows
# name: <cell-element>
# type: string
# elements: 1
# length: 144
-- Built-in Function: rows (A)
Return the number of rows of A. See also: size, numel, columns, length, isscalar, isvector, ismatrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Return the number of rows of A.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
columns
# name: <cell-element>
# type: string
# elements: 1
# length: 147
-- Built-in Function: columns (A)
Return the number of columns of A. See also: size, numel, rows, length, isscalar, isvector, ismatrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Return the number of columns of A.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
sum
# name: <cell-element>
# type: string
# elements: 1
# length: 622
-- Built-in Function: sum (X)
-- Built-in Function: sum (X, DIM)
-- Built-in Function: sum (..., 'native')
Sum of elements along dimension DIM. If DIM is omitted, it defaults to 1 (column-wise sum).
As a special case, if X is a vector and DIM is omitted, return the sum of the elements.
If the optional argument 'native' is given, then the sum is performed in the same type as the original argument, rather than in the default double type. For example
sum ([true, true])
=> 2
sum ([true, true], 'native')
=> true
See also: cumsum, sumsq, prod.
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Sum of elements along dimension DIM.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
sumsq
# name: <cell-element>
# type: string
# elements: 1
# length: 481
-- Built-in Function: sumsq (X)
-- Built-in Function: sumsq (X, DIM)
Sum of squares of elements along dimension DIM. If DIM is omitted, it defaults to 1 (column-wise sum of squares).
As a special case, if X is a vector and DIM is omitted, return the sum of squares of the elements.
This function is conceptually equivalent to computing
sum (x .* conj (x), dim)
but it uses less memory and avoids calling `conj' if X is real. See also: sum.
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Sum of squares of elements along dimension DIM.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
islogical
# name: <cell-element>
# type: string
# elements: 1
# length: 84
-- Built-in Function: islogical (X)
Return true if X is a logical object.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Return true if X is a logical object.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
isinteger
# name: <cell-element>
# type: string
# elements: 1
# length: 271
-- Built-in Function: isinteger (X)
Return true if X is an integer object (int8, uint8, int16, etc.). Note that `isinteger (14)' is false because numeric constants in Octave are double precision floating point values. See also: isreal, isnumeric, class, isa.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return true if X is an integer object (int8, uint8, int16, etc.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
iscomplex
# name: <cell-element>
# type: string
# elements: 1
# length: 99
-- Built-in Function: iscomplex (X)
Return true if X is a complex-valued numeric object.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return true if X is a complex-valued numeric object.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
isfloat
# name: <cell-element>
# type: string
# elements: 1
# length: 97
-- Built-in Function: isfloat (X)
Return true if X is a floating-point numeric object.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return true if X is a floating-point numeric object.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
complex
# name: <cell-element>
# type: string
# elements: 1
# length: 458
-- Built-in Function: complex (X)
-- Built-in Function: complex (RE, IM)
Return a complex result from real arguments. With 1 real argument X, return the complex result `X + 0i'. With 2 real arguments, return the complex result `RE + IM'. `complex' can often be more convenient than expressions such as `a + i*b'. For example:
complex ([1, 2], [3, 4])
=>
1 + 3i 2 + 4i
See also: real, imag, iscomplex.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Return a complex result from real arguments.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
isreal
# name: <cell-element>
# type: string
# elements: 1
# length: 93
-- Built-in Function: isreal (X)
Return true if X is a real-valued numeric object.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Return true if X is a real-valued numeric object.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
isempty
# name: <cell-element>
# type: string
# elements: 1
# length: 172
-- Built-in Function: isempty (A)
Return 1 if A is an empty matrix (either the number of rows, or the number of columns, or both are zero). Otherwise, return 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 105
Return 1 if A is an empty matrix (either the number of rows, or the number of columns, or both are zero).
# name: <cell-element>
# type: string
# elements: 1
# length: 9
isnumeric
# name: <cell-element>
# type: string
# elements: 1
# length: 87
-- Built-in Function: isnumeric (X)
Return nonzero if X is a numeric object.
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Return nonzero if X is a numeric object.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
islist
# name: <cell-element>
# type: string
# elements: 1
# length: 74
-- Built-in Function: islist (X)
Return nonzero if X is a list.
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Return nonzero if X is a list.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
ismatrix
# name: <cell-element>
# type: string
# elements: 1
# length: 94
-- Built-in Function: ismatrix (A)
Return 1 if A is a matrix. Otherwise, return 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Return 1 if A is a matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
ones
# name: <cell-element>
# type: string
# elements: 1
# length: 573
-- Built-in Function: ones (X)
-- Built-in Function: ones (N, M)
-- Built-in Function: ones (N, M, K, ...)
-- Built-in Function: ones (..., CLASS)
Return a matrix or N-dimensional array whose elements are all 1. The arguments are handled the same as the arguments for `eye'.
If you need to create a matrix whose values are all the same, you should use an expression like
val_matrix = val * ones (n, m)
The optional argument CLASS, allows `ones' to return an array of the specified type, for example
val = ones (n,m, "uint8")
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return a matrix or N-dimensional array whose elements are all 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
zeros
# name: <cell-element>
# type: string
# elements: 1
# length: 435
-- Built-in Function: zeros (X)
-- Built-in Function: zeros (N, M)
-- Built-in Function: zeros (N, M, K, ...)
-- Built-in Function: zeros (..., CLASS)
Return a matrix or N-dimensional array whose elements are all 0. The arguments are handled the same as the arguments for `eye'.
The optional argument CLASS, allows `zeros' to return an array of the specified type, for example
val = zeros (n,m, "uint8")
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return a matrix or N-dimensional array whose elements are all 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
Inf
# name: <cell-element>
# type: string
# elements: 1
# length: 1031
-- Built-in Function: Inf
-- Built-in Function: Inf (N)
-- Built-in Function: Inf (N, M)
-- Built-in Function: Inf (N, M, K, ...)
-- Built-in Function: Inf (..., CLASS)
Return a scalar, matrix or N-dimensional array whose elements are all equal to the IEEE representation for positive infinity.
Infinity is produced when results are too large to be represented using the the IEEE floating point format for numbers. Two common examples which produce infinity are division by zero and overflow.
[1/0 e^800]
=>
Inf Inf
When called with no arguments, return a scalar with the value `Inf'. When called with a single argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The optional argument CLASS specifies the return type and may be either "double" or "single". See also: isinf.
# name: <cell-element>
# type: string
# elements: 1
# length: 125
Return a scalar, matrix or N-dimensional array whose elements are all equal to the IEEE representation for positive infinity.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
NaN
# name: <cell-element>
# type: string
# elements: 1
# length: 1208
-- Built-in Function: NaN
-- Built-in Function: NaN (N)
-- Built-in Function: NaN (N, M)
-- Built-in Function: NaN (N, M, K, ...)
-- Built-in Function: NaN (..., CLASS)
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the IEEE symbol NaN (Not a Number). NaN is the result of operations which do not produce a well defined numerical result. Common operations which produce a NaN are arithmetic with infinity (Inf - Inf), zero divided by zero (0/0), and any operation involving another NaN value (5 + NaN).
Note that NaN always compares not equal to NaN (NaN != NaN). This behavior is specified by the IEEE standard for floating point arithmetic. To find NaN values, use the `isnan' function.
When called with no arguments, return a scalar with the value `NaN'. When called with a single argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The optional argument CLASS specifies the return type and may be either "double" or "single". See also: isnan.
# name: <cell-element>
# type: string
# elements: 1
# length: 115
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the IEEE symbol NaN (Not a Number).
# name: <cell-element>
# type: string
# elements: 1
# length: 1
e
# name: <cell-element>
# type: string
# elements: 1
# length: 781
-- Built-in Function: e
-- Built-in Function: e (N)
-- Built-in Function: e (N, M)
-- Built-in Function: e (N, M, K, ...)
-- Built-in Function: e (..., CLASS)
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the base of natural logarithms. The constant `e' satisfies the equation `log' (e) = 1.
When called with no arguments, return a scalar with the value e. When called with a single argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The optional argument CLASS specifies the return type and may be either "double" or "single".
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the base of natural logarithms.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
eps
# name: <cell-element>
# type: string
# elements: 1
# length: 1033
-- Built-in Function: eps
-- Built-in Function: eps (X)
-- Built-in Function: eps (N, M)
-- Built-in Function: eps (N, M, K, ...)
-- Built-in Function: eps (..., CLASS)
Return a scalar, matrix or N-dimensional array whose elements are all eps, the machine precision. More precisely, `eps' is the relative spacing between any two adjacent numbers in the machine's floating point system. This number is obviously system dependent. On machines that support IEEE floating point arithmetic, `eps' is approximately 2.2204e-16 for double precision and 1.1921e-07 for single precision.
When called with no arguments, return a scalar with the value `eps(1.0)'. Given a single argument X, return the distance between X and the next largest value. When called with more than one argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The optional argument CLASS specifies the return type and may be either "double" or "single".
# name: <cell-element>
# type: string
# elements: 1
# length: 97
Return a scalar, matrix or N-dimensional array whose elements are all eps, the machine precision.
# name: <cell-element>
# type: string
# elements: 1
# length: 2
pi
# name: <cell-element>
# type: string
# elements: 1
# length: 815
-- Built-in Function: pi
-- Built-in Function: pi (N)
-- Built-in Function: pi (N, M)
-- Built-in Function: pi (N, M, K, ...)
-- Built-in Function: pi (..., CLASS)
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the ratio of the circumference of a circle to its diameter. Internally, `pi' is computed as `4.0 * atan (1.0)'.
When called with no arguments, return a scalar with the value of pi. When called with a single argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The optional argument CLASS specifies the return type and may be either "double" or "single".
# name: <cell-element>
# type: string
# elements: 1
# length: 139
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the ratio of the circumference of a circle to its diameter.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
realmax
# name: <cell-element>
# type: string
# elements: 1
# length: 1027
-- Built-in Function: realmax
-- Built-in Function: realmax (N)
-- Built-in Function: realmax (N, M)
-- Built-in Function: realmax (N, M, K, ...)
-- Built-in Function: realmax (..., CLASS)
Return a scalar, matrix or N-dimensional array whose elements are all equal to the largest floating point number that is representable. The actual value is system dependent. On machines that support IEEE floating point arithmetic, `realmax' is approximately 1.7977e+308 for double precision and 3.4028e+38 for single precision.
When called with no arguments, return a scalar with the value `realmax("double")'. When called with a single argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The optional argument CLASS specifies the return type and may be either "double" or "single". See also: realmin, intmax, bitmax.
# name: <cell-element>
# type: string
# elements: 1
# length: 135
Return a scalar, matrix or N-dimensional array whose elements are all equal to the largest floating point number that is representable.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
realmin
# name: <cell-element>
# type: string
# elements: 1
# length: 1031
-- Built-in Function: realmin
-- Built-in Function: realmin (N)
-- Built-in Function: realmin (N, M)
-- Built-in Function: realmin (N, M, K, ...)
-- Built-in Function: realmin (..., CLASS)
Return a scalar, matrix or N-dimensional array whose elements are all equal to the smallest normalized floating point number that is representable. The actual value is system dependent. On machines that support IEEE floating point arithmetic, `realmin' is approximately 2.2251e-308 for double precision and 1.1755e-38 for single precision.
When called with no arguments, return a scalar with the value `realmin("double")'. When called with a single argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The optional argument CLASS specifies the return type and may be either "double" or "single". See also: realmax, intmin.
# name: <cell-element>
# type: string
# elements: 1
# length: 147
Return a scalar, matrix or N-dimensional array whose elements are all equal to the smallest normalized floating point number that is representable.
# name: <cell-element>
# type: string
# elements: 1
# length: 1
I
# name: <cell-element>
# type: string
# elements: 1
# length: 883
-- Built-in Function: I
-- Built-in Function: I (N)
-- Built-in Function: I (N, M)
-- Built-in Function: I (N, M, K, ...)
-- Built-in Function: I (..., CLASS)
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the pure imaginary unit, defined as `sqrt (-1)'. I, and its equivalents i, J, and j, are functions so any of the names may be reused for other purposes (such as i for a counter variable).
When called with no arguments, return a scalar with the value i. When called with a single argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The optional argument CLASS specifies the return type and may be either "double" or "single".
# name: <cell-element>
# type: string
# elements: 1
# length: 128
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the pure imaginary unit, defined as `sqrt (-1)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 2
NA
# name: <cell-element>
# type: string
# elements: 1
# length: 881
-- Built-in Function: NA
-- Built-in Function: NA (N)
-- Built-in Function: NA (N, M)
-- Built-in Function: NA (N, M, K, ...)
-- Built-in Function: NA (..., CLASS)
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the special constant used to designate missing values.
Note that NA always compares not equal to NA (NA != NA). To find NA values, use the `isna' function.
When called with no arguments, return a scalar with the value `NA'. When called with a single argument, return a square matrix with the dimension specified. When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions. The optional argument CLASS specifies the return type and may be either "double" or "single". See also: isna.
# name: <cell-element>
# type: string
# elements: 1
# length: 134
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the special constant used to designate missing values.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
false
# name: <cell-element>
# type: string
# elements: 1
# length: 261
-- Built-in Function: false (X)
-- Built-in Function: false (N, M)
-- Built-in Function: false (N, M, K, ...)
Return a matrix or N-dimensional array whose elements are all logical 0. The arguments are handled the same as the arguments for `eye'.
# name: <cell-element>
# type: string
# elements: 1
# length: 72
Return a matrix or N-dimensional array whose elements are all logical 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
true
# name: <cell-element>
# type: string
# elements: 1
# length: 258
-- Built-in Function: true (X)
-- Built-in Function: true (N, M)
-- Built-in Function: true (N, M, K, ...)
Return a matrix or N-dimensional array whose elements are all logical 1. The arguments are handled the same as the arguments for `eye'.
# name: <cell-element>
# type: string
# elements: 1
# length: 72
Return a matrix or N-dimensional array whose elements are all logical 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
eye
# name: <cell-element>
# type: string
# elements: 1
# length: 1016
-- Built-in Function: eye (X)
-- Built-in Function: eye (N, M)
-- Built-in Function: eye (..., CLASS)
Return an identity matrix. If invoked with a single scalar argument, `eye' returns a square matrix with the dimension specified. If you supply two scalar arguments, `eye' takes them to be the number of rows and columns. If given a vector with two elements, `eye' uses the values of the elements as the number of rows and columns, respectively. For example,
eye (3)
=> 1 0 0
0 1 0
0 0 1
The following expressions all produce the same result:
eye (2)
==
eye (2, 2)
==
eye (size ([1, 2; 3, 4])
The optional argument CLASS, allows `eye' to return an array of the specified type, like
val = zeros (n,m, "uint8")
Calling `eye' with no arguments is equivalent to calling it with an argument of 1. This odd definition is for compatibility with MATLAB.
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Return an identity matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
linspace
# name: <cell-element>
# type: string
# elements: 1
# length: 547
-- Built-in Function: linspace (BASE, LIMIT, N)
Return a row vector with N linearly spaced elements between BASE and LIMIT. If the number of elements is greater than one, then the BASE and LIMIT are always included in the range. If BASE is greater than LIMIT, the elements are stored in decreasing order. If the number of points is not specified, a value of 100 is used.
The `linspace' function always returns a row vector.
For compatibility with MATLAB, return the second argument if fewer than two values are requested.
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Return a row vector with N linearly spaced elements between BASE and LIMIT.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
resize
# name: <cell-element>
# type: string
# elements: 1
# length: 1131
-- Built-in Function: resize (X, M)
-- Built-in Function: resize (X, M, N)
-- Built-in Function: resize (X, M, N, ...)
Resize X cutting off elements as necessary.
In the result, element with certain indices is equal to the corresponding element of X if the indices are within the bounds of X; otherwise, the element is set to zero.
In other words, the statement
y = resize (x, dv);
is equivalent to the following code:
y = zeros (dv, class (x));
sz = min (dv, size (x));
for i = 1:length (sz), idx{i} = 1:sz(i); endfor
y(idx{:}) = x(idx{:});
but is performed more efficiently.
If only M is supplied and it is a scalar, the dimension of the result is M-by-M. If M is a vector, then the dimensions of the result are given by the elements of M. If both M and N are scalars, then the dimensions of the result are M-by-N.
An object can be resized to more dimensions than it has; in such case the missing dimensions are assumed to be 1. Resizing an object to fewer dimensions is not possible. See also: reshape, postpad.
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Resize X cutting off elements as necessary.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
reshape
# name: <cell-element>
# type: string
# elements: 1
# length: 612
-- Built-in Function: reshape (A, M, N, ...)
-- Built-in Function: reshape (A, SIZE)
Return a matrix with the given dimensions whose elements are taken from the matrix A. The elements of the matrix are accessed in column-major order (like Fortran arrays are stored).
For example,
reshape ([1, 2, 3, 4], 2, 2)
=> 1 3
2 4
Note that the total number of elements in the original matrix must match the total number of elements in the new matrix.
A single dimension of the return matrix can be unknown and is flagged by an empty argument.
# name: <cell-element>
# type: string
# elements: 1
# length: 85
Return a matrix with the given dimensions whose elements are taken from the matrix A.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
squeeze
# name: <cell-element>
# type: string
# elements: 1
# length: 225
-- Built-in Function: squeeze (X)
Remove singleton dimensions from X and return the result. Note that for compatibility with MATLAB, all objects have a minimum of two dimensions and row vectors are left unchanged.
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Remove singleton dimensions from X and return the result.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
full
# name: <cell-element>
# type: string
# elements: 1
# length: 151
-- Loadable Function: FM = full (SM)
returns a full storage matrix from a sparse, diagonal, permutation matrix or a range. See also: sparse.
# name: <cell-element>
# type: string
# elements: 1
# length: 85
returns a full storage matrix from a sparse, diagonal, permutation matrix or a range.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
norm
# name: <cell-element>
# type: string
# elements: 1
# length: 1203
-- Built-in Function: norm (A, P, OPT)
Compute the p-norm of the matrix A. If the second argument is missing, `p = 2' is assumed.
If A is a matrix (or sparse matrix):
P = `1'
1-norm, the largest column sum of the absolute values of A.
P = `2'
Largest singular value of A.
P = `Inf' or `"inf"'
Infinity norm, the largest row sum of the absolute values of A.
P = `"fro"'
Frobenius norm of A, `sqrt (sum (diag (A' * A)))'.
other P, `P > 1'
maximum `norm (A*x, p)' such that `norm (x, p) == 1'
If A is a vector or a scalar:
P = `Inf' or `"inf"'
`max (abs (A))'.
P = `-Inf'
`min (abs (A))'.
P = `"fro"'
Frobenius norm of A, `sqrt (sumsq (abs (a)))'.
P = 0
Hamming norm - the number of nonzero elements.
other P, `P > 1'
p-norm of A, `(sum (abs (A) .^ P)) ^ (1/P)'.
other P `P < 1'
the p-pseudonorm defined as above.
If `"rows"' is given as OPT, the norms of all rows of the matrix A are returned as a column vector. Similarly, if `"columns"' or `"cols"' is passed column norms are computed. See also: cond, svd.
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Compute the p-norm of the matrix A.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
not
# name: <cell-element>
# type: string
# elements: 1
# length: 78
-- Built-in Function: not (X)
This function is equivalent to `! x'.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
This function is equivalent to `! x'.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
uplus
# name: <cell-element>
# type: string
# elements: 1
# length: 80
-- Built-in Function: uplus (X)
This function is equivalent to `+ x'.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
This function is equivalent to `+ x'.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
uminus
# name: <cell-element>
# type: string
# elements: 1
# length: 81
-- Built-in Function: uminus (X)
This function is equivalent to `- x'.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
This function is equivalent to `- x'.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
transpose
# name: <cell-element>
# type: string
# elements: 1
# length: 84
-- Built-in Function: transpose (X)
This function is equivalent to `x.''.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function is equivalent to `x.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
ctranspose
# name: <cell-element>
# type: string
# elements: 1
# length: 84
-- Built-in Function: ctranspose (X)
This function is equivalent to `x''.
# name: <cell-element>
# type: string
# elements: 1
# length: 36
This function is equivalent to `x''.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
plus
# name: <cell-element>
# type: string
# elements: 1
# length: 84
-- Built-in Function: plus (X, Y)
This function is equivalent to `x + y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x + y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
minus
# name: <cell-element>
# type: string
# elements: 1
# length: 85
-- Built-in Function: minus (X, Y)
This function is equivalent to `x - y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x - y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
mtimes
# name: <cell-element>
# type: string
# elements: 1
# length: 86
-- Built-in Function: mtimes (X, Y)
This function is equivalent to `x * y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x * y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
mrdivide
# name: <cell-element>
# type: string
# elements: 1
# length: 88
-- Built-in Function: mrdivide (X, Y)
This function is equivalent to `x / y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x / y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
mpower
# name: <cell-element>
# type: string
# elements: 1
# length: 86
-- Built-in Function: mpower (X, Y)
This function is equivalent to `x ^ y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x ^ y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
mldivide
# name: <cell-element>
# type: string
# elements: 1
# length: 88
-- Built-in Function: mldivide (X, Y)
This function is equivalent to `x \ y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x \ y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 2
lt
# name: <cell-element>
# type: string
# elements: 1
# length: 82
-- Built-in Function: lt (X, Y)
This function is equivalent to `x < y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x < y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 2
le
# name: <cell-element>
# type: string
# elements: 1
# length: 83
-- Built-in Function: le (X, Y)
This function is equivalent to `x <= y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 40
This function is equivalent to `x <= y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 2
eq
# name: <cell-element>
# type: string
# elements: 1
# length: 83
-- Built-in Function: eq (X, Y)
This function is equivalent to `x == y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 40
This function is equivalent to `x == y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 2
ge
# name: <cell-element>
# type: string
# elements: 1
# length: 83
-- Built-in Function: ge (X, Y)
This function is equivalent to `x >= y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 40
This function is equivalent to `x >= y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 2
gt
# name: <cell-element>
# type: string
# elements: 1
# length: 82
-- Built-in Function: gt (X, Y)
This function is equivalent to `x > y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x > y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 2
ne
# name: <cell-element>
# type: string
# elements: 1
# length: 83
-- Built-in Function: ne (X, Y)
This function is equivalent to `x != y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 40
This function is equivalent to `x != y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
times
# name: <cell-element>
# type: string
# elements: 1
# length: 86
-- Built-in Function: times (X, Y)
This function is equivalent to `x .* y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 35
This function is equivalent to `x .
# name: <cell-element>
# type: string
# elements: 1
# length: 7
rdivide
# name: <cell-element>
# type: string
# elements: 1
# length: 88
-- Built-in Function: rdivide (X, Y)
This function is equivalent to `x ./ y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 35
This function is equivalent to `x .
# name: <cell-element>
# type: string
# elements: 1
# length: 5
power
# name: <cell-element>
# type: string
# elements: 1
# length: 86
-- Built-in Function: power (X, Y)
This function is equivalent to `x .^ y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 35
This function is equivalent to `x .
# name: <cell-element>
# type: string
# elements: 1
# length: 7
ldivide
# name: <cell-element>
# type: string
# elements: 1
# length: 88
-- Built-in Function: ldivide (X, Y)
This function is equivalent to `x .\ y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 35
This function is equivalent to `x .
# name: <cell-element>
# type: string
# elements: 1
# length: 3
and
# name: <cell-element>
# type: string
# elements: 1
# length: 83
-- Built-in Function: and (X, Y)
This function is equivalent to `x & y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x & y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 2
or
# name: <cell-element>
# type: string
# elements: 1
# length: 82
-- Built-in Function: or (X, Y)
This function is equivalent to `x | y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x | y'.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
tic
# name: <cell-element>
# type: string
# elements: 1
# length: 1367
-- Built-in Function: tic ()
-- Built-in Function: toc ()
Set or check a wall-clock timer. Calling `tic' without an output argument sets the timer. Subsequent calls to `toc' return the number of seconds since the timer was set. For example,
tic ();
# many computations later...
elapsed_time = toc ();
will set the variable `elapsed_time' to the number of seconds since the most recent call to the function `tic'.
If called with one output argument then this function returns a scalar of type `uint64' and the wall-clock timer is not started.
t = tic; sleep (5); (double (tic ()) - double (t)) * 1e-6
=> 5
Nested timing with `tic' and `toc' is not supported. Therefore `toc' will always return the elapsed time from the most recent call to `tic'.
If you are more interested in the CPU time that your process used, you should use the `cputime' function instead. The `tic' and `toc' functions report the actual wall clock time that elapsed between the calls. This may include time spent processing other jobs or doing nothing at all. For example,
tic (); sleep (5); toc ()
=> 5
t = cputime (); sleep (5); cputime () - t
=> 0
(This example also illustrates that the CPU timer may have a fairly coarse resolution.)
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Set or check a wall-clock timer.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
toc
# name: <cell-element>
# type: string
# elements: 1
# length: 48
-- Built-in Function: toc ()
See tic.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
See tic.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
cputime
# name: <cell-element>
# type: string
# elements: 1
# length: 653
-- Built-in Function: [TOTAL, USER, SYSTEM] = cputime ();
Return the CPU time used by your Octave session. The first output is the total time spent executing your process and is equal to the sum of second and third outputs, which are the number of CPU seconds spent executing in user mode and the number of CPU seconds spent executing in system mode, respectively. If your system does not have a way to report CPU time usage, `cputime' returns 0 for each of its output values. Note that because Octave used some CPU time to start, it is reasonable to check to see if `cputime' works by checking to see if the total CPU time used is nonzero.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return the CPU time used by your Octave session.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
sort
# name: <cell-element>
# type: string
# elements: 1
# length: 1417
-- Loadable Function: [S, I] = sort (X)
-- Loadable Function: [S, I] = sort (X, DIM)
-- Loadable Function: [S, I] = sort (X, MODE)
-- Loadable Function: [S, I] = sort (X, DIM, MODE)
Return a copy of X with the elements arranged in increasing order. For matrices, `sort' orders the elements in each column.
For example,
sort ([1, 2; 2, 3; 3, 1])
=> 1 1
2 2
3 3
The `sort' function may also be used to produce a matrix containing the original row indices of the elements in the sorted matrix. For example,
[s, i] = sort ([1, 2; 2, 3; 3, 1])
=> s = 1 1
2 2
3 3
=> i = 1 3
2 1
3 2
If the optional argument DIM is given, then the matrix is sorted along the dimension defined by DIM. The optional argument `mode' defines the order in which the values will be sorted. Valid values of `mode' are `ascend' or `descend'.
For equal elements, the indices are such that the equal elements are listed in the order that appeared in the original list.
The `sort' function may also be used to sort strings and cell arrays of strings, in which case the dictionary order of the strings is used.
The algorithm used in `sort' is optimized for the sorting of partially ordered lists.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Return a copy of X with the elements arranged in increasing order.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
issorted
# name: <cell-element>
# type: string
# elements: 1
# length: 367
-- Built-in Function: issorted (A, ROWS)
Returns true if the array is sorted, ascending or descending. NaNs are treated as by `sort'. If ROWS is supplied and has the value "rows", checks whether the array is sorted by rows as if output by `sortrows' (with no options).
This function does not yet support sparse matrices. See also: sortrows, sort.
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Returns true if the array is sorted, ascending or descending.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
dbstop
# name: <cell-element>
# type: string
# elements: 1
# length: 501
-- Loadable Function: RLINE = dbstop (FUNC, LINE, ...)
Set a breakpoint in a function
`func'
String representing the function name. When already in debug mode this should be left out and only the line should be given.
`line'
Line number you would like the breakpoint to be set on. Multiple lines might be given as separate arguments or as a vector.
The rline returned is the real line that the breakpoint was set at. See also: dbclear, dbstatus, dbstep.
# name: <cell-element>
# type: string
# elements: 1
# length: 78
Set a breakpoint in a function `func' String representing the function name.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
dbclear
# name: <cell-element>
# type: string
# elements: 1
# length: 565
-- Loadable Function: dbclear (FUNC, LINE, ...)
Delete a breakpoint in a function
`func'
String representing the function name. When already in debug mode this should be left out and only the line should be given.
`line'
Line number where you would like to remove the breakpoint. Multiple lines might be given as separate arguments or as a vector.
No checking is done to make sure that the line you requested is really a breakpoint. If you get the wrong line nothing will happen. See also: dbstop, dbstatus, dbwhere.
# name: <cell-element>
# type: string
# elements: 1
# length: 81
Delete a breakpoint in a function `func' String representing the function name.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
dbstatus
# name: <cell-element>
# type: string
# elements: 1
# length: 277
-- Loadable Function: lst = dbstatus (FUNC)
Return a vector containing the lines on which a function has breakpoints set.
`func'
String representing the function name. When already in debug mode this should be left out.
See also: dbclear, dbwhere.
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Return a vector containing the lines on which a function has breakpoints set.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
dbwhere
# name: <cell-element>
# type: string
# elements: 1
# length: 110
-- Loadable Function: dbwhere ()
Show where we are in the code See also: dbclear, dbstatus, dbstop.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Show where we are in the code See also: dbclear, dbstatus, dbstop.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
dbtype
# name: <cell-element>
# type: string
# elements: 1
# length: 116
-- Loadable Function: dbtype ()
List script file with line numbers. See also: dbclear, dbstatus, dbstop.
# name: <cell-element>
# type: string
# elements: 1
# length: 35
List script file with line numbers.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
dbstack
# name: <cell-element>
# type: string
# elements: 1
# length: 199
-- Loadable Function: [STACK, IDX] dbstack (N)
Print or return current stack information. With optional argument N, omit the N innermost stack frames. See also: dbclear, dbstatus, dbstop.
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Print or return current stack information.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
dbup
# name: <cell-element>
# type: string
# elements: 1
# length: 155
-- Loadable Function: dbup (N)
In debugging mode, move up the execution stack N frames. If N is omitted, move up one frame. See also: dbstack.
# name: <cell-element>
# type: string
# elements: 1
# length: 56
In debugging mode, move up the execution stack N frames.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
dbdown
# name: <cell-element>
# type: string
# elements: 1
# length: 161
-- Loadable Function: dbdown (N)
In debugging mode, move down the execution stack N frames. If N is omitted, move down one frame. See also: dbstack.
# name: <cell-element>
# type: string
# elements: 1
# length: 58
In debugging mode, move down the execution stack N frames.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
dbstep
# name: <cell-element>
# type: string
# elements: 1
# length: 509
-- Command: dbstep N
-- Command: dbstep in
-- Command: dbstep out
In debugging mode, execute the next N lines of code. If N is omitted execute the next line of code. If the next line of code is itself defined in terms of an m-file remain in the existing function.
Using `dbstep in' will cause execution of the next line to step into any m-files defined on the next line. Using `dbstep out' with cause execution to continue until the current function returns. See also: dbcont, dbquit.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
In debugging mode, execute the next N lines of code.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
dbcont
# name: <cell-element>
# type: string
# elements: 1
# length: 122
-- Command: dbcont ()
In debugging mode, quit debugging mode and continue execution. See also: dbstep, dbstep.
# name: <cell-element>
# type: string
# elements: 1
# length: 62
In debugging mode, quit debugging mode and continue execution.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
dbquit
# name: <cell-element>
# type: string
# elements: 1
# length: 127
-- Command: dbquit ()
In debugging mode, quit debugging mode and return to the top level. See also: dbstep, dbcont.
# name: <cell-element>
# type: string
# elements: 1
# length: 67
In debugging mode, quit debugging mode and return to the top level.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
isdebugmode
# name: <cell-element>
# type: string
# elements: 1
# length: 134
-- Command: isdebugmode ()
Return true if debug mode is on, otherwise false. See also: dbstack, dbclear, dbstop, dbstatus.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Return true if debug mode is on, otherwise false.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
EDITOR
# name: <cell-element>
# type: string
# elements: 1
# length: 394
-- Built-in Function: VAL = EDITOR ()
-- Built-in Function: OLD_VAL = EDITOR (NEW_VAL)
Query or set the internal variable that specifies the editor to use with the `edit_history' command. The default value is taken from the environment variable `EDITOR' when Octave starts. If the environment variable is not initialized, `EDITOR' will be set to `"emacs"'. See also: edit_history.
# name: <cell-element>
# type: string
# elements: 1
# length: 100
Query or set the internal variable that specifies the editor to use with the `edit_history' command.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
EXEC_PATH
# name: <cell-element>
# type: string
# elements: 1
# length: 690
-- Built-in Function: VAL = EXEC_PATH ()
-- Built-in Function: OLD_VAL = EXEC_PATH (NEW_VAL)
Query or set the internal variable that specifies a colon separated list of directories to search when executing external programs. Its initial value is taken from the environment variable `OCTAVE_EXEC_PATH' (if it exists) or `PATH', but that value can be overridden by the command line argument `--exec-path PATH'. At startup, an additional set of directories (including the shell PATH) is appended to the path specified in the environment or on the command line. If you use the `EXEC_PATH' function to modify the path, you should take care to preserve these additional directories.
# name: <cell-element>
# type: string
# elements: 1
# length: 131
Query or set the internal variable that specifies a colon separated list of directories to search when executing external programs.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
IMAGE_PATH
# name: <cell-element>
# type: string
# elements: 1
# length: 229
-- Built-in Function: VAL = IMAGE_PATH ()
-- Built-in Function: OLD_VAL = IMAGE_PATH (NEW_VAL)
Query or set the internal variable that specifies a colon separated list of directories in which to search for image files.
# name: <cell-element>
# type: string
# elements: 1
# length: 123
Query or set the internal variable that specifies a colon separated list of directories in which to search for image files.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
OCTAVE_HOME
# name: <cell-element>
# type: string
# elements: 1
# length: 111
-- Built-in Function: OCTAVE_HOME ()
Return the name of the top-level Octave installation directory.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return the name of the top-level Octave installation directory.
# name: <cell-element>
# type: string
# elements: 1
# length: 14
OCTAVE_VERSION
# name: <cell-element>
# type: string
# elements: 1
# length: 100
-- Built-in Function: OCTAVE_VERSION ()
Return the version number of Octave, as a string.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Return the version number of Octave, as a string.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
det
# name: <cell-element>
# type: string
# elements: 1
# length: 205
-- Loadable Function: [D, RCOND] = det (A)
Compute the determinant of A using LAPACK for full and UMFPACK for sparse matrices. Return an estimate of the reciprocal condition number if requested.
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Compute the determinant of A using LAPACK for full and UMFPACK for sparse matrices.
# name: <cell-element>
# type: string
# elements: 1
# length: 2
cd
# name: <cell-element>
# type: string
# elements: 1
# length: 409
-- Command: cd dir
-- Command: chdir dir
Change the current working directory to DIR. If DIR is omitted, the current directory is changed to the user's home directory. For example,
cd ~/octave
Changes the current working directory to `~/octave'. If the directory does not exist, an error message is printed and the working directory is not changed. See also: mkdir, rmdir, dir.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Change the current working directory to DIR.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
pwd
# name: <cell-element>
# type: string
# elements: 1
# length: 97
-- Built-in Function: pwd ()
Return the current working directory. See also: dir, ls.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Return the current working directory.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
readdir
# name: <cell-element>
# type: string
# elements: 1
# length: 356
-- Built-in Function: [FILES, ERR, MSG] = readdir (DIR)
Return names of the files in the directory DIR as a cell array of strings. If an error occurs, return an empty cell array in FILES.
If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message. See also: dir, glob.
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Return names of the files in the directory DIR as a cell array of strings.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
mkdir
# name: <cell-element>
# type: string
# elements: 1
# length: 402
-- Built-in Function: [STATUS, MSG, MSGID] = mkdir (DIR)
-- Built-in Function: [STATUS, MSG, MSGID] = mkdir (PARENT, DIR)
Create a directory named DIR in the directory PARENT.
If successful, STATUS is 1, with MSG and MSGID empty character strings. Otherwise, STATUS is 0, MSG contains a system-dependent error message, and MSGID contains a unique message identifier. See also: rmdir.
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Create a directory named DIR in the directory PARENT.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
rmdir
# name: <cell-element>
# type: string
# elements: 1
# length: 520
-- Built-in Function: [STATUS, MSG, MSGID] = rmdir (DIR)
-- Built-in Function: [STATUS, MSG, MSGID] = rmdir (DIR, `"s"')
Remove the directory named DIR.
If successful, STATUS is 1, with MSG and MSGID empty character strings. Otherwise, STATUS is 0, MSG contains a system-dependent error message, and MSGID contains a unique message identifier.
If the optional second parameter is supplied with value `"s"', recursively remove all subdirectories as well. See also: mkdir, confirm_recursive_rmdir.
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Remove the directory named DIR.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
link
# name: <cell-element>
# type: string
# elements: 1
# length: 283
-- Built-in Function: [ERR, MSG] = link (OLD, NEW)
Create a new link (also known as a hard link) to an existing file.
If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message. See also: symlink.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Create a new link (also known as a hard link) to an existing file.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
symlink
# name: <cell-element>
# type: string
# elements: 1
# length: 284
-- Built-in Function: [ERR, MSG] = symlink (OLD, NEW)
Create a symbolic link NEW which contains the string OLD.
If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message. See also: link, readlink.
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Create a symbolic link NEW which contains the string OLD.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
readlink
# name: <cell-element>
# type: string
# elements: 1
# length: 337
-- Built-in Function: [RESULT, ERR, MSG] = readlink (SYMLINK)
Read the value of the symbolic link SYMLINK.
If successful, RESULT contains the contents of the symbolic link SYMLINK, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message. See also: link, symlink.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Read the value of the symbolic link SYMLINK.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
rename
# name: <cell-element>
# type: string
# elements: 1
# length: 254
-- Built-in Function: [ERR, MSG] = rename (OLD, NEW)
Change the name of file OLD to NEW.
If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message. See also: ls, dir.
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Change the name of file OLD to NEW.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
glob
# name: <cell-element>
# type: string
# elements: 1
# length: 423
-- Built-in Function: glob (PATTERN)
Given an array of strings (as a char array or a cell array) in PATTERN, return a cell array of file names that match any of them, or an empty cell array if no patterns match. Tilde expansion is performed on each of the patterns before looking for matching file names. For example,
glob ("/vm*")
=> "/vmlinuz"
See also: dir, ls, stat, readdir.
# name: <cell-element>
# type: string
# elements: 1
# length: 174
Given an array of strings (as a char array or a cell array) in PATTERN, return a cell array of file names that match any of them, or an empty cell array if no patterns match.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
fnmatch
# name: <cell-element>
# type: string
# elements: 1
# length: 304
-- Built-in Function: fnmatch (PATTERN, STRING)
Return 1 or zero for each element of STRING that matches any of the elements of the string array PATTERN, using the rules of filename pattern matching. For example,
fnmatch ("a*b", {"ab"; "axyzb"; "xyzab"})
=> [ 1; 1; 0 ]
# name: <cell-element>
# type: string
# elements: 1
# length: 151
Return 1 or zero for each element of STRING that matches any of the elements of the string array PATTERN, using the rules of filename pattern matching.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
filesep
# name: <cell-element>
# type: string
# elements: 1
# length: 433
-- Built-in Function: filesep ()
-- Built-in Function: filesep ('all')
Return the system-dependent character used to separate directory names.
If 'all' is given, the function return all valid file separators in the form of a string. The list of file separators is system-dependent. It is / (forward slash) under UNIX or Mac OS X, / and \ (forward and backward slashes) under Windows. See also: pathsep, dir, ls.
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Return the system-dependent character used to separate directory names.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
pathsep
# name: <cell-element>
# type: string
# elements: 1
# length: 195
-- Built-in Function: VAL = pathsep ()
-- Built-in Function: OLD_VAL = pathsep (NEW_VAL)
Query or set the character used to separate directories in a path. See also: filesep, dir, ls.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Query or set the character used to separate directories in a path.
# name: <cell-element>
# type: string
# elements: 1
# length: 23
confirm_recursive_rmdir
# name: <cell-element>
# type: string
# elements: 1
# length: 267
-- Built-in Function: VAL = confirm_recursive_rmdir ()
-- Built-in Function: OLD_VAL = confirm_recursive_rmdir (NEW_VAL)
Query or set the internal variable that controls whether Octave will ask for confirmation before recursively removing a directory tree.
# name: <cell-element>
# type: string
# elements: 1
# length: 135
Query or set the internal variable that controls whether Octave will ask for confirmation before recursively removing a directory tree.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
builtin
# name: <cell-element>
# type: string
# elements: 1
# length: 177
-- Loadable Function: [...] builtin (F, ...)
Call the base function F even if F is overloaded to some other function for the given type signature. See also: dispatch.
# name: <cell-element>
# type: string
# elements: 1
# length: 101
Call the base function F even if F is overloaded to some other function for the given type signature.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
dispatch
# name: <cell-element>
# type: string
# elements: 1
# length: 463
-- Loadable Function: dispatch (F, R, TYPE)
Replace the function F with a dispatch so that function R is called when F is called with the first argument of the named TYPE. If the type is ANY then call R if no other type matches. The original function F is accessible using `builtin (F, ...)'.
If R is omitted, clear dispatch function associated with TYPE.
If both R and TYPE are omitted, list dispatch functions for F. See also: builtin.
# name: <cell-element>
# type: string
# elements: 1
# length: 127
Replace the function F with a dispatch so that function R is called when F is called with the first argument of the named TYPE.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
dlmread
# name: <cell-element>
# type: string
# elements: 1
# length: 795
-- Loadable Function: DATA = dlmread (FILE)
-- Loadable Function: DATA = dlmread (FILE, SEP)
-- Loadable Function: DATA = dlmread (FILE, SEP, R0, C0)
-- Loadable Function: DATA = dlmread (FILE, SEP, RANGE)
Read the matrix DATA from a text file. If not defined the separator between fields is determined from the file itself. Otherwise the separation character is defined by SEP.
Given two scalar arguments R0 and C0, these define the starting row and column of the data to be read. These values are indexed from zero, such that the first row corresponds to an index of zero.
The RANGE parameter must be a 4 element vector containing the upper left and lower right corner `[R0,C0,R1,C1]' or a spreadsheet style range such as 'A2..Q15'. The lowest index value is zero.
# name: <cell-element>
# type: string
# elements: 1
# length: 38
Read the matrix DATA from a text file.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
dmperm
# name: <cell-element>
# type: string
# elements: 1
# length: 714
-- Loadable Function: P = dmperm (S)
-- Loadable Function: [P, Q, R, S] = dmperm (S)
Perform a Dulmage-Mendelsohn permutation on the sparse matrix S. With a single output argument "dmperm" performs the row permutations P such that `S (P,:)' has no zero elements on the diagonal.
Called with two or more output arguments, returns the row and column permutations, such that `S (P, Q)' is in block triangular form. The values of R and S define the boundaries of the blocks. If S is square then `R == S'.
The method used is described in: A. Pothen & C.-J. Fan. Computing the block triangular form of a sparse matrix. ACM Trans. Math. Software, 16(4):303-324, 1990. See also: colamd, ccolamd.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Perform a Dulmage-Mendelsohn permutation on the sparse matrix S.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
sprank
# name: <cell-element>
# type: string
# elements: 1
# length: 400
-- Loadable Function: P = sprank (S)
Calculates the structural rank of a sparse matrix S. Note that only the structure of the matrix is used in this calculation based on a Dulmage-Mendelsohn permutation to block triangular form. As such the numerical rank of the matrix S is bounded by `sprank (S) >= rank (S)'. Ignoring floating point errors `sprank (S) == rank (S)'. See also: dmperm.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Calculates the structural rank of a sparse matrix S.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
eig
# name: <cell-element>
# type: string
# elements: 1
# length: 565
-- Loadable Function: LAMBDA = eig (A)
-- Loadable Function: LAMBDA = eig (A, B)
-- Loadable Function: [V, LAMBDA] = eig (A)
-- Loadable Function: [V, LAMBDA] = eig (A, B)
The eigenvalues (and eigenvectors) of a matrix are computed in a several step process which begins with a Hessenberg decomposition, followed by a Schur decomposition, from which the eigenvalues are apparent. The eigenvectors, when desired, are computed by further manipulations of the Schur decomposition.
The eigenvalues returned by `eig' are not ordered. See also: eigs.
# name: <cell-element>
# type: string
# elements: 1
# length: 207
The eigenvalues (and eigenvectors) of a matrix are computed in a several step process which begins with a Hessenberg decomposition, followed by a Schur decomposition, from which the eigenvalues are apparent.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
eigs
# name: <cell-element>
# type: string
# elements: 1
# length: 5508
-- Loadable Function: D = eigs (A)
-- Loadable Function: D = eigs (A, K)
-- Loadable Function: D = eigs (A, K, SIGMA)
-- Loadable Function: D = eigs (A, K, SIGMA,OPTS)
-- Loadable Function: D = eigs (A, B)
-- Loadable Function: D = eigs (A, B, K)
-- Loadable Function: D = eigs (A, B, K, SIGMA)
-- Loadable Function: D = eigs (A, B, K, SIGMA, OPTS)
-- Loadable Function: D = eigs (AF, N)
-- Loadable Function: D = eigs (AF, N, B)
-- Loadable Function: D = eigs (AF, N, K)
-- Loadable Function: D = eigs (AF, N, B, K)
-- Loadable Function: D = eigs (AF, N, K, SIGMA)
-- Loadable Function: D = eigs (AF, N, B, K, SIGMA)
-- Loadable Function: D = eigs (AF, N, K, SIGMA, OPTS)
-- Loadable Function: D = eigs (AF, N, B, K, SIGMA, OPTS)
-- Loadable Function: [V, D] = eigs (A, ...)
-- Loadable Function: [V, D] = eigs (AF, N, ...)
-- Loadable Function: [V, D, FLAG] = eigs (A, ...)
-- Loadable Function: [V, D, FLAG] = eigs (AF, N, ...)
Calculate a limited number of eigenvalues and eigenvectors of A, based on a selection criteria. The number eigenvalues and eigenvectors to calculate is given by K whose default value is 6.
By default `eigs' solve the equation `A * v = lambda * v' , where `lambda' is a scalar representing one of the eigenvalues, and `v' is the corresponding eigenvector. If given the positive definite matrix B then `eigs' solves the general eigenvalue equation `A * v = lambda * B * v' .
The argument SIGMA determines which eigenvalues are returned. SIGMA can be either a scalar or a string. When SIGMA is a scalar, the K eigenvalues closest to SIGMA are returned. If SIGMA is a string, it must have one of the values
'lm'
Largest magnitude (default).
'sm'
Smallest magnitude.
'la'
Largest Algebraic (valid only for real symmetric problems).
'sa'
Smallest Algebraic (valid only for real symmetric problems).
'be'
Both ends, with one more from the high-end if K is odd (valid only for real symmetric problems).
'lr'
Largest real part (valid only for complex or unsymmetric problems).
'sr'
Smallest real part (valid only for complex or unsymmetric problems).
'li'
Largest imaginary part (valid only for complex or unsymmetric problems).
'si'
Smallest imaginary part (valid only for complex or unsymmetric problems).
If OPTS is given, it is a structure defining some of the options that `eigs' should use. The fields of the structure OPTS are
`issym'
If AF is given, then flags whether the function AF defines a symmetric problem. It is ignored if A is given. The default is false.
`isreal'
If AF is given, then flags whether the function AF defines a real problem. It is ignored if A is given. The default is true.
`tol'
Defines the required convergence tolerance, given as `tol * norm (A)'. The default is `eps'.
`maxit'
The maximum number of iterations. The default is 300.
`p'
The number of Lanzcos basis vectors to use. More vectors will result in faster convergence, but a larger amount of memory. The optimal value of 'p' is problem dependent and should be in the range K to N. The default value is `2 * K'.
`v0'
The starting vector for the computation. The default is to have ARPACK randomly generate a starting vector.
`disp'
The level of diagnostic printout. If `disp' is 0 then there is no printout. The default value is 1.
`cholB'
Flag if `chol (B)' is passed rather than B. The default is false.
`permB'
The permutation vector of the Cholesky factorization of B if `cholB' is true. That is `chol ( B (permB, permB))'. The default is `1:N'.
It is also possible to represent A by a function denoted AF. AF must be followed by a scalar argument N defining the length of the vector argument accepted by AF. AF can be passed either as an inline function, function handle or as a string. In the case where AF is passed as a string, the name of the string defines the function to use.
AF is a function of the form `function y = af (x), y = ...; endfunction', where the required return value of AF is determined by the value of SIGMA, and are
`A * x'
If SIGMA is not given or is a string other than 'sm'.
`A \ x'
If SIGMA is 'sm'.
`(A - sigma * I) \ x'
for standard eigenvalue problem, where `I' is the identity matrix of the same size as `A'. If SIGMA is zero, this reduces the `A \ x'.
`(A - sigma * B) \ x'
for the general eigenvalue problem.
The return arguments of `eigs' depends on the number of return arguments. With a single return argument, a vector D of length K is returned, represent the K eigenvalues that have been found. With two return arguments, V is a N-by-K matrix whose columns are the K eigenvectors corresponding to the returned eigenvalues. The eigenvalues themselves are then returned in D in the form of a N-by-K matrix, where the elements on the diagonal are the eigenvalues.
Given a third return argument FLAG, `eigs' also returns the status of the convergence. If FLAG is 0, then all eigenvalues have converged, otherwise not.
This function is based on the ARPACK package, written by R Lehoucq, K Maschhoff, D Sorensen and C Yang. For more information see `http://www.caam.rice.edu/software/ARPACK/'.
See also: eig, svds.
# name: <cell-element>
# type: string
# elements: 1
# length: 95
Calculate a limited number of eigenvalues and eigenvectors of A, based on a selection criteria.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
rethrow
# name: <cell-element>
# type: string
# elements: 1
# length: 359
-- Built-in Function: rethrow (ERR)
Reissues a previous error as defined by ERR. ERR is a structure that must contain at least the 'message' and 'identifier' fields. ERR can also contain a field 'stack' that gives information on the assumed location of the error. Typically ERR is returned from `lasterror'. See also: lasterror, lasterr, error.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Reissues a previous error as defined by ERR.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
error
# name: <cell-element>
# type: string
# elements: 1
# length: 1719
-- Built-in Function: error (TEMPLATE, ...)
-- Built-in Function: error (ID, TEMPLATE, ...)
Format the optional arguments under the control of the template string TEMPLATE using the same rules as the `printf' family of functions (*note Formatted Output::) and print the resulting message on the `stderr' stream. The message is prefixed by the character string `error: '.
Calling `error' also sets Octave's internal error state such that control will return to the top level without evaluating any more commands. This is useful for aborting from functions or scripts.
If the error message does not end with a new line character, Octave will print a traceback of all the function calls leading to the error. For example, given the following function definitions:
function f () g (); end
function g () h (); end
function h () nargin == 1 || error ("nargin != 1"); end
calling the function `f' will result in a list of messages that can help you to quickly locate the exact location of the error:
f ()
error: nargin != 1
error: called from:
error: error at line -1, column -1
error: h at line 1, column 27
error: g at line 1, column 15
error: f at line 1, column 15
If the error message ends in a new line character, Octave will print the message but will not display any traceback messages as it returns control to the top level. For example, modifying the error message in the previous example to end in a new line causes Octave to only print a single message:
function h () nargin == 1 || error ("nargin != 1\n"); end
f ()
error: nargin != 1
# name: <cell-element>
# type: string
# elements: 1
# length: 219
Format the optional arguments under the control of the template string TEMPLATE using the same rules as the `printf' family of functions (*note Formatted Output::) and print the resulting message on the `stderr' stream.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
warning
# name: <cell-element>
# type: string
# elements: 1
# length: 1166
-- Built-in Function: warning (TEMPLATE, ...)
-- Built-in Function: warning (ID, TEMPLATE, ...)
Format the optional arguments under the control of the template string TEMPLATE using the same rules as the `printf' family of functions (*note Formatted Output::) and print the resulting message on the `stderr' stream. The message is prefixed by the character string `warning: '. You should use this function when you want to notify the user of an unusual condition, but only when it makes sense for your program to go on.
The optional message identifier allows users to enable or disable warnings tagged by ID. The special identifier `"all"' may be used to set the state of all warnings.
-- Built-in Function: warning ("on", ID)
-- Built-in Function: warning ("off", ID)
-- Built-in Function: warning ("error", ID)
-- Built-in Function: warning ("query", ID)
Set or query the state of a particular warning using the identifier ID. If the identifier is omitted, a value of `"all"' is assumed. If you set the state of a warning to `"error"', the warning named by ID is handled as if it were an error instead. See also: warning_ids.
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Set or query the state of a particular warning using the identifier ID.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
lasterror
# name: <cell-element>
# type: string
# elements: 1
# length: 1405
-- Built-in Function: ERR = lasterror (ERR)
-- Built-in Function: lasterror ('reset')
Returns or sets the last error message. Called without any arguments returns a structure containing the last error message, as well as other information related to this error. The elements of this structure are:
'message'
The text of the last error message
'identifier'
The message identifier of this error message
'stack'
A structure containing information on where the message occurred. This might be an empty structure if this in the case where this information cannot be obtained. The fields of this structure are:
'file'
The name of the file where the error occurred
'name'
The name of function in which the error occurred
'line'
The line number at which the error occurred
'column'
An optional field with the column number at which the error occurred
The ERR structure may also be passed to `lasterror' to set the information about the last error. The only constraint on ERR in that case is that it is a scalar structure. Any fields of ERR that match the above are set to the value passed in ERR, while other fields are set to their default values.
If `lasterror' is called with the argument 'reset', all values take their default values.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Returns or sets the last error message.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
lasterr
# name: <cell-element>
# type: string
# elements: 1
# length: 235
-- Built-in Function: [MSG, MSGID] = lasterr (MSG, MSGID)
Without any arguments, return the last error message. With one argument, set the last error message to MSG. With two arguments, also set the last message identifier.
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Without any arguments, return the last error message.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
lastwarn
# name: <cell-element>
# type: string
# elements: 1
# length: 240
-- Built-in Function: [MSG, MSGID] = lastwarn (MSG, MSGID)
Without any arguments, return the last warning message. With one argument, set the last warning message to MSG. With two arguments, also set the last message identifier.
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Without any arguments, return the last warning message.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
usage
# name: <cell-element>
# type: string
# elements: 1
# length: 814
-- Built-in Function: usage (MSG)
Print the message MSG, prefixed by the string `usage: ', and set Octave's internal error state such that control will return to the top level without evaluating any more commands. This is useful for aborting from functions.
After `usage' is evaluated, Octave will print a traceback of all the function calls leading to the usage message.
You should use this function for reporting problems errors that result from an improper call to a function, such as calling a function with an incorrect number of arguments, or with arguments of the wrong type. For example, most functions distributed with Octave begin with code like this
if (nargin != 2)
usage ("foo (a, b)");
endif
to check for the proper number of arguments.
# name: <cell-element>
# type: string
# elements: 1
# length: 179
Print the message MSG, prefixed by the string `usage: ', and set Octave's internal error state such that control will return to the top level without evaluating any more commands.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
beep_on_error
# name: <cell-element>
# type: string
# elements: 1
# length: 244
-- Built-in Function: VAL = beep_on_error ()
-- Built-in Function: OLD_VAL = beep_on_error (NEW_VAL)
Query or set the internal variable that controls whether Octave will try to ring the terminal bell before printing an error message.
# name: <cell-element>
# type: string
# elements: 1
# length: 132
Query or set the internal variable that controls whether Octave will try to ring the terminal bell before printing an error message.
# name: <cell-element>
# type: string
# elements: 1
# length: 14
debug_on_error
# name: <cell-element>
# type: string
# elements: 1
# length: 352
-- Built-in Function: VAL = debug_on_error ()
-- Built-in Function: OLD_VAL = debug_on_error (NEW_VAL)
Query or set the internal variable that controls whether Octave will try to enter the debugger when an error is encountered. This will also inhibit printing of the normal traceback message (you will only see the top-level error message).
# name: <cell-element>
# type: string
# elements: 1
# length: 124
Query or set the internal variable that controls whether Octave will try to enter the debugger when an error is encountered.
# name: <cell-element>
# type: string
# elements: 1
# length: 16
debug_on_warning
# name: <cell-element>
# type: string
# elements: 1
# length: 243
-- Built-in Function: VAL = debug_on_warning ()
-- Built-in Function: OLD_VAL = debug_on_warning (NEW_VAL)
Query or set the internal variable that controls whether Octave will try to enter the debugger when a warning is encountered.
# name: <cell-element>
# type: string
# elements: 1
# length: 125
Query or set the internal variable that controls whether Octave will try to enter the debugger when a warning is encountered.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
fft
# name: <cell-element>
# type: string
# elements: 1
# length: 802
-- Loadable Function: fft (A, N, DIM)
Compute the FFT of A using subroutines from FFTW. The FFT is calculated along the first non-singleton dimension of the array. Thus if A is a matrix, `fft (A)' computes the FFT for each column of A.
If called with two arguments, N is expected to be an integer specifying the number of elements of A to use, or an empty matrix to specify that its value should be ignored. If N is larger than the dimension along which the FFT is calculated, then A is resized and padded with zeros. Otherwise, if N is smaller than the dimension along which the FFT is calculated, then A is truncated.
If called with three arguments, DIM is an integer specifying the dimension of the matrix along which the FFT is performed See also: ifft, fft2, fftn, fftw.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Compute the FFT of A using subroutines from FFTW.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
ifft
# name: <cell-element>
# type: string
# elements: 1
# length: 851
-- Loadable Function: ifft (A, N, DIM)
Compute the inverse FFT of A using subroutines from FFTW. The inverse FFT is calculated along the first non-singleton dimension of the array. Thus if A is a matrix, `fft (A)' computes the inverse FFT for each column of A.
If called with two arguments, N is expected to be an integer specifying the number of elements of A to use, or an empty matrix to specify that its value should be ignored. If N is larger than the dimension along which the inverse FFT is calculated, then A is resized and padded with zeros. Otherwise, ifN is smaller than the dimension along which the inverse FFT is calculated, then A is truncated.
If called with three arguments, DIM is an integer specifying the dimension of the matrix along which the inverse FFT is performed See also: fft, ifft2, ifftn, fftw.
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Compute the inverse FFT of A using subroutines from FFTW.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
fft2
# name: <cell-element>
# type: string
# elements: 1
# length: 430
-- Loadable Function: fft2 (A, N, M)
Compute the two-dimensional FFT of A using subroutines from FFTW. The optional arguments N and M may be used specify the number of rows and columns of A to use. If either of these is larger than the size of A, A is resized and padded with zeros.
If A is a multi-dimensional matrix, each two-dimensional sub-matrix of A is treated separately See also: ifft2, fft, fftn, fftw.
# name: <cell-element>
# type: string
# elements: 1
# length: 65
Compute the two-dimensional FFT of A using subroutines from FFTW.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
ifft2
# name: <cell-element>
# type: string
# elements: 1
# length: 439
-- Loadable Function: fft2 (A, N, M)
Compute the inverse two-dimensional FFT of A using subroutines from FFTW. The optional arguments N and M may be used specify the number of rows and columns of A to use. If either of these is larger than the size of A, A is resized and padded with zeros.
If A is a multi-dimensional matrix, each two-dimensional sub-matrix of A is treated separately See also: fft2, ifft, ifftn, fftw.
# name: <cell-element>
# type: string
# elements: 1
# length: 73
Compute the inverse two-dimensional FFT of A using subroutines from FFTW.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
fftn
# name: <cell-element>
# type: string
# elements: 1
# length: 482
-- Loadable Function: fftn (A, SIZE)
Compute the N-dimensional FFT of A using subroutines from FFTW. The optional vector argument SIZE may be used specify the dimensions of the array to be used. If an element of SIZE is smaller than the corresponding dimension, then the dimension is truncated prior to performing the FFT. Otherwise if an element of SIZE is larger than the corresponding dimension A is resized and padded with zeros. See also: ifftn, fft, fft2, fftw.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Compute the N-dimensional FFT of A using subroutines from FFTW.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
ifftn
# name: <cell-element>
# type: string
# elements: 1
# length: 500
-- Loadable Function: ifftn (A, SIZE)
Compute the inverse N-dimensional FFT of A using subroutines from FFTW. The optional vector argument SIZE may be used specify the dimensions of the array to be used. If an element of SIZE is smaller than the corresponding dimension, then the dimension is truncated prior to performing the inverse FFT. Otherwise if an element of SIZE is larger than the corresponding dimension A is resized and padded with zeros. See also: fftn, ifft, ifft2, fftw.
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Compute the inverse N-dimensional FFT of A using subroutines from FFTW.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
fftw
# name: <cell-element>
# type: string
# elements: 1
# length: 2792
-- Loadable Function: METHOD = fftw ('planner')
-- Loadable Function: fftw ('planner', METHOD)
-- Loadable Function: WISDOM = fftw ('dwisdom')
-- Loadable Function: WISDOM = fftw ('dwisdom', WISDOM)
Manage FFTW wisdom data. Wisdom data can be used to significantly accelerate the calculation of the FFTs but implies an initial cost in its calculation. When the FFTW libraries are initialized, they read a system wide wisdom file (typically in `/etc/fftw/wisdom'), allowing wisdom to be shared between applications other than Octave. Alternatively, the `fftw' function can be used to import wisdom. For example
WISDOM = fftw ('dwisdom')
will save the existing wisdom used by Octave to the string WISDOM. This string can then be saved to a file and restored using the `save' and `load' commands respectively. This existing wisdom can be reimported as follows
fftw ('dwisdom', WISDOM)
If WISDOM is an empty matrix, then the wisdom used is cleared.
During the calculation of Fourier transforms further wisdom is generated. The fashion in which this wisdom is generated is equally controlled by the `fftw' function. There are five different manners in which the wisdom can be treated, these being
'estimate'
This specifies that no run-time measurement of the optimal means of calculating a particular is performed, and a simple heuristic is used to pick a (probably sub-optimal) plan. The advantage of this method is that there is little or no overhead in the generation of the plan, which is appropriate for a Fourier transform that will be calculated once.
'measure'
In this case a range of algorithms to perform the transform is considered and the best is selected based on their execution time.
'patient'
This is like 'measure', but a wider range of algorithms is considered.
'exhaustive'
This is like 'measure', but all possible algorithms that may be used to treat the transform are considered.
'hybrid'
As run-time measurement of the algorithm can be expensive, this is a compromise where 'measure' is used for transforms up to the size of 8192 and beyond that the 'estimate' method is used.
The default method is 'estimate', and the method currently being used can be probed with
METHOD = fftw ('planner')
and the method used can be set using
fftw ('planner', METHOD)
Note that calculated wisdom will be lost when restarting Octave. However, the wisdom data can be reloaded if it is saved to a file as described above. Saved wisdom files should not be used on different platforms since they will not be efficient and the point of calculating the wisdom is lost. See also: fft, ifft, fft2, ifft2, fftn, ifftn.
# name: <cell-element>
# type: string
# elements: 1
# length: 24
Manage FFTW wisdom data.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
fclose
# name: <cell-element>
# type: string
# elements: 1
# length: 166
-- Built-in Function: fclose (FID)
Closes the specified file. If successful, `fclose' returns 0, otherwise, it returns -1. See also: fopen, fseek, ftell.
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Closes the specified file.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
fclear
# name: <cell-element>
# type: string
# elements: 1
# length: 92
-- Built-in Function: fclear (FID)
Clear the stream state for the specified file.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Clear the stream state for the specified file.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
fflush
# name: <cell-element>
# type: string
# elements: 1
# length: 390
-- Built-in Function: fflush (FID)
Flush output to FID. This is useful for ensuring that all pending output makes it to the screen before some other event occurs. For example, it is always a good idea to flush the standard output stream before calling `input'.
`fflush' returns 0 on success and an OS dependent error value (-1 on unix) on error. See also: fopen, fclose.
# name: <cell-element>
# type: string
# elements: 1
# length: 20
Flush output to FID.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
fgetl
# name: <cell-element>
# type: string
# elements: 1
# length: 401
-- Built-in Function: fgetl (FID, LEN)
Read characters from a file, stopping after a newline, or EOF, or LEN characters have been read. The characters read, excluding the possible trailing newline, are returned as a string.
If LEN is omitted, `fgetl' reads until the next newline character.
If there are no more characters to read, `fgetl' returns -1. See also: fread, fscanf.
# name: <cell-element>
# type: string
# elements: 1
# length: 96
Read characters from a file, stopping after a newline, or EOF, or LEN characters have been read.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
fgets
# name: <cell-element>
# type: string
# elements: 1
# length: 415
-- Built-in Function: fgets (FID, LEN)
Read characters from a file, stopping after a newline, or EOF, or LEN characters have been read. The characters read, including the possible trailing newline, are returned as a string.
If LEN is omitted, `fgets' reads until the next newline character.
If there are no more characters to read, `fgets' returns -1. See also: fputs, fopen, fread, fscanf.
# name: <cell-element>
# type: string
# elements: 1
# length: 96
Read characters from a file, stopping after a newline, or EOF, or LEN characters have been read.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
fopen
# name: <cell-element>
# type: string
# elements: 1
# length: 3128
-- Built-in Function: [FID, MSG] = fopen (NAME, MODE, ARCH)
-- Built-in Function: FID_LIST = fopen ("all")
-- Built-in Function: [FILE, MODE, ARCH] = fopen (FID)
The first form of the `fopen' function opens the named file with the specified mode (read-write, read-only, etc.) and architecture interpretation (IEEE big endian, IEEE little endian, etc.), and returns an integer value that may be used to refer to the file later. If an error occurs, FID is set to -1 and MSG contains the corresponding system error message. The MODE is a one or two character string that specifies whether the file is to be opened for reading, writing, or both.
The second form of the `fopen' function returns a vector of file ids corresponding to all the currently open files, excluding the `stdin', `stdout', and `stderr' streams.
The third form of the `fopen' function returns information about the open file given its file id.
For example,
myfile = fopen ("splat.dat", "r", "ieee-le");
opens the file `splat.dat' for reading. If necessary, binary numeric values will be read assuming they are stored in IEEE format with the least significant bit first, and then converted to the native representation.
Opening a file that is already open simply opens it again and returns a separate file id. It is not an error to open a file several times, though writing to the same file through several different file ids may produce unexpected results.
The possible values `mode' may have are
`r'
Open a file for reading.
`w'
Open a file for writing. The previous contents are discarded.
`a'
Open or create a file for writing at the end of the file.
`r+'
Open an existing file for reading and writing.
`w+'
Open a file for reading or writing. The previous contents are discarded.
`a+'
Open or create a file for reading or writing at the end of the file.
Append a "t" to the mode string to open the file in text mode or a "b" to open in binary mode. On Windows and Macintosh systems, text mode reading and writing automatically converts linefeeds to the appropriate line end character for the system (carriage-return linefeed on Windows, carriage-return on Macintosh). The default if no mode is specified is binary mode.
Additionally, you may append a "z" to the mode string to open a gzipped file for reading or writing. For this to be successful, you must also open the file in binary mode.
The parameter ARCH is a string specifying the default data format for the file. Valid values for ARCH are:
`native' The format of the current machine (this is the default).
`ieee-be' IEEE big endian format.
`ieee-le' IEEE little endian format.
`vaxd' VAX D floating format.
`vaxg' VAX G floating format.
`cray' Cray floating format.
however, conversions are currently only supported for `native' `ieee-be', and `ieee-le' formats. See also: fclose, fgets, fputs, fread, fseek, ferror, fprintf, fscanf, ftell, fwrite.
# name: <cell-element>
# type: string
# elements: 1
# length: 112
The first form of the `fopen' function opens the named file with the specified mode (read-write, read-only, etc.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
freport
# name: <cell-element>
# type: string
# elements: 1
# length: 395
-- Built-in Function: freport ()
Print a list of which files have been opened, and whether they are open for reading, writing, or both. For example,
freport ()
-| number mode name
-|
-| 0 r stdin
-| 1 w stdout
-| 2 w stderr
-| 3 r myfile
# name: <cell-element>
# type: string
# elements: 1
# length: 102
Print a list of which files have been opened, and whether they are open for reading, writing, or both.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
frewind
# name: <cell-element>
# type: string
# elements: 1
# length: 212
-- Built-in Function: frewind (FID)
Move the file pointer to the beginning of the file FID, returning 0 for success, and -1 if an error was encountered. It is equivalent to `fseek (FID, 0, SEEK_SET)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 116
Move the file pointer to the beginning of the file FID, returning 0 for success, and -1 if an error was encountered.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
fseek
# name: <cell-element>
# type: string
# elements: 1
# length: 569
-- Built-in Function: fseek (FID, OFFSET, ORIGIN)
Set the file pointer to any location within the file FID.
The pointer is positioned OFFSET characters from the ORIGIN, which may be one of the predefined variables `SEEK_CUR' (current position), `SEEK_SET' (beginning), or `SEEK_END' (end of file) or strings "cof", "bof" or "eof". If ORIGIN is omitted, `SEEK_SET' is assumed. The offset must be zero, or a value returned by `ftell' (in which case ORIGIN must be `SEEK_SET').
Return 0 on success and -1 on error. See also: ftell, fopen, fclose.
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Set the file pointer to any location within the file FID.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
ftell
# name: <cell-element>
# type: string
# elements: 1
# length: 181
-- Built-in Function: ftell (FID)
Return the position of the file pointer as the number of characters from the beginning of the file FID. See also: fseek, fopen, fclose.
# name: <cell-element>
# type: string
# elements: 1
# length: 103
Return the position of the file pointer as the number of characters from the beginning of the file FID.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
fprintf
# name: <cell-element>
# type: string
# elements: 1
# length: 284
-- Built-in Function: fprintf (FID, TEMPLATE, ...)
This function is just like `printf', except that the output is written to the stream FID instead of `stdout'. If FID is omitted, the output is written to `stdout'. See also: printf, sprintf, fread, fscanf, fopen, fclose.
# name: <cell-element>
# type: string
# elements: 1
# length: 109
This function is just like `printf', except that the output is written to the stream FID instead of `stdout'.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
printf
# name: <cell-element>
# type: string
# elements: 1
# length: 363
-- Built-in Function: printf (TEMPLATE, ...)
Print optional arguments under the control of the template string TEMPLATE to the stream `stdout' and return the number of characters printed.
See the Formatted Output section of the GNU Octave manual for a complete description of the syntax of the template string. See also: fprintf, sprintf, scanf.
# name: <cell-element>
# type: string
# elements: 1
# length: 142
Print optional arguments under the control of the template string TEMPLATE to the stream `stdout' and return the number of characters printed.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
fputs
# name: <cell-element>
# type: string
# elements: 1
# length: 218
-- Built-in Function: fputs (FID, STRING)
Write a string to a file with no formatting.
Return a non-negative number on success and EOF on error. See also: scanf, sscanf, fread, fprintf, fgets, fscanf.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Write a string to a file with no formatting.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
puts
# name: <cell-element>
# type: string
# elements: 1
# length: 168
-- Built-in Function: puts (STRING)
Write a string to the standard output with no formatting.
Return a non-negative number on success and EOF on error.
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Write a string to the standard output with no formatting.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
sprintf
# name: <cell-element>
# type: string
# elements: 1
# length: 369
-- Built-in Function: sprintf (TEMPLATE, ...)
This is like `printf', except that the output is returned as a string. Unlike the C library function, which requires you to provide a suitably sized string as an argument, Octave's `sprintf' function returns the string, automatically sized to hold all of the items converted. See also: printf, fprintf, sscanf.
# name: <cell-element>
# type: string
# elements: 1
# length: 70
This is like `printf', except that the output is returned as a string.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
fscanf
# name: <cell-element>
# type: string
# elements: 1
# length: 1535
-- Built-in Function: [VAL, COUNT] = fscanf (FID, TEMPLATE, SIZE)
-- Built-in Function: [V1, V2, ..., COUNT] = fscanf (FID, TEMPLATE, "C")
In the first form, read from FID according to TEMPLATE, returning the result in the matrix VAL.
The optional argument SIZE specifies the amount of data to read and may be one of
`Inf'
Read as much as possible, returning a column vector.
`NR'
Read up to NR elements, returning a column vector.
`[NR, Inf]'
Read as much as possible, returning a matrix with NR rows. If the number of elements read is not an exact multiple of NR, the last column is padded with zeros.
`[NR, NC]'
Read up to `NR * NC' elements, returning a matrix with NR rows. If the number of elements read is not an exact multiple of NR, the last column is padded with zeros.
If SIZE is omitted, a value of `Inf' is assumed.
A string is returned if TEMPLATE specifies only character conversions.
The number of items successfully read is returned in COUNT.
In the second form, read from FID according to TEMPLATE, with each conversion specifier in TEMPLATE corresponding to a single scalar return value. This form is more `C-like', and also compatible with previous versions of Octave. The number of successful conversions is returned in COUNT
See the Formatted Input section of the GNU Octave manual for a complete description of the syntax of the template string. See also: scanf, sscanf, fread, fprintf, fgets, fputs.
# name: <cell-element>
# type: string
# elements: 1
# length: 95
In the first form, read from FID according to TEMPLATE, returning the result in the matrix VAL.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
sscanf
# name: <cell-element>
# type: string
# elements: 1
# length: 371
-- Built-in Function: [VAL, COUNT] = sscanf (STRING, TEMPLATE, SIZE)
-- Built-in Function: [V1, V2, ..., COUNT] = sscanf (STRING, TEMPLATE, "C")
This is like `fscanf', except that the characters are taken from the string STRING instead of from a stream. Reaching the end of the string is treated as an end-of-file condition. See also: fscanf, scanf, sprintf.
# name: <cell-element>
# type: string
# elements: 1
# length: 108
This is like `fscanf', except that the characters are taken from the string STRING instead of from a stream.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
scanf
# name: <cell-element>
# type: string
# elements: 1
# length: 306
-- Built-in Function: [VAL, COUNT] = scanf (TEMPLATE, SIZE)
-- Built-in Function: [V1, V2, ..., COUNT]] = scanf (TEMPLATE, "C")
This is equivalent to calling `fscanf' with FID = `stdin'.
It is currently not useful to call `scanf' in interactive programs. See also: fscanf, sscanf, printf.
# name: <cell-element>
# type: string
# elements: 1
# length: 58
This is equivalent to calling `fscanf' with FID = `stdin'.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
fread
# name: <cell-element>
# type: string
# elements: 1
# length: 4231
-- Built-in Function: [VAL, COUNT] = fread (FID, SIZE, PRECISION, SKIP, ARCH)
Read binary data of type PRECISION from the specified file ID FID.
The optional argument SIZE specifies the amount of data to read and may be one of
`Inf'
Read as much as possible, returning a column vector.
`NR'
Read up to NR elements, returning a column vector.
`[NR, Inf]'
Read as much as possible, returning a matrix with NR rows. If the number of elements read is not an exact multiple of NR, the last column is padded with zeros.
`[NR, NC]'
Read up to `NR * NC' elements, returning a matrix with NR rows. If the number of elements read is not an exact multiple of NR, the last column is padded with zeros.
If SIZE is omitted, a value of `Inf' is assumed.
The optional argument PRECISION is a string specifying the type of data to read and may be one of
`"schar"'
`"signed char"'
Signed character.
`"uchar"'
`"unsigned char"'
Unsigned character.
`"int8"'
`"integer*1"'
8-bit signed integer.
`"int16"'
`"integer*2"'
16-bit signed integer.
`"int32"'
`"integer*4"'
32-bit signed integer.
`"int64"'
`"integer*8"'
64-bit signed integer.
`"uint8"'
8-bit unsigned integer.
`"uint16"'
16-bit unsigned integer.
`"uint32"'
32-bit unsigned integer.
`"uint64"'
64-bit unsigned integer.
`"single"'
`"float32"'
`"real*4"'
32-bit floating point number.
`"double"'
`"float64"'
`"real*8"'
64-bit floating point number.
`"char"'
`"char*1"'
Single character.
`"short"'
Short integer (size is platform dependent).
`"int"'
Integer (size is platform dependent).
`"long"'
Long integer (size is platform dependent).
`"ushort"'
`"unsigned short"'
Unsigned short integer (size is platform dependent).
`"uint"'
`"unsigned int"'
Unsigned integer (size is platform dependent).
`"ulong"'
`"unsigned long"'
Unsigned long integer (size is platform dependent).
`"float"'
Single precision floating point number (size is platform dependent).
The default precision is `"uchar"'.
The PRECISION argument may also specify an optional repeat count. For example, `32*single' causes `fread' to read a block of 32 single precision floating point numbers. Reading in blocks is useful in combination with the SKIP argument.
The PRECISION argument may also specify a type conversion. For example, `int16=>int32' causes `fread' to read 16-bit integer values and return an array of 32-bit integer values. By default, `fread' returns a double precision array. The special form `*TYPE' is shorthand for `TYPE=>TYPE'.
The conversion and repeat counts may be combined. For example, the specification `32*single=>single' causes `fread' to read blocks of single precision floating point values and return an array of single precision values instead of the default array of double precision values.
The optional argument SKIP specifies the number of bytes to skip after each element (or block of elements) is read. If it is not specified, a value of 0 is assumed. If the final block read is not complete, the final skip is omitted. For example,
fread (f, 10, "3*single=>single", 8)
will omit the final 8-byte skip because the last read will not be a complete block of 3 values.
The optional argument ARCH is a string specifying the data format for the file. Valid values are
`"native"'
The format of the current machine.
`"ieee-be"'
IEEE big endian.
`"ieee-le"'
IEEE little endian.
`"vaxd"'
VAX D floating format.
`"vaxg"'
VAX G floating format.
`"cray"'
Cray floating format.
Conversions are currently only supported for `"ieee-be"' and `"ieee-le"' formats.
The data read from the file is returned in VAL, and the number of values read is returned in `count' See also: fwrite, fopen, fclose.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Read binary data of type PRECISION from the specified file ID FID.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
fwrite
# name: <cell-element>
# type: string
# elements: 1
# length: 615
-- Built-in Function: COUNT = fwrite (FID, DATA, PRECISION, SKIP, ARCH)
Write data in binary form of type PRECISION to the specified file ID FID, returning the number of values successfully written to the file.
The argument DATA is a matrix of values that are to be written to the file. The values are extracted in column-major order.
The remaining arguments PRECISION, SKIP, and ARCH are optional, and are interpreted as described for `fread'.
The behavior of `fwrite' is undefined if the values in DATA are too large to fit in the specified precision. See also: fread, fopen, fclose.
# name: <cell-element>
# type: string
# elements: 1
# length: 138
Write data in binary form of type PRECISION to the specified file ID FID, returning the number of values successfully written to the file.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
feof
# name: <cell-element>
# type: string
# elements: 1
# length: 326
-- Built-in Function: feof (FID)
Return 1 if an end-of-file condition has been encountered for a given file and 0 otherwise. Note that it will only return 1 if the end of the file has already been encountered, not if the next read operation will result in an end-of-file condition. See also: fread, fopen, fclose.
# name: <cell-element>
# type: string
# elements: 1
# length: 91
Return 1 if an end-of-file condition has been encountered for a given file and 0 otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
ferror
# name: <cell-element>
# type: string
# elements: 1
# length: 267
-- Built-in Function: ferror (FID)
Return 1 if an error condition has been encountered for a given file and 0 otherwise. Note that it will only return 1 if an error has already been encountered, not if the next operation will result in an error condition.
# name: <cell-element>
# type: string
# elements: 1
# length: 85
Return 1 if an error condition has been encountered for a given file and 0 otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
popen
# name: <cell-element>
# type: string
# elements: 1
# length: 853
-- Built-in Function: FID = popen (COMMAND, MODE)
Start a process and create a pipe. The name of the command to run is given by COMMAND. The file identifier corresponding to the input or output stream of the process is returned in FID. The argument MODE may be
`"r"'
The pipe will be connected to the standard output of the process, and open for reading.
`"w"'
The pipe will be connected to the standard input of the process, and open for writing.
For example,
fid = popen ("ls -ltr / | tail -3", "r");
while (ischar (s = fgets (fid)))
fputs (stdout, s);
endwhile
-| drwxr-xr-x 33 root root 3072 Feb 15 13:28 etc
-| drwxr-xr-x 3 root root 1024 Feb 15 13:28 lib
-| drwxrwxrwt 15 root root 2048 Feb 17 14:53 tmp
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Start a process and create a pipe.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
pclose
# name: <cell-element>
# type: string
# elements: 1
# length: 146
-- Built-in Function: pclose (FID)
Close a file identifier that was opened by `popen'. You may also use `fclose' for the same purpose.
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Close a file identifier that was opened by `popen'.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
tmpnam
# name: <cell-element>
# type: string
# elements: 1
# length: 541
-- Built-in Function: tmpnam (DIR, PREFIX)
Return a unique temporary file name as a string.
If PREFIX is omitted, a value of `"oct-"' is used. If DIR is also omitted, the default directory for temporary files is used. If DIR is provided, it must exist, otherwise the default directory for temporary files is used. Since the named file is not opened, by `tmpnam', it is possible (though relatively unlikely) that it will not be available by the time your program attempts to open it. See also: tmpfile, mkstemp, P_tmpdir.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return a unique temporary file name as a string.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
tmpfile
# name: <cell-element>
# type: string
# elements: 1
# length: 452
-- Built-in Function: [FID, MSG] = tmpfile ()
Return the file ID corresponding to a new temporary file with a unique name. The file is opened in binary read/write (`"w+b"') mode. The file will be deleted automatically when it is closed or when Octave exits.
If successful, FID is a valid file ID and MSG is an empty string. Otherwise, FID is -1 and MSG contains a system-dependent error message. See also: tmpnam, mkstemp, P_tmpdir.
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Return the file ID corresponding to a new temporary file with a unique name.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
mkstemp
# name: <cell-element>
# type: string
# elements: 1
# length: 925
-- Built-in Function: [FID, NAME, MSG] = mkstemp (TEMPLATE, DELETE)
Return the file ID corresponding to a new temporary file with a unique name created from TEMPLATE. The last six characters of TEMPLATE must be `XXXXXX' and these are replaced with a string that makes the filename unique. The file is then created with mode read/write and permissions that are system dependent (on GNU/Linux systems, the permissions will be 0600 for versions of glibc 2.0.7 and later). The file is opened with the `O_EXCL' flag.
If the optional argument DELETE is supplied and is true, the file will be deleted automatically when Octave exits, or when the function `purge_tmp_files' is called.
If successful, FID is a valid file ID, NAME is the name of the file, and MSG is an empty string. Otherwise, FID is -1, NAME is empty, and MSG contains a system-dependent error message. See also: tmpfile, tmpnam, P_tmpdir.
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Return the file ID corresponding to a new temporary file with a unique name created from TEMPLATE.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
umask
# name: <cell-element>
# type: string
# elements: 1
# length: 303
-- Built-in Function: umask (MASK)
Set the permission mask for file creation. The parameter MASK is an integer, interpreted as an octal number. If successful, returns the previous value of the mask (as an integer to be interpreted as an octal number); otherwise an error message is printed.
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Set the permission mask for file creation.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
P_tmpdir
# name: <cell-element>
# type: string
# elements: 1
# length: 170
-- Built-in Function: P_tmpdir ()
Return the default name of the directory for temporary files on this system. The name of this directory is system dependent.
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Return the default name of the directory for temporary files on this system.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
SEEK_SET
# name: <cell-element>
# type: string
# elements: 1
# length: 402
-- Built-in Function: SEEK_SET ()
-- Built-in Function: SEEK_CUR ()
-- Built-in Function: SEEK_END ()
Return the value required to request that `fseek' perform one of the following actions:
`SEEK_SET'
Position file relative to the beginning.
`SEEK_CUR'
Position file relative to the current position.
`SEEK_END'
Position file relative to the end.
# name: <cell-element>
# type: string
# elements: 1
# length: 141
Return the value required to request that `fseek' perform one of the following actions: `SEEK_SET' Position file relative to the beginning.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
SEEK_CUR
# name: <cell-element>
# type: string
# elements: 1
# length: 58
-- Built-in Function: SEEK_CUR ()
See SEEK_SET.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
See SEEK_SET.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
SEEK_END
# name: <cell-element>
# type: string
# elements: 1
# length: 58
-- Built-in Function: SEEK_END ()
See SEEK_SET.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
See SEEK_SET.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
stdin
# name: <cell-element>
# type: string
# elements: 1
# length: 234
-- Built-in Function: stdin ()
Return the numeric value corresponding to the standard input stream. When Octave is used interactively, this is filtered through the command line editing functions. See also: stdout, stderr.
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Return the numeric value corresponding to the standard input stream.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
stdout
# name: <cell-element>
# type: string
# elements: 1
# length: 215
-- Built-in Function: stdout ()
Return the numeric value corresponding to the standard output stream. Data written to the standard output is normally filtered through the pager. See also: stdin, stderr.
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Return the numeric value corresponding to the standard output stream.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
stderr
# name: <cell-element>
# type: string
# elements: 1
# length: 258
-- Built-in Function: stderr ()
Return the numeric value corresponding to the standard error stream. Even if paging is turned on, the standard error is not sent to the pager. It is useful for error messages and prompts. See also: stdin, stdout.
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Return the numeric value corresponding to the standard error stream.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
filter
# name: <cell-element>
# type: string
# elements: 1
# length: 1530
-- Loadable Function: y = filter (B, A, X)
-- Loadable Function: [Y, SF] = filter (B, A, X, SI)
-- Loadable Function: [Y, SF] = filter (B, A, X, [], DIM)
-- Loadable Function: [Y, SF] = filter (B, A, X, SI, DIM)
Return the solution to the following linear, time-invariant difference equation:
N M
SUM a(k+1) y(n-k) = SUM b(k+1) x(n-k) for 1<=n<=length(x)
k=0 k=0
where N=length(a)-1 and M=length(b)-1. over the first non-singleton dimension of X or over DIM if supplied. An equivalent form of this equation is:
N M
y(n) = - SUM c(k+1) y(n-k) + SUM d(k+1) x(n-k) for 1<=n<=length(x)
k=1 k=0
where c = a/a(1) and d = b/a(1).
If the fourth argument SI is provided, it is taken as the initial state of the system and the final state is returned as SF. The state vector is a column vector whose length is equal to the length of the longest coefficient vector minus one. If SI is not supplied, the initial state vector is set to all zeros.
In terms of the z-transform, y is the result of passing the discrete- time signal x through a system characterized by the following rational system function:
M
SUM d(k+1) z^(-k)
k=0
H(z) = ----------------------
N
1 + SUM c(k+1) z^(-k)
k=1
# name: <cell-element>
# type: string
# elements: 1
# length: 81
Return the solution to the following linear, time-invariant difference equation:
# name: <cell-element>
# type: string
# elements: 1
# length: 4
find
# name: <cell-element>
# type: string
# elements: 1
# length: 1566
-- Loadable Function: find (X)
-- Loadable Function: find (X, N)
-- Loadable Function: find (X, N, DIRECTION)
Return a vector of indices of nonzero elements of a matrix, as a row if X is a row or as a column otherwise. To obtain a single index for each matrix element, Octave pretends that the columns of a matrix form one long vector (like Fortran arrays are stored). For example,
find (eye (2))
=> [ 1; 4 ]
If two outputs are requested, `find' returns the row and column indices of nonzero elements of a matrix. For example,
[i, j] = find (2 * eye (2))
=> i = [ 1; 2 ]
=> j = [ 1; 2 ]
If three outputs are requested, `find' also returns a vector containing the nonzero values. For example,
[i, j, v] = find (3 * eye (2))
=> i = [ 1; 2 ]
=> j = [ 1; 2 ]
=> v = [ 3; 3 ]
If two inputs are given, N indicates the maximum number of elements to find from the beginning of the matrix or vector.
If three inputs are given, DIRECTION should be one of "first" or "last", requesting only the first or last N indices, respectively. However, the indices are always returned in ascending order.
Note that this function is particularly useful for sparse matrices, as it extracts the non-zero elements as vectors, which can then be used to create the original matrix. For example,
sz = size(a);
[i, j, v] = find (a);
b = sparse(i, j, v, sz(1), sz(2));
See also: sparse.
# name: <cell-element>
# type: string
# elements: 1
# length: 108
Return a vector of indices of nonzero elements of a matrix, as a row if X is a row or as a column otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
gammainc
# name: <cell-element>
# type: string
# elements: 1
# length: 699
-- Mapping Function: gammainc (X, A)
Compute the normalized incomplete gamma function,
x
1 /
gammainc (x, a) = --------- | exp (-t) t^(a-1) dt
gamma (a) /
t=0
with the limiting value of 1 as X approaches infinity. The standard notation is P(a,x), e.g., Abramowitz and Stegun (6.5.1).
If A is scalar, then `gammainc (X, A)' is returned for each element of X and vice versa.
If neither X nor A is scalar, the sizes of X and A must agree, and GAMMAINC is applied element-by-element. See also: gamma, lgamma.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Compute the normalized incomplete gamma function,
# name: <cell-element>
# type: string
# elements: 1
# length: 3
gcd
# name: <cell-element>
# type: string
# elements: 1
# length: 864
-- Loadable Function: G = gcd (A)
-- Loadable Function: G = gcd (A1, A2, ...)
-- Loadable Function: [G, V1, ...] = gcd (A1, A2, ...)
Compute the greatest common divisor of the elements of A. If more than one argument is given all arguments must be the same size or scalar. In this case the greatest common divisor is calculated for each element individually. All elements must be integers. For example,
gcd ([15, 20])
=> 5
and
gcd ([15, 9], [20, 18])
=> 5 9
Optional return arguments V1, etc., contain integer vectors such that,
G = V1 .* A1 + V2 .* A2 + ...
For backward compatibility with previous versions of this function, when all arguments are scalar, a single return argument V1 containing all of the values of V1, ... is acceptable. See also: lcm, factor.
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Compute the greatest common divisor of the elements of A.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
getgrent
# name: <cell-element>
# type: string
# elements: 1
# length: 188
-- Loadable Function: GRP_STRUCT = getgrent ()
Return an entry from the group database, opening it if necessary. Once the end of the data has been reached, `getgrent' returns 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 65
Return an entry from the group database, opening it if necessary.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
getgrgid
# name: <cell-element>
# type: string
# elements: 1
# length: 201
-- Loadable Function: GRP_STRUCT = getgrgid (GID).
Return the first entry from the group database with the group ID GID. If the group ID does not exist in the database, `getgrgid' returns 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Return the first entry from the group database with the group ID GID.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
getgrnam
# name: <cell-element>
# type: string
# elements: 1
# length: 206
-- Loadable Function: GRP_STRUCT = getgrnam (NAME)
Return the first entry from the group database with the group name NAME. If the group name does not exist in the database, `getgrnam' returns 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 72
Return the first entry from the group database with the group name NAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
setgrent
# name: <cell-element>
# type: string
# elements: 1
# length: 112
-- Loadable Function: setgrent ()
Return the internal pointer to the beginning of the group database.
# name: <cell-element>
# type: string
# elements: 1
# length: 67
Return the internal pointer to the beginning of the group database.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
endgrent
# name: <cell-element>
# type: string
# elements: 1
# length: 70
-- Loadable Function: endgrent ()
Close the group database.
# name: <cell-element>
# type: string
# elements: 1
# length: 25
Close the group database.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
getpwent
# name: <cell-element>
# type: string
# elements: 1
# length: 213
-- Loadable Function: PW_STRUCT = getpwent ()
Return a structure containing an entry from the password database, opening it if necessary. Once the end of the data has been reached, `getpwent' returns 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 91
Return a structure containing an entry from the password database, opening it if necessary.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
getpwuid
# name: <cell-element>
# type: string
# elements: 1
# length: 224
-- Loadable Function: PW_STRUCT = getpwuid (UID).
Return a structure containing the first entry from the password database with the user ID UID. If the user ID does not exist in the database, `getpwuid' returns 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 94
Return a structure containing the first entry from the password database with the user ID UID.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
getpwnam
# name: <cell-element>
# type: string
# elements: 1
# length: 230
-- Loadable Function: PW_STRUCT = getpwnam (NAME)
Return a structure containing the first entry from the password database with the user name NAME. If the user name does not exist in the database, `getpwname' returns 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 97
Return a structure containing the first entry from the password database with the user name NAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
setpwent
# name: <cell-element>
# type: string
# elements: 1
# length: 115
-- Loadable Function: setpwent ()
Return the internal pointer to the beginning of the password database.
# name: <cell-element>
# type: string
# elements: 1
# length: 70
Return the internal pointer to the beginning of the password database.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
endpwent
# name: <cell-element>
# type: string
# elements: 1
# length: 73
-- Loadable Function: endpwent ()
Close the password database.
# name: <cell-element>
# type: string
# elements: 1
# length: 28
Close the password database.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
getrusage
# name: <cell-element>
# type: string
# elements: 1
# length: 1411
-- Loadable Function: getrusage ()
Return a structure containing a number of statistics about the current Octave process. Not all fields are available on all systems. If it is not possible to get CPU time statistics, the CPU time slots are set to zero. Other missing data are replaced by NaN. Here is a list of all the possible fields that can be present in the structure returned by `getrusage':
`idrss'
Unshared data size.
`inblock'
Number of block input operations.
`isrss'
Unshared stack size.
`ixrss'
Shared memory size.
`majflt'
Number of major page faults.
`maxrss'
Maximum data size.
`minflt'
Number of minor page faults.
`msgrcv'
Number of messages received.
`msgsnd'
Number of messages sent.
`nivcsw'
Number of involuntary context switches.
`nsignals'
Number of signals received.
`nswap'
Number of swaps.
`nvcsw'
Number of voluntary context switches.
`oublock'
Number of block output operations.
`stime'
A structure containing the system CPU time used. The structure has the elements `sec' (seconds) `usec' (microseconds).
`utime'
A structure containing the user CPU time used. The structure has the elements `sec' (seconds) `usec' (microseconds).
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Return a structure containing a number of statistics about the current Octave process.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
givens
# name: <cell-element>
# type: string
# elements: 1
# length: 317
-- Loadable Function: G = givens (X, Y)
-- Loadable Function: [C, S] = givens (X, Y)
Return a 2 by 2 orthogonal matrix `G = [C S; -S' C]' such that `G [X; Y] = [*; 0]' with X and Y scalars.
For example,
givens (1, 1)
=> 0.70711 0.70711
-0.70711 0.70711
# name: <cell-element>
# type: string
# elements: 1
# length: 104
Return a 2 by 2 orthogonal matrix `G = [C S; -S' C]' such that `G [X; Y] = [*; 0]' with X and Y scalars.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
ishandle
# name: <cell-element>
# type: string
# elements: 1
# length: 104
-- Built-in Function: ishandle (H)
Return true if H is a graphics handle and false otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Return true if H is a graphics handle and false otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
set
# name: <cell-element>
# type: string
# elements: 1
# length: 134
-- Built-in Function: set (H, P, V, ...)
Set the named property value or vector P to the value V for the graphics handle H.
# name: <cell-element>
# type: string
# elements: 1
# length: 82
Set the named property value or vector P to the value V for the graphics handle H.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
get
# name: <cell-element>
# type: string
# elements: 1
# length: 250
-- Built-in Function: get (H, P)
Return the named property P from the graphics handle H. If P is omitted, return the complete property list for H. If H is a vector, return a cell array including the property values or lists respectively.
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Return the named property P from the graphics handle H.
# name: <cell-element>
# type: string
# elements: 1
# length: 18
available_backends
# name: <cell-element>
# type: string
# elements: 1
# length: 107
-- Built-in Function: available_backends ()
Return a cell array of registered graphics backends.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return a cell array of registered graphics backends.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
drawnow
# name: <cell-element>
# type: string
# elements: 1
# length: 457
-- Built-in Function: drawnow ()
-- Built-in Function: drawnow ("expose")
-- Built-in Function: drawnow (TERM, FILE, MONO, DEBUG_FILE)
Update figure windows and their children. The event queue is flushed and any callbacks generated are executed. With the optional argument `"expose"', only graphic objects are updated and no other events or callbacks are processed. The third calling form of `drawnow' is for debugging and is undocumented.
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Update figure windows and their children.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
addlistener
# name: <cell-element>
# type: string
# elements: 1
# length: 1093
-- Built-in Function: addlistener (H, PROP, FCN)
Register FCN as listener for the property PROP of the graphics object H. Property listeners are executed (in order of registration) when the property is set. The new value is already available when the listeners are executed.
PROP must be a string naming a valid property in H.
FCN can be a function handle, a string or a cell array whose first element is a function handle. If FCN is a function handle, the corresponding function should accept at least 2 arguments, that will be set to the object handle and the empty matrix respectively. If FCN is a string, it must be any valid octave expression. If FCN is a cell array, the first element must be a function handle with the same signature as described above. The next elements of the cell array are passed as additional arguments to the function.
Example:
function my_listener (h, dummy, p1)
fprintf ("my_listener called with p1=%s\n", p1);
endfunction
addlistener (gcf, "position", {@my_listener, "my string"})
# name: <cell-element>
# type: string
# elements: 1
# length: 72
Register FCN as listener for the property PROP of the graphics object H.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
dellistener
# name: <cell-element>
# type: string
# elements: 1
# length: 631
-- Built-in Function: dellistener (H, PROP, FCN)
Remove the registration of FCN as a listener for the property PROP of the graphics object H. The function FCN must be the same variable (not just the same value), as was passed to the original call to `addlistener'.
If FCN is not defined then all listener functions of PROP are removed.
Example:
function my_listener (h, dummy, p1)
fprintf ("my_listener called with p1=%s\n", p1);
endfunction
c = {@my_listener, "my string"};
addlistener (gcf, "position", c);
dellistener (gcf, "position", c);
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Remove the registration of FCN as a listener for the property PROP of the graphics object H.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
addproperty
# name: <cell-element>
# type: string
# elements: 1
# length: 2346
-- Built-in Function: addproperty (NAME, H, TYPE, [ARG, ...])
Create a new property named NAME in graphics object H. TYPE determines the type of the property to create. ARGS usually contains the default value of the property, but additional arguments might be given, depending on the type of the property.
The supported property types are:
`string'
A string property. ARG contains the default string value.
`any'
An un-typed property. This kind of property can hold any octave value. ARGS contains the default value.
`radio'
A string property with a limited set of accepted values. The first argument must be a string with all accepted values separated by a vertical bar ('|'). The default value can be marked by enclosing it with a '{' '}' pair. The default value may also be given as an optional second string argument.
`boolean'
A boolean property. This property type is equivalent to a radio property with "on|off" as accepted values. ARG contains the default property value.
`double'
A scalar double property. ARG contains the default value.
`handle'
A handle property. This kind of property holds the handle of a graphics object. ARG contains the default handle value. When no default value is given, the property is initialized to the empty matrix.
`data'
A data (matrix) property. ARG contains the default data value. When no default value is given, the data is initialized to the empty matrix.
`color'
A color property. ARG contains the default color value. When no default color is given, the property is set to black. An optional second string argument may be given to specify an additional set of accepted string values (like a radio property).
TYPE may also be the concatenation of a core object type and a valid property name for that object type. The property created then has the same characteristics as the referenced property (type, possible values, hidden state...). This allows to clone an existing property into the graphics object H.
Examples:
addproperty ("my_property", gcf, "string", "a string value");
addproperty ("my_radio", gcf, "radio", "val_1|val_2|{val_3}");
addproperty ("my_style", gcf, "linelinestyle", "--");
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Create a new property named NAME in graphics object H.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
get_help_text
# name: <cell-element>
# type: string
# elements: 1
# length: 419
-- Loadable Function: [TEXT, FORMAT] = get_help_text (NAME)
Returns the help text of a given function.
This function returns the raw help text TEXT and an indication of its format for the function NAME. The format indication FORMAT is a string that can be either "texinfo", "html", or "plain text".
To convert the help text to other formats, use the `makeinfo' function.
See also: makeinfo.
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Returns the help text of a given function.
# name: <cell-element>
# type: string
# elements: 1
# length: 14
doc_cache_file
# name: <cell-element>
# type: string
# elements: 1
# length: 683
-- Built-in Function: VAL = doc_cache_file ()
-- Built-in Function: OLD_VAL = doc_cache_file (NEW_VAL)
Query or set the internal variable that specifies the name of the Octave documentation cache file. A cache file significantly improves the performance of the `lookfor' command. The default value is `OCTAVE-HOME/share/octave/VERSION/etc/doc-cache', in which OCTAVE-HOME is the root directory of the Octave installation, and VERSION is the Octave version number. The default value may be overridden by the environment variable `OCTAVE_DOC_CACHE_FILE', or the command line argument `--doc-cache-file NAME'. See also: lookfor, info_program, doc, help, makeinfo_program.
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Query or set the internal variable that specifies the name of the Octave documentation cache file.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
info_file
# name: <cell-element>
# type: string
# elements: 1
# length: 500
-- Built-in Function: VAL = info_file ()
-- Built-in Function: OLD_VAL = info_file (NEW_VAL)
Query or set the internal variable that specifies the name of the Octave info file. The default value is `OCTAVE-HOME/info/octave.info', in which OCTAVE-HOME is the root directory of the Octave installation. The default value may be overridden by the environment variable `OCTAVE_INFO_FILE', or the command line argument `--info-file NAME'. See also: info_program, doc, help, makeinfo_program.
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Query or set the internal variable that specifies the name of the Octave info file.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
info_program
# name: <cell-element>
# type: string
# elements: 1
# length: 634
-- Built-in Function: VAL = info_program ()
-- Built-in Function: OLD_VAL = info_program (NEW_VAL)
Query or set the internal variable that specifies the name of the info program to run. The default value is `OCTAVE-HOME/libexec/octave/VERSION/exec/ARCH/info' in which OCTAVE-HOME is the root directory of the Octave installation, VERSION is the Octave version number, and ARCH is the system type (for example, `i686-pc-linux-gnu'). The default value may be overridden by the environment variable `OCTAVE_INFO_PROGRAM', or the command line argument `--info-program NAME'. See also: info_file, doc, help, makeinfo_program.
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Query or set the internal variable that specifies the name of the info program to run.
# name: <cell-element>
# type: string
# elements: 1
# length: 16
makeinfo_program
# name: <cell-element>
# type: string
# elements: 1
# length: 345
-- Built-in Function: VAL = makeinfo_program ()
-- Built-in Function: OLD_VAL = makeinfo_program (NEW_VAL)
Query or set the internal variable that specifies the name of the program that Octave runs to format help text containing Texinfo markup commands. The default value is `makeinfo'. See also: info_file, info_program, doc, help.
# name: <cell-element>
# type: string
# elements: 1
# length: 146
Query or set the internal variable that specifies the name of the program that Octave runs to format help text containing Texinfo markup commands.
# name: <cell-element>
# type: string
# elements: 1
# length: 29
suppress_verbose_help_message
# name: <cell-element>
# type: string
# elements: 1
# length: 335
-- Built-in Function: VAL = suppress_verbose_help_message ()
-- Built-in Function: OLD_VAL = suppress_verbose_help_message (NEW_VAL)
Query or set the internal variable that controls whether Octave will add additional help information to the end of the output from the `help' command and usage messages for built-in commands.
# name: <cell-element>
# type: string
# elements: 1
# length: 191
Query or set the internal variable that controls whether Octave will add additional help information to the end of the output from the `help' command and usage messages for built-in commands.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
hess
# name: <cell-element>
# type: string
# elements: 1
# length: 551
-- Loadable Function: H = hess (A)
-- Loadable Function: [P, H] = hess (A)
Compute the Hessenberg decomposition of the matrix A.
The Hessenberg decomposition is usually used as the first step in an eigenvalue computation, but has other applications as well (see Golub, Nash, and Van Loan, IEEE Transactions on Automatic Control, 1979). The Hessenberg decomposition is `p * h * p' = a' where `p' is a square unitary matrix (`p' * p = I', using complex-conjugate transposition) and `h' is upper Hessenberg (`i >= j+1 => h (i, j) = 0').
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Compute the Hessenberg decomposition of the matrix A.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
hex2num
# name: <cell-element>
# type: string
# elements: 1
# length: 441
-- Loadable Function: N = hex2num (S)
Typecast the 16 character hexadecimal character matrix to an IEEE 754 double precision number. If fewer than 16 characters are given the strings are right padded with '0' characters.
Given a string matrix, `hex2num' treats each row as a separate number.
hex2num (["4005bf0a8b145769";"4024000000000000"])
=> [2.7183; 10.000]
See also: num2hex, hex2dec, dec2hex.
# name: <cell-element>
# type: string
# elements: 1
# length: 94
Typecast the 16 character hexadecimal character matrix to an IEEE 754 double precision number.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
num2hex
# name: <cell-element>
# type: string
# elements: 1
# length: 464
-- Loadable Function: S = num2hex (N)
Typecast a double precision number or vector to a 16 character hexadecimal string of the IEEE 754 representation of the number. For example
num2hex ([-1, 1, e, Inf, NaN, NA]);
=> "bff0000000000000
3ff0000000000000
4005bf0a8b145769
7ff0000000000000
fff8000000000000
7ff00000000007a2"
See also: hex2num, hex2dec, dec2hex.
# name: <cell-element>
# type: string
# elements: 1
# length: 127
Typecast a double precision number or vector to a 16 character hexadecimal string of the IEEE 754 representation of the number.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
input
# name: <cell-element>
# type: string
# elements: 1
# length: 1082
-- Built-in Function: input (PROMPT)
-- Built-in Function: input (PROMPT, "s")
Print a prompt and wait for user input. For example,
input ("Pick a number, any number! ")
prints the prompt
Pick a number, any number!
and waits for the user to enter a value. The string entered by the user is evaluated as an expression, so it may be a literal constant, a variable name, or any other valid expression.
Currently, `input' only returns one value, regardless of the number of values produced by the evaluation of the expression.
If you are only interested in getting a literal string value, you can call `input' with the character string `"s"' as the second argument. This tells Octave to return the string entered by the user directly, without evaluating it first.
Because there may be output waiting to be displayed by the pager, it is a good idea to always call `fflush (stdout)' before calling `input'. This will ensure that all pending output is written to the screen before your prompt. *Note Input and Output::.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Print a prompt and wait for user input.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
yes_or_no
# name: <cell-element>
# type: string
# elements: 1
# length: 347
-- Built-in Function: yes_or_no (PROMPT)
Ask the user a yes-or-no question. Return 1 if the answer is yes. Takes one argument, which is the string to display to ask the question. It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it. The user must confirm the answer with RET and can edit it until it has been confirmed.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Ask the user a yes-or-no question.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
keyboard
# name: <cell-element>
# type: string
# elements: 1
# length: 667
-- Built-in Function: keyboard ()
-- Built-in Function: keyboard (PROMPT)
This function is normally used for simple debugging. When the `keyboard' function is executed, Octave prints a prompt and waits for user input. The input strings are then evaluated and the results are printed. This makes it possible to examine the values of variables within a function, and to assign new values if necessary. To leave the prompt and return to normal execution type `return' or `dbcont'. The `keyboard' function does not return an exit status.
If `keyboard' is invoked without arguments, a default prompt of `debug> ' is used. See also: dbcont, dbquit.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
This function is normally used for simple debugging.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
echo
# name: <cell-element>
# type: string
# elements: 1
# length: 559
-- Command: echo options
Control whether commands are displayed as they are executed. Valid options are:
`on'
Enable echoing of commands as they are executed in script files.
`off'
Disable echoing of commands as they are executed in script files.
`on all'
Enable echoing of commands as they are executed in script files and functions.
`off all'
Disable echoing of commands as they are executed in script files and functions.
With no arguments, `echo' toggles the current echo state.
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Control whether commands are displayed as they are executed.
# name: <cell-element>
# type: string
# elements: 1
# length: 18
completion_matches
# name: <cell-element>
# type: string
# elements: 1
# length: 338
-- Built-in Function: completion_matches (HINT)
Generate possible completions given HINT.
This function is provided for the benefit of programs like Emacs which might be controlling Octave and handling user input. The current command number is not incremented when this function is called. This is a feature, not a bug.
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Generate possible completions given HINT.
# name: <cell-element>
# type: string
# elements: 1
# length: 23
read_readline_init_file
# name: <cell-element>
# type: string
# elements: 1
# length: 273
-- Built-in Function: read_readline_init_file (FILE)
Read the readline library initialization file FILE. If FILE is omitted, read the default initialization file (normally `~/.inputrc').
*Note Readline Init File: (readline)Readline Init File, for details.
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Read the readline library initialization file FILE.
# name: <cell-element>
# type: string
# elements: 1
# length: 26
re_read_readline_init_file
# name: <cell-element>
# type: string
# elements: 1
# length: 201
-- Built-in Function: re_read_readline_init_file ()
Re-read the last readline library initialization file that was read. *Note Readline Init File: (readline)Readline Init File, for details.
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Re-read the last readline library initialization file that was read.
# name: <cell-element>
# type: string
# elements: 1
# length: 20
add_input_event_hook
# name: <cell-element>
# type: string
# elements: 1
# length: 339
-- Built-in Function: add_input_event_hook (FCN, DATA)
Add the named function FCN to the list of functions to call periodically when Octave is waiting for input. The function should have the form
FCN (DATA)
If DATA is omitted, Octave calls the function without any arguments. See also: remove_input_event_hook.
# name: <cell-element>
# type: string
# elements: 1
# length: 106
Add the named function FCN to the list of functions to call periodically when Octave is waiting for input.
# name: <cell-element>
# type: string
# elements: 1
# length: 23
remove_input_event_hook
# name: <cell-element>
# type: string
# elements: 1
# length: 205
-- Built-in Function: remove_input_event_hook (FCN)
Remove the named function FCN to the list of functions to call periodically when Octave is waiting for input. See also: add_input_event_hook.
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Remove the named function FCN to the list of functions to call periodically when Octave is waiting for input.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
PS1
# name: <cell-element>
# type: string
# elements: 1
# length: 632
-- Built-in Function: VAL = PS1 ()
-- Built-in Function: OLD_VAL = PS1 (NEW_VAL)
Query or set the primary prompt string. When executing interactively, Octave displays the primary prompt when it is ready to read a command.
The default value of the primary prompt string is `"\s:\#> "'. To change it, use a command like
octave:13> PS1 ("\\u@\\H> ")
which will result in the prompt `boris@kremvax> ' for the user `boris' logged in on the host `kremvax.kgb.su'. Note that two backslashes are required to enter a backslash into a double-quoted character string. *Note Strings::. See also: PS2, PS4.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Query or set the primary prompt string.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
PS2
# name: <cell-element>
# type: string
# elements: 1
# length: 470
-- Built-in Function: VAL = PS2 ()
-- Built-in Function: OLD_VAL = PS2 (NEW_VAL)
Query or set the secondary prompt string. The secondary prompt is printed when Octave is expecting additional input to complete a command. For example, if you are typing a `for' loop that spans several lines, Octave will print the secondary prompt at the beginning of each line after the first. The default value of the secondary prompt string is `"> "'. See also: PS1, PS4.
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Query or set the secondary prompt string.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
PS4
# name: <cell-element>
# type: string
# elements: 1
# length: 345
-- Built-in Function: VAL = PS4 ()
-- Built-in Function: OLD_VAL = PS4 (NEW_VAL)
Query or set the character string used to prefix output produced when echoing commands is enabled. The default value is `"+ "'. *Note Diary and Echo Commands::, for a description of echoing commands. See also: echo, echo_executing_commands, PS1, PS2.
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Query or set the character string used to prefix output produced when echoing commands is enabled.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
completion_append_char
# name: <cell-element>
# type: string
# elements: 1
# length: 285
-- Built-in Function: VAL = completion_append_char ()
-- Built-in Function: OLD_VAL = completion_append_char (NEW_VAL)
Query or set the internal character variable that is appended to successful command-line completion attempts. The default value is `" "' (a single space).
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Query or set the internal character variable that is appended to successful command-line completion attempts.
# name: <cell-element>
# type: string
# elements: 1
# length: 23
echo_executing_commands
# name: <cell-element>
# type: string
# elements: 1
# length: 641
-- Built-in Function: VAL = echo_executing_commands ()
-- Built-in Function: OLD_VAL = echo_executing_commands (NEW_VAL)
Query or set the internal variable that controls the echo state. It may be the sum of the following values:
1
Echo commands read from script files.
2
Echo commands from functions.
4
Echo commands read from command line.
More than one state can be active at once. For example, a value of 3 is equivalent to the command `echo on all'.
The value of `echo_executing_commands' may be set by the `echo' command or the command line option `--echo-commands'.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Query or set the internal variable that controls the echo state.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
filemarker
# name: <cell-element>
# type: string
# elements: 1
# length: 655
-- Built-in Function: filemarker ()
Returns or sets the character used to separate filename from the the subfunction names contained within the file. This can be used in a generic manner to interact with subfunctions. For example
help (["myfunc", filemarker, "mysubfunc"])
returns the help string associated with the sub-function `mysubfunc' of the function `myfunc'. Another use of `filemarker' is when debugging it allows easier placement of breakpoints within sub-functions. For example
dbstop (["myfunc", filemarker, "mysubfunc"])
will set a breakpoint at the first line of the subfunction `mysubfunc'.
# name: <cell-element>
# type: string
# elements: 1
# length: 113
Returns or sets the character used to separate filename from the the subfunction names contained within the file.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
inv
# name: <cell-element>
# type: string
# elements: 1
# length: 554
-- Loadable Function: [X, RCOND] = inv (A)
-- Loadable Function: [X, RCOND] = inverse (A)
Compute the inverse of the square matrix A. Return an estimate of the reciprocal condition number if requested, otherwise warn of an ill-conditioned matrix if the reciprocal condition number is small.
If called with a sparse matrix, then in general X will be a full matrix, and so if possible forming the inverse of a sparse matrix should be avoided. It is significantly more accurate and faster to do `Y = A \ B', rather than `Y = inv (A) * B'.
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Compute the inverse of the square matrix A.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
inverse
# name: <cell-element>
# type: string
# elements: 1
# length: 53
-- Loadable Function: inverse (A)
See inv.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
See inv.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
kron
# name: <cell-element>
# type: string
# elements: 1
# length: 285
-- Loadable Function: kron (A, B)
Form the kronecker product of two matrices, defined block by block as
x = [a(i, j) b]
For example,
kron (1:4, ones (3, 1))
=> 1 2 3 4
1 2 3 4
1 2 3 4
# name: <cell-element>
# type: string
# elements: 1
# length: 70
Form the kronecker product of two matrices, defined block by block as
# name: <cell-element>
# type: string
# elements: 1
# length: 9
iskeyword
# name: <cell-element>
# type: string
# elements: 1
# length: 139
-- Built-in Function: iskeyword (NAME)
Return true if NAME is an Octave keyword. If NAME is omitted, return a list of keywords.
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Return true if NAME is an Octave keyword.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
genpath
# name: <cell-element>
# type: string
# elements: 1
# length: 109
-- Built-in Function: genpath (DIR)
Return a path constructed from DIR and all its subdirectories.
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Return a path constructed from DIR and all its subdirectories.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
rehash
# name: <cell-element>
# type: string
# elements: 1
# length: 91
-- Built-in Function: rehash ()
Reinitialize Octave's load path directory cache.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Reinitialize Octave's load path directory cache.
# name: <cell-element>
# type: string
# elements: 1
# length: 17
command_line_path
# name: <cell-element>
# type: string
# elements: 1
# length: 171
-- Built-in Function: command_line_path (...)
Return the command line path variable.
See also: path, addpath, rmpath, genpath, pathdef, savepath, pathsep.
# name: <cell-element>
# type: string
# elements: 1
# length: 38
Return the command line path variable.
# name: <cell-element>
# type: string
# elements: 1
# length: 18
restoredefaultpath
# name: <cell-element>
# type: string
# elements: 1
# length: 189
-- Built-in Function: restoredefaultpath (...)
Restore Octave's path to it's initial state at startup.
See also: path, addpath, rmpath, genpath, pathdef, savepath, pathsep.
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Restore Octave's path to it's initial state at startup.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
path
# name: <cell-element>
# type: string
# elements: 1
# length: 549
-- Built-in Function: path (...)
Modify or display Octave's load path.
If NARGIN and NARGOUT are zero, display the elements of Octave's load path in an easy to read format.
If NARGIN is zero and nargout is greater than zero, return the current load path.
If NARGIN is greater than zero, concatenate the arguments, separating them with `pathsep()'. Set the internal search path to the result and return it.
No checks are made for duplicate elements. See also: addpath, rmpath, genpath, pathdef, savepath, pathsep.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Modify or display Octave's load path.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
addpath
# name: <cell-element>
# type: string
# elements: 1
# length: 429
-- Built-in Function: addpath (DIR1, ...)
-- Built-in Function: addpath (DIR1, ..., OPTION)
Add DIR1, ... to the current function search path. If OPTION is `"-begin"' or 0 (the default), prepend the directory name to the current path. If OPTION is `"-end"' or 1, append the directory name to the current path. Directories added to the path must exist. See also: path, rmpath, genpath, pathdef, savepath, pathsep.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
Add DIR1, .
# name: <cell-element>
# type: string
# elements: 1
# length: 6
rmpath
# name: <cell-element>
# type: string
# elements: 1
# length: 175
-- Built-in Function: rmpath (DIR1, ...)
Remove DIR1, ... from the current function search path.
See also: path, addpath, genpath, pathdef, savepath, pathsep.
# name: <cell-element>
# type: string
# elements: 1
# length: 14
Remove DIR1, .
# name: <cell-element>
# type: string
# elements: 1
# length: 4
load
# name: <cell-element>
# type: string
# elements: 1
# length: 3368
-- Command: load file
-- Command: load options file
-- Command: load options file v1 v2 ...
-- Command: S = load("options", "file", "v1", "v2", ...)
Load the named variables V1, V2, ..., from the file FILE. If no variables are specified then all variables found in the file will be loaded. As with `save', the list of variables to extract can be full names or use a pattern syntax. The format of the file is automatically detected but may be overridden by supplying the appropriate option.
If load is invoked using the functional form
load ("-option1", ..., "file", "v1", ...)
then the OPTIONS, FILE, and variable name arguments (V1, ...) must be specified as character strings.
If a variable that is not marked as global is loaded from a file when a global symbol with the same name already exists, it is loaded in the global symbol table. Also, if a variable is marked as global in a file and a local symbol exists, the local symbol is moved to the global symbol table and given the value from the file.
If invoked with a single output argument, Octave returns data instead of inserting variables in the symbol table. If the data file contains only numbers (TAB- or space-delimited columns), a matrix of values is returned. Otherwise, `load' returns a structure with members corresponding to the names of the variables in the file.
The `load' command can read data stored in Octave's text and binary formats, and MATLAB's binary format. If compiled with zlib support, it can also load gzip-compressed files. It will automatically detect the type of file and do conversion from different floating point formats (currently only IEEE big and little endian, though other formats may be added in the future).
Valid options for `load' are listed in the following table.
`-force'
This option is accepted for backward compatibility but is ignored. Octave now overwrites variables currently in memory with those of the same name found in the file.
`-ascii'
Force Octave to assume the file contains columns of numbers in text format without any header or other information. Data in the file will be loaded as a single numeric matrix with the name of the variable derived from the name of the file.
`-binary'
Force Octave to assume the file is in Octave's binary format.
`-hdf5'
Force Octave to assume the file is in HDF5 format. (HDF5 is a free, portable binary format developed by the National Center for Supercomputing Applications at the University of Illinois.) Note that Octave can read HDF5 files not created by itself, but may skip some datasets in formats that it cannot support.
`-import'
This option is accepted for backward compatibility but is ignored. Octave can now support multi-dimensional HDF data and automatically modifies variable names if they are invalid Octave identifiers.
`-mat'
`-mat-binary'
`-6'
`-v6'
`-7'
`-v7'
Force Octave to assume the file is in MATLAB's version 6 or 7 binary format.
`-mat4-binary'
`-4'
`-v4'
`-V4'
Force Octave to assume the file is in the binary format written by MATLAB version 4.
`-text'
Force Octave to assume the file is in Octave's text format.
See also: save, dlmwrite, csvwrite, fwrite.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Load the named variables V1, V2, .
# name: <cell-element>
# type: string
# elements: 1
# length: 4
save
# name: <cell-element>
# type: string
# elements: 1
# length: 3522
-- Command: save file
-- Command: save options file
-- Command: save options file V1 V2 ...
-- Command: save options file -struct STRUCT F1 F2 ...
Save the named variables V1, V2, ..., in the file FILE. The special filename `-' may be used to write output to the terminal. If no variable names are listed, Octave saves all the variables in the current scope. Otherwise, full variable names or pattern syntax can be used to specify the variables to save. If the `-struct' modifier is used, fields F1 F2 ... of the scalar structure STRUCT are saved as if they were variables with corresponding names. Valid options for the `save' command are listed in the following table. Options that modify the output format override the format specified by `default_save_options'.
If save is invoked using the functional form
save ("-option1", ..., "file", "v1", ...)
then the OPTIONS, FILE, and variable name arguments (V1, ...) must be specified as character strings.
`-ascii'
Save a single matrix in a text file without header or any other information.
`-binary'
Save the data in Octave's binary data format.
`-float-binary'
Save the data in Octave's binary data format but only using single precision. Only use this format if you know that all the values to be saved can be represented in single precision.
`-hdf5'
Save the data in HDF5 format. (HDF5 is a free, portable binary format developed by the National Center for Supercomputing Applications at the University of Illinois.)
`-float-hdf5'
Save the data in HDF5 format but only using single precision. Only use this format if you know that all the values to be saved can be represented in single precision.
`-V7'
`-v7'
`-7'
`-mat7-binary'
Save the data in MATLAB's v7 binary data format.
`-V6'
`-v6'
`-6'
`-mat'
`-mat-binary'
Save the data in MATLAB's v6 binary data format.
`-V4'
`-v4'
`-4'
`-mat4-binary'
Save the data in the binary format written by MATLAB version 4.
`-text'
Save the data in Octave's text data format. (default).
`-zip'
`-z'
Use the gzip algorithm to compress the file. This works equally on files that are compressed with gzip outside of octave, and gzip can equally be used to convert the files for backward compatibility.
The list of variables to save may use wildcard patterns containing the following special characters:
`?'
Match any single character.
`*'
Match zero or more characters.
`[ LIST ]'
Match the list of characters specified by LIST. If the first character is `!' or `^', match all characters except those specified by LIST. For example, the pattern `[a-zA-Z]' will match all lower and upper case alphabetic characters.
Wildcards may also be used in the field name specifications when using the `-struct' modifier (but not in the struct name itself).
Except when using the MATLAB binary data file format or the `-ascii' format, saving global variables also saves the global status of the variable. If the variable is restored at a later time using `load', it will be restored as a global variable.
The command
save -binary data a b*
saves the variable `a' and all variables beginning with `b' to the file `data' in Octave's binary format. See also: load, default_save_options, dlmread, csvread, fread.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Save the named variables V1, V2, .
# name: <cell-element>
# type: string
# elements: 1
# length: 23
crash_dumps_octave_core
# name: <cell-element>
# type: string
# elements: 1
# length: 406
-- Built-in Function: VAL = crash_dumps_octave_core ()
-- Built-in Function: OLD_VAL = crash_dumps_octave_core (NEW_VAL)
Query or set the internal variable that controls whether Octave tries to save all current variables to the file "octave-core" if it crashes or receives a hangup, terminate or similar signal. See also: octave_core_file_limit, octave_core_file_name, octave_core_file_options.
# name: <cell-element>
# type: string
# elements: 1
# length: 190
Query or set the internal variable that controls whether Octave tries to save all current variables to the file "octave-core" if it crashes or receives a hangup, terminate or similar signal.
# name: <cell-element>
# type: string
# elements: 1
# length: 20
default_save_options
# name: <cell-element>
# type: string
# elements: 1
# length: 351
-- Built-in Function: VAL = default_save_options ()
-- Built-in Function: OLD_VAL = default_save_options (NEW_VAL)
Query or set the internal variable that specifies the default options for the `save' command, and defines the default format. Typical values include `"-ascii"', `"-text -zip"'. The default value is `-text'. See also: save.
# name: <cell-element>
# type: string
# elements: 1
# length: 125
Query or set the internal variable that specifies the default options for the `save' command, and defines the default format.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
octave_core_file_limit
# name: <cell-element>
# type: string
# elements: 1
# length: 730
-- Built-in Function: VAL = octave_core_file_limit ()
-- Built-in Function: OLD_VAL = octave_core_file_limit (NEW_VAL)
Query or set the internal variable that specifies the maximum amount of memory (in kilobytes) of the top-level workspace that Octave will attempt to save when writing data to the crash dump file (the name of the file is specified by OCTAVE_CORE_FILE_NAME). If OCTAVE_CORE_FILE_OPTIONS flags specify a binary format, then OCTAVE_CORE_FILE_LIMIT will be approximately the maximum size of the file. If a text file format is used, then the file could be much larger than the limit. The default value is -1 (unlimited) See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_options.
# name: <cell-element>
# type: string
# elements: 1
# length: 256
Query or set the internal variable that specifies the maximum amount of memory (in kilobytes) of the top-level workspace that Octave will attempt to save when writing data to the crash dump file (the name of the file is specified by OCTAVE_CORE_FILE_NAME).
# name: <cell-element>
# type: string
# elements: 1
# length: 21
octave_core_file_name
# name: <cell-element>
# type: string
# elements: 1
# length: 388
-- Built-in Function: VAL = octave_core_file_name ()
-- Built-in Function: OLD_VAL = octave_core_file_name (NEW_VAL)
Query or set the internal variable that specifies the name of the file used for saving data from the top-level workspace if Octave aborts. The default value is `"octave-core"' See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_options.
# name: <cell-element>
# type: string
# elements: 1
# length: 138
Query or set the internal variable that specifies the name of the file used for saving data from the top-level workspace if Octave aborts.
# name: <cell-element>
# type: string
# elements: 1
# length: 24
octave_core_file_options
# name: <cell-element>
# type: string
# elements: 1
# length: 488
-- Built-in Function: VAL = octave_core_file_options ()
-- Built-in Function: OLD_VAL = octave_core_file_options (NEW_VAL)
Query or set the internal variable that specifies the options used for saving the workspace data if Octave aborts. The value of `octave_core_file_options' should follow the same format as the options for the `save' function. The default value is Octave's binary format. See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_limit.
# name: <cell-element>
# type: string
# elements: 1
# length: 114
Query or set the internal variable that specifies the options used for saving the workspace data if Octave aborts.
# name: <cell-element>
# type: string
# elements: 1
# length: 25
save_header_format_string
# name: <cell-element>
# type: string
# elements: 1
# length: 671
-- Built-in Function: VAL = save_header_format_string ()
-- Built-in Function: OLD_VAL = save_header_format_string (NEW_VAL)
Query or set the internal variable that specifies the format string used for the comment line written at the beginning of text-format data files saved by Octave. The format string is passed to `strftime' and should begin with the character `#' and contain no newline characters. If the value of `save_header_format_string' is the empty string, the header comment is omitted from text-format data files. The default value is
"# Created by Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USER@HOST>"
See also: strftime, save.
# name: <cell-element>
# type: string
# elements: 1
# length: 161
Query or set the internal variable that specifies the format string used for the comment line written at the beginning of text-format data files saved by Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
lookup
# name: <cell-element>
# type: string
# elements: 1
# length: 1403
-- Loadable Function: IDX = lookup (TABLE, Y, OPT)
Lookup values in a sorted table. Usually used as a prelude to interpolation.
If table is strictly increasing and `idx = lookup (table, y)', then `table(idx(i)) <= y(i) < table(idx(i+1))' for all `y(i)' within the table. If `y(i) < table (1)' then `idx(i)' is 0. If `y(i) >= table(end)' then `idx(i)' is `table(n)'.
If the table is strictly decreasing, then the tests are reversed. There are no guarantees for tables which are non-monotonic or are not strictly monotonic.
The algorithm used by lookup is standard binary search, with optimizations to speed up the case of partially ordered arrays (dense downsampling). In particular, looking up a single entry is of logarithmic complexity (unless a conversion occurs due to non-numeric or unequal types).
TABLE and Y can also be cell arrays of strings (or Y can be a single string). In this case, string lookup is performed using lexicographical comparison.
If OPTS is specified, it shall be a string with letters indicating additional options. For numeric lookup, 'l' in OPTS indicates that the leftmost subinterval shall be extended to infinity (i.e., all indices at least 1), and 'r' indicates that the rightmost subinterval shall be extended to infinity (i.e., all indices at most n-1).
For string lookup, 'i' indicates case-insensitive comparison.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Lookup values in a sorted table.
# name: <cell-element>
# type: string
# elements: 1
# length: 14
save_precision
# name: <cell-element>
# type: string
# elements: 1
# length: 225
-- Built-in Function: VAL = save_precision ()
-- Built-in Function: OLD_VAL = save_precision (NEW_VAL)
Query or set the internal variable that specifies the number of digits to keep when saving data in text format.
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Query or set the internal variable that specifies the number of digits to keep when saving data in text format.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
lsode_options
# name: <cell-element>
# type: string
# elements: 1
# length: 1946
-- Loadable Function: lsode_options (OPT, VAL)
When called with two arguments, this function allows you set options parameters for the function `lsode'. Given one argument, `lsode_options' returns the value of the corresponding option. If no arguments are supplied, the names of all the available options and their current values are displayed.
Options include
`"absolute tolerance"'
Absolute tolerance. May be either vector or scalar. If a vector, it must match the dimension of the state vector.
`"relative tolerance"'
Relative tolerance parameter. Unlike the absolute tolerance, this parameter may only be a scalar.
The local error test applied at each integration step is
abs (local error in x(i)) <= ...
rtol * abs (y(i)) + atol(i)
`"integration method"'
A string specifying the method of integration to use to solve the ODE system. Valid values are
"adams"
"non-stiff"
No Jacobian used (even if it is available).
"bdf"
"stiff"
Use stiff backward differentiation formula (BDF) method. If a function to compute the Jacobian is not supplied, `lsode' will compute a finite difference approximation of the Jacobian matrix.
`"initial step size"'
The step size to be attempted on the first step (default is determined automatically).
`"maximum order"'
Restrict the maximum order of the solution method. If using the Adams method, this option must be between 1 and 12. Otherwise, it must be between 1 and 5, inclusive.
`"maximum step size"'
Setting the maximum stepsize will avoid passing over very large regions (default is not specified).
`"minimum step size"'
The minimum absolute step size allowed (default is 0).
`"step limit"'
Maximum number of steps allowed (default is 100000).
# name: <cell-element>
# type: string
# elements: 1
# length: 105
When called with two arguments, this function allows you set options parameters for the function `lsode'.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
lsode
# name: <cell-element>
# type: string
# elements: 1
# length: 2600
-- Loadable Function: [X, ISTATE, MSG] = lsode (FCN, X_0, T, T_CRIT)
Solve the set of differential equations
dx
-- = f(x, t)
dt
with
x(t_0) = x_0
The solution is returned in the matrix X, with each row corresponding to an element of the vector T. The first element of T should be t_0 and should correspond to the initial state of the system X_0, so that the first row of the output is X_0.
The first argument, FCN, is a string, inline, or function handle that names the function f to call to compute the vector of right hand sides for the set of equations. The function must have the form
XDOT = f (X, T)
in which XDOT and X are vectors and T is a scalar.
If FCN is a two-element string array or a two-element cell array of strings, inline functions, or function handles, the first element names the function f described above, and the second element names a function to compute the Jacobian of f. The Jacobian function must have the form
JAC = j (X, T)
in which JAC is the matrix of partial derivatives
| df_1 df_1 df_1 |
| ---- ---- ... ---- |
| dx_1 dx_2 dx_N |
| |
| df_2 df_2 df_2 |
| ---- ---- ... ---- |
df_i | dx_1 dx_2 dx_N |
jac = ---- = | |
dx_j | . . . . |
| . . . . |
| . . . . |
| |
| df_N df_N df_N |
| ---- ---- ... ---- |
| dx_1 dx_2 dx_N |
The second and third arguments specify the initial state of the system, x_0, and the initial value of the independent variable t_0.
The fourth argument is optional, and may be used to specify a set of times that the ODE solver should not integrate past. It is useful for avoiding difficulties with singularities and points where there is a discontinuity in the derivative.
After a successful computation, the value of ISTATE will be 2 (consistent with the Fortran version of LSODE).
If the computation is not successful, ISTATE will be something other than 2 and MSG will contain additional information.
You can use the function `lsode_options' to set optional parameters for `lsode'. See also: daspk, dassl, dasrt.
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Solve the set of differential equations
# name: <cell-element>
# type: string
# elements: 1
# length: 2
lu
# name: <cell-element>
# type: string
# elements: 1
# length: 2398
-- Loadable Function: [L, U, P] = lu (A)
-- Loadable Function: [L, U, P, Q] = lu (S)
-- Loadable Function: [L, U, P, Q, R] = lu (S)
-- Loadable Function: [...] = lu (S, THRES)
-- Loadable Function: Y = lu (...)
-- Loadable Function: [...] = lu (..., 'vector')
Compute the LU decomposition of A. If A is full subroutines from LAPACK are used and if A is sparse then UMFPACK is used. The result is returned in a permuted form, according to the optional return value P. For example, given the matrix `a = [1, 2; 3, 4]',
[l, u, p] = lu (a)
returns
l =
1.00000 0.00000
0.33333 1.00000
u =
3.00000 4.00000
0.00000 0.66667
p =
0 1
1 0
The matrix is not required to be square.
Called with two or three output arguments and a spare input matrix, then "lu" does not attempt to perform sparsity preserving column permutations. Called with a fourth output argument, the sparsity preserving column transformation Q is returned, such that `P * A * Q = L * U'.
Called with a fifth output argument and a sparse input matrix, then "lu" attempts to use a scaling factor R on the input matrix such that `P * (R \ A) * Q = L * U'. This typically leads to a sparser and more stable factorization.
An additional input argument THRES, that defines the pivoting threshold can be given. THRES can be a scalar, in which case it defines UMFPACK pivoting tolerance for both symmetric and unsymmetric cases. If THRES is a two element vector, then the first element defines the pivoting tolerance for the unsymmetric UMFPACK pivoting strategy and the second the symmetric strategy. By default, the values defined by `spparms' are used and are by default `[0.1, 0.001]'.
Given the string argument 'vector', "lu" returns the values of P Q as vector values, such that for full matrix, `A (P,:) = L * U', and `R(P,:) * A (:, Q) = L * U'.
With two output arguments, returns the permuted forms of the upper and lower triangular matrices, such that `A = L * U'. With one output argument Y, then the matrix returned by the LAPACK routines is returned. If the input matrix is sparse then the matrix L is embedded into U to give a return value similar to the full case. For both full and sparse matrices, "lu" looses the permutation information.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Compute the LU decomposition of A.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
luinc
# name: <cell-element>
# type: string
# elements: 1
# length: 2264
-- Loadable Function: [L, U, P, Q] = luinc (A, '0')
-- Loadable Function: [L, U, P, Q] = luinc (A, DROPTOL)
-- Loadable Function: [L, U, P, Q] = luinc (A, OPTS)
Produce the incomplete LU factorization of the sparse matrix A. Two types of incomplete factorization are possible, and the type is determined by the second argument to "luinc".
Called with a second argument of '0', the zero-level incomplete LU factorization is produced. This creates a factorization of A where the position of the non-zero arguments correspond to the same positions as in the matrix A.
Alternatively, the fill-in of the incomplete LU factorization can be controlled through the variable DROPTOL or the structure OPTS. The UMFPACK multifrontal factorization code by Tim A. Davis is used for the incomplete LU factorization, (availability `http://www.cise.ufl.edu/research/sparse/umfpack/')
DROPTOL determines the values below which the values in the LU factorization are dropped and replaced by zero. It must be a positive scalar, and any values in the factorization whose absolute value are less than this value are dropped, expect if leaving them increase the sparsity of the matrix. Setting DROPTOL to zero results in a complete LU factorization which is the default.
OPTS is a structure containing one or more of the fields
`droptol'
The drop tolerance as above. If OPTS only contains `droptol' then this is equivalent to using the variable DROPTOL.
`milu'
A logical variable flagging whether to use the modified incomplete LU factorization. In the case that `milu' is true, the dropped values are subtracted from the diagonal of the matrix U of the factorization. The default is `false'.
`udiag'
A logical variable that flags whether zero elements on the diagonal of U should be replaced with DROPTOL to attempt to avoid singular factors. The default is `false'.
`thresh'
Defines the pivot threshold in the interval [0,1]. Values outside that range are ignored.
All other fields in OPTS are ignored. The outputs from "luinc" are the same as for "lu".
Given the string argument 'vector', "luinc" returns the values of P Q as vector values. See also: sparse, lu.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Produce the incomplete LU factorization of the sparse matrix A.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
abs
# name: <cell-element>
# type: string
# elements: 1
# length: 164
-- Mapping Function: abs (Z)
Compute the magnitude of Z, defined as |Z| = `sqrt (x^2 + y^2)'.
For example,
abs (3 + 4i)
=> 5
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Compute the magnitude of Z, defined as |Z| = `sqrt (x^2 + y^2)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
acos
# name: <cell-element>
# type: string
# elements: 1
# length: 124
-- Mapping Function: acos (X)
Compute the inverse cosine in radians for each element of X. See also: cos, acosd.
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Compute the inverse cosine in radians for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
acosh
# name: <cell-element>
# type: string
# elements: 1
# length: 119
-- Mapping Function: acosh (X)
Compute the inverse hyperbolic cosine for each element of X. See also: cosh.
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Compute the inverse hyperbolic cosine for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
angle
# name: <cell-element>
# type: string
# elements: 1
# length: 50
-- Mapping Function: angle (Z)
See arg.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
See arg.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
arg
# name: <cell-element>
# type: string
# elements: 1
# length: 213
-- Mapping Function: arg (Z)
-- Mapping Function: angle (Z)
Compute the argument of Z, defined as, THETA = `atan2 (Y, X)', in radians.
For example,
arg (3 + 4i)
=> 0.92730
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Compute the argument of Z, defined as, THETA = `atan2 (Y, X)', in radians.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
asin
# name: <cell-element>
# type: string
# elements: 1
# length: 122
-- Mapping Function: asin (X)
Compute the inverse sine in radians for each element of X. See also: sin, asind.
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Compute the inverse sine in radians for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
asinh
# name: <cell-element>
# type: string
# elements: 1
# length: 117
-- Mapping Function: asinh (X)
Compute the inverse hyperbolic sine for each element of X. See also: sinh.
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Compute the inverse hyperbolic sine for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
atan
# name: <cell-element>
# type: string
# elements: 1
# length: 125
-- Mapping Function: atan (X)
Compute the inverse tangent in radians for each element of X. See also: tan, atand.
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Compute the inverse tangent in radians for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
atanh
# name: <cell-element>
# type: string
# elements: 1
# length: 120
-- Mapping Function: atanh (X)
Compute the inverse hyperbolic tangent for each element of X. See also: tanh.
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Compute the inverse hyperbolic tangent for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
ceil
# name: <cell-element>
# type: string
# elements: 1
# length: 297
-- Mapping Function: ceil (X)
Return the smallest integer not less than X. This is equivalent to rounding towards positive infinity. If X is complex, return `ceil (real (X)) + ceil (imag (X)) * I'.
ceil ([-2.7, 2.7])
=> -2 3
See also: floor, round, fix.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Return the smallest integer not less than X.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
conj
# name: <cell-element>
# type: string
# elements: 1
# length: 130
-- Mapping Function: conj (Z)
Return the complex conjugate of Z, defined as `conj (Z)' = X - IY. See also: real, imag.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Return the complex conjugate of Z, defined as `conj (Z)' = X - IY.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
cos
# name: <cell-element>
# type: string
# elements: 1
# length: 121
-- Mapping Function: cos (X)
Compute the cosine for each element of X in radians. See also: acos, cosd, cosh.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Compute the cosine for each element of X in radians.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
cosh
# name: <cell-element>
# type: string
# elements: 1
# length: 123
-- Mapping Function: cosh (X)
Compute the hyperbolic cosine for each element of X. See also: acosh, sinh, tanh.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Compute the hyperbolic cosine for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
erf
# name: <cell-element>
# type: string
# elements: 1
# length: 290
-- Mapping Function: erf (Z)
Computes the error function,
z
/
erf (z) = (2/sqrt (pi)) | e^(-t^2) dt
/
t=0
See also: erfc, erfinv.
# name: <cell-element>
# type: string
# elements: 1
# length: 29
Computes the error function,
# name: <cell-element>
# type: string
# elements: 1
# length: 4
erfc
# name: <cell-element>
# type: string
# elements: 1
# length: 122
-- Mapping Function: erfc (Z)
Computes the complementary error function, `1 - erf (Z)'. See also: erf, erfinv.
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Computes the complementary error function, `1 - erf (Z)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
exp
# name: <cell-element>
# type: string
# elements: 1
# length: 156
-- Mapping Function: exp (X)
Compute `e^x' for each element of X. To compute the matrix exponential, see *note Linear Algebra::. See also: log.
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Compute `e^x' for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
expm1
# name: <cell-element>
# type: string
# elements: 1
# length: 119
-- Mapping Function: expm1 (X)
Compute `exp (X) - 1' accurately in the neighborhood of zero. See also: exp.
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Compute `exp (X) - 1' accurately in the neighborhood of zero.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
finite
# name: <cell-element>
# type: string
# elements: 1
# length: 195
-- Mapping Function: finite (X)
Return 1 for elements of X that are finite values and zero otherwise. For example,
finite ([13, Inf, NA, NaN])
=> [ 1, 0, 0, 0 ]
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Return 1 for elements of X that are finite values and zero otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
fix
# name: <cell-element>
# type: string
# elements: 1
# length: 300
-- Mapping Function: fix (X)
Truncate fractional portion of X and return the integer portion. This is equivalent to rounding towards zero. If X is complex, return `fix (real (X)) + fix (imag (X)) * I'.
fix ([-2.7, 2.7])
=> -2 2
See also: ceil, floor, round.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Truncate fractional portion of X and return the integer portion.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
floor
# name: <cell-element>
# type: string
# elements: 1
# length: 303
-- Mapping Function: floor (X)
Return the largest integer not greater than X. This is equivalent to rounding towards negative infinity. If X is complex, return `floor (real (X)) + floor (imag (X)) * I'.
floor ([-2.7, 2.7])
=> -3 2
See also: ceil, round, fix.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Return the largest integer not greater than X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
gamma
# name: <cell-element>
# type: string
# elements: 1
# length: 251
-- Mapping Function: gamma (Z)
Computes the Gamma function,
infinity
/
gamma (z) = | t^(z-1) exp (-t) dt.
/
t=0
See also: gammainc, lgamma.
# name: <cell-element>
# type: string
# elements: 1
# length: 29
Computes the Gamma function,
# name: <cell-element>
# type: string
# elements: 1
# length: 4
imag
# name: <cell-element>
# type: string
# elements: 1
# length: 112
-- Mapping Function: imag (Z)
Return the imaginary part of Z as a real number. See also: real, conj.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return the imaginary part of Z as a real number.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
isalnum
# name: <cell-element>
# type: string
# elements: 1
# length: 136
-- Mapping Function: isalnum (S)
Return 1 for characters that are letters or digits (`isalpha (S)' or `isdigit (S)' is true).
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Return 1 for characters that are letters or digits (`isalpha (S)' or `isdigit (S)' is true).
# name: <cell-element>
# type: string
# elements: 1
# length: 7
isalpha
# name: <cell-element>
# type: string
# elements: 1
# length: 165
-- Mapping Function: isalpha (S)
-- Mapping Function: isletter (S)
Return true for characters that are letters (`isupper (S)' or `islower (S)' is true).
# name: <cell-element>
# type: string
# elements: 1
# length: 85
Return true for characters that are letters (`isupper (S)' or `islower (S)' is true).
# name: <cell-element>
# type: string
# elements: 1
# length: 7
isascii
# name: <cell-element>
# type: string
# elements: 1
# length: 115
-- Mapping Function: isascii (S)
Return 1 for characters that are ASCII (in the range 0 to 127 decimal).
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Return 1 for characters that are ASCII (in the range 0 to 127 decimal).
# name: <cell-element>
# type: string
# elements: 1
# length: 7
iscntrl
# name: <cell-element>
# type: string
# elements: 1
# length: 76
-- Mapping Function: iscntrl (S)
Return 1 for control characters.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Return 1 for control characters.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
isdigit
# name: <cell-element>
# type: string
# elements: 1
# length: 92
-- Mapping Function: isdigit (S)
Return 1 for characters that are decimal digits.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return 1 for characters that are decimal digits.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
isinf
# name: <cell-element>
# type: string
# elements: 1
# length: 188
-- Mapping Function: isinf (X)
Return 1 for elements of X that are infinite and zero otherwise. For example,
isinf ([13, Inf, NA, NaN])
=> [ 0, 1, 0, 0 ]
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return 1 for elements of X that are infinite and zero otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
isgraph
# name: <cell-element>
# type: string
# elements: 1
# length: 108
-- Mapping Function: isgraph (S)
Return 1 for printable characters (but not the space character).
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return 1 for printable characters (but not the space character).
# name: <cell-element>
# type: string
# elements: 1
# length: 7
islower
# name: <cell-element>
# type: string
# elements: 1
# length: 96
-- Mapping Function: islower (S)
Return 1 for characters that are lower case letters.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return 1 for characters that are lower case letters.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
isna
# name: <cell-element>
# type: string
# elements: 1
# length: 222
-- Mapping Function: isna (X)
Return 1 for elements of X that are NA (missing) values and zero otherwise. For example,
isna ([13, Inf, NA, NaN])
=> [ 0, 0, 1, 0 ]
See also: isnan.
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Return 1 for elements of X that are NA (missing) values and zero otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
isnan
# name: <cell-element>
# type: string
# elements: 1
# length: 257
-- Mapping Function: isnan (X)
Return 1 for elements of X that are NaN values and zero otherwise. NA values are also considered NaN values. For example,
isnan ([13, Inf, NA, NaN])
=> [ 0, 0, 1, 1 ]
See also: isna.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Return 1 for elements of X that are NaN values and zero otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
isprint
# name: <cell-element>
# type: string
# elements: 1
# length: 110
-- Mapping Function: isprint (S)
Return 1 for printable characters (including the space character).
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Return 1 for printable characters (including the space character).
# name: <cell-element>
# type: string
# elements: 1
# length: 7
ispunct
# name: <cell-element>
# type: string
# elements: 1
# length: 80
-- Mapping Function: ispunct (S)
Return 1 for punctuation characters.
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Return 1 for punctuation characters.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
isspace
# name: <cell-element>
# type: string
# elements: 1
# length: 146
-- Mapping Function: isspace (S)
Return 1 for whitespace characters (space, formfeed, newline, carriage return, tab, and vertical tab).
# name: <cell-element>
# type: string
# elements: 1
# length: 102
Return 1 for whitespace characters (space, formfeed, newline, carriage return, tab, and vertical tab).
# name: <cell-element>
# type: string
# elements: 1
# length: 7
isupper
# name: <cell-element>
# type: string
# elements: 1
# length: 76
-- Mapping Function: isupper (S)
Return 1 for upper case letters.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Return 1 for upper case letters.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
isxdigit
# name: <cell-element>
# type: string
# elements: 1
# length: 97
-- Mapping Function: isxdigit (S)
Return 1 for characters that are hexadecimal digits.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return 1 for characters that are hexadecimal digits.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
lgamma
# name: <cell-element>
# type: string
# elements: 1
# length: 162
-- Mapping Function: lgamma (X)
-- Mapping Function: gammaln (X)
Return the natural logarithm of the gamma function of X. See also: gamma, gammainc.
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Return the natural logarithm of the gamma function of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
log
# name: <cell-element>
# type: string
# elements: 1
# length: 211
-- Mapping Function: log (X)
Compute the natural logarithm, `ln (X)', for each element of X. To compute the matrix logarithm, see *note Linear Algebra::. See also: exp, log1p, log2, log10, logspace.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Compute the natural logarithm, `ln (X)', for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
log10
# name: <cell-element>
# type: string
# elements: 1
# length: 130
-- Mapping Function: log10 (X)
Compute the base-10 logarithm of each element of X. See also: log, log2, logspace, exp.
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Compute the base-10 logarithm of each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
log1p
# name: <cell-element>
# type: string
# elements: 1
# length: 131
-- Mapping Function: log1p (X)
Compute `log (1 + X)' accurately in the neighborhood of zero. See also: log, exp, expm1.
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Compute `log (1 + X)' accurately in the neighborhood of zero.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
real
# name: <cell-element>
# type: string
# elements: 1
# length: 90
-- Mapping Function: real (Z)
Return the real part of Z. See also: imag, conj.
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Return the real part of Z.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
round
# name: <cell-element>
# type: string
# elements: 1
# length: 230
-- Mapping Function: round (X)
Return the integer nearest to X. If X is complex, return `round (real (X)) + round (imag (X)) * I'.
round ([-2.7, 2.7])
=> -3 3
See also: ceil, floor, fix.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Return the integer nearest to X.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
roundb
# name: <cell-element>
# type: string
# elements: 1
# length: 240
-- Mapping Function: roundb (X)
Return the integer nearest to X. If there are two nearest integers, return the even one (banker's rounding). If X is complex, return `roundb (real (X)) + roundb (imag (X)) * I'. See also: round.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Return the integer nearest to X.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
sign
# name: <cell-element>
# type: string
# elements: 1
# length: 248
-- Mapping Function: sign (X)
Compute the "signum" function, which is defined as
-1, x < 0;
sign (x) = 0, x = 0;
1, x > 0.
For complex arguments, `sign' returns `x ./ abs (X)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Compute the "signum" function, which is defined as
# name: <cell-element>
# type: string
# elements: 1
# length: 3
sin
# name: <cell-element>
# type: string
# elements: 1
# length: 119
-- Mapping Function: sin (X)
Compute the sine for each element of X in radians. See also: asin, sind, sinh.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Compute the sine for each element of X in radians.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
sinh
# name: <cell-element>
# type: string
# elements: 1
# length: 121
-- Mapping Function: sinh (X)
Compute the hyperbolic sine for each element of X. See also: asinh, cosh, tanh.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Compute the hyperbolic sine for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
sqrt
# name: <cell-element>
# type: string
# elements: 1
# length: 220
-- Mapping Function: sqrt (X)
Compute the square root of each element of X. If X is negative, a complex result is returned. To compute the matrix square root, see *note Linear Algebra::. See also: realsqrt.
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Compute the square root of each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
tan
# name: <cell-element>
# type: string
# elements: 1
# length: 122
-- Mapping Function: tan (Z)
Compute the tangent for each element of X in radians. See also: atan, tand, tanh.
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Compute the tangent for each element of X in radians.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
tanh
# name: <cell-element>
# type: string
# elements: 1
# length: 120
-- Mapping Function: tanh (X)
Compute hyperbolic tangent for each element of X. See also: atanh, sinh, cosh.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Compute hyperbolic tangent for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
toascii
# name: <cell-element>
# type: string
# elements: 1
# length: 195
-- Mapping Function: toascii (S)
Return ASCII representation of S in a matrix. For example,
toascii ("ASCII")
=> [ 65, 83, 67, 73, 73 ]
See also: char.
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Return ASCII representation of S in a matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
tolower
# name: <cell-element>
# type: string
# elements: 1
# length: 356
-- Mapping Function: tolower (S)
-- Mapping Function: lower (S)
Return a copy of the string or cell string S, with each upper-case character replaced by the corresponding lower-case one; non-alphabetic characters are left unchanged. For example,
tolower ("MiXeD cAsE 123")
=> "mixed case 123"
See also: toupper.
# name: <cell-element>
# type: string
# elements: 1
# length: 168
Return a copy of the string or cell string S, with each upper-case character replaced by the corresponding lower-case one; non-alphabetic characters are left unchanged.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
toupper
# name: <cell-element>
# type: string
# elements: 1
# length: 358
-- Built-in Function: toupper (S)
-- Built-in Function: upper (S)
Return a copy of the string or cell string S, with each lower-case character replaced by the corresponding upper-case one; non-alphabetic characters are left unchanged. For example,
toupper ("MiXeD cAsE 123")
=> "MIXED CASE 123"
See also: tolower.
# name: <cell-element>
# type: string
# elements: 1
# length: 168
Return a copy of the string or cell string S, with each lower-case character replaced by the corresponding upper-case one; non-alphabetic characters are left unchanged.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
matrix_type
# name: <cell-element>
# type: string
# elements: 1
# length: 2920
-- Loadable Function: TYPE = matrix_type (A)
-- Loadable Function: A = matrix_type (A, TYPE)
-- Loadable Function: A = matrix_type (A, 'upper', PERM)
-- Loadable Function: A = matrix_type (A, 'lower', PERM)
-- Loadable Function: A = matrix_type (A, 'banded', NL, NU)
Identify the matrix type or mark a matrix as a particular type. This allows rapid for solutions of linear equations involving A to be performed. Called with a single argument, `matrix_type' returns the type of the matrix and caches it for future use. Called with more than one argument, `matrix_type' allows the type of the matrix to be defined.
The possible matrix types depend on whether the matrix is full or sparse, and can be one of the following
'unknown'
Remove any previously cached matrix type, and mark type as unknown
'full'
Mark the matrix as full.
'positive definite'
Probable full positive definite matrix.
'diagonal'
Diagonal Matrix. (Sparse matrices only)
'permuted diagonal'
Permuted Diagonal matrix. The permutation does not need to be specifically indicated, as the structure of the matrix explicitly gives this. (Sparse matrices only)
'upper'
Upper triangular. If the optional third argument PERM is given, the matrix is assumed to be a permuted upper triangular with the permutations defined by the vector PERM.
'lower'
Lower triangular. If the optional third argument PERM is given, the matrix is assumed to be a permuted lower triangular with the permutations defined by the vector PERM.
'banded'
'banded positive definite'
Banded matrix with the band size of NL below the diagonal and NU above it. If NL and NU are 1, then the matrix is tridiagonal and treated with specialized code. In addition the matrix can be marked as probably a positive definite (Sparse matrices only)
'singular'
The matrix is assumed to be singular and will be treated with a minimum norm solution
Note that the matrix type will be discovered automatically on the first attempt to solve a linear equation involving A. Therefore `matrix_type' is only useful to give Octave hints of the matrix type. Incorrectly defining the matrix type will result in incorrect results from solutions of linear equations, and so it is entirely the responsibility of the user to correctly identify the matrix type.
Also the test for positive definiteness is a low-cost test for a hermitian matrix with a real positive diagonal. This does not guarantee that the matrix is positive definite, but only that it is a probable candidate. When such a matrix is factorized, a Cholesky factorization is first attempted, and if that fails the matrix is then treated with an LU factorization. Once the matrix has been factorized, `matrix_type' will return the correct classification of the matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Identify the matrix type or mark a matrix as a particular type.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
min
# name: <cell-element>
# type: string
# elements: 1
# length: 993
-- Loadable Function: min (X)
-- Loadable Function: min (X, Y)
-- Loadable Function: min (X, Y, DIM)
-- Loadable Function: [W, IW] = min (X)
For a vector argument, return the minimum value. For a matrix argument, return the minimum value from each column, as a row vector, or over the dimension DIM if defined. For two matrices (or a matrix and scalar), return the pair-wise minimum. Thus,
min (min (X))
returns the smallest element of X, and
min (2:5, pi)
=> 2.0000 3.0000 3.1416 3.1416
compares each element of the range `2:5' with `pi', and returns a row vector of the minimum values.
For complex arguments, the magnitude of the elements are used for comparison.
If called with one input and two output arguments, `min' also returns the first index of the minimum value(s). Thus,
[x, ix] = min ([1, 3, 0, 2, 0])
=> x = 0
ix = 3
See also: max, cummin, cummax.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
For a vector argument, return the minimum value.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
max
# name: <cell-element>
# type: string
# elements: 1
# length: 1003
-- Loadable Function: max (X)
-- Loadable Function: max (X, Y)
-- Loadable Function: max (X, Y, DIM)
-- Loadable Function: [W, IW] = max (X)
For a vector argument, return the maximum value. For a matrix argument, return the maximum value from each column, as a row vector, or over the dimension DIM if defined. For two matrices (or a matrix and scalar), return the pair-wise maximum. Thus,
max (max (X))
returns the largest element of the matrix X, and
max (2:5, pi)
=> 3.1416 3.1416 4.0000 5.0000
compares each element of the range `2:5' with `pi', and returns a row vector of the maximum values.
For complex arguments, the magnitude of the elements are used for comparison.
If called with one input and two output arguments, `max' also returns the first index of the maximum value(s). Thus,
[x, ix] = max ([1, 3, 5, 2, 5])
=> x = 5
ix = 3
See also: min, cummax, cummin.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
For a vector argument, return the maximum value.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
cummin
# name: <cell-element>
# type: string
# elements: 1
# length: 750
-- Loadable Function: cummin (X)
-- Loadable Function: cummin (X, DIM)
-- Loadable Function: [W, IW] = cummin (X)
Return the cumulative minimum values along dimension DIM. If DIM is unspecified it defaults to column-wise operation. For example,
cummin ([5 4 6 2 3 1])
=> 5 4 4 2 2 1
The call
[w, iw] = cummin (x, dim)
is equivalent to the following code:
w = iw = zeros (size (x));
idxw = idxx = repmat ({':'}, 1, ndims (x));
for i = 1:size (x, dim)
idxw{dim} = i; idxx{dim} = 1:i;
[w(idxw{:}), iw(idxw{:})] = min(x(idxx{:}), [], dim);
endfor
but computed in a much faster manner. See also: cummax, min, max.
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Return the cumulative minimum values along dimension DIM.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
cummax
# name: <cell-element>
# type: string
# elements: 1
# length: 748
-- Loadable Function: cummax (X)
-- Loadable Function: cummax (X, DIM)
-- Loadable Function: [W, IW] = cummax (X)
Return the cumulative maximum values along dimension DIM. If DIM is unspecified it defaults to column-wise operation. For example,
cummax ([1 3 2 6 4 5])
=> 1 3 3 6 6 6
The call
[w, iw] = cummax (x, dim)
is equivalent to the following code:
w = iw = zeros (size (x));
idxw = idxx = repmat ({':'}, 1, ndims (x));
for i = 1:size (x, dim)
idxw{dim} = i; idxx{dim} = 1:i;
[w(idxw{:}), iw(idxw{:})] = max(x(idxx{:}), [], dim);
endfor
but computed in a much faster manner. See also: cummin, max, min.
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Return the cumulative maximum values along dimension DIM.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
md5sum
# name: <cell-element>
# type: string
# elements: 1
# length: 224
-- Loadable Function: md5sum (FILE)
-- Loadable Function: md5sum (STR, OPT)
Calculates the MD5 sum of the file FILE. If the second parameter OPT exists and is true, then calculate the MD5 sum of the string STR.
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Calculates the MD5 sum of the file FILE.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
edit_history
# name: <cell-element>
# type: string
# elements: 1
# length: 1258
-- Command: edit_history [FIRST] [LAST]
If invoked with no arguments, `edit_history' allows you to edit the history list using the editor named by the variable `EDITOR'. The commands to be edited are first copied to a temporary file. When you exit the editor, Octave executes the commands that remain in the file. It is often more convenient to use `edit_history' to define functions rather than attempting to enter them directly on the command line. By default, the block of commands is executed as soon as you exit the editor. To avoid executing any commands, simply delete all the lines from the buffer before exiting the editor.
The `edit_history' command takes two optional arguments specifying the history numbers of first and last commands to edit. For example, the command
edit_history 13
extracts all the commands from the 13th through the last in the history list. The command
edit_history 13 169
only extracts commands 13 through 169. Specifying a larger number for the first command than the last command reverses the list of commands before placing them in the buffer to be edited. If both arguments are omitted, the previous command in the history list is used. See also: run_history.
# name: <cell-element>
# type: string
# elements: 1
# length: 129
If invoked with no arguments, `edit_history' allows you to edit the history list using the editor named by the variable `EDITOR'.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
history
# name: <cell-element>
# type: string
# elements: 1
# length: 837
-- Command: history options
If invoked with no arguments, `history' displays a list of commands that you have executed. Valid options are:
`-w FILE'
Write the current history to the file FILE. If the name is omitted, use the default history file (normally `~/.octave_hist').
`-r FILE'
Read the file FILE, replacing the current history list with its contents. If the name is omitted, use the default history file (normally `~/.octave_hist').
`N'
Display only the most recent N lines of history.
`-q'
Don't number the displayed lines of history. This is useful for cutting and pasting commands using the X Window System.
For example, to display the five most recent commands that you have typed without displaying line numbers, use the command `history -q 5'.
# name: <cell-element>
# type: string
# elements: 1
# length: 91
If invoked with no arguments, `history' displays a list of commands that you have executed.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
run_history
# name: <cell-element>
# type: string
# elements: 1
# length: 212
-- Command: run_history [FIRST] [LAST]
Similar to `edit_history', except that the editor is not invoked, and the commands are simply executed as they appear in the history list. See also: edit_history.
# name: <cell-element>
# type: string
# elements: 1
# length: 138
Similar to `edit_history', except that the editor is not invoked, and the commands are simply executed as they appear in the history list.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
history_size
# name: <cell-element>
# type: string
# elements: 1
# length: 379
-- Built-in Function: VAL = history_size ()
-- Built-in Function: OLD_VAL = history_size (NEW_VAL)
Query or set the internal variable that specifies how many entries to store in the history file. The default value is `1024', but may be overridden by the environment variable `OCTAVE_HISTSIZE'. See also: history_file, history_timestamp_format_string, saving_history.
# name: <cell-element>
# type: string
# elements: 1
# length: 96
Query or set the internal variable that specifies how many entries to store in the history file.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
history_file
# name: <cell-element>
# type: string
# elements: 1
# length: 394
-- Built-in Function: VAL = history_file ()
-- Built-in Function: OLD_VAL = history_file (NEW_VAL)
Query or set the internal variable that specifies the name of the file used to store command history. The default value is `~/.octave_hist', but may be overridden by the environment variable `OCTAVE_HISTFILE'. See also: history_size, saving_history, history_timestamp_format_string.
# name: <cell-element>
# type: string
# elements: 1
# length: 101
Query or set the internal variable that specifies the name of the file used to store command history.
# name: <cell-element>
# type: string
# elements: 1
# length: 31
history_timestamp_format_string
# name: <cell-element>
# type: string
# elements: 1
# length: 493
-- Built-in Function: VAL = history_timestamp_format_string ()
-- Built-in Function: OLD_VAL = history_timestamp_format_string (NEW_VAL)
Query or set the internal variable that specifies the format string for the comment line that is written to the history file when Octave exits. The format string is passed to `strftime'. The default value is
"# Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USER@HOST>"
See also: strftime, history_file, history_size, saving_history.
# name: <cell-element>
# type: string
# elements: 1
# length: 143
Query or set the internal variable that specifies the format string for the comment line that is written to the history file when Octave exits.
# name: <cell-element>
# type: string
# elements: 1
# length: 14
saving_history
# name: <cell-element>
# type: string
# elements: 1
# length: 310
-- Built-in Function: VAL = saving_history ()
-- Built-in Function: OLD_VAL = saving_history (NEW_VAL)
Query or set the internal variable that controls whether commands entered on the command line are saved in the history file. See also: history_file, history_size, history_timestamp_format_string.
# name: <cell-element>
# type: string
# elements: 1
# length: 124
Query or set the internal variable that controls whether commands entered on the command line are saved in the history file.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
argv
# name: <cell-element>
# type: string
# elements: 1
# length: 504
-- Built-in Function: argv ()
Return the command line arguments passed to Octave. For example, if you invoked Octave using the command
octave --no-line-editing --silent
`argv' would return a cell array of strings with the elements `--no-line-editing' and `--silent'.
If you write an executable Octave script, `argv' will return the list of arguments passed to the script. *Note Executable Octave Programs::, for an example of how to create an executable Octave script.
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Return the command line arguments passed to Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 23
program_invocation_name
# name: <cell-element>
# type: string
# elements: 1
# length: 409
-- Built-in Function: program_invocation_name ()
Return the name that was typed at the shell prompt to run Octave.
If executing a script from the command line (e.g., `octave foo.m') or using an executable Octave script, the program name is set to the name of the script. *Note Executable Octave Programs::, for an example of how to create an executable Octave script. See also: program_name.
# name: <cell-element>
# type: string
# elements: 1
# length: 65
Return the name that was typed at the shell prompt to run Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
program_name
# name: <cell-element>
# type: string
# elements: 1
# length: 162
-- Built-in Function: program_name ()
Return the last component of the value returned by `program_invocation_name'. See also: program_invocation_name.
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Return the last component of the value returned by `program_invocation_name'.
# name: <cell-element>
# type: string
# elements: 1
# length: 18
sparse_auto_mutate
# name: <cell-element>
# type: string
# elements: 1
# length: 510
-- Built-in Function: VAL = sparse_auto_mutate ()
-- Built-in Function: OLD_VAL = sparse_auto_mutate (NEW_VAL)
Query or set the internal variable that controls whether Octave will automatically mutate sparse matrices to real matrices to save memory. For example,
s = speye(3);
sparse_auto_mutate (false)
s (:, 1) = 1;
typeinfo (s)
=> sparse matrix
sparse_auto_mutate (true)
s (1, :) = 1;
typeinfo (s)
=> matrix
# name: <cell-element>
# type: string
# elements: 1
# length: 138
Query or set the internal variable that controls whether Octave will automatically mutate sparse matrices to real matrices to save memory.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
iscell
# name: <cell-element>
# type: string
# elements: 1
# length: 110
-- Built-in Function: iscell (X)
Return true if X is a cell array object. Otherwise, return false.
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Return true if X is a cell array object.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
cell
# name: <cell-element>
# type: string
# elements: 1
# length: 436
-- Built-in Function: cell (X)
-- Built-in Function: cell (N, M)
Create a new cell array object. If invoked with a single scalar argument, `cell' returns a square cell array with the dimension specified. If you supply two scalar arguments, `cell' takes them to be the number of rows and columns. If given a vector with two elements, `cell' uses the values of the elements as the number of rows and columns, respectively.
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Create a new cell array object.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
iscellstr
# name: <cell-element>
# type: string
# elements: 1
# length: 123
-- Built-in Function: iscellstr (CELL)
Return true if every element of the cell array CELL is a character string
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Return true if every element of the cell array CELL is a character string
# name: <cell-element>
# type: string
# elements: 1
# length: 7
cellstr
# name: <cell-element>
# type: string
# elements: 1
# length: 126
-- Built-in Function: cellstr (STRING)
Create a new cell array object from the elements of the string array STRING.
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Create a new cell array object from the elements of the string array STRING.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
struct2cell
# name: <cell-element>
# type: string
# elements: 1
# length: 288
-- Built-in Function: struct2cell (S)
Create a new cell array from the objects stored in the struct object. If F is the number of fields in the structure, the resulting cell array will have a dimension vector corresponding to `[F size(S)]'. See also: cell2struct, fieldnames.
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Create a new cell array from the objects stored in the struct object.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
class
# name: <cell-element>
# type: string
# elements: 1
# length: 327
-- Built-in Function: class (EXPR)
-- Built-in Function: class (S, ID)
-- Built-in Function: class (S, ID, P, ...)
Return the class of the expression EXPR or create a class with fields from structure S and name (string) ID. Additional arguments name a list of parent classes from which the new class is derived.
# name: <cell-element>
# type: string
# elements: 1
# length: 108
Return the class of the expression EXPR or create a class with fields from structure S and name (string) ID.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
isobject
# name: <cell-element>
# type: string
# elements: 1
# length: 81
-- Built-in Function: isobject (X)
Return true if X is a class object.
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Return true if X is a class object.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
ismethod
# name: <cell-element>
# type: string
# elements: 1
# length: 137
-- Built-in Function: ismethod (X, METHOD)
Return true if X is a class object and the string METHOD is a method of this class.
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Return true if X is a class object and the string METHOD is a method of this class.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
methods
# name: <cell-element>
# type: string
# elements: 1
# length: 183
-- Built-in Function: methods (X)
-- Built-in Function: methods ("classname")
Return a cell array containing the names of the methods for the object X or the named class.
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Return a cell array containing the names of the methods for the object X or the named class.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
superiorto
# name: <cell-element>
# type: string
# elements: 1
# length: 305
-- Built-in Function: superiorto (CLASS_NAME, ...)
When called from a class constructor, mark the object currently constructed as having a higher precedence than CLASS_NAME. More that one such class can be specified in a single call. This function may only be called from a class constructor.
# name: <cell-element>
# type: string
# elements: 1
# length: 122
When called from a class constructor, mark the object currently constructed as having a higher precedence than CLASS_NAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
inferiorto
# name: <cell-element>
# type: string
# elements: 1
# length: 304
-- Built-in Function: inferiorto (CLASS_NAME, ...)
When called from a class constructor, mark the object currently constructed as having a lower precedence than CLASS_NAME. More that one such class can be specified in a single call. This function may only be called from a class constructor.
# name: <cell-element>
# type: string
# elements: 1
# length: 121
When called from a class constructor, mark the object currently constructed as having a lower precedence than CLASS_NAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
functions
# name: <cell-element>
# type: string
# elements: 1
# length: 132
-- Built-in Function: functions (FCN_HANDLE)
Return a struct containing information about the function handle FCN_HANDLE.
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Return a struct containing information about the function handle FCN_HANDLE.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
func2str
# name: <cell-element>
# type: string
# elements: 1
# length: 152
-- Built-in Function: func2str (FCN_HANDLE)
Return a string containing the name of the function referenced by the function handle FCN_HANDLE.
# name: <cell-element>
# type: string
# elements: 1
# length: 97
Return a string containing the name of the function referenced by the function handle FCN_HANDLE.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
str2func
# name: <cell-element>
# type: string
# elements: 1
# length: 115
-- Built-in Function: str2func (FCN_NAME)
Return a function handle constructed from the string FCN_NAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Return a function handle constructed from the string FCN_NAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
inline
# name: <cell-element>
# type: string
# elements: 1
# length: 851
-- Built-in Function: inline (STR)
-- Built-in Function: inline (STR, ARG1, ...)
-- Built-in Function: inline (STR, N)
Create an inline function from the character string STR. If called with a single argument, the arguments of the generated function are extracted from the function itself. The generated function arguments will then be in alphabetical order. It should be noted that i, and j are ignored as arguments due to the ambiguity between their use as a variable or their use as an inbuilt constant. All arguments followed by a parenthesis are considered to be functions.
If the second and subsequent arguments are character strings, they are the names of the arguments of the function.
If the second argument is an integer N, the arguments are `"x"', `"P1"', ..., `"PN"'. See also: argnames, formula, vectorize.
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Create an inline function from the character string STR.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
formula
# name: <cell-element>
# type: string
# elements: 1
# length: 208
-- Built-in Function: formula (FUN)
Return a character string representing the inline function FUN. Note that `char (FUN)' is equivalent to `formula (FUN)'. See also: argnames, inline, vectorize.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return a character string representing the inline function FUN.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
argnames
# name: <cell-element>
# type: string
# elements: 1
# length: 193
-- Built-in Function: argnames (FUN)
Return a cell array of character strings containing the names of the arguments of the inline function FUN. See also: inline, formula, vectorize.
# name: <cell-element>
# type: string
# elements: 1
# length: 106
Return a cell array of character strings containing the names of the arguments of the inline function FUN.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
vectorize
# name: <cell-element>
# type: string
# elements: 1
# length: 173
-- Built-in Function: vectorize (FUN)
Create a vectorized version of the inline function FUN by replacing all occurrences of `*', `/', etc., with `.*', `./', etc.
# name: <cell-element>
# type: string
# elements: 1
# length: 101
Create a vectorized version of the inline function FUN by replacing all occurrences of `*', `/', etc.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
single
# name: <cell-element>
# type: string
# elements: 1
# length: 98
-- Built-in Function: single (X)
Convert X to single precision type. See also: double.
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Convert X to single precision type.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
int16
# name: <cell-element>
# type: string
# elements: 1
# length: 76
-- Built-in Function: int16 (X)
Convert X to 16-bit integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Convert X to 16-bit integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
int32
# name: <cell-element>
# type: string
# elements: 1
# length: 76
-- Built-in Function: int32 (X)
Convert X to 32-bit integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Convert X to 32-bit integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
int64
# name: <cell-element>
# type: string
# elements: 1
# length: 76
-- Built-in Function: int64 (X)
Convert X to 64-bit integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Convert X to 64-bit integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
int8
# name: <cell-element>
# type: string
# elements: 1
# length: 74
-- Built-in Function: int8 (X)
Convert X to 8-bit integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Convert X to 8-bit integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
list
# name: <cell-element>
# type: string
# elements: 1
# length: 119
-- Built-in Function: list (A1, A2, ...)
Create a new list with elements given by the arguments A1, A2, ....
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Create a new list with elements given by the arguments A1, A2, .
# name: <cell-element>
# type: string
# elements: 1
# length: 3
nth
# name: <cell-element>
# type: string
# elements: 1
# length: 79
-- Built-in Function: nth (LIST, N)
Return the N-th element of LIST.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Return the N-th element of LIST.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
append
# name: <cell-element>
# type: string
# elements: 1
# length: 429
-- Built-in Function: append (LIST, A1, A2, ...)
Return a new list created by appending A1, A2, ..., to LIST. If any of the arguments to be appended is a list, its elements are appended individually. For example,
x = list (1, 2);
y = list (3, 4);
append (x, y);
results in the list containing the four elements `(1 2 3 4)', not a list containing the three elements `(1 2 (3 4))'.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return a new list created by appending A1, A2, .
# name: <cell-element>
# type: string
# elements: 1
# length: 7
reverse
# name: <cell-element>
# type: string
# elements: 1
# length: 108
-- Built-in Function: reverse (LIST)
Return a new list created by reversing the elements of LIST.
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Return a new list created by reversing the elements of LIST.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
splice
# name: <cell-element>
# type: string
# elements: 1
# length: 386
-- Built-in Function: splice (LIST_1, OFFSET, LENGTH, LIST_2)
Replace LENGTH elements of LIST_1 beginning at OFFSET with the contents of LIST_2 (if any). If LENGTH is omitted, all elements from OFFSET to the end of LIST_1 are replaced. As a special case, if OFFSET is one greater than the length of LIST_1 and LENGTH is 0, splice is equivalent to `append (LIST_1, LIST_2)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 91
Replace LENGTH elements of LIST_1 beginning at OFFSET with the contents of LIST_2 (if any).
# name: <cell-element>
# type: string
# elements: 1
# length: 6
isnull
# name: <cell-element>
# type: string
# elements: 1
# length: 492
-- Built-in Function: isnull (X)
Return 1 if X is a special null matrix, string or single quoted string. Indexed assignment with such a value as right-hand side should delete array elements. This function should be used when overloading indexed assignment for user-defined classes instead of `isempty', to distinguish the cases:
`A(I) = []'
This should delete elements if `I' is nonempty.
`X = []; A(I) = X'
This should give an error if `I' is nonempty.
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Return 1 if X is a special null matrix, string or single quoted string.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
double
# name: <cell-element>
# type: string
# elements: 1
# length: 98
-- Built-in Function: double (X)
Convert X to double precision type. See also: single.
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Convert X to double precision type.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
struct
# name: <cell-element>
# type: string
# elements: 1
# length: 509
-- Built-in Function: struct ("field", VALUE, "field", VALUE, ...)
Create a structure and initialize its value.
If the values are cell arrays, create a structure array and initialize its values. The dimensions of each cell array of values must match. Singleton cells and non-cell values are repeated so that they fill the entire array. If the cells are empty, create an empty structure array with the specified field names.
If the argument is an object, return the underlying struct.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Create a structure and initialize its value.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
isstruct
# name: <cell-element>
# type: string
# elements: 1
# length: 109
-- Built-in Function: isstruct (EXPR)
Return 1 if the value of the expression EXPR is a structure.
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Return 1 if the value of the expression EXPR is a structure.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
fieldnames
# name: <cell-element>
# type: string
# elements: 1
# length: 207
-- Built-in Function: fieldnames (STRUCT)
Return a cell array of strings naming the elements of the structure STRUCT. It is an error to call `fieldnames' with an argument that is not a structure.
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Return a cell array of strings naming the elements of the structure STRUCT.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
isfield
# name: <cell-element>
# type: string
# elements: 1
# length: 215
-- Built-in Function: isfield (EXPR, NAME)
Return true if the expression EXPR is a structure and it includes an element named NAME. The first argument must be a structure and the second must be a string.
# name: <cell-element>
# type: string
# elements: 1
# length: 88
Return true if the expression EXPR is a structure and it includes an element named NAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
cell2struct
# name: <cell-element>
# type: string
# elements: 1
# length: 518
-- Built-in Function: cell2struct (CELL, FIELDS, DIM)
Convert CELL to a structure. The number of fields in FIELDS must match the number of elements in CELL along dimension DIM, that is `numel (FIELDS) == size (CELL, DIM)'.
A = cell2struct ({'Peter', 'Hannah', 'Robert';
185, 170, 168},
{'Name','Height'}, 1);
A(1)
=> ans =
{
Height = 185
Name = Peter
}
# name: <cell-element>
# type: string
# elements: 1
# length: 28
Convert CELL to a structure.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
rmfield
# name: <cell-element>
# type: string
# elements: 1
# length: 215
-- Built-in Function: rmfield (S, F)
Remove field F from the structure S. If F is a cell array of character strings or a character array, remove the named fields. See also: cellstr, iscellstr, setfield.
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Remove field F from the structure S.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
typeinfo
# name: <cell-element>
# type: string
# elements: 1
# length: 200
-- Built-in Function: typeinfo (EXPR)
Return the type of the expression EXPR, as a string. If EXPR is omitted, return an array of strings containing all the currently installed data types.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return the type of the expression EXPR, as a string.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
uint16
# name: <cell-element>
# type: string
# elements: 1
# length: 86
-- Built-in Function: uint16 (X)
Convert X to unsigned 16-bit integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Convert X to unsigned 16-bit integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
uint32
# name: <cell-element>
# type: string
# elements: 1
# length: 86
-- Built-in Function: uint32 (X)
Convert X to unsigned 32-bit integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Convert X to unsigned 32-bit integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
uint64
# name: <cell-element>
# type: string
# elements: 1
# length: 86
-- Built-in Function: uint64 (X)
Convert X to unsigned 64-bit integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Convert X to unsigned 64-bit integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
uint8
# name: <cell-element>
# type: string
# elements: 1
# length: 84
-- Built-in Function: uint8 (X)
Convert X to unsigned 8-bit integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Convert X to unsigned 8-bit integer type.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
nargin
# name: <cell-element>
# type: string
# elements: 1
# length: 460
-- Built-in Function: nargin ()
-- Built-in Function: nargin (FCN_NAME)
Within a function, return the number of arguments passed to the function. At the top level, return the number of command line arguments passed to Octave. If called with the optional argument FCN_NAME, return the maximum number of arguments the named function can accept, or -1 if the function accepts a variable number of arguments. See also: nargout, varargin, varargout.
# name: <cell-element>
# type: string
# elements: 1
# length: 73
Within a function, return the number of arguments passed to the function.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
nargout
# name: <cell-element>
# type: string
# elements: 1
# length: 622
-- Built-in Function: nargout ()
-- Built-in Function: nargout (FCN_NAME)
Within a function, return the number of values the caller expects to receive. If called with the optional argument FCN_NAME, return the maximum number of values the named function can produce, or -1 if the function can produce a variable number of values.
For example,
f ()
will cause `nargout' to return 0 inside the function `f' and
[s, t] = f ()
will cause `nargout' to return 2 inside the function `f'.
At the top level, `nargout' is undefined. See also: nargin, varargin, varargout.
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Within a function, return the number of values the caller expects to receive.
# name: <cell-element>
# type: string
# elements: 1
# length: 19
max_recursion_depth
# name: <cell-element>
# type: string
# elements: 1
# length: 309
-- Built-in Function: VAL = max_recursion_depth ()
-- Built-in Function: OLD_VAL = max_recursion_depth (NEW_VAL)
Query or set the internal limit on the number of times a function may be called recursively. If the limit is exceeded, an error message is printed and control returns to the top level.
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Query or set the internal limit on the number of times a function may be called recursively.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
sizeof
# name: <cell-element>
# type: string
# elements: 1
# length: 77
-- Built-in Function: sizeof (VAL)
Return the size of VAL in bytes
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Return the size of VAL in bytes
# name: <cell-element>
# type: string
# elements: 1
# length: 7
subsref
# name: <cell-element>
# type: string
# elements: 1
# length: 843
-- Built-in Function: subsref (VAL, IDX)
Perform the subscripted element selection operation according to the subscript specified by IDX.
The subscript IDX is expected to be a structure array with fields `type' and `subs'. Valid values for `type' are `"()"', `"{}"', and `"."'. The `subs' field may be either `":"' or a cell array of index values.
The following example shows how to extract the two first columns of a matrix
val = magic(3)
=> val = [ 8 1 6
3 5 7
4 9 2 ]
idx.type = "()";
idx.subs = {":", 1:2};
subsref(val, idx)
=> [ 8 1
3 5
4 9 ]
Note that this is the same as writing `val(:,1:2)'. See also: subsasgn, substruct.
# name: <cell-element>
# type: string
# elements: 1
# length: 96
Perform the subscripted element selection operation according to the subscript specified by IDX.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
subsasgn
# name: <cell-element>
# type: string
# elements: 1
# length: 765
-- Built-in Function: subsasgn (VAL, IDX, RHS)
Perform the subscripted assignment operation according to the subscript specified by IDX.
The subscript IDX is expected to be a structure array with fields `type' and `subs'. Valid values for `type' are `"()"', `"{}"', and `"."'. The `subs' field may be either `":"' or a cell array of index values.
The following example shows how to set the two first columns of a 3-by-3 matrix to zero.
val = magic(3);
idx.type = "()";
idx.subs = {":", 1:2};
subsasgn (val, idx, 0)
=> [ 0 0 6
0 0 7
0 0 2 ]
Note that this is the same as writing `val(:,1:2) = 0'. See also: subsref, substruct.
# name: <cell-element>
# type: string
# elements: 1
# length: 89
Perform the subscripted assignment operation according to the subscript specified by IDX.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
diary
# name: <cell-element>
# type: string
# elements: 1
# length: 479
-- Command: diary options
Record a list of all commands _and_ the output they produce, mixed together just as you see them on your terminal. Valid options are:
`on'
Start recording your session in a file called `diary' in your current working directory.
`off'
Stop recording your session in the diary file.
`FILE'
Record your session in the file named FILE.
With no arguments, `diary' toggles the current diary state.
# name: <cell-element>
# type: string
# elements: 1
# length: 114
Record a list of all commands _and_ the output they produce, mixed together just as you see them on your terminal.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
more
# name: <cell-element>
# type: string
# elements: 1
# length: 222
-- Command: more
-- Command: more on
-- Command: more off
Turn output pagination on or off. Without an argument, `more' toggles the current state. The current state can be determined via `page_screen_output'.
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Turn output pagination on or off.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
terminal_size
# name: <cell-element>
# type: string
# elements: 1
# length: 194
-- Built-in Function: terminal_size ()
Return a two-element row vector containing the current size of the terminal window in characters (rows and columns). See also: list_in_columns.
# name: <cell-element>
# type: string
# elements: 1
# length: 116
Return a two-element row vector containing the current size of the terminal window in characters (rows and columns).
# name: <cell-element>
# type: string
# elements: 1
# length: 23
page_output_immediately
# name: <cell-element>
# type: string
# elements: 1
# length: 359
-- Built-in Function: VAL = page_output_immediately ()
-- Built-in Function: VAL = page_output_immediately (NEW_VAL)
Query or set the internal variable that controls whether Octave sends output to the pager as soon as it is available. Otherwise, Octave buffers its output and waits until just before the prompt is printed to flush it to the pager.
# name: <cell-element>
# type: string
# elements: 1
# length: 117
Query or set the internal variable that controls whether Octave sends output to the pager as soon as it is available.
# name: <cell-element>
# type: string
# elements: 1
# length: 18
page_screen_output
# name: <cell-element>
# type: string
# elements: 1
# length: 429
-- Built-in Function: VAL = page_screen_output ()
-- Built-in Function: OLD_VAL = page_screen_output (NEW_VAL)
Query or set the internal variable that controls whether output intended for the terminal window that is longer than one page is sent through a pager. This allows you to view one screenful at a time. Some pagers (such as `less'--see *note Installation::) are also capable of moving backward on the output.
# name: <cell-element>
# type: string
# elements: 1
# length: 150
Query or set the internal variable that controls whether output intended for the terminal window that is longer than one page is sent through a pager.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
PAGER
# name: <cell-element>
# type: string
# elements: 1
# length: 424
-- Built-in Function: VAL = PAGER ()
-- Built-in Function: OLD_VAL = PAGER (NEW_VAL)
Query or set the internal variable that specifies the program to use to display terminal output on your system. The default value is normally `"less"', `"more"', or `"pg"', depending on what programs are installed on your system. *Note Installation::. See also: more, page_screen_output, page_output_immediately, PAGER_FLAGS.
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Query or set the internal variable that specifies the program to use to display terminal output on your system.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
PAGER_FLAGS
# name: <cell-element>
# type: string
# elements: 1
# length: 209
-- Built-in Function: VAL = PAGER_FLAGS ()
-- Built-in Function: OLD_VAL = PAGER_FLAGS (NEW_VAL)
Query or set the internal variable that specifies the options to pass to the pager. See also: PAGER.
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Query or set the internal variable that specifies the options to pass to the pager.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
autoload
# name: <cell-element>
# type: string
# elements: 1
# length: 969
-- Built-in Function: autoload (FUNCTION, FILE)
Define FUNCTION to autoload from FILE.
The second argument, FILE, should be an absolute file name or a file name in the same directory as the function or script from which the autoload command was run. FILE should not depend on the Octave load path.
Normally, calls to `autoload' appear in PKG_ADD script files that are evaluated when a directory is added to the Octave's load path. To avoid having to hardcode directory names in FILE, if FILE is in the same directory as the PKG_ADD script then
autoload ("foo", "bar.oct");
will load the function `foo' from the file `bar.oct'. The above when `bar.oct' is not in the same directory or uses like
autoload ("foo", file_in_loadpath ("bar.oct"))
are strongly discouraged, as their behavior might be unpredictable.
With no arguments, return a structure containing the current autoload map. See also: PKG_ADD.
# name: <cell-element>
# type: string
# elements: 1
# length: 38
Define FUNCTION to autoload from FILE.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
mfilename
# name: <cell-element>
# type: string
# elements: 1
# length: 441
-- Built-in Function: mfilename ()
-- Built-in Function: mfilename (`"fullpath"')
-- Built-in Function: mfilename (`"fullpathext"')
Return the name of the currently executing file. At the top-level, return the empty string. Given the argument `"fullpath"', include the directory part of the file name, but not the extension. Given the argument `"fullpathext"', include the directory part of the file name and the extension.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return the name of the currently executing file.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
source
# name: <cell-element>
# type: string
# elements: 1
# length: 201
-- Built-in Function: source (FILE)
Parse and execute the contents of FILE. This is equivalent to executing commands from a script file, but without requiring the file to be named `FILE.m'.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Parse and execute the contents of FILE.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
feval
# name: <cell-element>
# type: string
# elements: 1
# length: 666
-- Built-in Function: feval (NAME, ...)
Evaluate the function named NAME. Any arguments after the first are passed on to the named function. For example,
feval ("acos", -1)
=> 3.1416
calls the function `acos' with the argument `-1'.
The function `feval' is necessary in order to be able to write functions that call user-supplied functions, because Octave does not have a way to declare a pointer to a function (like C) or to declare a special kind of variable that can be used to hold the name of a function (like `EXTERNAL' in Fortran). Instead, you must refer to functions by name, and use `feval' to call them.
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Evaluate the function named NAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
eval
# name: <cell-element>
# type: string
# elements: 1
# length: 724
-- Built-in Function: eval (TRY, CATCH)
Parse the string TRY and evaluate it as if it were an Octave program. If that fails, evaluate the optional string CATCH. The string TRY is evaluated in the current context, so any results remain available after `eval' returns.
The following example makes the variable A with the approximate value 3.1416 available.
eval("a = acos(-1);");
If an error occurs during the evaluation of TRY the CATCH string is evaluated, as the following example shows:
eval ('error ("This is a bad example");',
'printf ("This error occurred:\n%s\n", lasterr ());');
-| This error occurred:
This is a bad example
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Parse the string TRY and evaluate it as if it were an Octave program.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
assignin
# name: <cell-element>
# type: string
# elements: 1
# length: 155
-- Built-in Function: assignin (CONTEXT, VARNAME, VALUE)
Assign VALUE to VARNAME in context CONTEXT, which may be either `"base"' or `"caller"'.
# name: <cell-element>
# type: string
# elements: 1
# length: 87
Assign VALUE to VARNAME in context CONTEXT, which may be either `"base"' or `"caller"'.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
evalin
# name: <cell-element>
# type: string
# elements: 1
# length: 184
-- Built-in Function: evalin (CONTEXT, TRY, CATCH)
Like `eval', except that the expressions are evaluated in the context CONTEXT, which may be either `"caller"' or `"base"'.
# name: <cell-element>
# type: string
# elements: 1
# length: 122
Like `eval', except that the expressions are evaluated in the context CONTEXT, which may be either `"caller"' or `"base"'.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
pinv
# name: <cell-element>
# type: string
# elements: 1
# length: 300
-- Loadable Function: pinv (X, TOL)
Return the pseudoinverse of X. Singular values less than TOL are ignored.
If the second argument is omitted, it is assumed that
tol = max (size (X)) * sigma_max (X) * eps,
where `sigma_max (X)' is the maximal singular value of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Return the pseudoinverse of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
rats
# name: <cell-element>
# type: string
# elements: 1
# length: 385
-- Built-in Function: rats (X, LEN)
Convert X into a rational approximation represented as a string. You can convert the string back into a matrix as follows:
r = rats(hilb(4));
x = str2num(r)
The optional second argument defines the maximum length of the string representing the elements of X. By default LEN is 9. See also: format, rat.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Convert X into a rational approximation represented as a string.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
disp
# name: <cell-element>
# type: string
# elements: 1
# length: 386
-- Built-in Function: disp (X)
Display the value of X. For example,
disp ("The value of pi is:"), disp (pi)
-| the value of pi is:
-| 3.1416
Note that the output from `disp' always ends with a newline.
If an output value is requested, `disp' prints nothing and returns the formatted output in a string. See also: fdisp.
# name: <cell-element>
# type: string
# elements: 1
# length: 23
Display the value of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
fdisp
# name: <cell-element>
# type: string
# elements: 1
# length: 321
-- Built-in Function: fdisp (FID, X)
Display the value of X on the stream FID. For example,
fdisp (stdout, "The value of pi is:"), fdisp (stdout, pi)
-| the value of pi is:
-| 3.1416
Note that the output from `fdisp' always ends with a newline. See also: disp.
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Display the value of X on the stream FID.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
format
# name: <cell-element>
# type: string
# elements: 1
# length: 4769
-- Command: format
-- Command: format options
Reset or specify the format of the output produced by `disp' and Octave's normal echoing mechanism. This command only affects the display of numbers but not how they are stored or computed. To change the internal representation from the default double use one of the conversion functions such as `single', `uint8', `int64', etc.
By default, Octave displays 5 significant digits in a human readable form (option `short' paired with `loose' format for matrices). If `format' is invoked without any options, this default format is restored.
Valid formats for floating point numbers are listed in the following table.
`short'
Fixed point format with 5 significant figures in a field that is a maximum of 10 characters wide. (default).
If Octave is unable to format a matrix so that columns line up on the decimal point and all numbers fit within the maximum field width then it switches to an exponential `e' format.
`long'
Fixed point format with 15 significant figures in a field that is a maximum of 20 characters wide.
As with the `short' format, Octave will switch to an exponential `e' format if it is unable to format a matrix properly using the current format.
`short e'
`long e'
Exponential format. The number to be represented is split between a mantissa and an exponent (power of 10). The mantissa has 5 significant digits in the short format and 15 digits in the long format. For example, with the `short e' format, `pi' is displayed as `3.1416e+00'.
`short E'
`long E'
Identical to `short e' or `long e' but displays an uppercase `E' to indicate the exponent. For example, with the `long E' format, `pi' is displayed as `3.14159265358979E+00'.
`short g'
`long g'
Optimally choose between fixed point and exponential format based on the magnitude of the number. For example, with the `short g' format, `pi .^ [2; 4; 8; 16; 32]' is displayed as
ans =
9.8696
97.409
9488.5
9.0032e+07
8.1058e+15
`long G'
`short G'
Identical to `short g' or `long g' but displays an uppercase `E' to indicate the exponent.
`free'
`none'
Print output in free format, without trying to line up columns of matrices on the decimal point. This also causes complex numbers to be formatted as numeric pairs like this `(0.60419, 0.60709)' instead of like this `0.60419 + 0.60709i'.
The following formats affect all numeric output (floating point and integer types).
`+'
`+ CHARS'
`plus'
`plus CHARS'
Print a `+' symbol for nonzero matrix elements and a space for zero matrix elements. This format can be very useful for examining the structure of a large sparse matrix.
The optional argument CHARS specifies a list of 3 characters to use for printing values greater than zero, less than zero and equal to zero. For example, with the `+ "+-."' format, `[1, 0, -1; -1, 0, 1]' is displayed as
ans =
+.-
-.+
`bank'
Print in a fixed format with two digits to the right of the decimal point.
`native-hex'
Print the hexadecimal representation of numbers as they are stored in memory. For example, on a workstation which stores 8 byte real values in IEEE format with the least significant byte first, the value of `pi' when printed in `native-hex' format is `400921fb54442d18'.
`hex'
The same as `native-hex', but always print the most significant byte first.
`native-bit'
Print the bit representation of numbers as stored in memory. For example, the value of `pi' is
01000000000010010010000111111011
01010100010001000010110100011000
(shown here in two 32 bit sections for typesetting purposes) when printed in native-bit format on a workstation which stores 8 byte real values in IEEE format with the least significant byte first.
`bit'
The same as `native-bit', but always print the most significant bits first.
`rat'
Print a rational approximation, i.e., values are approximated as the ratio of small integers. For example, with the `rat' format, `pi' is displayed as `355/113'.
The following two options affect the display of all matrices.
`compact'
Remove extra blank space around column number labels producing more compact output with more data per page.
`loose'
Insert blank lines above and below column number labels to produce a more readable output with less data per page. (default).
# name: <cell-element>
# type: string
# elements: 1
# length: 99
Reset or specify the format of the output produced by `disp' and Octave's normal echoing mechanism.
# name: <cell-element>
# type: string
# elements: 1
# length: 18
fixed_point_format
# name: <cell-element>
# type: string
# elements: 1
# length: 732
-- Built-in Function: VAL = fixed_point_format ()
-- Built-in Function: OLD_VAL = fixed_point_format (NEW_VAL)
Query or set the internal variable that controls whether Octave will use a scaled format to print matrix values such that the largest element may be written with a single leading digit with the scaling factor is printed on the first line of output. For example,
octave:1> logspace (1, 7, 5)'
ans =
1.0e+07 *
0.00000
0.00003
0.00100
0.03162
1.00000
Notice that first value appears to be zero when it is actually 1. For this reason, you should be careful when setting `fixed_point_format' to a nonzero value.
# name: <cell-element>
# type: string
# elements: 1
# length: 248
Query or set the internal variable that controls whether Octave will use a scaled format to print matrix values such that the largest element may be written with a single leading digit with the scaling factor is printed on the first line of output.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
print_empty_dimensions
# name: <cell-element>
# type: string
# elements: 1
# length: 365
-- Built-in Function: VAL = print_empty_dimensions ()
-- Built-in Function: OLD_VAL = print_empty_dimensions (NEW_VAL)
Query or set the internal variable that controls whether the dimensions of empty matrices are printed along with the empty matrix symbol, `[]'. For example, the expression
zeros (3, 0)
will print
ans = [](3x0)
# name: <cell-element>
# type: string
# elements: 1
# length: 143
Query or set the internal variable that controls whether the dimensions of empty matrices are printed along with the empty matrix symbol, `[]'.
# name: <cell-element>
# type: string
# elements: 1
# length: 15
split_long_rows
# name: <cell-element>
# type: string
# elements: 1
# length: 846
-- Built-in Function: VAL = split_long_rows ()
-- Built-in Function: OLD_VAL = split_long_rows (NEW_VAL)
Query or set the internal variable that controls whether rows of a matrix may be split when displayed to a terminal window. If the rows are split, Octave will display the matrix in a series of smaller pieces, each of which can fit within the limits of your terminal width and each set of rows is labeled so that you can easily see which columns are currently being displayed. For example:
octave:13> rand (2,10)
ans =
Columns 1 through 6:
0.75883 0.93290 0.40064 0.43818 0.94958 0.16467
0.75697 0.51942 0.40031 0.61784 0.92309 0.40201
Columns 7 through 10:
0.90174 0.11854 0.72313 0.73326
0.44672 0.94303 0.56564 0.82150
# name: <cell-element>
# type: string
# elements: 1
# length: 123
Query or set the internal variable that controls whether rows of a matrix may be split when displayed to a terminal window.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
output_max_field_width
# name: <cell-element>
# type: string
# elements: 1
# length: 261
-- Built-in Function: VAL = output_max_field_width ()
-- Built-in Function: OLD_VAL = output_max_field_width (NEW_VAL)
Query or set the internal variable that specifies the maximum width of a numeric output field. See also: format, output_precision.
# name: <cell-element>
# type: string
# elements: 1
# length: 94
Query or set the internal variable that specifies the maximum width of a numeric output field.
# name: <cell-element>
# type: string
# elements: 1
# length: 16
output_precision
# name: <cell-element>
# type: string
# elements: 1
# length: 283
-- Built-in Function: VAL = output_precision ()
-- Built-in Function: OLD_VAL = output_precision (NEW_VAL)
Query or set the internal variable that specifies the minimum number of significant figures to display for numeric output. See also: format, output_max_field_width.
# name: <cell-element>
# type: string
# elements: 1
# length: 122
Query or set the internal variable that specifies the minimum number of significant figures to display for numeric output.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
struct_levels_to_print
# name: <cell-element>
# type: string
# elements: 1
# length: 222
-- Built-in Function: VAL = struct_levels_to_print ()
-- Built-in Function: OLD_VAL = struct_levels_to_print (NEW_VAL)
Query or set the internal variable that specifies the number of structure levels to display.
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Query or set the internal variable that specifies the number of structure levels to display.
# name: <cell-element>
# type: string
# elements: 1
# length: 16
silent_functions
# name: <cell-element>
# type: string
# elements: 1
# length: 382
-- Built-in Function: VAL = silent_functions ()
-- Built-in Function: OLD_VAL = silent_functions (NEW_VAL)
Query or set the internal variable that controls whether internal output from a function is suppressed. If this option is disabled, Octave will display the results produced by evaluating expressions within a function body that are not terminated with a semicolon.
# name: <cell-element>
# type: string
# elements: 1
# length: 103
Query or set the internal variable that controls whether internal output from a function is suppressed.
# name: <cell-element>
# type: string
# elements: 1
# length: 16
string_fill_char
# name: <cell-element>
# type: string
# elements: 1
# length: 463
-- Built-in Function: VAL = string_fill_char ()
-- Built-in Function: OLD_VAL = string_fill_char (NEW_VAL)
Query or set the internal variable used to pad all rows of a character matrix to the same length. It must be a single character. The default value is `" "' (a single space). For example,
string_fill_char ("X");
[ "these"; "are"; "strings" ]
=> "theseXX"
"areXXXX"
"strings"
# name: <cell-element>
# type: string
# elements: 1
# length: 97
Query or set the internal variable used to pad all rows of a character matrix to the same length.
# name: <cell-element>
# type: string
# elements: 1
# length: 2
qr
# name: <cell-element>
# type: string
# elements: 1
# length: 2115
-- Loadable Function: [Q, R, P] = qr (A)
-- Loadable Function: [Q, R, P] = qr (A, '0')
Compute the QR factorization of A, using standard LAPACK subroutines. For example, given the matrix `a = [1, 2; 3, 4]',
[q, r] = qr (a)
returns
q =
-0.31623 -0.94868
-0.94868 0.31623
r =
-3.16228 -4.42719
0.00000 -0.63246
The `qr' factorization has applications in the solution of least squares problems
`min norm(A x - b)'
for overdetermined systems of equations (i.e., `a' is a tall, thin matrix). The QR factorization is `q * r = a' where `q' is an orthogonal matrix and `r' is upper triangular.
If given a second argument of '0', `qr' returns an economy-sized QR factorization, omitting zero rows of R and the corresponding columns of Q.
If the matrix A is full, the permuted QR factorization `[Q, R, P] = qr (A)' forms the QR factorization such that the diagonal entries of `r' are decreasing in magnitude order. For example,given the matrix `a = [1, 2; 3, 4]',
[q, r, p] = qr(a)
returns
q =
-0.44721 -0.89443
-0.89443 0.44721
r =
-4.47214 -3.13050
0.00000 0.44721
p =
0 1
1 0
The permuted `qr' factorization `[q, r, p] = qr (a)' factorization allows the construction of an orthogonal basis of `span (a)'.
If the matrix A is sparse, then compute the sparse QR factorization of A, using CSPARSE. As the matrix Q is in general a full matrix, this function returns the Q-less factorization R of A, such that `R = chol (A' * A)'.
If the final argument is the scalar `0' and the number of rows is larger than the number of columns, then an economy factorization is returned. That is R will have only `size (A,1)' rows.
If an additional matrix B is supplied, then `qr' returns C, where `C = Q' * B'. This allows the least squares approximation of `A \ B' to be calculated as
[C,R] = spqr (A,B)
X = R \ C
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Compute the QR factorization of A, using standard LAPACK subroutines.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
qrupdate
# name: <cell-element>
# type: string
# elements: 1
# length: 629
-- Loadable Function: [Q1, R1] = qrupdate (Q, R, U, V)
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of A + U*V', where U and V are column vectors (rank-1 update) or matrices with equal number of columns (rank-k update). Notice that the latter case is done as a sequence of rank-1 updates; thus, for k large enough, it will be both faster and more accurate to recompute the factorization from scratch.
The QR factorization supplied may be either full (Q is square) or economized (R is square).
See also: qr, qrinsert, qrdelete.
# name: <cell-element>
# type: string
# elements: 1
# length: 244
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of A + U*V', where U and V are column vectors (rank-1 update) or matrices with equal number of columns (rank-k update).
# name: <cell-element>
# type: string
# elements: 1
# length: 8
qrinsert
# name: <cell-element>
# type: string
# elements: 1
# length: 1020
-- Loadable Function: [Q1, R1] = qrinsert (Q, R, J, X, ORIENT)
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of [A(:,1:j-1) x A(:,j:n)], where U is a column vector to be inserted into A (if ORIENT is `"col"'), or the QR factorization of [A(1:j-1,:);x;A(:,j:n)], where X is a row vector to be inserted into A (if ORIENT is `"row"').
The default value of ORIENT is `"col"'. If ORIENT is `"col"', U may be a matrix and J an index vector resulting in the QR factorization of a matrix B such that B(:,J) gives U and B(:,J) = [] gives A. Notice that the latter case is done as a sequence of k insertions; thus, for k large enough, it will be both faster and more accurate to recompute the factorization from scratch.
If ORIENT is `"col"', the QR factorization supplied may be either full (Q is square) or economized (R is square).
If ORIENT is `"row"', full factorization is needed. See also: qr, qrupdate, qrdelete.
# name: <cell-element>
# type: string
# elements: 1
# length: 347
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of [A(:,1:j-1) x A(:,j:n)], where U is a column vector to be inserted into A (if ORIENT is `"col"'), or the QR factorization of [A(1:j-1,:);x;A(:,j:n)], where X is a row vector to be inserted into A (if ORIENT is `"row"').
# name: <cell-element>
# type: string
# elements: 1
# length: 8
qrdelete
# name: <cell-element>
# type: string
# elements: 1
# length: 947
-- Loadable Function: [Q1, R1] = qrdelete (Q, R, J, ORIENT)
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of [A(:,1:j-1) A(:,j+1:n)], i.e., A with one column deleted (if ORIENT is "col"), or the QR factorization of [A(1:j-1,:);A(:,j+1:n)], i.e., A with one row deleted (if ORIENT is "row").
The default value of ORIENT is "col".
If ORIENT is `"col"', J may be an index vector resulting in the QR factorization of a matrix B such that A(:,J) = [] gives B. Notice that the latter case is done as a sequence of k deletions; thus, for k large enough, it will be both faster and more accurate to recompute the factorization from scratch.
If ORIENT is `"col"', the QR factorization supplied may be either full (Q is square) or economized (R is square).
If ORIENT is `"row"', full factorization is needed. See also: qr, qrinsert, qrupdate.
# name: <cell-element>
# type: string
# elements: 1
# length: 155
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of [A(:,1:j-1) A(:,j+1:n)], i.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
qrshift
# name: <cell-element>
# type: string
# elements: 1
# length: 374
-- Loadable Function: [Q1, R1] = qrshift (Q, R, I, J)
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of A(:,p), where p is the permutation
`p = [1:i-1, shift(i:j, 1), j+1:n]' if I < J
or
`p = [1:j-1, shift(j:i,-1), i+1:n]' if J < I.
See also: qr, qrinsert, qrdelete.
# name: <cell-element>
# type: string
# elements: 1
# length: 259
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of A(:,p), where p is the permutation `p = [1:i-1, shift(i:j, 1), j+1:n]' if I < J or `p = [1:j-1, shift(j:i,-1), i+1:n]' if J < I.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
quad_options
# name: <cell-element>
# type: string
# elements: 1
# length: 1023
-- Loadable Function: quad_options (OPT, VAL)
When called with two arguments, this function allows you set options parameters for the function `quad'. Given one argument, `quad_options' returns the value of the corresponding option. If no arguments are supplied, the names of all the available options and their current values are displayed.
Options include
`"absolute tolerance"'
Absolute tolerance; may be zero for pure relative error test.
`"relative tolerance"'
Nonnegative relative tolerance. If the absolute tolerance is zero, the relative tolerance must be greater than or equal to `max (50*eps, 0.5e-28)'.
`"single precision absolute tolerance"'
Absolute tolerance for single precision; may be zero for pure relative error test.
`"single precision relative tolerance"'
Nonnegative relative tolerance for single precision. If the absolute tolerance is zero, the relative tolerance must be greater than or equal to `max (50*eps, 0.5e-28)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 104
When called with two arguments, this function allows you set options parameters for the function `quad'.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
quad
# name: <cell-element>
# type: string
# elements: 1
# length: 1366
-- Loadable Function: [V, IER, NFUN, ERR] = quad (F, A, B, TOL, SING)
Integrate a nonlinear function of one variable using Quadpack. The first argument is the name of the function, the function handle or the inline function to call to compute the value of the integrand. It must have the form
y = f (x)
where Y and X are scalars.
The second and third arguments are limits of integration. Either or both may be infinite.
The optional argument TOL is a vector that specifies the desired accuracy of the result. The first element of the vector is the desired absolute tolerance, and the second element is the desired relative tolerance. To choose a relative test only, set the absolute tolerance to zero. To choose an absolute test only, set the relative tolerance to zero.
The optional argument SING is a vector of values at which the integrand is known to be singular.
The result of the integration is returned in V and IER contains an integer error code (0 indicates a successful integration). The value of NFUN indicates how many function evaluations were required, and ERR contains an estimate of the error in the solution.
You can use the function `quad_options' to set optional parameters for `quad'.
It should be noted that since `quad' is written in Fortran it cannot be called recursively.
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Integrate a nonlinear function of one variable using Quadpack.
# name: <cell-element>
# type: string
# elements: 1
# length: 2
qz
# name: <cell-element>
# type: string
# elements: 1
# length: 1734
-- Loadable Function: LAMBDA = qz (A, B)
Generalized eigenvalue problem A x = s B x, QZ decomposition. There are three ways to call this function:
1. `lambda = qz(A,B)'
Computes the generalized eigenvalues LAMBDA of (A - s B).
2. `[AA, BB, Q, Z, V, W, lambda] = qz (A, B)'
Computes qz decomposition, generalized eigenvectors, and generalized eigenvalues of (A - sB)
A*V = B*V*diag(lambda)
W'*A = diag(lambda)*W'*B
AA = Q'*A*Z, BB = Q'*B*Z
with Q and Z orthogonal (unitary)= I
3. `[AA,BB,Z{, lambda}] = qz(A,B,opt)'
As in form [2], but allows ordering of generalized eigenpairs for (e.g.) solution of discrete time algebraic Riccati equations. Form 3 is not available for complex matrices, and does not compute the generalized eigenvectors V, W, nor the orthogonal matrix Q.
OPT
for ordering eigenvalues of the GEP pencil. The leading block of the revised pencil contains all eigenvalues that satisfy:
`"N"'
= unordered (default)
`"S"'
= small: leading block has all |lambda| <=1
`"B"'
= big: leading block has all |lambda| >= 1
`"-"'
= negative real part: leading block has all eigenvalues in the open left half-plane
`"+"'
= non-negative real part: leading block has all eigenvalues in the closed right half-plane
Note: qz performs permutation balancing, but not scaling (see balance). Order of output arguments was selected for compatibility with MATLAB
See also: balance, eig, schur.
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Generalized eigenvalue problem A x = s B x, QZ decomposition.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
rand
# name: <cell-element>
# type: string
# elements: 1
# length: 2365
-- Loadable Function: rand (X)
-- Loadable Function: rand (N, M)
-- Loadable Function: rand ("state", X)
-- Loadable Function: rand ("seed", X)
Return a matrix with random elements uniformly distributed on the interval (0, 1). The arguments are handled the same as the arguments for `eye'.
You can query the state of the random number generator using the form
v = rand ("state")
This returns a column vector V of length 625. Later, you can restore the random number generator to the state V using the form
rand ("state", v)
You may also initialize the state vector from an arbitrary vector of length <= 625 for V. This new state will be a hash based on the value of V, not V itself.
By default, the generator is initialized from `/dev/urandom' if it is available, otherwise from cpu time, wall clock time and the current fraction of a second.
To compute the pseudo-random sequence, `rand' uses the Mersenne Twister with a period of 2^19937-1 (See M. Matsumoto and T. Nishimura, `Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator', ACM Trans. on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998, `http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html'). Do *not* use for cryptography without securely hashing several returned values together, otherwise the generator state can be learned after reading 624 consecutive values.
Older versions of Octave used a different random number generator. The new generator is used by default as it is significantly faster than the old generator, and produces random numbers with a significantly longer cycle time. However, in some circumstances it might be desirable to obtain the same random sequences as used by the old generators. To do this the keyword "seed" is used to specify that the old generators should be use, as in
rand ("seed", val)
which sets the seed of the generator to VAL. The seed of the generator can be queried with
s = rand ("seed")
However, it should be noted that querying the seed will not cause `rand' to use the old generators, only setting the seed will. To cause `rand' to once again use the new generators, the keyword "state" should be used to reset the state of the `rand'. See also: randn, rande, randg, randp.
# name: <cell-element>
# type: string
# elements: 1
# length: 82
Return a matrix with random elements uniformly distributed on the interval (0, 1).
# name: <cell-element>
# type: string
# elements: 1
# length: 5
randn
# name: <cell-element>
# type: string
# elements: 1
# length: 659
-- Loadable Function: randn (X)
-- Loadable Function: randn (N, M)
-- Loadable Function: randn ("state", X)
-- Loadable Function: randn ("seed", X)
Return a matrix with normally distributed pseudo-random elements having zero mean and variance one. The arguments are handled the same as the arguments for `rand'.
By default, `randn' uses the Marsaglia and Tsang "Ziggurat technique" to transform from a uniform to a normal distribution. (G. Marsaglia and W.W. Tsang, `Ziggurat method for generating random variables', J. Statistical Software, vol 5, 2000, `http://www.jstatsoft.org/v05/i08/')
See also: rand, rande, randg, randp.
# name: <cell-element>
# type: string
# elements: 1
# length: 99
Return a matrix with normally distributed pseudo-random elements having zero mean and variance one.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
rande
# name: <cell-element>
# type: string
# elements: 1
# length: 622
-- Loadable Function: rande (X)
-- Loadable Function: rande (N, M)
-- Loadable Function: rande ("state", X)
-- Loadable Function: rande ("seed", X)
Return a matrix with exponentially distributed random elements. The arguments are handled the same as the arguments for `rand'.
By default, `randn' uses the Marsaglia and Tsang "Ziggurat technique" to transform from a uniform to a exponential distribution. (G. Marsaglia and W.W. Tsang, `Ziggurat method for generating random variables', J. Statistical Software, vol 5, 2000, `http://www.jstatsoft.org/v05/i08/') See also: rand, randn, randg, randp.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return a matrix with exponentially distributed random elements.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
randg
# name: <cell-element>
# type: string
# elements: 1
# length: 1559
-- Loadable Function: randg (A, X)
-- Loadable Function: randg (A, N, M)
-- Loadable Function: randg ("state", X)
-- Loadable Function: randg ("seed", X)
Return a matrix with `gamma(A,1)' distributed random elements. The arguments are handled the same as the arguments for `rand', except for the argument A.
This can be used to generate many distributions:
`gamma (a, b)' for `a > -1', `b > 0'
r = b * randg (a)
`beta (a, b)' for `a > -1', `b > -1'
r1 = randg (a, 1)
r = r1 / (r1 + randg (b, 1))
`Erlang (a, n)'
r = a * randg (n)
`chisq (df)' for `df > 0'
r = 2 * randg (df / 2)
`t(df)' for `0 < df < inf' (use randn if df is infinite)
r = randn () / sqrt (2 * randg (df / 2) / df)
`F (n1, n2)' for `0 < n1', `0 < n2'
## r1 equals 1 if n1 is infinite
r1 = 2 * randg (n1 / 2) / n1
## r2 equals 1 if n2 is infinite
r2 = 2 * randg (n2 / 2) / n2
r = r1 / r2
negative `binomial (n, p)' for `n > 0', `0 < p <= 1'
r = randp ((1 - p) / p * randg (n))
non-central `chisq (df, L)', for `df >= 0' and `L > 0'
(use chisq if `L = 0')
r = randp (L / 2)
r(r > 0) = 2 * randg (r(r > 0))
r(df > 0) += 2 * randg (df(df > 0)/2)
`Dirichlet (a1, ... ak)'
r = (randg (a1), ..., randg (ak))
r = r / sum (r)
See also: rand, randn, rande, randp.
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Return a matrix with `gamma(A,1)' distributed random elements.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
randp
# name: <cell-element>
# type: string
# elements: 1
# length: 1350
-- Loadable Function: randp (L, X)
-- Loadable Function: randp (L, N, M)
-- Loadable Function: randp ("state", X)
-- Loadable Function: randp ("seed", X)
Return a matrix with Poisson distributed random elements with mean value parameter given by the first argument, L. The arguments are handled the same as the arguments for `rand', except for the argument L.
Five different algorithms are used depending on the range of L and whether or not L is a scalar or a matrix.
For scalar L <= 12, use direct method.
Press, et al., 'Numerical Recipes in C', Cambridge University Press, 1992.
For scalar L > 12, use rejection method.[1]
Press, et al., 'Numerical Recipes in C', Cambridge University Press, 1992.
For matrix L <= 10, use inversion method.[2]
Stadlober E., et al., WinRand source code, available via FTP.
For matrix L > 10, use patchwork rejection method.
Stadlober E., et al., WinRand source code, available via FTP, or H. Zechner, 'Efficient sampling from continuous and discrete unimodal distributions', Doctoral Dissertation, 156pp., Technical University Graz, Austria, 1994.
For L > 1e8, use normal approximation.
L. Montanet, et al., 'Review of Particle Properties', Physical Review D 50 p1284, 1994
See also: rand, randn, rande, randg.
# name: <cell-element>
# type: string
# elements: 1
# length: 114
Return a matrix with Poisson distributed random elements with mean value parameter given by the first argument, L.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
rcond
# name: <cell-element>
# type: string
# elements: 1
# length: 392
-- Loadable Function: C = rcond (A)
Compute the 1-norm estimate of the reciprocal condition as returned by LAPACK. If the matrix is well-conditioned then C will be near 1 and if the matrix is poorly conditioned it will be close to zero.
The matrix A must not be sparse. If the matrix is sparse then `condest (A)' or `rcond (full (A))' should be used instead. See also: inv.
# name: <cell-element>
# type: string
# elements: 1
# length: 78
Compute the 1-norm estimate of the reciprocal condition as returned by LAPACK.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
regexp
# name: <cell-element>
# type: string
# elements: 1
# length: 8476
-- Loadable Function: [S, E, TE, M, T, NM] = regexp (STR, PAT)
-- Loadable Function: [...] = regexp (STR, PAT, OPTS, ...)
Regular expression string matching. Matches PAT in STR and returns the position and matching substrings or empty values if there are none.
The matched pattern PAT can include any of the standard regex operators, including:
`.'
Match any character
`* + ? {}'
Repetition operators, representing
`*'
Match zero or more times
`+'
Match one or more times
`?'
Match zero or one times
`{}'
Match range operator, which is of the form `{N}' to match exactly N times, `{M,}' to match M or more times, `{M,N}' to match between M and N times.
`[...] [^...]'
List operators, where for example `[ab]c' matches `ac' and `bc'
`()'
Grouping operator
`|'
Alternation operator. Match one of a choice of regular expressions. The alternatives must be delimited by the grouping operator `()' above
`^ $'
Anchoring operator. `^' matches the start of the string STR and `$' the end
In addition the following escaped characters have special meaning. It should be noted that it is recommended to quote PAT in single quotes rather than double quotes, to avoid the escape sequences being interpreted by Octave before being passed to `regexp'.
`\b'
Match a word boundary
`\B'
Match within a word
`\w'
Matches any word character
`\W'
Matches any non word character
`\<'
Matches the beginning of a word
`\>'
Matches the end of a word
`\s'
Matches any whitespace character
`\S'
Matches any non whitespace character
`\d'
Matches any digit
`\D'
Matches any non-digit
The outputs of `regexp' by default are in the order as given below
S
The start indices of each of the matching substrings
E
The end indices of each matching substring
TE
The extents of each of the matched token surrounded by `(...)' in PAT.
M
A cell array of the text of each match.
T
A cell array of the text of each token matched.
NM
A structure containing the text of each matched named token, with the name being used as the fieldname. A named token is denoted as `(?<name>...)'
Particular output arguments or the order of the output arguments can be selected by additional OPTS arguments. These are strings and the correspondence between the output arguments and the optional argument are
'start' S
'end' E
'tokenExtents' TE
'match' M
'tokens' T
'names' NM
A further optional argument is 'once', that limits the number of returned matches to the first match. Additional arguments are
matchcase
Make the matching case sensitive.
ignorecase
Make the matching case insensitive.
stringanchors
Match the anchor characters at the beginning and end of the string.
lineanchors
Match the anchor characters at the beginning and end of the line.
dotall
The character `.' matches the newline character.
dotexceptnewline
The character `.' matches all but the newline character.
freespacing
The pattern can include arbitrary whitespace and comments starting with `#'.
literalspacing
The pattern is taken literally.
See also: regexpi, regexprep.
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Regular expression string matching.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
regexpi
# name: <cell-element>
# type: string
# elements: 1
# length: 335
-- Loadable Function: [S, E, TE, M, T, NM] = regexpi (STR, PAT)
-- Loadable Function: [...] = regexpi (STR, PAT, OPTS, ...)
Case insensitive regular expression string matching. Matches PAT in STR and returns the position and matching substrings or empty values if there are none. *Note regexp: doc-regexp, for more details
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Case insensitive regular expression string matching.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
regexprep
# name: <cell-element>
# type: string
# elements: 1
# length: 1203
-- Loadable Function: STRING = regexprep (STRING, PAT, REPSTR, OPTIONS)
Replace matches of PAT in STRING with REPSTR.
The replacement can contain `$i', which substitutes for the ith set of parentheses in the match string. E.g.,
regexprep("Bill Dunn",'(\w+) (\w+)','$2, $1')
returns "Dunn, Bill"
OPTIONS may be zero or more of
`once'
Replace only the first occurrence of PAT in the result.
`warnings'
This option is present for compatibility but is ignored.
`ignorecase or matchcase'
Ignore case for the pattern matching (see `regexpi'). Alternatively, use (?i) or (?-i) in the pattern.
`lineanchors and stringanchors'
Whether characters ^ and $ match the beginning and ending of lines. Alternatively, use (?m) or (?-m) in the pattern.
`dotexceptnewline and dotall'
Whether . matches newlines in the string. Alternatively, use (?s) or (?-s) in the pattern.
`freespacing or literalspacing'
Whether whitespace and # comments can be used to make the regular expression more readable. Alternatively, use (?x) or (?-x) in the pattern.
See also: regexp,regexpi,strrep.
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Replace matches of PAT in STRING with REPSTR.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
schur
# name: <cell-element>
# type: string
# elements: 1
# length: 1362
-- Loadable Function: S = schur (A)
-- Loadable Function: [U, S] = schur (A, OPT)
The Schur decomposition is used to compute eigenvalues of a square matrix, and has applications in the solution of algebraic Riccati equations in control (see `are' and `dare'). `schur' always returns `s = u' * a * u' where `u' is a unitary matrix (`u'* u' is identity) and `s' is upper triangular. The eigenvalues of `a' (and `s') are the diagonal elements of `s'. If the matrix `a' is real, then the real Schur decomposition is computed, in which the matrix `u' is orthogonal and `s' is block upper triangular with blocks of size at most `2 x 2' along the diagonal. The diagonal elements of `s' (or the eigenvalues of the `2 x 2' blocks, when appropriate) are the eigenvalues of `a' and `s'.
The eigenvalues are optionally ordered along the diagonal according to the value of `opt'. `opt = "a"' indicates that all eigenvalues with negative real parts should be moved to the leading block of `s' (used in `are'), `opt = "d"' indicates that all eigenvalues with magnitude less than one should be moved to the leading block of `s' (used in `dare'), and `opt = "u"', the default, indicates that no ordering of eigenvalues should occur. The leading `k' columns of `u' always span the `a'-invariant subspace corresponding to the `k' leading eigenvalues of `s'.
# name: <cell-element>
# type: string
# elements: 1
# length: 177
The Schur decomposition is used to compute eigenvalues of a square matrix, and has applications in the solution of algebraic Riccati equations in control (see `are' and `dare').
# name: <cell-element>
# type: string
# elements: 1
# length: 3
SIG
# name: <cell-element>
# type: string
# elements: 1
# length: 113
-- Built-in Function: SIG ()
Return a structure containing Unix signal names and their defined values.
# name: <cell-element>
# type: string
# elements: 1
# length: 73
Return a structure containing Unix signal names and their defined values.
# name: <cell-element>
# type: string
# elements: 1
# length: 18
debug_on_interrupt
# name: <cell-element>
# type: string
# elements: 1
# length: 398
-- Built-in Function: VAL = debug_on_interrupt ()
-- Built-in Function: OLD_VAL = debug_on_interrupt (NEW_VAL)
Query or set the internal variable that controls whether Octave will try to enter debugging mode when it receives an interrupt signal (typically generated with `C-c'). If a second interrupt signal is received before reaching the debugging mode, a normal interrupt will occur.
# name: <cell-element>
# type: string
# elements: 1
# length: 167
Query or set the internal variable that controls whether Octave will try to enter debugging mode when it receives an interrupt signal (typically generated with `C-c').
# name: <cell-element>
# type: string
# elements: 1
# length: 24
sighup_dumps_octave_core
# name: <cell-element>
# type: string
# elements: 1
# length: 291
-- Built-in Function: VAL = sighup_dumps_octave_core ()
-- Built-in Function: OLD_VAL = sighup_dumps_octave_core (NEW_VAL)
Query or set the internal variable that controls whether Octave tries to save all current variables to the file "octave-core" if it receives a hangup signal.
# name: <cell-element>
# type: string
# elements: 1
# length: 157
Query or set the internal variable that controls whether Octave tries to save all current variables to the file "octave-core" if it receives a hangup signal.
# name: <cell-element>
# type: string
# elements: 1
# length: 25
sigterm_dumps_octave_core
# name: <cell-element>
# type: string
# elements: 1
# length: 296
-- Built-in Function: VAL = sigterm_dumps_octave_core ()
-- Built-in Function: OLD_VAL = sigterm_dumps_octave_core (NEW_VAL)
Query or set the internal variable that controls whether Octave tries to save all current variables to the file "octave-core" if it receives a terminate signal.
# name: <cell-element>
# type: string
# elements: 1
# length: 160
Query or set the internal variable that controls whether Octave tries to save all current variables to the file "octave-core" if it receives a terminate signal.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
issparse
# name: <cell-element>
# type: string
# elements: 1
# length: 113
-- Loadable Function: issparse (EXPR)
Return 1 if the value of the expression EXPR is a sparse matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return 1 if the value of the expression EXPR is a sparse matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
sparse
# name: <cell-element>
# type: string
# elements: 1
# length: 1398
-- Loadable Function: S = sparse (A)
-- Loadable Function: S = sparse (I, J, SV, M, N, NZMAX)
-- Loadable Function: S = sparse (I, J, SV)
-- Loadable Function: S = sparse (I, J, S, M, N, "unique")
-- Loadable Function: S = sparse (M, N)
Create a sparse matrix from the full matrix or row, column, value triplets. If A is a full matrix, convert it to a sparse matrix representation, removing all zero values in the process.
Given the integer index vectors I and J, a 1-by-`nnz' vector of real of complex values SV, overall dimensions M and N of the sparse matrix. The argument `nzmax' is ignored but accepted for compatibility with MATLAB. If M or N are not specified their values are derived from the maximum index in the vectors I and J as given by `M = max (I)', `N = max (J)'.
*Note*: if multiple values are specified with the same I, J indices, the corresponding values in S will be added.
The following are all equivalent:
s = sparse (i, j, s, m, n)
s = sparse (i, j, s, m, n, "summation")
s = sparse (i, j, s, m, n, "sum")
Given the option "unique". if more than two values are specified for the same I, J indices, the last specified value will be used.
`sparse(M, N)' is equivalent to `sparse ([], [], [], M, N, 0)'
If any of SV, I or J are scalars, they are expanded to have a common size. See also: full.
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Create a sparse matrix from the full matrix or row, column, value triplets.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
spparms
# name: <cell-element>
# type: string
# elements: 1
# length: 2274
-- Loadable Function: spparms ()
-- Loadable Function: VALS = spparms ()
-- Loadable Function: [KEYS, VALS] = spparms ()
-- Loadable Function: VAL = spparms (KEY)
-- Loadable Function: spparms (VALS)
-- Loadable Function: spparms ('defaults')
-- Loadable Function: spparms ('tight')
-- Loadable Function: spparms (KEY, VAL)
Sets or displays the parameters used by the sparse solvers and factorization functions. The first four calls above get information about the current settings, while the others change the current settings. The parameters are stored as pairs of keys and values, where the values are all floats and the keys are one of the following strings:
`spumoni'
Printing level of debugging information of the solvers (default 0)
`ths_rel'
Included for compatibility. Not used. (default 1)
`ths_abs'
Included for compatibility. Not used. (default 1)
`exact_d'
Included for compatibility. Not used. (default 0)
`supernd'
Included for compatibility. Not used. (default 3)
`rreduce'
Included for compatibility. Not used. (default 3)
`wh_frac'
Included for compatibility. Not used. (default 0.5)
`autommd'
Flag whether the LU/QR and the '\' and '/' operators will automatically use the sparsity preserving mmd functions (default 1)
`autoamd'
Flag whether the LU and the '\' and '/' operators will automatically use the sparsity preserving amd functions (default 1)
`piv_tol'
The pivot tolerance of the UMFPACK solvers (default 0.1)
`sym_tol'
The pivot tolerance of the UMFPACK symmetric solvers (default 0.001)
`bandden'
The density of non-zero elements in a banded matrix before it is treated by the LAPACK banded solvers (default 0.5)
`umfpack'
Flag whether the UMFPACK or mmd solvers are used for the LU, '\' and '/' operations (default 1)
The value of individual keys can be set with `spparms (KEY, VAL)'. The default values can be restored with the special keyword 'defaults'. The special keyword 'tight' can be used to set the mmd solvers to attempt for a sparser solution at the potential cost of longer running time.
# name: <cell-element>
# type: string
# elements: 1
# length: 87
Sets or displays the parameters used by the sparse solvers and factorization functions.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
sqrtm
# name: <cell-element>
# type: string
# elements: 1
# length: 322
-- Loadable Function: [RESULT, ERROR_ESTIMATE] = sqrtm (A)
Compute the matrix square root of the square matrix A.
Ref: Nicholas J. Higham. A new sqrtm for MATLAB. Numerical Analysis Report No. 336, Manchester Centre for Computational Mathematics, Manchester, England, January 1999. See also: expm, logm.
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Compute the matrix square root of the square matrix A.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
char
# name: <cell-element>
# type: string
# elements: 1
# length: 1120
-- Built-in Function: char (X)
-- Built-in Function: char (X, ...)
-- Built-in Function: char (S1, S2, ...)
-- Built-in Function: char (CELL_ARRAY)
Create a string array from one or more numeric matrices, character matrices, or cell arrays. Arguments are concatenated vertically. The returned values are padded with blanks as needed to make each row of the string array have the same length. Empty input strings are significant and will concatenated in the output.
For numerical input, each element is converted to the corresponding ASCII character. A range error results if an input is outside the ASCII range (0-255).
For cell arrays, each element is concatenated separately. Cell arrays converted through `char' can mostly be converted back with `cellstr'. For example,
char ([97, 98, 99], "", {"98", "99", 100}, "str1", ["ha", "lf"])
=> ["abc "
" "
"98 "
"99 "
"d "
"str1 "
"half "]
See also: strvcat, cellstr.
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Create a string array from one or more numeric matrices, character matrices, or cell arrays.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
strvcat
# name: <cell-element>
# type: string
# elements: 1
# length: 1120
-- Built-in Function: strvcat (X)
-- Built-in Function: strvcat (X, ...)
-- Built-in Function: strvcat (S1, S2, ...)
-- Built-in Function: strvcat (CELL_ARRAY)
Create a character array from one or more numeric matrices, character matrices, or cell arrays. Arguments are concatenated vertically. The returned values are padded with blanks as needed to make each row of the string array have the same length. Unlike `char', empty strings are removed and will not appear in the output.
For numerical input, each element is converted to the corresponding ASCII character. A range error results if an input is outside the ASCII range (0-255).
For cell arrays, each element is concatenated separately. Cell arrays converted through `strvcat' can mostly be converted back with `cellstr'. For example,
strvcat ([97, 98, 99], "", {"98", "99", 100}, "str1", ["ha", "lf"])
=> ["abc "
"98 "
"99 "
"d "
"str1 "
"half "]
See also: char, strcat, cstrcat.
# name: <cell-element>
# type: string
# elements: 1
# length: 95
Create a character array from one or more numeric matrices, character matrices, or cell arrays.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
ischar
# name: <cell-element>
# type: string
# elements: 1
# length: 101
-- Built-in Function: ischar (A)
Return 1 if A is a character array. Otherwise, return 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Return 1 if A is a character array.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
strcmp
# name: <cell-element>
# type: string
# elements: 1
# length: 671
-- Built-in Function: strcmp (S1, S2)
Return 1 if the character strings S1 and S2 are the same, and 0 otherwise.
If either S1 or S2 is a cell array of strings, then an array of the same size is returned, containing the values described above for every member of the cell array. The other argument may also be a cell array of strings (of the same size or with only one element), char matrix or character string.
*Caution:* For compatibility with MATLAB, Octave's strcmp function returns 1 if the character strings are equal, and 0 otherwise. This is just the opposite of the corresponding C library function. See also: strcmpi, strncmp, strncmpi.
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Return 1 if the character strings S1 and S2 are the same, and 0 otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
strncmp
# name: <cell-element>
# type: string
# elements: 1
# length: 829
-- Built-in Function: strncmp (S1, S2, N)
Return 1 if the first N characters of strings S1 and S2 are the same, and 0 otherwise.
strncmp ("abce", "abcd", 3)
=> 1
If either S1 or S2 is a cell array of strings, then an array of the same size is returned, containing the values described above for every member of the cell array. The other argument may also be a cell array of strings (of the same size or with only one element), char matrix or character string.
strncmp ("abce", {"abcd", "bca", "abc"}, 3)
=> [1, 0, 1]
*Caution:* For compatibility with MATLAB, Octave's strncmp function returns 1 if the character strings are equal, and 0 otherwise. This is just the opposite of the corresponding C library function. See also: strncmpi, strcmp, strcmpi.
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Return 1 if the first N characters of strings S1 and S2 are the same, and 0 otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 15
list_in_columns
# name: <cell-element>
# type: string
# elements: 1
# length: 971
-- Built-in Function: list_in_columns (ARG, WIDTH)
Return a string containing the elements of ARG listed in columns with an overall maximum width of WIDTH. The argument ARG must be a cell array of character strings or a character array. If WIDTH is not specified, the width of the terminal screen is used. Newline characters are used to break the lines in the output string. For example:
list_in_columns ({"abc", "def", "ghijkl", "mnop", "qrs", "tuv"}, 20)
=> ans = abc mnop
def qrs
ghijkl tuv
whos ans
=>
Variables in the current scope:
Attr Name Size Bytes Class
==== ==== ==== ===== =====
ans 1x37 37 char
Total is 37 elements using 37 bytes
See also: terminal_size.
# name: <cell-element>
# type: string
# elements: 1
# length: 104
Return a string containing the elements of ARG listed in columns with an overall maximum width of WIDTH.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
svd
# name: <cell-element>
# type: string
# elements: 1
# length: 1030
-- Loadable Function: S = svd (A)
-- Loadable Function: [U, S, V] = svd (A)
Compute the singular value decomposition of A
A = U*S*V'
The function `svd' normally returns the vector of singular values. If asked for three return values, it computes U, S, and V. For example,
svd (hilb (3))
returns
ans =
1.4083189
0.1223271
0.0026873
and
[u, s, v] = svd (hilb (3))
returns
u =
-0.82704 0.54745 0.12766
-0.45986 -0.52829 -0.71375
-0.32330 -0.64901 0.68867
s =
1.40832 0.00000 0.00000
0.00000 0.12233 0.00000
0.00000 0.00000 0.00269
v =
-0.82704 0.54745 0.12766
-0.45986 -0.52829 -0.71375
-0.32330 -0.64901 0.68867
If given a second argument, `svd' returns an economy-sized decomposition, eliminating the unnecessary rows or columns of U or V.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Compute the singular value decomposition of A
# name: <cell-element>
# type: string
# elements: 1
# length: 3
syl
# name: <cell-element>
# type: string
# elements: 1
# length: 280
-- Loadable Function: X = syl (A, B, C)
Solve the Sylvester equation
A X + X B + C = 0
using standard LAPACK subroutines. For example,
syl ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])
=> [ -0.50000, -0.66667; -0.66667, -0.50000 ]
# name: <cell-element>
# type: string
# elements: 1
# length: 29
Solve the Sylvester equation
# name: <cell-element>
# type: string
# elements: 1
# length: 8
symbfact
# name: <cell-element>
# type: string
# elements: 1
# length: 1135
-- Loadable Function: [COUNT, H, PARENT, POST, R] = symbfact (S, TYP, MODE)
Performs a symbolic factorization analysis on the sparse matrix S. Where
S
S is a complex or real sparse matrix.
TYP
Is the type of the factorization and can be one of
`sym'
Factorize S. This is the default.
`col'
Factorize `S' * S'.
`row'
Factorize `S * S''.
`lo'
Factorize `S''
MODE
The default is to return the Cholesky factorization for R, and if MODE is 'L', the conjugate transpose of the Cholesky factorization is returned. The conjugate transpose version is faster and uses less memory, but returns the same values for COUNT, H, PARENT and POST outputs.
The output variables are
COUNT
The row counts of the Cholesky factorization as determined by TYP.
H
The height of the elimination tree.
PARENT
The elimination tree itself.
POST
A sparse boolean matrix whose structure is that of the Cholesky factorization as determined by TYP.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Performs a symbolic factorization analysis on the sparse matrix S.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
symrcm
# name: <cell-element>
# type: string
# elements: 1
# length: 923
-- Loadable Function: P = symrcm (S)
Symmetric reverse Cuthill-McKee permutation of S. Return a permutation vector P such that `S (P, P)' tends to have its diagonal elements closer to the diagonal than S. This is a good preordering for LU or Cholesky factorization of matrices that come from 'long, skinny' problems. It works for both symmetric and asymmetric S.
The algorithm represents a heuristic approach to the NP-complete bandwidth minimization problem. The implementation is based in the descriptions found in
E. Cuthill, J. McKee: Reducing the Bandwidth of Sparse Symmetric Matrices. Proceedings of the 24th ACM National Conference, 157-172 1969, Brandon Press, New Jersey.
Alan George, Joseph W. H. Liu: Computer Solution of Large Sparse Positive Definite Systems, Prentice Hall Series in Computational Mathematics, ISBN 0-13-165274-5, 1981.
See also: colperm, colamd, symamd.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Symmetric reverse Cuthill-McKee permutation of S.
# name: <cell-element>
# type: string
# elements: 1
# length: 26
ignore_function_time_stamp
# name: <cell-element>
# type: string
# elements: 1
# length: 826
-- Built-in Function: VAL = ignore_function_time_stamp ()
-- Built-in Function: OLD_VAL = ignore_function_time_stamp (NEW_VAL)
Query or set the internal variable that controls whether Octave checks the time stamp on files each time it looks up functions defined in function files. If the internal variable is set to `"system"', Octave will not automatically recompile function files in subdirectories of `OCTAVE-HOME/lib/VERSION' if they have changed since they were last compiled, but will recompile other function files in the search path if they change. If set to `"all"', Octave will not recompile any function files unless their definitions are removed with `clear'. If set to "none", Octave will always check time stamps on files to determine whether functions defined in function files need to recompiled.
# name: <cell-element>
# type: string
# elements: 1
# length: 153
Query or set the internal variable that controls whether Octave checks the time stamp on files each time it looks up functions defined in function files.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
dup2
# name: <cell-element>
# type: string
# elements: 1
# length: 244
-- Built-in Function: [FID, MSG] = dup2 (OLD, NEW)
Duplicate a file descriptor.
If successful, FID is greater than zero and contains the new file ID. Otherwise, FID is negative and MSG contains a system-dependent error message.
# name: <cell-element>
# type: string
# elements: 1
# length: 28
Duplicate a file descriptor.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
exec
# name: <cell-element>
# type: string
# elements: 1
# length: 485
-- Built-in Function: [ERR, MSG] = exec (FILE, ARGS)
Replace current process with a new process. Calling `exec' without first calling `fork' will terminate your current Octave process and replace it with the program named by FILE. For example,
exec ("ls" "-l")
will run `ls' and return you to your shell prompt.
If successful, `exec' does not return. If `exec' does return, ERR will be nonzero, and MSG will contain a system-dependent error message.
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Replace current process with a new process.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
popen2
# name: <cell-element>
# type: string
# elements: 1
# length: 1255
-- Built-in Function: [IN, OUT, PID] = popen2 (COMMAND, ARGS)
Start a subprocess with two-way communication. The name of the process is given by COMMAND, and ARGS is an array of strings containing options for the command. The file identifiers for the input and output streams of the subprocess are returned in IN and OUT. If execution of the command is successful, PID contains the process ID of the subprocess. Otherwise, PID is -1.
For example,
[in, out, pid] = popen2 ("sort", "-r");
fputs (in, "these\nare\nsome\nstrings\n");
fclose (in);
EAGAIN = errno ("EAGAIN");
done = false;
do
s = fgets (out);
if (ischar (s))
fputs (stdout, s);
elseif (errno () == EAGAIN)
sleep (0.1);
fclear (out);
else
done = true;
endif
until (done)
fclose (out);
waitpid (pid);
-| these
-| strings
-| some
-| are
Note that `popen2', unlike `popen', will not "reap" the child process. If you don't use `waitpid' to check the child's exit status, it will linger until Octave exits.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Start a subprocess with two-way communication.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
fcntl
# name: <cell-element>
# type: string
# elements: 1
# length: 1288
-- Built-in Function: [ERR, MSG] = fcntl (FID, REQUEST, ARG)
Change the properties of the open file FID. The following values may be passed as REQUEST:
`F_DUPFD'
Return a duplicate file descriptor.
`F_GETFD'
Return the file descriptor flags for FID.
`F_SETFD'
Set the file descriptor flags for FID.
`F_GETFL'
Return the file status flags for FID. The following codes may be returned (some of the flags may be undefined on some systems).
`O_RDONLY'
Open for reading only.
`O_WRONLY'
Open for writing only.
`O_RDWR'
Open for reading and writing.
`O_APPEND'
Append on each write.
`O_CREAT'
Create the file if it does not exist.
`O_NONBLOCK'
Nonblocking mode.
`O_SYNC'
Wait for writes to complete.
`O_ASYNC'
Asynchronous I/O.
`F_SETFL'
Set the file status flags for FID to the value specified by ARG. The only flags that can be changed are `O_APPEND' and `O_NONBLOCK'.
If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Change the properties of the open file FID.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
fork
# name: <cell-element>
# type: string
# elements: 1
# length: 624
-- Built-in Function: [PID, MSG] = fork ()
Create a copy of the current process.
Fork can return one of the following values:
> 0
You are in the parent process. The value returned from `fork' is the process id of the child process. You should probably arrange to wait for any child processes to exit.
0
You are in the child process. You can call `exec' to start another process. If that fails, you should probably call `exit'.
< 0
The call to `fork' failed for some reason. You must take evasive action. A system dependent error message will be waiting in MSG.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Create a copy of the current process.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
getpgrp
# name: <cell-element>
# type: string
# elements: 1
# length: 101
-- Built-in Function: pgid = getpgrp ()
Return the process group id of the current process.
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Return the process group id of the current process.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
getpid
# name: <cell-element>
# type: string
# elements: 1
# length: 93
-- Built-in Function: pid = getpid ()
Return the process id of the current process.
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Return the process id of the current process.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
getppid
# name: <cell-element>
# type: string
# elements: 1
# length: 93
-- Built-in Function: pid = getppid ()
Return the process id of the parent process.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Return the process id of the parent process.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
getegid
# name: <cell-element>
# type: string
# elements: 1
# length: 103
-- Built-in Function: egid = getegid ()
Return the effective group id of the current process.
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Return the effective group id of the current process.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
getgid
# name: <cell-element>
# type: string
# elements: 1
# length: 96
-- Built-in Function: gid = getgid ()
Return the real group id of the current process.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return the real group id of the current process.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
geteuid
# name: <cell-element>
# type: string
# elements: 1
# length: 102
-- Built-in Function: euid = geteuid ()
Return the effective user id of the current process.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return the effective user id of the current process.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
getuid
# name: <cell-element>
# type: string
# elements: 1
# length: 95
-- Built-in Function: uid = getuid ()
Return the real user id of the current process.
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Return the real user id of the current process.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
kill
# name: <cell-element>
# type: string
# elements: 1
# length: 565
-- Built-in Function: [ERR, MSG] = kill (PID, SIG)
Send signal SIG to process PID.
If PID is positive, then signal SIG is sent to PID.
If PID is 0, then signal SIG is sent to every process in the process group of the current process.
If PID is -1, then signal SIG is sent to every process except process 1.
If PID is less than -1, then signal SIG is sent to every process in the process group -PID.
If SIG is 0, then no signal is sent, but error checking is still performed.
Return 0 if successful, otherwise return -1.
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Send signal SIG to process PID.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
fstat
# name: <cell-element>
# type: string
# elements: 1
# length: 161
-- Built-in Function: [INFO, ERR, MSG] = fstat (FID)
Return information about the open file FID. See `stat' for a description of the contents of INFO.
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Return information about the open file FID.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
lstat
# name: <cell-element>
# type: string
# elements: 1
# length: 73
-- Built-in Function: [INFO, ERR, MSG] = lstat (FILE)
See stat.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
See stat.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
mkfifo
# name: <cell-element>
# type: string
# elements: 1
# length: 258
-- Built-in Function: [ERR, MSG] = mkfifo (NAME, MODE)
Create a FIFO special file named NAME with file mode MODE
If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Create a FIFO special file named NAME with file mode MODE
# name: <cell-element>
# type: string
# elements: 1
# length: 4
pipe
# name: <cell-element>
# type: string
# elements: 1
# length: 313
-- Built-in Function: [READ_FD, WRITE_FD, ERR, MSG] = pipe ()
Create a pipe and return the reading and writing ends of the pipe into READ_FD and WRITE_FD respectively.
If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
# name: <cell-element>
# type: string
# elements: 1
# length: 105
Create a pipe and return the reading and writing ends of the pipe into READ_FD and WRITE_FD respectively.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
stat
# name: <cell-element>
# type: string
# elements: 1
# length: 2402
-- Built-in Function: [INFO, ERR, MSG] = stat (FILE)
-- Built-in Function: [INFO, ERR, MSG] = lstat (FILE)
Return a structure S containing the following information about FILE.
`dev'
ID of device containing a directory entry for this file.
`ino'
File number of the file.
`mode'
File mode, as an integer. Use the functions `S_ISREG', `S_ISDIR', `S_ISCHR', `S_ISBLK', `S_ISFIFO', `S_ISLNK', or `S_ISSOCK' to extract information from this value.
`modestr'
File mode, as a string of ten letters or dashes as would be returned by `ls -l'.
`nlink'
Number of links.
`uid'
User ID of file's owner.
`gid'
Group ID of file's group.
`rdev'
ID of device for block or character special files.
`size'
Size in bytes.
`atime'
Time of last access in the same form as time values returned from `time'. *Note Timing Utilities::.
`mtime'
Time of last modification in the same form as time values returned from `time'. *Note Timing Utilities::.
`ctime'
Time of last file status change in the same form as time values returned from `time'. *Note Timing Utilities::.
`blksize'
Size of blocks in the file.
`blocks'
Number of blocks allocated for file.
If the call is successful ERR is 0 and MSG is an empty string. If the file does not exist, or some other error occurs, S is an empty matrix, ERR is -1, and MSG contains the corresponding system error message.
If FILE is a symbolic link, `stat' will return information about the actual file that is referenced by the link. Use `lstat' if you want information about the symbolic link itself.
For example,
[s, err, msg] = stat ("/vmlinuz")
=> s =
{
atime = 855399756
rdev = 0
ctime = 847219094
uid = 0
size = 389218
blksize = 4096
mtime = 847219094
gid = 6
nlink = 1
blocks = 768
mode = -rw-r--r--
modestr = -rw-r--r--
ino = 9316
dev = 2049
}
=> err = 0
=> msg =
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Return a structure S containing the following information about FILE.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
S_ISREG
# name: <cell-element>
# type: string
# elements: 1
# length: 190
-- Built-in Function: S_ISREG (MODE)
Return true if MODE corresponds to a regular file. The value of MODE is assumed to be returned from a call to `stat'. See also: stat, lstat.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Return true if MODE corresponds to a regular file.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
S_ISDIR
# name: <cell-element>
# type: string
# elements: 1
# length: 187
-- Built-in Function: S_ISDIR (MODE)
Return true if MODE corresponds to a directory. The value of MODE is assumed to be returned from a call to `stat'. See also: stat, lstat.
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Return true if MODE corresponds to a directory.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
S_ISCHR
# name: <cell-element>
# type: string
# elements: 1
# length: 195
-- Built-in Function: S_ISCHR (MODE)
Return true if MODE corresponds to a character devicey. The value of MODE is assumed to be returned from a call to `stat'. See also: stat, lstat.
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Return true if MODE corresponds to a character devicey.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
S_ISBLK
# name: <cell-element>
# type: string
# elements: 1
# length: 190
-- Built-in Function: S_ISBLK (MODE)
Return true if MODE corresponds to a block device. The value of MODE is assumed to be returned from a call to `stat'. See also: stat, lstat.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Return true if MODE corresponds to a block device.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
S_ISFIFO
# name: <cell-element>
# type: string
# elements: 1
# length: 183
-- Built-in Function: S_ISFIFO (MODE)
Return true if MODE corresponds to a fifo. The value of MODE is assumed to be returned from a call to `stat'. See also: stat, lstat.
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Return true if MODE corresponds to a fifo.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
S_ISLNK
# name: <cell-element>
# type: string
# elements: 1
# length: 191
-- Built-in Function: S_ISLNK (MODE)
Return true if MODE corresponds to a symbolic link. The value of MODE is assumed to be returned from a call to `stat'. See also: stat, lstat.
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Return true if MODE corresponds to a symbolic link.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
S_ISSOCK
# name: <cell-element>
# type: string
# elements: 1
# length: 71
-- Built-in Function: S_ISSOCK (MODE)
See also: stat, lstat.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
See also: stat, lstat.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
uname
# name: <cell-element>
# type: string
# elements: 1
# length: 549
-- Built-in Function: [UTS, ERR, MSG] = uname ()
Return system information in the structure. For example,
uname ()
=> {
sysname = x86_64
nodename = segfault
release = 2.6.15-1-amd64-k8-smp
version = Linux
machine = #2 SMP Thu Feb 23 04:57:49 UTC 2006
}
If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Return system information in the structure.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
unlink
# name: <cell-element>
# type: string
# elements: 1
# length: 222
-- Built-in Function: [ERR, MSG] = unlink (FILE)
Delete the file named FILE.
If successful, ERR is 0 and MSG is an empty string. Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
# name: <cell-element>
# type: string
# elements: 1
# length: 27
Delete the file named FILE.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
waitpid
# name: <cell-element>
# type: string
# elements: 1
# length: 1411
-- Built-in Function: [PID, STATUS, MSG] = waitpid (PID, OPTIONS)
Wait for process PID to terminate. The PID argument can be:
-1
Wait for any child process.
0
Wait for any child process whose process group ID is equal to that of the Octave interpreter process.
> 0
Wait for termination of the child process with ID PID.
The OPTIONS argument can be a bitwise OR of zero or more of the following constants:
`0'
Wait until signal is received or a child process exits (this is the default if the OPTIONS argument is missing).
`WNOHANG'
Do not hang if status is not immediately available.
`WUNTRACED'
Report the status of any child processes that are stopped, and whose status has not yet been reported since they stopped.
`WCONTINUE'
Return if a stopped child has been resumed by delivery of `SIGCONT'. This value may not be meaningful on all systems.
If the returned value of PID is greater than 0, it is the process ID of the child process that exited. If an error occurs, PID will be less than zero and MSG will contain a system-dependent error message. The value of STATUS contains additional system-dependent information about the subprocess that exited. See also: WCONTINUE, WCOREDUMP, WEXITSTATUS, WIFCONTINUED, WIFSIGNALED, WIFSTOPPED, WNOHANG, WSTOPSIG, WTERMSIG, WUNTRACED.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Wait for process PID to terminate.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
WIFEXITED
# name: <cell-element>
# type: string
# elements: 1
# length: 239
-- Built-in Function: WIFEXITED (STATUS)
Given STATUS from a call to `waitpid', return true if the child terminated normally. See also: waitpid, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
# name: <cell-element>
# type: string
# elements: 1
# length: 84
Given STATUS from a call to `waitpid', return true if the child terminated normally.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
WEXITSTATUS
# name: <cell-element>
# type: string
# elements: 1
# length: 299
-- Built-in Function: WEXITSTATUS (STATUS)
Given STATUS from a call to `waitpid', return the exit status of the child. This function should only be employed if `WIFEXITED' returned true. See also: waitpid, WIFEXITED, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Given STATUS from a call to `waitpid', return the exit status of the child.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
WIFSIGNALED
# name: <cell-element>
# type: string
# elements: 1
# length: 254
-- Built-in Function: WIFSIGNALED (STATUS)
Given STATUS from a call to `waitpid', return true if the child process was terminated by a signal. See also: waitpid, WIFEXITED, WEXITSTATUS, WTERMSIG, WCOREDUMP, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
# name: <cell-element>
# type: string
# elements: 1
# length: 99
Given STATUS from a call to `waitpid', return true if the child process was terminated by a signal.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
WTERMSIG
# name: <cell-element>
# type: string
# elements: 1
# length: 340
-- Built-in Function: WTERMSIG (STATUS)
Given STATUS from a call to `waitpid', return the number of the signal that caused the child process to terminate. This function should only be employed if `WIFSIGNALED' returned true. See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WCOREDUMP, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
# name: <cell-element>
# type: string
# elements: 1
# length: 114
Given STATUS from a call to `waitpid', return the number of the signal that caused the child process to terminate.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
WCOREDUMP
# name: <cell-element>
# type: string
# elements: 1
# length: 457
-- Built-in Function: WCOREDUMP (STATUS)
Given STATUS from a call to `waitpid', return true if the child produced a core dump. This function should only be employed if `WIFSIGNALED' returned true. The macro used to implement this function is not specified in POSIX.1-2001 and is not available on some Unix implementations (e.g., AIX, SunOS). See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
# name: <cell-element>
# type: string
# elements: 1
# length: 85
Given STATUS from a call to `waitpid', return true if the child produced a core dump.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
WIFSTOPPED
# name: <cell-element>
# type: string
# elements: 1
# length: 375
-- Built-in Function: WIFSTOPPED (STATUS)
Given STATUS from a call to `waitpid', return true if the child process was stopped by delivery of a signal; this is only possible if the call was done using `WUNTRACED' or when the child is being traced (see ptrace(2)). See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WSTOPSIG, WIFCONTINUED.
# name: <cell-element>
# type: string
# elements: 1
# length: 220
Given STATUS from a call to `waitpid', return true if the child process was stopped by delivery of a signal; this is only possible if the call was done using `WUNTRACED' or when the child is being traced (see ptrace(2)).
# name: <cell-element>
# type: string
# elements: 1
# length: 8
WSTOPSIG
# name: <cell-element>
# type: string
# elements: 1
# length: 327
-- Built-in Function: WSTOPSIG (STATUS)
Given STATUS from a call to `waitpid', return the number of the signal which caused the child to stop. This function should only be employed if `WIFSTOPPED' returned true. See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, WIFCONTINUED.
# name: <cell-element>
# type: string
# elements: 1
# length: 102
Given STATUS from a call to `waitpid', return the number of the signal which caused the child to stop.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
WIFCONTINUED
# name: <cell-element>
# type: string
# elements: 1
# length: 264
-- Built-in Function: WIFCONTINUED (STATUS)
Given STATUS from a call to `waitpid', return true if the child process was resumed by delivery of `SIGCONT'. See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, WSTOPSIG.
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Given STATUS from a call to `waitpid', return true if the child process was resumed by delivery of `SIGCONT'.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
canonicalize_file_name
# name: <cell-element>
# type: string
# elements: 1
# length: 122
-- Built-in Function: [CNAME, STATUS, MSG] canonicalize_file_name (NAME)
Return the canonical name of file NAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Return the canonical name of file NAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
F_DUPFD
# name: <cell-element>
# type: string
# elements: 1
# length: 183
-- Built-in Function: F_DUPFD ()
Return the value required to request that `fcntl' return a duplicate file descriptor. See also: fcntl, F_GETFD, F_GETFL, F_SETFD, F_SETFL.
# name: <cell-element>
# type: string
# elements: 1
# length: 85
Return the value required to request that `fcntl' return a duplicate file descriptor.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
F_GETFD
# name: <cell-element>
# type: string
# elements: 1
# length: 184
-- Built-in Function: F_GETFD ()
Return the value required to request that `fcntl' to return the file descriptor flags. See also: fcntl, F_DUPFD, F_GETFL, F_SETFD, F_SETFL.
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Return the value required to request that `fcntl' to return the file descriptor flags.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
F_GETFL
# name: <cell-element>
# type: string
# elements: 1
# length: 180
-- Built-in Function: F_GETFL ()
Return the value required to request that `fcntl' to return the file status flags. See also: fcntl, F_DUPFD, F_GETFD, F_SETFD, F_SETFL.
# name: <cell-element>
# type: string
# elements: 1
# length: 82
Return the value required to request that `fcntl' to return the file status flags.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
F_SETFD
# name: <cell-element>
# type: string
# elements: 1
# length: 181
-- Built-in Function: F_SETFD ()
Return the value required to request that `fcntl' to set the file descriptor flags. See also: fcntl, F_DUPFD, F_GETFD, F_GETFL, F_SETFL.
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Return the value required to request that `fcntl' to set the file descriptor flags.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
F_SETFL
# name: <cell-element>
# type: string
# elements: 1
# length: 177
-- Built-in Function: F_SETFL ()
Return the value required to request that `fcntl' to set the file status flags. See also: fcntl, F_DUPFD, F_GETFD, F_GETFL, F_SETFD.
# name: <cell-element>
# type: string
# elements: 1
# length: 79
Return the value required to request that `fcntl' to set the file status flags.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
O_APPEND
# name: <cell-element>
# type: string
# elements: 1
# length: 336
-- Built-in Function: O_APPEND ()
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate each write operation appends, or that may be passed to `fcntl' to set the write mode to append.\nSee also: fcntl, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
# name: <cell-element>
# type: string
# elements: 1
# length: 190
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate each write operation appends, or that may be passed to `fcntl' to set the write mode to append.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
O_ASYNC
# name: <cell-element>
# type: string
# elements: 1
# length: 258
-- Built-in Function: O_ASYNC ()
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate asynchronous I/O. See also: fcntl, O_APPEND, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
# name: <cell-element>
# type: string
# elements: 1
# length: 112
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate asynchronous I/O.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
O_CREAT
# name: <cell-element>
# type: string
# elements: 1
# length: 292
-- Built-in Function: O_CREAT ()
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file should be created if it does not exist. See also: fcntl, O_APPEND, O_ASYNC, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
# name: <cell-element>
# type: string
# elements: 1
# length: 146
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file should be created if it does not exist.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
O_EXCL
# name: <cell-element>
# type: string
# elements: 1
# length: 267
-- Built-in Function: O_EXCL ()
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that file locking is used. See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
# name: <cell-element>
# type: string
# elements: 1
# length: 121
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that file locking is used.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
O_NONBLOCK
# name: <cell-element>
# type: string
# elements: 1
# length: 332
-- Built-in Function: O_NONBLOCK ()
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that non-blocking I/O is in use, or that may be passsed to `fcntl' to set non-blocking I/O. See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
# name: <cell-element>
# type: string
# elements: 1
# length: 186
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that non-blocking I/O is in use, or that may be passsed to `fcntl' to set non-blocking I/O.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
O_RDONLY
# name: <cell-element>
# type: string
# elements: 1
# length: 278
-- Built-in Function: O_RDONLY ()
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file is open for reading only. See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
# name: <cell-element>
# type: string
# elements: 1
# length: 132
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file is open for reading only.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
O_RDWR
# name: <cell-element>
# type: string
# elements: 1
# length: 290
-- Built-in Function: O_RDWR ()
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file is open for both reading and writing. See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_SYNC, O_TRUNC, O_WRONLY.
# name: <cell-element>
# type: string
# elements: 1
# length: 144
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file is open for both reading and writing.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
O_SYNC
# name: <cell-element>
# type: string
# elements: 1
# length: 281
-- Built-in Function: O_SYNC ()
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file is open for synchronous I/O. See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_TRUNC, O_WRONLY.
# name: <cell-element>
# type: string
# elements: 1
# length: 135
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file is open for synchronous I/O.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
O_TRUNC
# name: <cell-element>
# type: string
# elements: 1
# length: 297
-- Built-in Variable: O_TRUNC ()
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that if file exists, it should be truncated when writing. See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_WRONLY.
# name: <cell-element>
# type: string
# elements: 1
# length: 152
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that if file exists, it should be truncated when writing.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
O_WRONLY
# name: <cell-element>
# type: string
# elements: 1
# length: 278
-- Built-in Function: O_WRONLY ()
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file is open for writing only. See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC.
# name: <cell-element>
# type: string
# elements: 1
# length: 132
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file is open for writing only.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
WNOHANG
# name: <cell-element>
# type: string
# elements: 1
# length: 266
-- Built-in Function: WNOHANG ()
Return the numerical value of the option argument that may be passed to `waitpid' to indicate that it should return its status immediately instead of waiting for a process to exit. See also: waitpid, WUNTRACED, WCONTINUE.
# name: <cell-element>
# type: string
# elements: 1
# length: 180
Return the numerical value of the option argument that may be passed to `waitpid' to indicate that it should return its status immediately instead of waiting for a process to exit.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
WUNTRACED
# name: <cell-element>
# type: string
# elements: 1
# length: 285
-- Built-in Function: WUNTRACED ()
Return the numerical value of the option argument that may be passed to `waitpid' to indicate that it should also return if the child process has stopped but is not traced via the `ptrace' system call See also: waitpid, WNOHANG, WCONTINUE.
# name: <cell-element>
# type: string
# elements: 1
# length: 239
Return the numerical value of the option argument that may be passed to `waitpid' to indicate that it should also return if the child process has stopped but is not traced via the `ptrace' system call See also: waitpid, WNOHANG, WCONTINUE.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
WCONTINUE
# name: <cell-element>
# type: string
# elements: 1
# length: 276
-- Built-in Function: WCONINTUE ()
Return the numerical value of the option argument that may be passed to `waitpid' to indicate that it should also return if a stopped child has been resumed by delivery of a `SIGCONT' signal. See also: waitpid, WNOHANG, WUNTRACED.
# name: <cell-element>
# type: string
# elements: 1
# length: 191
Return the numerical value of the option argument that may be passed to `waitpid' to indicate that it should also return if a stopped child has been resumed by delivery of a `SIGCONT' signal.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
clc
# name: <cell-element>
# type: string
# elements: 1
# length: 143
-- Built-in Function: clc ()
-- Built-in Function: home ()
Clear the terminal screen and move the cursor to the upper left corner.
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Clear the terminal screen and move the cursor to the upper left corner.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
getenv
# name: <cell-element>
# type: string
# elements: 1
# length: 194
-- Built-in Function: getenv (VAR)
Return the value of the environment variable VAR. For example,
getenv ("PATH")
returns a string containing the value of your path.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Return the value of the environment variable VAR.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
putenv
# name: <cell-element>
# type: string
# elements: 1
# length: 152
-- Built-in Function: putenv (VAR, VALUE)
-- Built-in Function: setenv (VAR, VALUE)
Set the value of the environment variable VAR to VALUE.
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Set the value of the environment variable VAR to VALUE.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
kbhit
# name: <cell-element>
# type: string
# elements: 1
# length: 411
-- Built-in Function: kbhit ()
Read a single keystroke from the keyboard. If called with one argument, don't wait for a keypress. For example,
x = kbhit ();
will set X to the next character typed at the keyboard as soon as it is typed.
x = kbhit (1);
identical to the above example, but don't wait for a keypress, returning the empty string if no key is available.
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Read a single keystroke from the keyboard.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
pause
# name: <cell-element>
# type: string
# elements: 1
# length: 421
-- Built-in Function: pause (SECONDS)
Suspend the execution of the program. If invoked without any arguments, Octave waits until you type a character. With a numeric argument, it pauses for the given number of seconds. For example, the following statement prints a message and then waits 5 seconds before clearing the screen.
fprintf (stderr, "wait please...\n");
pause (5);
clc;
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Suspend the execution of the program.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
sleep
# name: <cell-element>
# type: string
# elements: 1
# length: 118
-- Built-in Function: sleep (SECONDS)
Suspend the execution of the program for the given number of seconds.
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Suspend the execution of the program for the given number of seconds.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
usleep
# name: <cell-element>
# type: string
# elements: 1
# length: 293
-- Built-in Function: usleep (MICROSECONDS)
Suspend the execution of the program for the given number of microseconds. On systems where it is not possible to sleep for periods of time less than one second, `usleep' will pause the execution for `round (MICROSECONDS / 1e6)' seconds.
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Suspend the execution of the program for the given number of microseconds.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
isieee
# name: <cell-element>
# type: string
# elements: 1
# length: 140
-- Built-in Function: isieee ()
Return 1 if your computer claims to conform to the IEEE standard for floating point calculations.
# name: <cell-element>
# type: string
# elements: 1
# length: 97
Return 1 if your computer claims to conform to the IEEE standard for floating point calculations.
# name: <cell-element>
# type: string
# elements: 1
# length: 19
native_float_format
# name: <cell-element>
# type: string
# elements: 1
# length: 107
-- Built-in Function: native_float_format ()
Return the native floating point format as a string
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Return the native floating point format as a string
# name: <cell-element>
# type: string
# elements: 1
# length: 12
tilde_expand
# name: <cell-element>
# type: string
# elements: 1
# length: 658
-- Built-in Function: tilde_expand (STRING)
Performs tilde expansion on STRING. If STRING begins with a tilde character, (`~'), all of the characters preceding the first slash (or all characters, if there is no slash) are treated as a possible user name, and the tilde and the following characters up to the slash are replaced by the home directory of the named user. If the tilde is followed immediately by a slash, the tilde is replaced by the home directory of the user running Octave. For example,
tilde_expand ("~joeuser/bin")
=> "/home/joeuser/bin"
tilde_expand ("~/bin")
=> "/home/jwe/bin"
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Performs tilde expansion on STRING.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
time
# name: <cell-element>
# type: string
# elements: 1
# length: 413
-- Loadable Function: time ()
Return the current time as the number of seconds since the epoch. The epoch is referenced to 00:00:00 CUT (Coordinated Universal Time) 1 Jan 1970. For example, on Monday February 17, 1997 at 07:15:06 CUT, the value returned by `time' was 856163706. See also: strftime, strptime, localtime, gmtime, mktime, now, date, clock, datenum, datestr, datevec, calendar, weekday.
# name: <cell-element>
# type: string
# elements: 1
# length: 65
Return the current time as the number of seconds since the epoch.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
gmtime
# name: <cell-element>
# type: string
# elements: 1
# length: 694
-- Loadable Function: gmtime (T)
Given a value returned from time (or any non-negative integer), return a time structure corresponding to CUT. For example,
gmtime (time ())
=> {
usec = 0
year = 97
mon = 1
mday = 17
sec = 6
zone = CST
min = 15
wday = 1
hour = 7
isdst = 0
yday = 47
}
See also: strftime, strptime, localtime, mktime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Given a value returned from time (or any non-negative integer), return a time structure corresponding to CUT.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
localtime
# name: <cell-element>
# type: string
# elements: 1
# length: 699
-- Loadable Function: localtime (T)
Given a value returned from time (or any non-negative integer), return a time structure corresponding to the local time zone.
localtime (time ())
=> {
usec = 0
year = 97
mon = 1
mday = 17
sec = 6
zone = CST
min = 15
wday = 1
hour = 1
isdst = 0
yday = 47
}
See also: strftime, strptime, gmtime, mktime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
# name: <cell-element>
# type: string
# elements: 1
# length: 125
Given a value returned from time (or any non-negative integer), return a time structure corresponding to the local time zone.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
mktime
# name: <cell-element>
# type: string
# elements: 1
# length: 356
-- Loadable Function: mktime (TM_STRUCT)
Convert a time structure corresponding to the local time to the number of seconds since the epoch. For example,
mktime (localtime (time ()))
=> 856163706
See also: strftime, strptime, localtime, gmtime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Convert a time structure corresponding to the local time to the number of seconds since the epoch.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
strftime
# name: <cell-element>
# type: string
# elements: 1
# length: 2887
-- Loadable Function: strftime (FMT, TM_STRUCT)
Format the time structure TM_STRUCT in a flexible way using the format string FMT that contains `%' substitutions similar to those in `printf'. Except where noted, substituted fields have a fixed size; numeric fields are padded if necessary. Padding is with zeros by default; for fields that display a single number, padding can be changed or inhibited by following the `%' with one of the modifiers described below. Unknown field specifiers are copied as normal characters. All other characters are copied to the output without change. For example,
strftime ("%r (%Z) %A %e %B %Y", localtime (time ()))
=> "01:15:06 AM (CST) Monday 17 February 1997"
Octave's `strftime' function supports a superset of the ANSI C field specifiers.
Literal character fields:
`%'
% character.
`n'
Newline character.
`t'
Tab character.
Numeric modifiers (a nonstandard extension):
`- (dash)'
Do not pad the field.
`_ (underscore)'
Pad the field with spaces.
Time fields:
`%H'
Hour (00-23).
`%I'
Hour (01-12).
`%k'
Hour (0-23).
`%l'
Hour (1-12).
`%M'
Minute (00-59).
`%p'
Locale's AM or PM.
`%r'
Time, 12-hour (hh:mm:ss [AP]M).
`%R'
Time, 24-hour (hh:mm).
`%s'
Time in seconds since 00:00:00, Jan 1, 1970 (a nonstandard extension).
`%S'
Second (00-61).
`%T'
Time, 24-hour (hh:mm:ss).
`%X'
Locale's time representation (%H:%M:%S).
`%Z'
Time zone (EDT), or nothing if no time zone is determinable.
Date fields:
`%a'
Locale's abbreviated weekday name (Sun-Sat).
`%A'
Locale's full weekday name, variable length (Sunday-Saturday).
`%b'
Locale's abbreviated month name (Jan-Dec).
`%B'
Locale's full month name, variable length (January-December).
`%c'
Locale's date and time (Sat Nov 04 12:02:33 EST 1989).
`%C'
Century (00-99).
`%d'
Day of month (01-31).
`%e'
Day of month ( 1-31).
`%D'
Date (mm/dd/yy).
`%h'
Same as %b.
`%j'
Day of year (001-366).
`%m'
Month (01-12).
`%U'
Week number of year with Sunday as first day of week (00-53).
`%w'
Day of week (0-6).
`%W'
Week number of year with Monday as first day of week (00-53).
`%x'
Locale's date representation (mm/dd/yy).
`%y'
Last two digits of year (00-99).
`%Y'
Year (1970-).
See also: strptime, localtime, gmtime, mktime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
# name: <cell-element>
# type: string
# elements: 1
# length: 143
Format the time structure TM_STRUCT in a flexible way using the format string FMT that contains `%' substitutions similar to those in `printf'.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
strptime
# name: <cell-element>
# type: string
# elements: 1
# length: 496
-- Loadable Function: [TM_STRUCT, NCHARS] = strptime (STR, FMT)
Convert the string STR to the time structure TM_STRUCT under the control of the format string FMT.
If FMT fails to match, NCHARS is 0; otherwise it is set to the position of last matched character plus 1. Always check for this unless you're absolutely sure the date string will be parsed correctly. See also: strftime, localtime, gmtime, mktime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Convert the string STR to the time structure TM_STRUCT under the control of the format string FMT.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
quit
# name: <cell-element>
# type: string
# elements: 1
# length: 265
-- Built-in Function: exit (STATUS)
-- Built-in Function: quit (STATUS)
Exit the current Octave session. If the optional integer value STATUS is supplied, pass that value to the operating system as the Octave's exit status. The default value is zero.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Exit the current Octave session.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
warranty
# name: <cell-element>
# type: string
# elements: 1
# length: 105
-- Built-in Function: warranty ()
Describe the conditions for copying and distributing Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Describe the conditions for copying and distributing Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
system
# name: <cell-element>
# type: string
# elements: 1
# length: 1316
-- Built-in Function: system (STRING, RETURN_OUTPUT, TYPE)
Execute a shell command specified by STRING. The second argument is optional. If TYPE is `"async"', the process is started in the background and the process id of the child process is returned immediately. Otherwise, the process is started, and Octave waits until it exits. If the TYPE argument is omitted, a value of `"sync"' is assumed.
If two input arguments are given (the actual value of RETURN_OUTPUT is irrelevant) and the subprocess is started synchronously, or if SYSTEM is called with one input argument and one or more output arguments, the output from the command is returned. Otherwise, if the subprocess is executed synchronously, its output is sent to the standard output. To send the output of a command executed with SYSTEM through the pager, use a command like
disp (system (cmd, 1));
or
printf ("%s\n", system (cmd, 1));
The `system' function can return two values. The first is the exit status of the command and the second is any output from the command that was written to the standard output stream. For example,
[status, output] = system ("echo foo; exit 2");
will set the variable `output' to the string `foo', and the variable `status' to the integer `2'.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Execute a shell command specified by STRING.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
atexit
# name: <cell-element>
# type: string
# elements: 1
# length: 961
-- Built-in Function: atexit (FCN)
-- Built-in Function: atexit (FCN, FLAG)
Register a function to be called when Octave exits. For example,
function last_words ()
disp ("Bye bye");
endfunction
atexit ("last_words");
will print the message "Bye bye" when Octave exits.
The additional argument FLAG will register or unregister FCN from the list of functions to be called when Octave exits. If FLAG is true, the function is registered, and if FLAG is false, it is unregistered. For example, after registering the function `last_words' above,
atexit ("last_words", false);
will remove the function from the list and Octave will not call `last_words' when it exits.
Note that `atexit' only removes the first occurrence of a function from the list, so if a function was placed in the list multiple times with `atexit', it must also be removed from the list multiple times.
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Register a function to be called when Octave exits.
# name: <cell-element>
# type: string
# elements: 1
# length: 18
octave_config_info
# name: <cell-element>
# type: string
# elements: 1
# length: 238
-- Built-in Function: octave_config_info (OPTION)
Return a structure containing configuration and installation information for Octave.
if OPTION is a string, return the configuration information for the specified option.
# name: <cell-element>
# type: string
# elements: 1
# length: 84
Return a structure containing configuration and installation information for Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
tsearch
# name: <cell-element>
# type: string
# elements: 1
# length: 276
-- Loadable Function: IDX = tsearch (X, Y, T, XI, YI)
Searches for the enclosing Delaunay convex hull. For `T = delaunay (X, Y)', finds the index in T containing the points `(XI, YI)'. For points outside the convex hull, IDX is NaN. See also: delaunay, delaunayn.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Searches for the enclosing Delaunay convex hull.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
typecast
# name: <cell-element>
# type: string
# elements: 1
# length: 505
-- Loadable Function: typecast (X, TYPE)
Convert from one datatype to another without changing the underlying data. The argument TYPE defines the type of the return argument and must be one of 'uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64', 'single' or 'double'.
An example of the use of typecast on a little-endian machine is
X = uint16 ([1, 65535]);
typecast (X, 'uint8')
=> [ 0, 1, 255, 255]
See also: cast, swapbytes.
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Convert from one datatype to another without changing the underlying data.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
urlwrite
# name: <cell-element>
# type: string
# elements: 1
# length: 1338
-- Loadable Function: urlwrite (URL, LOCALFILE)
-- Loadable Function: F = urlwrite (URL, LOCALFILE)
-- Loadable Function: [F, SUCCESS] = urlwrite (URL, LOCALFILE)
-- Loadable Function: [F, SUCCESS, MESSAGE] = urlwrite (URL, LOCALFILE)
Download a remote file specified by its URL and save it as LOCALFILE. For example,
urlwrite ("ftp://ftp.octave.org/pub/octave/README",
"README.txt");
The full path of the downloaded file is returned in F. The variable SUCCESS is 1 if the download was successful, otherwise it is 0 in which case MESSAGE contains an error message. If no output argument is specified and if an error occurs, then the error is signaled through Octave's error handling mechanism.
This function uses libcurl. Curl supports, among others, the HTTP, FTP and FILE protocols. Username and password may be specified in the URL, for example:
urlwrite ("http://username:password@example.com/file.txt",
"file.txt");
GET and POST requests can be specified by METHOD and PARAM. The parameter METHOD is either `get' or `post' and PARAM is a cell array of parameter and value pairs. For example:
urlwrite ("http://www.google.com/search", "search.html",
"get", {"query", "octave"});
See also: urlread.
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Download a remote file specified by its URL and save it as LOCALFILE.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
urlread
# name: <cell-element>
# type: string
# elements: 1
# length: 1195
-- Loadable Function: S = urlread (URL)
-- Loadable Function: [S, SUCCESS] = urlread (URL)
-- Loadable Function: [S, SUCCESS, MESSAGE] = urlread (URL)
-- Loadable Function: [...] = urlread (URL, METHOD, PARAM)
Download a remote file specified by its URL and return its content in string S. For example,
s = urlread ("ftp://ftp.octave.org/pub/octave/README");
The variable SUCCESS is 1 if the download was successful, otherwise it is 0 in which case MESSAGE contains an error message. If no output argument is specified and if an error occurs, then the error is signaled through Octave's error handling mechanism.
This function uses libcurl. Curl supports, among others, the HTTP, FTP and FILE protocols. Username and password may be specified in the URL. For example,
s = urlread ("http://user:password@example.com/file.txt");
GET and POST requests can be specified by METHOD and PARAM. The parameter METHOD is either `get' or `post' and PARAM is a cell array of parameter and value pairs. For example,
s = urlread ("http://www.google.com/search", "get",
{"query", "octave"});
See also: urlwrite.
# name: <cell-element>
# type: string
# elements: 1
# length: 79
Download a remote file specified by its URL and return its content in string S.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
isvarname
# name: <cell-element>
# type: string
# elements: 1
# length: 94
-- Built-in Function: isvarname (NAME)
Return true if NAME is a valid variable name
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Return true if NAME is a valid variable name
# name: <cell-element>
# type: string
# elements: 1
# length: 16
file_in_loadpath
# name: <cell-element>
# type: string
# elements: 1
# length: 648
-- Built-in Function: file_in_loadpath (FILE)
-- Built-in Function: file_in_loadpath (FILE, "all")
Return the absolute name of FILE if it can be found in the list of directories specified by `path'. If no file is found, return an empty matrix.
If the first argument is a cell array of strings, search each directory of the loadpath for element of the cell array and return the first that matches.
If the second optional argument `"all"' is supplied, return a cell array containing the list of all files that have the same name in the path. If no files are found, return an empty cell array. See also: file_in_path, path.
# name: <cell-element>
# type: string
# elements: 1
# length: 99
Return the absolute name of FILE if it can be found in the list of directories specified by `path'.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
file_in_path
# name: <cell-element>
# type: string
# elements: 1
# length: 794
-- Built-in Function: file_in_path (PATH, FILE)
-- Built-in Function: file_in_path (PATH, FILE, "all")
Return the absolute name of FILE if it can be found in PATH. The value of PATH should be a colon-separated list of directories in the format described for `path'. If no file is found, return an empty matrix. For example,
file_in_path (EXEC_PATH, "sh")
=> "/bin/sh"
If the second argument is a cell array of strings, search each directory of the path for element of the cell array and return the first that matches.
If the third optional argument `"all"' is supplied, return a cell array containing the list of all files that have the same name in the path. If no files are found, return an empty cell array. See also: file_in_loadpath.
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Return the absolute name of FILE if it can be found in PATH.
# name: <cell-element>
# type: string
# elements: 1
# length: 17
do_string_escapes
# name: <cell-element>
# type: string
# elements: 1
# length: 120
-- Built-in Function: do_string_escapes (STRING)
Convert special characters in STRING to their escaped forms.
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Convert special characters in STRING to their escaped forms.
# name: <cell-element>
# type: string
# elements: 1
# length: 19
undo_string_escapes
# name: <cell-element>
# type: string
# elements: 1
# length: 732
-- Built-in Function: undo_string_escapes (S)
Converts special characters in strings back to their escaped forms. For example, the expression
bell = "\a";
assigns the value of the alert character (control-g, ASCII code 7) to the string variable `bell'. If this string is printed, the system will ring the terminal bell (if it is possible). This is normally the desired outcome. However, sometimes it is useful to be able to print the original representation of the string, with the special characters replaced by their escape sequences. For example,
octave:13> undo_string_escapes (bell)
ans = \a
replaces the unprintable alert character with its printable representation.
# name: <cell-element>
# type: string
# elements: 1
# length: 67
Converts special characters in strings back to their escaped forms.
# name: <cell-element>
# type: string
# elements: 1
# length: 20
is_absolute_filename
# name: <cell-element>
# type: string
# elements: 1
# length: 105
-- Built-in Function: is_absolute_filename (FILE)
Return true if FILE is an absolute filename.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Return true if FILE is an absolute filename.
# name: <cell-element>
# type: string
# elements: 1
# length: 27
is_rooted_relative_filename
# name: <cell-element>
# type: string
# elements: 1
# length: 118
-- Built-in Function: is_rooted_relative_filename (FILE)
Return true if FILE is a rooted-relative filename.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Return true if FILE is a rooted-relative filename.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
make_absolute_filename
# name: <cell-element>
# type: string
# elements: 1
# length: 127
-- Built-in Function: make_absolute_filename (FILE)
Return the full name of FILE, relative to the current directory.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return the full name of FILE, relative to the current directory.
# name: <cell-element>
# type: string
# elements: 1
# length: 16
find_dir_in_path
# name: <cell-element>
# type: string
# elements: 1
# length: 318
-- Built-in Function: find_dir_in_path (DIR)
Return the full name of the path element matching DIR. The match is performed at the end of each path element. For example, if DIR is `"foo/bar"', it matches the path element `"/some/dir/foo/bar"', but not `"/some/dir/foo/bar/baz"' or `"/some/dir/allfoo/bar"'.
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Return the full name of the path element matching DIR.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
errno
# name: <cell-element>
# type: string
# elements: 1
# length: 339
-- Built-in Function: ERR = errno ()
-- Built-in Function: ERR = errno (VAL)
-- Built-in Function: ERR = errno (NAME)
Return the current value of the system-dependent variable errno, set its value to VAL and return the previous value, or return the named error code given NAME as a character string, or -1 if NAME is not found.
# name: <cell-element>
# type: string
# elements: 1
# length: 209
Return the current value of the system-dependent variable errno, set its value to VAL and return the previous value, or return the named error code given NAME as a character string, or -1 if NAME is not found.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
errno_list
# name: <cell-element>
# type: string
# elements: 1
# length: 111
-- Built-in Function: errno_list ()
Return a structure containing the system-dependent errno values.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return a structure containing the system-dependent errno values.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
isglobal
# name: <cell-element>
# type: string
# elements: 1
# length: 184
-- Built-in Function: isglobal (NAME)
Return 1 if NAME is globally visible. Otherwise, return 0. For example,
global x
isglobal ("x")
=> 1
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Return 1 if NAME is globally visible.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
is_global
# name: <cell-element>
# type: string
# elements: 1
# length: 106
-- Built-in Function: isglobal (NAME)
This function has been deprecated. Use isglobal instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
exist
# name: <cell-element>
# type: string
# elements: 1
# length: 1031
-- Built-in Function: exist (NAME, TYPE)
Return 1 if the name exists as a variable, 2 if the name is an absolute file name, an ordinary file in Octave's `path', or (after appending `.m') a function file in Octave's `path', 3 if the name is a `.oct' or `.mex' file in Octave's `path', 5 if the name is a built-in function, 7 if the name is a directory, or 103 if the name is a function not associated with a file (entered on the command line).
Otherwise, return 0.
This function also returns 2 if a regular file called NAME exists in Octave's search path. If you want information about other types of files, you should use some combination of the functions `file_in_path' and `stat' instead.
If the optional argument TYPE is supplied, check only for symbols of the specified type. Valid types are
`"var"'
Check only for variables.
`"builtin"'
Check only for built-in functions.
`"file"'
Check only for files.
`"dir"'
Check only for directories.
# name: <cell-element>
# type: string
# elements: 1
# length: 142
Return 1 if the name exists as a variable, 2 if the name is an absolute file name, an ordinary file in Octave's `path', or (after appending `.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
who
# name: <cell-element>
# type: string
# elements: 1
# length: 1046
-- Command: who
-- Command: who pattern ...
-- Command: who option pattern ...
-- Command: C = who("pattern", ...)
List currently defined variables matching the given patterns. Valid pattern syntax is the same as described for the `clear' command. If no patterns are supplied, all variables are listed. By default, only variables visible in the local scope are displayed.
The following are valid options but may not be combined.
`global'
List variables in the global scope rather than the current scope.
`-regexp'
The patterns are considered to be regular expressions when matching the variables to display. The same pattern syntax accepted by the `regexp' function is used.
`-file'
The next argument is treated as a filename. All variables found within the specified file are listed. No patterns are accepted when reading variables from a file.
If called as a function, return a cell array of defined variable names matching the given patterns. See also: whos, regexp.
# name: <cell-element>
# type: string
# elements: 1
# length: 61
List currently defined variables matching the given patterns.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
whos
# name: <cell-element>
# type: string
# elements: 1
# length: 1377
-- Command: whos
-- Command: whos pattern ...
-- Command: whos option pattern ...
-- Command: S = whos("pattern", ...)
Provide detailed information on currently defined variables matching the given patterns. Options and pattern syntax are the same as for the `who' command. Extended information about each variable is summarized in a table with the following default entries.
Attr
Attributes of the listed variable. Possible attributes are:
blank
Variable in local scope
`g'
Variable with global scope
`p'
Persistent variable
Name
The name of the variable.
Size
The logical size of the variable. A scalar is 1x1, a vector is 1xN or Nx1, a 2-D matrix is MxN.
Bytes
The amount of memory currently used to store the variable.
Class
The class of the variable. Examples include double, single, char, uint16, cell, and struct.
The table can be customized to display more or less information through the function `whos_line_format'.
If `whos' is called as a function, return a struct array of defined variable names matching the given patterns. Fields in the structure describing each variable are: name, size, bytes, class, global, sparse, complex, nesting, persistent. See also: who, whos_line_format.
# name: <cell-element>
# type: string
# elements: 1
# length: 88
Provide detailed information on currently defined variables matching the given patterns.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
mlock
# name: <cell-element>
# type: string
# elements: 1
# length: 151
-- Built-in Function: mlock ()
Lock the current function into memory so that it can't be cleared. See also: munlock, mislocked, persistent.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Lock the current function into memory so that it can't be cleared.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
munlock
# name: <cell-element>
# type: string
# elements: 1
# length: 173
-- Built-in Function: munlock (FCN)
Unlock the named function. If no function is named then unlock the current function. See also: mlock, mislocked, persistent.
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Unlock the named function.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
mislocked
# name: <cell-element>
# type: string
# elements: 1
# length: 209
-- Built-in Function: mislocked (FCN)
Return true if the named function is locked. If no function is named then return true if the current function is locked. See also: mlock, munlock, persistent.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Return true if the named function is locked.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
clear
# name: <cell-element>
# type: string
# elements: 1
# length: 2049
-- Command: clear [options] pattern ...
Delete the names matching the given patterns from the symbol table. The pattern may contain the following special characters:
`?'
Match any single character.
`*'
Match zero or more characters.
`[ LIST ]'
Match the list of characters specified by LIST. If the first character is `!' or `^', match all characters except those specified by LIST. For example, the pattern `[a-zA-Z]' will match all lower and upper case alphabetic characters.
For example, the command
clear foo b*r
clears the name `foo' and all names that begin with the letter `b' and end with the letter `r'.
If `clear' is called without any arguments, all user-defined variables (local and global) are cleared from the symbol table. If `clear' is called with at least one argument, only the visible names matching the arguments are cleared. For example, suppose you have defined a function `foo', and then hidden it by performing the assignment `foo = 2'. Executing the command `clear foo' once will clear the variable definition and restore the definition of `foo' as a function. Executing `clear foo' a second time will clear the function definition.
The following options are available in both long and short form
`-all, -a'
Clears all local and global user-defined variables and all functions from the symbol table.
`-exclusive, -x'
Clears the variables that don't match the following pattern.
`-functions, -f'
Clears the function names and the built-in symbols names.
`-global, -g'
Clears the global symbol names.
`-variables, -v'
Clears the local variable names.
`-classes, -c'
Clears the class structure table and clears all objects.
`-regexp, -r'
The arguments are treated as regular expressions as any variables that match will be cleared.
With the exception of `exclusive', all long options can be used without the dash as well.
# name: <cell-element>
# type: string
# elements: 1
# length: 67
Delete the names matching the given patterns from the symbol table.
# name: <cell-element>
# type: string
# elements: 1
# length: 16
whos_line_format
# name: <cell-element>
# type: string
# elements: 1
# length: 1622
-- Built-in Function: VAL = whos_line_format ()
-- Built-in Function: OLD_VAL = whos_line_format (NEW_VAL)
Query or set the format string used by the command `whos'.
A full format string is:
%[modifier]<command>[:width[:left-min[:balance]]];
The following command sequences are available:
`%a'
Prints attributes of variables (g=global, p=persistent, f=formal parameter, a=automatic variable).
`%b'
Prints number of bytes occupied by variables.
`%c'
Prints class names of variables.
`%e'
Prints elements held by variables.
`%n'
Prints variable names.
`%s'
Prints dimensions of variables.
`%t'
Prints type names of variables.
Every command may also have an alignment modifier:
`l'
Left alignment.
`r'
Right alignment (default).
`c'
Column-aligned (only applicable to command %s).
The `width' parameter is a positive integer specifying the minimum number of columns used for printing. No maximum is needed as the field will auto-expand as required.
The parameters `left-min' and `balance' are only available when the column-aligned modifier is used with the command `%s'. `balance' specifies the column number within the field width which will be aligned between entries. Numbering starts from 0 which indicates the leftmost column. `left-min' specifies the minimum field width to the left of the specified balance column.
The default format is `" %a:4; %ln:6; %cs:16:6:1; %rb:12; %lc:-1;\n"'. See also: whos.
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Query or set the format string used by the command `whos'.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
geometric_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 349
-- Function File: geometric_rnd (P, R, C)
-- Function File: geometric_rnd (P, SZ)
Return an R by C matrix of random samples from the geometric distribution with parameter P, which must be a scalar or of size R by C.
If R and C are given create a matrix with R rows and C columns. Or if SZ is a vector, create a matrix of size SZ.
# name: <cell-element>
# type: string
# elements: 1
# length: 133
Return an R by C matrix of random samples from the geometric distribution with parameter P, which must be a scalar or of size R by C.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
meshdom
# name: <cell-element>
# type: string
# elements: 1
# length: 103
-- Function File: meshdom (X, Y)
This function has been deprecated. Use `meshgrid' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
is_square
# name: <cell-element>
# type: string
# elements: 1
# length: 100
-- Function File: is_square (X)
This function has been deprecated. Use issquare instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
poisson_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 178
-- Function File: poisson_pdf (X, LAMBDA)
For each element of X, compute the probability density function (PDF) at X of the poisson distribution with parameter LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 125
For each element of X, compute the probability density function (PDF) at X of the poisson distribution with parameter LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
spkron
# name: <cell-element>
# type: string
# elements: 1
# length: 98
-- Function File: spkron (A, B)
This function has been deprecated. Use `kron' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
spcholinv
# name: <cell-element>
# type: string
# elements: 1
# length: 101
-- Function File: spcholinv (U)
This function has been deprecated. Use `cholinv' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
weibull_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 260
-- Function File: weibull_cdf (X, SHAPE, SCALE)
Compute the cumulative distribution function (CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE, which is
1 - exp(-(x/shape)^scale)
for X >= 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 147
Compute the cumulative distribution function (CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE, which is
# name: <cell-element>
# type: string
# elements: 1
# length: 7
weibpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 297
-- Function File: weibpdf (X, SCALE, SHAPE)
Compute the probability density function (PDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE which is given by
scale * shape^(-scale) * x^(scale-1) * exp(-(x/shape)^scale)
for X > 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 151
Compute the probability density function (PDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE which is given by
# name: <cell-element>
# type: string
# elements: 1
# length: 10
normal_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 222
-- Function File: normal_cdf (X, M, V)
For each element of X, compute the cumulative distribution function (CDF) at X of the normal distribution with mean M and variance V.
Default values are M = 0, V = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 133
For each element of X, compute the cumulative distribution function (CDF) at X of the normal distribution with mean M and variance V.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
chisquare_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 180
-- Function File: chisquare_inv (X, N)
For each element of X, compute the quantile (the inverse of the CDF) at X of the chisquare distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 130
For each element of X, compute the quantile (the inverse of the CDF) at X of the chisquare distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
splu
# name: <cell-element>
# type: string
# elements: 1
# length: 299
-- Loadable Function: [L, U] = splu (A)
-- Loadable Function: [L, U, P] = splu (A)
-- Loadable Function: [L, U, P, Q] = splu (A)
-- Loadable Function: [L, U, P, Q] = splu (..., THRES)
-- Loadable Function: [L, U, P] = splu (..., Q)
This function has been deprecated. Use `lu' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
gamma_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 173
-- Function File: gamma_pdf (X, A, B)
For each element of X, return the probability density function (PDF) at X of the Gamma distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 124
For each element of X, return the probability density function (PDF) at X of the Gamma distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
t_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 167
-- Function File: t_inv (X, N)
For each component of X, compute the quantile (the inverse of the CDF) at X of the t (Student) distribution with parameter N.
# name: <cell-element>
# type: string
# elements: 1
# length: 125
For each component of X, compute the quantile (the inverse of the CDF) at X of the t (Student) distribution with parameter N.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
pascal_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 329
-- Function File: pascal_pdf (X, N, P)
For each element of X, compute the probability density function (PDF) at X of the Pascal (negative binomial) distribution with parameters N and P.
The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 146
For each element of X, compute the probability density function (PDF) at X of the Pascal (negative binomial) distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
isstr
# name: <cell-element>
# type: string
# elements: 1
# length: 94
-- Function File: isstr (A)
This function has been deprecated. Use ischar instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
is_struct
# name: <cell-element>
# type: string
# elements: 1
# length: 100
-- Function File: is_struct (A)
This function has been deprecated. Use isstruct instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
chisquare_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 181
-- Function File: chisquare_pdf (X, N)
For each element of X, compute the probability density function (PDF) at X of the chisquare distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 131
For each element of X, compute the probability density function (PDF) at X of the chisquare distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
spdiag
# name: <cell-element>
# type: string
# elements: 1
# length: 113
-- Function File: spdiag (V, K)
This function has been deprecated. Use `sparse (diag (...))' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
setstr
# name: <cell-element>
# type: string
# elements: 1
# length: 93
-- Function File: setstr (S)
This function has been deprecated. Use char instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
spmin
# name: <cell-element>
# type: string
# elements: 1
# length: 146
-- Mapping Function: spmin (X, Y, DIM)
-- Mapping Function: [W, IW] = spmin (X)
This function has been deprecated. Use `min' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
uniform_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 182
-- Function File: uniform_cdf (X, A, B)
Return the CDF at X of the uniform distribution on [A, B], i.e., PROB (uniform (A, B) <= x).
Default values are A = 0, B = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Return the CDF at X of the uniform distribution on [A, B], i.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
weibull_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 301
-- Function File: weibull_pdf (X, SHAPE, SCALE)
Compute the probability density function (PDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE which is given by
scale * shape^(-scale) * x^(scale-1) * exp(-(x/shape)^scale)
for X > 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 151
Compute the probability density function (PDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE which is given by
# name: <cell-element>
# type: string
# elements: 1
# length: 9
spcumprod
# name: <cell-element>
# type: string
# elements: 1
# length: 106
-- Function File: spcumprod (X, DIM)
This function has been deprecated. Use `cumprod' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
spprod
# name: <cell-element>
# type: string
# elements: 1
# length: 100
-- Function File: spprod (X, DIM)
This function has been deprecated. Use `prod' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
str2mat
# name: <cell-element>
# type: string
# elements: 1
# length: 349
-- Function File: str2mat (S_1, ..., S_N)
Return a matrix containing the strings S_1, ..., S_N as its rows. Each string is padded with blanks in order to form a valid matrix.
This function is modelled after MATLAB. In Octave, you can create a matrix of strings by `[S_1; ...; S_N]' even if the strings are not all the same length.
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Return a matrix containing the strings S_1, .
# name: <cell-element>
# type: string
# elements: 1
# length: 10
is_complex
# name: <cell-element>
# type: string
# elements: 1
# length: 102
-- Function File: is_complex (A)
This function has been deprecated. Use iscomplex instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
lognormal_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 343
-- Function File: lognormal_inv (X, A, V)
For each element of X, compute the quantile (the inverse of the CDF) at X of the lognormal distribution with parameters A and V. If a random variable follows this distribution, its logarithm is normally distributed with mean `log (A)' and variance V.
Default values are A = 1, V = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 128
For each element of X, compute the quantile (the inverse of the CDF) at X of the lognormal distribution with parameters A and V.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
t_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 175
-- Function File: t_pdf (X, N)
For each element of X, compute the probability density function (PDF) at X of the T (Student) distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 133
For each element of X, compute the probability density function (PDF) at X of the T (Student) distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
com2str
# name: <cell-element>
# type: string
# elements: 1
# length: 319
-- Function File: com2str (ZZ, FLG)
This function has been deprecated. Use num2str instead.
Convert complex number to a string. *Inputs*
ZZ
complex number
FLG
format flag 0 (default): -1, 0, 1, 1i, 1 + 0.5i 1 (for use with zpout): -1, 0, + 1, + 1i, + 1 + 0.5i
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
polyinteg
# name: <cell-element>
# type: string
# elements: 1
# length: 308
-- Function File: polyinteg (C)
Return the coefficients of the integral of the polynomial whose coefficients are represented by the vector C.
The constant of integration is set to zero. See also: polyint, poly, polyderiv, polyreduce, roots, conv, deconv, residue, filter, polyval, polyvalm.
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Return the coefficients of the integral of the polynomial whose coefficients are represented by the vector C.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
f_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 388
-- Function File: f_rnd (M, N, R, C)
-- Function File: f_rnd (M, N, SZ)
Return an R by C matrix of random samples from the F distribution with M and N degrees of freedom. Both M and N must be scalar or of size R by C. If SZ is a vector the random samples are in a matrix of size SZ.
If R and C are omitted, the size of the result matrix is the common size of M and N.
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Return an R by C matrix of random samples from the F distribution with M and N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 15
exponential_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 383
-- Function File: exponential_rnd (LAMBDA, R, C)
-- Function File: exponential_rnd (LAMBDA, SZ)
Return an R by C matrix of random samples from the exponential distribution with parameter LAMBDA, which must be a scalar or of size R by C. Or if SZ is a vector, create a matrix of size SZ.
If R and C are omitted, the size of the result matrix is the size of LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 140
Return an R by C matrix of random samples from the exponential distribution with parameter LAMBDA, which must be a scalar or of size R by C.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
lognormal_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 389
-- Function File: lognormal_rnd (A, V, R, C)
-- Function File: lognormal_rnd (A, V, SZ)
Return an R by C matrix of random samples from the lognormal distribution with parameters A and V. Both A and V must be scalar or of size R by C. Or if SZ is a vector, create a matrix of size SZ.
If R and C are omitted, the size of the result matrix is the common size of A and V.
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Return an R by C matrix of random samples from the lognormal distribution with parameters A and V.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
binomial_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 154
-- Function File: binomial_inv (X, N, P)
For each element of X, compute the quantile at X of the binomial distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 102
For each element of X, compute the quantile at X of the binomial distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
poisson_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 275
-- Function File: poisson_rnd (LAMBDA, R, C)
Return an R by C matrix of random samples from the Poisson distribution with parameter LAMBDA, which must be a scalar or of size R by C.
If R and C are omitted, the size of the result matrix is the size of LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 136
Return an R by C matrix of random samples from the Poisson distribution with parameter LAMBDA, which must be a scalar or of size R by C.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
weibinv
# name: <cell-element>
# type: string
# elements: 1
# length: 187
-- Function File: weibinv (X, SCALE, SHAPE)
Compute the quantile (the inverse of the CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE.
# name: <cell-element>
# type: string
# elements: 1
# length: 132
Compute the quantile (the inverse of the CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
spcumsum
# name: <cell-element>
# type: string
# elements: 1
# length: 104
-- Function File: spcumsum (X, DIM)
This function has been deprecated. Use `cumsum' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
is_matrix
# name: <cell-element>
# type: string
# elements: 1
# length: 100
-- Function File: is_matrix (A)
This function has been deprecated. Use ismatrix instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 15
exponential_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 185
-- Function File: exponential_inv (X, LAMBDA)
For each element of X, compute the quantile (the inverse of the CDF) at X of the exponential distribution with parameter LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 128
For each element of X, compute the quantile (the inverse of the CDF) at X of the exponential distribution with parameter LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
geometric_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 146
-- Function File: geometric_inv (X, P)
For each element of X, compute the quantile at X of the geometric distribution with parameter P.
# name: <cell-element>
# type: string
# elements: 1
# length: 96
For each element of X, compute the quantile at X of the geometric distribution with parameter P.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
spatan2
# name: <cell-element>
# type: string
# elements: 1
# length: 100
-- Function File: spatan2 (Y, X)
This function has been deprecated. Use `atan2' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
lognormal_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 348
-- Function File: lognormal_cdf (X, A, V)
For each element of X, compute the cumulative distribution function (CDF) at X of the lognormal distribution with parameters A and V. If a random variable follows this distribution, its logarithm is normally distributed with mean `log (A)' and variance V.
Default values are A = 1, V = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 133
For each element of X, compute the cumulative distribution function (CDF) at X of the lognormal distribution with parameters A and V.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
gamma_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 178
-- Function File: gamma_cdf (X, A, B)
For each element of X, compute the cumulative distribution function (CDF) at X of the Gamma distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 129
For each element of X, compute the cumulative distribution function (CDF) at X of the Gamma distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
clearplot
# name: <cell-element>
# type: string
# elements: 1
# length: 94
-- Function File: clearplot ()
This function has been deprecated. Use clf instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 14
unmark_command
# name: <cell-element>
# type: string
# elements: 1
# length: 133
-- Built-in Function: unmark_command (NAME)
This function is obsolete and will be removed from a future version of Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 78
This function is obsolete and will be removed from a future version of Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
dmult
# name: <cell-element>
# type: string
# elements: 1
# length: 163
-- Function File: dmult (A, B)
This function has been deprecated. Use the direct syntax `diag(A)*B' which is more readable and now also more efficient.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 15
struct_contains
# name: <cell-element>
# type: string
# elements: 1
# length: 114
-- Function File: struct_contains (EXPR, NAME)
This function has been deprecated. Use isfield instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
normal_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 345
-- Function File: normal_rnd (M, V, R, C)
-- Function File: normal_rnd (M, V, SZ)
Return an R by C or `size (SZ)' matrix of random samples from the normal distribution with parameters M and V. Both M and V must be scalar or of size R by C.
If R and C are omitted, the size of the result matrix is the common size of M and V.
# name: <cell-element>
# type: string
# elements: 1
# length: 110
Return an R by C or `size (SZ)' matrix of random samples from the normal distribution with parameters M and V.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
spmax
# name: <cell-element>
# type: string
# elements: 1
# length: 146
-- Mapping Function: spmax (X, Y, DIM)
-- Mapping Function: [W, IW] = spmax (X)
This function has been deprecated. Use `max' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
spchol2inv
# name: <cell-element>
# type: string
# elements: 1
# length: 103
-- Function File: spchol2inv (U)
This function has been deprecated. Use `chol2inv' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
is_bool
# name: <cell-element>
# type: string
# elements: 1
# length: 96
-- Function File: is_bool (A)
This function has been deprecated. Use isbool instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
gamma_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 343
-- Function File: gamma_rnd (A, B, R, C)
-- Function File: gamma_rnd (A, B, SZ)
Return an R by C or a `size (SZ)' matrix of random samples from the Gamma distribution with parameters A and B. Both A and B must be scalar or of size R by C.
If R and C are omitted, the size of the result matrix is the common size of A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Return an R by C or a `size (SZ)' matrix of random samples from the Gamma distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
pascal_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 303
-- Function File: pascal_inv (X, N, P)
For each element of X, compute the quantile at X of the Pascal (negative binomial) distribution with parameters N and P.
The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 120
For each element of X, compute the quantile at X of the Pascal (negative binomial) distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
uniform_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 172
-- Function File: uniform_pdf (X, A, B)
For each element of X, compute the PDF at X of the uniform distribution on [A, B].
Default values are A = 0, B = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 82
For each element of X, compute the PDF at X of the uniform distribution on [A, B].
# name: <cell-element>
# type: string
# elements: 1
# length: 15
exponential_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 243
-- Function File: exponential_cdf (X, LAMBDA)
For each element of X, compute the cumulative distribution function (CDF) at X of the exponential distribution with parameter LAMBDA.
The arguments can be of common size or scalar.
# name: <cell-element>
# type: string
# elements: 1
# length: 133
For each element of X, compute the cumulative distribution function (CDF) at X of the exponential distribution with parameter LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 18
hypergeometric_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 262
-- Function File: hypergeometric_inv (X, M, T, N)
For each element of X, compute the quantile at X of the hypergeometric distribution with parameters M, T, and N.
The parameters M, T, and N must positive integers with M and N not greater than T.
# name: <cell-element>
# type: string
# elements: 1
# length: 112
For each element of X, compute the quantile at X of the hypergeometric distribution with parameters M, T, and N.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
wiener_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 435
-- Function File: wiener_rnd (T, D, N)
Return a simulated realization of the D-dimensional Wiener Process on the interval [0, T]. If D is omitted, D = 1 is used. The first column of the return matrix contains time, the remaining columns contain the Wiener process.
The optional parameter N gives the number of summands used for simulating the process over an interval of length 1. If N is omitted, N = 1000 is used.
# name: <cell-element>
# type: string
# elements: 1
# length: 90
Return a simulated realization of the D-dimensional Wiener Process on the interval [0, T].
# name: <cell-element>
# type: string
# elements: 1
# length: 6
spfind
# name: <cell-element>
# type: string
# elements: 1
# length: 231
-- Loadable Function: spfind (X)
-- Loadable Function: spfind (X, N)
-- Loadable Function: spfind (X, N, DIRECTION)
-- Loadable Function: [I, J, V spfind (...)
This function has been deprecated. Use `find' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
iscommand
# name: <cell-element>
# type: string
# elements: 1
# length: 128
-- Built-in Function: iscommand (NAME)
This function is obsolete and will be removed from a future version of Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 78
This function is obsolete and will be removed from a future version of Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
lognormal_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 344
-- Function File: lognormal_pdf (X, A, V)
For each element of X, compute the probability density function (PDF) at X of the lognormal distribution with parameters A and V. If a random variable follows this distribution, its logarithm is normally distributed with mean `log (A)' and variance V.
Default values are A = 1, V = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 129
For each element of X, compute the probability density function (PDF) at X of the lognormal distribution with parameters A and V.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
beta_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 141
-- Function File: beta_pdf (X, A, B)
For each element of X, returns the PDF at X of the beta distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 93
For each element of X, returns the PDF at X of the beta distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
weibrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 397
-- Function File: weibrnd (SCALE, SHAPE, R, C)
-- Function File: weibrnd (SCALE, SHAPE, SZ)
Return an R by C matrix of random samples from the Weibull distribution with parameters SCALE and SHAPE which must be scalar or of size R by C. Or if SZ is a vector return a matrix of size SZ.
If R and C are omitted, the size of the result matrix is the common size of ALPHA and SIGMA.
# name: <cell-element>
# type: string
# elements: 1
# length: 143
Return an R by C matrix of random samples from the Weibull distribution with parameters SCALE and SHAPE which must be scalar or of size R by C.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
intersection
# name: <cell-element>
# type: string
# elements: 1
# length: 107
-- Function File: intersection (X, Y)
This function has been deprecated. Use intersect instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
weibull_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 191
-- Function File: weibull_inv (X, SHAPE, SCALE)
Compute the quantile (the inverse of the CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE.
# name: <cell-element>
# type: string
# elements: 1
# length: 132
Compute the quantile (the inverse of the CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
weibcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 256
-- Function File: weibcdf (X, SCALE, SHAPE)
Compute the cumulative distribution function (CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE, which is
1 - exp(-(x/shape)^scale)
for X >= 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 147
Compute the cumulative distribution function (CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE, which is
# name: <cell-element>
# type: string
# elements: 1
# length: 5
t_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 348
-- Function File: t_rnd (N, R, C)
-- Function File: t_rnd (N, SZ)
Return an R by C matrix of random samples from the t (Student) distribution with N degrees of freedom. N must be a scalar or of size R by C. Or if SZ is a vector create a matrix of size SZ.
If R and C are omitted, the size of the result matrix is the size of N.
# name: <cell-element>
# type: string
# elements: 1
# length: 102
Return an R by C matrix of random samples from the t (Student) distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
spchol
# name: <cell-element>
# type: string
# elements: 1
# length: 191
-- Loadable Function: R = spchol (A)
-- Loadable Function: [R, P] = spchol (A)
-- Loadable Function: [R, P, Q] = spchol (A)
This function has been deprecated. Use `chol' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 18
hypergeometric_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 405
-- Function File: hypergeometric_pdf (X, M, T, N)
Compute the probability density function (PDF) at X of the hypergeometric distribution with parameters M, T, and N. This is the probability of obtaining X marked items when randomly drawing a sample of size N without replacement from a population of total size T containing M marked items.
The arguments must be of common size or scalar.
# name: <cell-element>
# type: string
# elements: 1
# length: 115
Compute the probability density function (PDF) at X of the hypergeometric distribution with parameters M, T, and N.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
loadimage
# name: <cell-element>
# type: string
# elements: 1
# length: 214
-- Function File: [X, MAP] = loadimage (FILE)
Load an image file and its associated color map from the specified FILE. The image must be stored in Octave's image format. See also: saveimage, load, save.
# name: <cell-element>
# type: string
# elements: 1
# length: 72
Load an image file and its associated color map from the specified FILE.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
binomial_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 180
-- Function File: binomial_pdf (X, N, P)
For each element of X, compute the probability density function (PDF) at X of the binomial distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 128
For each element of X, compute the probability density function (PDF) at X of the binomial distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
spsumsq
# name: <cell-element>
# type: string
# elements: 1
# length: 102
-- Function File: spsumsq (X, DIM)
This function has been deprecated. Use `sumsq' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
chisquare_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 330
-- Function File: chisquare_rnd (N, R, C)
-- Function File: chisquare_rnd (N, SZ)
Return an R by C or a `size (SZ)' matrix of random samples from the chisquare distribution with N degrees of freedom. N must be a scalar or of size R by C.
If R and C are omitted, the size of the result matrix is the size of N.
# name: <cell-element>
# type: string
# elements: 1
# length: 117
Return an R by C or a `size (SZ)' matrix of random samples from the chisquare distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
splchol
# name: <cell-element>
# type: string
# elements: 1
# length: 208
-- Loadable Function: L = splchol (A)
-- Loadable Function: [L, P] = splchol (A)
-- Loadable Function: [L, P, Q] = splchol (A)
This function has been deprecated. Use `chol (...,'lower')' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
spinv
# name: <cell-element>
# type: string
# elements: 1
# length: 105
-- Function File: [X, RCOND] = spinv (A)
This function has been deprecated. Use `inv' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
spsum
# name: <cell-element>
# type: string
# elements: 1
# length: 98
-- Function File: spsum (X, DIM)
This function has been deprecated. Use `sum' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
poisson_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 179
-- Function File: poisson_inv (X, LAMBDA)
For each component of X, compute the quantile (the inverse of the CDF) at X of the Poisson distribution with parameter LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 126
For each component of X, compute the quantile (the inverse of the CDF) at X of the Poisson distribution with parameter LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
beta_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 339
-- Function File: beta_rnd (A, B, R, C)
-- Function File: beta_rnd (A, B, SZ)
Return an R by C or `size (SZ)' matrix of random samples from the Beta distribution with parameters A and B. Both A and B must be scalar or of size R by C.
If R and C are omitted, the size of the result matrix is the common size of A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 108
Return an R by C or `size (SZ)' matrix of random samples from the Beta distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
chisquare_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 185
-- Function File: chisquare_cdf (X, N)
For each element of X, compute the cumulative distribution function (CDF) at X of the chisquare distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 135
For each element of X, compute the cumulative distribution function (CDF) at X of the chisquare distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 15
mark_as_command
# name: <cell-element>
# type: string
# elements: 1
# length: 134
-- Built-in Function: mark_as_command (NAME)
This function is obsolete and will be removed from a future version of Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 78
This function is obsolete and will be removed from a future version of Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 18
hypergeometric_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 458
-- Function File: hypergeometric_cdf (X, M, T, N)
Compute the cumulative distribution function (CDF) at X of the hypergeometric distribution with parameters M, T, and N. This is the probability of obtaining not more than X marked items when randomly drawing a sample of size N without replacement from a population of total size T containing M marked items.
The parameters M, T, and N must positive integers with M and N not greater than T.
# name: <cell-element>
# type: string
# elements: 1
# length: 119
Compute the cumulative distribution function (CDF) at X of the hypergeometric distribution with parameters M, T, and N.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
is_scalar
# name: <cell-element>
# type: string
# elements: 1
# length: 100
-- Function File: is_scalar (A)
This function has been deprecated. Use isscalar instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
uniform_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 335
-- Function File: uniform_rnd (A, B, R, C)
-- Function File: uniform_rnd (A, B, SZ)
Return an R by C or a `size (SZ)' matrix of random samples from the uniform distribution on [A, B]. Both A and B must be scalar or of size R by C.
If R and C are omitted, the size of the result matrix is the common size of A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 99
Return an R by C or a `size (SZ)' matrix of random samples from the uniform distribution on [A, B].
# name: <cell-element>
# type: string
# elements: 1
# length: 10
create_set
# name: <cell-element>
# type: string
# elements: 1
# length: 142
-- Function File: create_set (X)
-- Function File: create_set (X, "rows")
This function has been deprecated. Use unique instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 17
unmark_rawcommand
# name: <cell-element>
# type: string
# elements: 1
# length: 136
-- Built-in Function: unmark_rawcommand (NAME)
This function is obsolete and will be removed from a future version of Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 78
This function is obsolete and will be removed from a future version of Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 15
struct_elements
# name: <cell-element>
# type: string
# elements: 1
# length: 113
-- Function File: struct_elements (STRUCT)
This function has been deprecated. Use fieldnames instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
beta_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 173
-- Function File: beta_inv (X, A, B)
For each component of X, compute the quantile (the inverse of the CDF) at X of the Beta distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 125
For each component of X, compute the quantile (the inverse of the CDF) at X of the Beta distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
gamma_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 175
-- Function File: gamma_inv (X, A, B)
For each component of X, compute the quantile (the inverse of the CDF) at X of the Gamma distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 126
For each component of X, compute the quantile (the inverse of the CDF) at X of the Gamma distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
split
# name: <cell-element>
# type: string
# elements: 1
# length: 118
-- Function File: split (S, T, N)
This function has been deprecated. Use `char (strsplit (s, t))' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
clg
# name: <cell-element>
# type: string
# elements: 1
# length: 88
-- Function File: clg ()
This function has been deprecated. Use clf instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 15
exponential_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 181
-- Function File: exponential_pdf (X, LAMBDA)
For each element of X, compute the probability density function (PDF) of the exponential distribution with parameter LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 124
For each element of X, compute the probability density function (PDF) of the exponential distribution with parameter LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
f_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 167
-- Function File: f_inv (X, M, N)
For each component of X, compute the quantile (the inverse of the CDF) at X of the F distribution with parameters M and N.
# name: <cell-element>
# type: string
# elements: 1
# length: 122
For each component of X, compute the quantile (the inverse of the CDF) at X of the F distribution with parameters M and N.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
normal_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 218
-- Function File: normal_pdf (X, M, V)
For each element of X, compute the probability density function (PDF) at X of the normal distribution with mean M and variance V.
Default values are M = 0, V = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 129
For each element of X, compute the probability density function (PDF) at X of the normal distribution with mean M and variance V.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
binomial_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 353
-- Function File: binomial_rnd (N, P, R, C)
-- Function File: binomial_rnd (N, P, SZ)
Return an R by C or a `size (SZ)' matrix of random samples from the binomial distribution with parameters N and P. Both N and P must be scalar or of size R by C.
If R and C are omitted, the size of the result matrix is the common size of N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 114
Return an R by C or a `size (SZ)' matrix of random samples from the binomial distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
pascal_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 298
-- Function File: pascal_cdf (X, N, P)
For each element of X, compute the CDF at x of the Pascal (negative binomial) distribution with parameters N and P.
The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 115
For each element of X, compute the CDF at x of the Pascal (negative binomial) distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
geometric_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 172
-- Function File: geometric_pdf (X, P)
For each element of X, compute the probability density function (PDF) at X of the geometric distribution with parameter P.
# name: <cell-element>
# type: string
# elements: 1
# length: 122
For each element of X, compute the probability density function (PDF) at X of the geometric distribution with parameter P.
# name: <cell-element>
# type: string
# elements: 1
# length: 18
mark_as_rawcommand
# name: <cell-element>
# type: string
# elements: 1
# length: 137
-- Built-in Function: mark_as_rawcommand (NAME)
This function is obsolete and will be removed from a future version of Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 78
This function is obsolete and will be removed from a future version of Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
is_vector
# name: <cell-element>
# type: string
# elements: 1
# length: 100
-- Function File: is_vector (A)
This function has been deprecated. Use isvector instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
f_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 171
-- Function File: f_cdf (X, M, N)
For each element of X, compute the CDF at X of the F distribution with M and N degrees of freedom, i.e., PROB (F (M, N) <= X).
# name: <cell-element>
# type: string
# elements: 1
# length: 101
For each element of X, compute the CDF at X of the F distribution with M and N degrees of freedom, i.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
normal_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 217
-- Function File: normal_inv (X, M, V)
For each element of X, compute the quantile (the inverse of the CDF) at X of the normal distribution with mean M and variance V.
Default values are M = 0, V = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 128
For each element of X, compute the quantile (the inverse of the CDF) at X of the normal distribution with mean M and variance V.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
israwcommand
# name: <cell-element>
# type: string
# elements: 1
# length: 131
-- Built-in Function: israwcommand (NAME)
This function is obsolete and will be removed from a future version of Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 78
This function is obsolete and will be removed from a future version of Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
uniform_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 202
-- Function File: uniform_inv (X, A, B)
For each element of X, compute the quantile (the inverse of the CDF) at X of the uniform distribution on [A, B].
Default values are A = 0, B = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 112
For each element of X, compute the quantile (the inverse of the CDF) at X of the uniform distribution on [A, B].
# name: <cell-element>
# type: string
# elements: 1
# length: 13
geometric_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 141
-- Function File: geometric_cdf (X, P)
For each element of X, compute the CDF at X of the geometric distribution with parameter P.
# name: <cell-element>
# type: string
# elements: 1
# length: 91
For each element of X, compute the CDF at X of the geometric distribution with parameter P.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
binomial_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 149
-- Function File: binomial_cdf (X, N, P)
For each element of X, compute the CDF at X of the binomial distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 97
For each element of X, compute the CDF at X of the binomial distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 18
hypergeometric_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 302
-- Function File: hypergeometric_rnd (M, T, N, R, C)
-- Function File: hygernd (M, T, N, SZ)
Return an R by C matrix of random samples from the hypergeometric distribution with parameters M, T, and N.
The parameters M, T, and N must positive integers with M and N not greater than T.
# name: <cell-element>
# type: string
# elements: 1
# length: 107
Return an R by C matrix of random samples from the hypergeometric distribution with parameters M, T, and N.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
beta_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 172
-- Function File: beta_cdf (X, A, B)
For each element of X, returns the CDF at X of the beta distribution with parameters A and B, i.e., PROB (beta (A, B) <= X).
# name: <cell-element>
# type: string
# elements: 1
# length: 96
For each element of X, returns the CDF at X of the beta distribution with parameters A and B, i.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
is_symmetric
# name: <cell-element>
# type: string
# elements: 1
# length: 110
-- Function File: issymmetric (X, TOL)
This function has been deprecated. Use issymmetric instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
weibull_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 405
-- Function File: weibull_rnd (SHAPE, SCALE, R, C)
-- Function File: weibull_rnd (SHAPE, SCALE, SZ)
Return an R by C matrix of random samples from the Weibull distribution with parameters SCALE and SHAPE which must be scalar or of size R by C. Or if SZ is a vector return a matrix of size SZ.
If R and C are omitted, the size of the result matrix is the common size of ALPHA and SIGMA.
# name: <cell-element>
# type: string
# elements: 1
# length: 143
Return an R by C matrix of random samples from the Weibull distribution with parameters SCALE and SHAPE which must be scalar or of size R by C.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
lchol
# name: <cell-element>
# type: string
# elements: 1
# length: 157
-- Loadable Function: L = lchol (A)
-- Loadable Function: [L, P] = lchol (A)
This function has been deprecated. Use `chol (...,'lower')' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
is_list
# name: <cell-element>
# type: string
# elements: 1
# length: 96
-- Function File: is_list (A)
This function has been deprecated. Use islist instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
spqr
# name: <cell-element>
# type: string
# elements: 1
# length: 224
-- Loadable Function: R = spqr (A)
-- Loadable Function: R = spqr (A,0)
-- Loadable Function: [C, R] = spqr (A,B)
-- Loadable Function: [C, R] = spqr (A,B,0)
This function has been deprecated. Use `qr' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
t_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 168
-- Function File: t_cdf (X, N)
For each element of X, compute the CDF at X of the t (Student) distribution with N degrees of freedom, i.e., PROB (t(N) <= X).
# name: <cell-element>
# type: string
# elements: 1
# length: 105
For each element of X, compute the CDF at X of the t (Student) distribution with N degrees of freedom, i.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
poisson_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 182
-- Function File: poisson_cdf (X, LAMBDA)
For each element of X, compute the cumulative distribution function (CDF) at X of the Poisson distribution with parameter lambda.
# name: <cell-element>
# type: string
# elements: 1
# length: 129
For each element of X, compute the cumulative distribution function (CDF) at X of the Poisson distribution with parameter lambda.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
f_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 174
-- Function File: f_pdf (X, M, N)
For each element of X, compute the probability density function (PDF) at X of the F distribution with M and N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 129
For each element of X, compute the probability density function (PDF) at X of the F distribution with M and N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
spdet
# name: <cell-element>
# type: string
# elements: 1
# length: 109
-- Loadable Function: [D, RCOND] = spdet (A)
This function has been deprecated. Use `det' instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
is_stream
# name: <cell-element>
# type: string
# elements: 1
# length: 100
-- Function File: is_stream (A)
This function has been deprecated. Use isstream instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
pascal_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 400
-- Function File: pascal_rnd (N, P, R, C)
-- Function File: pascal_rnd (N, P, SZ)
Return an R by C matrix of random samples from the Pascal (negative binomial) distribution with parameters N and P. Both N and P must be scalar or of size R by C.
If R and C are omitted, the size of the result matrix is the common size of N and P. Or if SZ is a vector, create a matrix of size SZ.
# name: <cell-element>
# type: string
# elements: 1
# length: 115
Return an R by C matrix of random samples from the Pascal (negative binomial) distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 14
hotelling_test
# name: <cell-element>
# type: string
# elements: 1
# length: 540
-- Function File: [PVAL, TSQ] = hotelling_test (X, M)
For a sample X from a multivariate normal distribution with unknown mean and covariance matrix, test the null hypothesis that `mean (X) == M'.
Hotelling's T^2 is returned in TSQ. Under the null, (n-p) T^2 / (p(n-1)) has an F distribution with p and n-p degrees of freedom, where n and p are the numbers of samples and variables, respectively.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 142
For a sample X from a multivariate normal distribution with unknown mean and covariance matrix, test the null hypothesis that `mean (X) == M'.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
t_test_2
# name: <cell-element>
# type: string
# elements: 1
# length: 839
-- Function File: [PVAL, T, DF] = t_test_2 (X, Y, ALT)
For two samples x and y from normal distributions with unknown means and unknown equal variances, perform a two-sample t-test of the null hypothesis of equal means. Under the null, the test statistic T follows a Student distribution with DF degrees of freedom.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative `mean (X) != mean (Y)'. If ALT is `">"', the one-sided alternative `mean (X) > mean (Y)' is used. Similarly for `"<"', the one-sided alternative `mean (X) < mean (Y)' is used. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 164
For two samples x and y from normal distributions with unknown means and unknown equal variances, perform a two-sample t-test of the null hypothesis of equal means.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
t_test
# name: <cell-element>
# type: string
# elements: 1
# length: 811
-- Function File: [PVAL, T, DF] = t_test (X, M, ALT)
For a sample X from a normal distribution with unknown mean and variance, perform a t-test of the null hypothesis `mean (X) == M'. Under the null, the test statistic T follows a Student distribution with `DF = length (X) - 1' degrees of freedom.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative `mean (X) != M'. If ALT is `">"', the one-sided alternative `mean (X) > M' is considered. Similarly for "<", the one-sided alternative `mean (X) < M' is considered. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 130
For a sample X from a normal distribution with unknown mean and variance, perform a t-test of the null hypothesis `mean (X) == M'.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
cor_test
# name: <cell-element>
# type: string
# elements: 1
# length: 1347
-- Function File: cor_test (X, Y, ALT, METHOD)
Test whether two samples X and Y come from uncorrelated populations.
The optional argument string ALT describes the alternative hypothesis, and can be `"!="' or `"<>"' (non-zero), `">"' (greater than 0), or `"<"' (less than 0). The default is the two-sided case.
The optional argument string METHOD specifies on which correlation coefficient the test should be based. If METHOD is `"pearson"' (default), the (usual) Pearson's product moment correlation coefficient is used. In this case, the data should come from a bivariate normal distribution. Otherwise, the other two methods offer nonparametric alternatives. If METHOD is `"kendall"', then Kendall's rank correlation tau is used. If METHOD is `"spearman"', then Spearman's rank correlation rho is used. Only the first character is necessary.
The output is a structure with the following elements:
PVAL
The p-value of the test.
STAT
The value of the test statistic.
DIST
The distribution of the test statistic.
PARAMS
The parameters of the null distribution of the test statistic.
ALTERNATIVE
The alternative hypothesis.
METHOD
The method used for testing.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Test whether two samples X and Y come from uncorrelated populations.
# name: <cell-element>
# type: string
# elements: 1
# length: 17
f_test_regression
# name: <cell-element>
# type: string
# elements: 1
# length: 491
-- Function File: [PVAL, F, DF_NUM, DF_DEN] = f_test_regression (Y, X, RR, R)
Perform an F test for the null hypothesis rr * b = r in a classical normal regression model y = X * b + e.
Under the null, the test statistic F follows an F distribution with DF_NUM and DF_DEN degrees of freedom.
The p-value (1 minus the CDF of this distribution at F) is returned in PVAL.
If not given explicitly, R = 0.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 106
Perform an F test for the null hypothesis rr * b = r in a classical normal regression model y = X * b + e.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
z_test
# name: <cell-element>
# type: string
# elements: 1
# length: 809
-- Function File: [PVAL, Z] = z_test (X, M, V, ALT)
Perform a Z-test of the null hypothesis `mean (X) == M' for a sample X from a normal distribution with unknown mean and known variance V. Under the null, the test statistic Z follows a standard normal distribution.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative `mean (X) != M'. If ALT is `">"', the one-sided alternative `mean (X) > M' is considered. Similarly for `"<"', the one-sided alternative `mean (X) < M' is considered. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed along with some information.
# name: <cell-element>
# type: string
# elements: 1
# length: 137
Perform a Z-test of the null hypothesis `mean (X) == M' for a sample X from a normal distribution with unknown mean and known variance V.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
welch_test
# name: <cell-element>
# type: string
# elements: 1
# length: 853
-- Function File: [PVAL, T, DF] = welch_test (X, Y, ALT)
For two samples X and Y from normal distributions with unknown means and unknown and not necessarily equal variances, perform a Welch test of the null hypothesis of equal means. Under the null, the test statistic T approximately follows a Student distribution with DF degrees of freedom.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative `mean (X) != M'. If ALT is `">"', the one-sided alternative mean(x) > M is considered. Similarly for `"<"', the one-sided alternative mean(x) < M is considered. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 177
For two samples X and Y from normal distributions with unknown means and unknown and not necessarily equal variances, perform a Welch test of the null hypothesis of equal means.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
mcnemar_test
# name: <cell-element>
# type: string
# elements: 1
# length: 524
-- Function File: [PVAL, CHISQ, DF] = mcnemar_test (X)
For a square contingency table X of data cross-classified on the row and column variables, McNemar's test can be used for testing the null hypothesis of symmetry of the classification probabilities.
Under the null, CHISQ is approximately distributed as chisquare with DF degrees of freedom.
The p-value (1 minus the CDF of this distribution at CHISQ) is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 198
For a square contingency table X of data cross-classified on the row and column variables, McNemar's test can be used for testing the null hypothesis of symmetry of the classification probabilities.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
anova
# name: <cell-element>
# type: string
# elements: 1
# length: 957
-- Function File: [PVAL, F, DF_B, DF_W] = anova (Y, G)
Perform a one-way analysis of variance (ANOVA). The goal is to test whether the population means of data taken from K different groups are all equal.
Data may be given in a single vector Y with groups specified by a corresponding vector of group labels G (e.g., numbers from 1 to K). This is the general form which does not impose any restriction on the number of data in each group or the group labels.
If Y is a matrix and G is omitted, each column of Y is treated as a group. This form is only appropriate for balanced ANOVA in which the numbers of samples from each group are all equal.
Under the null of constant means, the statistic F follows an F distribution with DF_B and DF_W degrees of freedom.
The p-value (1 minus the CDF of this distribution at F) is returned in PVAL.
If no output argument is given, the standard one-way ANOVA table is printed.
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Perform a one-way analysis of variance (ANOVA).
# name: <cell-element>
# type: string
# elements: 1
# length: 25
kolmogorov_smirnov_test_2
# name: <cell-element>
# type: string
# elements: 1
# length: 1111
-- Function File: [PVAL, KS, D] = kolmogorov_smirnov_test_2 (X, Y, ALT)
Perform a 2-sample Kolmogorov-Smirnov test of the null hypothesis that the samples X and Y come from the same (continuous) distribution. I.e., if F and G are the CDFs corresponding to the X and Y samples, respectively, then the null is that F == G.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative F != G. In this case, the test statistic KS follows a two-sided Kolmogorov-Smirnov distribution. If ALT is `">"', the one-sided alternative F > G is considered. Similarly for `"<"', the one-sided alternative F < G is considered. In this case, the test statistic KS has a one-sided Kolmogorov-Smirnov distribution. The default is the two-sided case.
The p-value of the test is returned in PVAL.
The third returned value, D, is the test statistic, the maximum vertical distance between the two cumulative distribution functions.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 136
Perform a 2-sample Kolmogorov-Smirnov test of the null hypothesis that the samples X and Y come from the same (continuous) distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 27
chisquare_test_independence
# name: <cell-element>
# type: string
# elements: 1
# length: 441
-- Function File: [PVAL, CHISQ, DF] = chisquare_test_independence (X)
Perform a chi-square test for independence based on the contingency table X. Under the null hypothesis of independence, CHISQ approximately has a chi-square distribution with DF degrees of freedom.
The p-value (1 minus the CDF of this distribution at chisq) of the test is returned in PVAL.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Perform a chi-square test for independence based on the contingency table X.
# name: <cell-element>
# type: string
# elements: 1
# length: 19
kruskal_wallis_test
# name: <cell-element>
# type: string
# elements: 1
# length: 1087
-- Function File: [PVAL, K, DF] = kruskal_wallis_test (X1, ...)
Perform a Kruskal-Wallis one-factor "analysis of variance".
Suppose a variable is observed for K > 1 different groups, and let X1, ..., XK be the corresponding data vectors.
Under the null hypothesis that the ranks in the pooled sample are not affected by the group memberships, the test statistic K is approximately chi-square with DF = K - 1 degrees of freedom.
If the data contains ties (some value appears more than once) K is divided by
1 - SUM_TIES / (N^3 - N)
where SUM_TIES is the sum of T^2 - T over each group of ties where T is the number of ties in the group and N is the total number of values in the input data. For more info on this adjustment see "Use of Ranks in One-Criterion Variance Analysis" in Journal of the American Statistical Association, Vol. 47, No. 260 (Dec 1952) by William H. Kruskal and W. Allen Wallis.
The p-value (1 minus the CDF of this distribution at K) is returned in PVAL.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Perform a Kruskal-Wallis one-factor "analysis of variance".
# name: <cell-element>
# type: string
# elements: 1
# length: 8
run_test
# name: <cell-element>
# type: string
# elements: 1
# length: 327
-- Function File: [PVAL, CHISQ] = run_test (X)
Perform a chi-square test with 6 degrees of freedom based on the upward runs in the columns of X. Can be used to test whether X contains independent data.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 97
Perform a chi-square test with 6 degrees of freedom based on the upward runs in the columns of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 17
t_test_regression
# name: <cell-element>
# type: string
# elements: 1
# length: 814
-- Function File: [PVAL, T, DF] = t_test_regression (Y, X, RR, R, ALT)
Perform an t test for the null hypothesis `RR * B = R' in a classical normal regression model `Y = X * B + E'. Under the null, the test statistic T follows a T distribution with DF degrees of freedom.
If R is omitted, a value of 0 is assumed.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative `RR * B != R'. If ALT is `">"', the one-sided alternative `RR * B > R' is used. Similarly for "<", the one-sided alternative `RR * B < R' is used. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 110
Perform an t test for the null hypothesis `RR * B = R' in a classical normal regression model `Y = X * B + E'.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
z_test_2
# name: <cell-element>
# type: string
# elements: 1
# length: 842
-- Function File: [PVAL, Z] = z_test_2 (X, Y, V_X, V_Y, ALT)
For two samples X and Y from normal distributions with unknown means and known variances V_X and V_Y, perform a Z-test of the hypothesis of equal means. Under the null, the test statistic Z follows a standard normal distribution.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative `mean (X) != mean (Y)'. If alt is `">"', the one-sided alternative `mean (X) > mean (Y)' is used. Similarly for `"<"', the one-sided alternative `mean (X) < mean (Y)' is used. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed along with some information.
# name: <cell-element>
# type: string
# elements: 1
# length: 152
For two samples X and Y from normal distributions with unknown means and known variances V_X and V_Y, perform a Z-test of the hypothesis of equal means.
# name: <cell-element>
# type: string
# elements: 1
# length: 23
kolmogorov_smirnov_test
# name: <cell-element>
# type: string
# elements: 1
# length: 1293
-- Function File: [PVAL, KS] = kolmogorov_smirnov_test (X, DIST, PARAMS, ALT)
Perform a Kolmogorov-Smirnov test of the null hypothesis that the sample X comes from the (continuous) distribution dist. I.e., if F and G are the CDFs corresponding to the sample and dist, respectively, then the null is that F == G.
The optional argument PARAMS contains a list of parameters of DIST. For example, to test whether a sample X comes from a uniform distribution on [2,4], use
kolmogorov_smirnov_test(x, "uniform", 2, 4)
DIST can be any string for which a function DIST_CDF that calculates the CDF of distribution DIST exists.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative F != G. In this case, the test statistic KS follows a two-sided Kolmogorov-Smirnov distribution. If ALT is `">"', the one-sided alternative F > G is considered. Similarly for `"<"', the one-sided alternative F > G is considered. In this case, the test statistic KS has a one-sided Kolmogorov-Smirnov distribution. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 121
Perform a Kolmogorov-Smirnov test of the null hypothesis that the sample X comes from the (continuous) distribution dist.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
u_test
# name: <cell-element>
# type: string
# elements: 1
# length: 847
-- Function File: [PVAL, Z] = u_test (X, Y, ALT)
For two samples X and Y, perform a Mann-Whitney U-test of the null hypothesis PROB (X > Y) == 1/2 == PROB (X < Y). Under the null, the test statistic Z approximately follows a standard normal distribution. Note that this test is equivalent to the Wilcoxon rank-sum test.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative PROB (X > Y) != 1/2. If ALT is `">"', the one-sided alternative PROB (X > Y) > 1/2 is considered. Similarly for `"<"', the one-sided alternative PROB (X > Y) < 1/2 is considered. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 114
For two samples X and Y, perform a Mann-Whitney U-test of the null hypothesis PROB (X > Y) == 1/2 == PROB (X < Y).
# name: <cell-element>
# type: string
# elements: 1
# length: 8
var_test
# name: <cell-element>
# type: string
# elements: 1
# length: 841
-- Function File: [PVAL, F, DF_NUM, DF_DEN] = var_test (X, Y, ALT)
For two samples X and Y from normal distributions with unknown means and unknown variances, perform an F-test of the null hypothesis of equal variances. Under the null, the test statistic F follows an F-distribution with DF_NUM and DF_DEN degrees of freedom.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative `var (X) != var (Y)'. If ALT is `">"', the one-sided alternative `var (X) > var (Y)' is used. Similarly for "<", the one-sided alternative `var (X) > var (Y)' is used. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 152
For two samples X and Y from normal distributions with unknown means and unknown variances, perform an F-test of the null hypothesis of equal variances.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
sign_test
# name: <cell-element>
# type: string
# elements: 1
# length: 905
-- Function File: [PVAL, B, N] = sign_test (X, Y, ALT)
For two matched-pair samples X and Y, perform a sign test of the null hypothesis PROB (X > Y) == PROB (X < Y) == 1/2. Under the null, the test statistic B roughly follows a binomial distribution with parameters `N = sum (X != Y)' and P = 1/2.
With the optional argument `alt', the alternative of interest can be selected. If ALT is `"!="' or `"<>"', the null hypothesis is tested against the two-sided alternative PROB (X < Y) != 1/2. If ALT is `">"', the one-sided alternative PROB (X > Y) > 1/2 ("x is stochastically greater than y") is considered. Similarly for `"<"', the one-sided alternative PROB (X > Y) < 1/2 ("x is stochastically less than y") is considered. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 117
For two matched-pair samples X and Y, perform a sign test of the null hypothesis PROB (X > Y) == PROB (X < Y) == 1/2.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
manova
# name: <cell-element>
# type: string
# elements: 1
# length: 614
-- Function File: manova (Y, G)
Perform a one-way multivariate analysis of variance (MANOVA). The goal is to test whether the p-dimensional population means of data taken from K different groups are all equal. All data are assumed drawn independently from p-dimensional normal distributions with the same covariance matrix.
The data matrix is given by Y. As usual, rows are observations and columns are variables. The vector G specifies the corresponding group labels (e.g., numbers from 1 to K).
The LR test statistic (Wilks' Lambda) and approximate p-values are computed and displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Perform a one-way multivariate analysis of variance (MANOVA).
# name: <cell-element>
# type: string
# elements: 1
# length: 13
wilcoxon_test
# name: <cell-element>
# type: string
# elements: 1
# length: 910
-- Function File: [PVAL, Z] = wilcoxon_test (X, Y, ALT)
For two matched-pair sample vectors X and Y, perform a Wilcoxon signed-rank test of the null hypothesis PROB (X > Y) == 1/2. Under the null, the test statistic Z approximately follows a standard normal distribution when N > 25.
*Warning*: This function assumes a normal distribution for Z and thus is invalid for N <= 25.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative PROB (X > Y) != 1/2. If alt is `">"', the one-sided alternative PROB (X > Y) > 1/2 is considered. Similarly for `"<"', the one-sided alternative PROB (X > Y) < 1/2 is considered. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 124
For two matched-pair sample vectors X and Y, perform a Wilcoxon signed-rank test of the null hypothesis PROB (X > Y) == 1/2.
# name: <cell-element>
# type: string
# elements: 1
# length: 16
hotelling_test_2
# name: <cell-element>
# type: string
# elements: 1
# length: 656
-- Function File: [PVAL, TSQ] = hotelling_test_2 (X, Y)
For two samples X from multivariate normal distributions with the same number of variables (columns), unknown means and unknown equal covariance matrices, test the null hypothesis `mean (X) == mean (Y)'.
Hotelling's two-sample T^2 is returned in TSQ. Under the null,
(n_x+n_y-p-1) T^2 / (p(n_x+n_y-2))
has an F distribution with p and n_x+n_y-p-1 degrees of freedom, where n_x and n_y are the sample sizes and p is the number of variables.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 203
For two samples X from multivariate normal distributions with the same number of variables (columns), unknown means and unknown equal covariance matrices, test the null hypothesis `mean (X) == mean (Y)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
prop_test_2
# name: <cell-element>
# type: string
# elements: 1
# length: 820
-- Function File: [PVAL, Z] = prop_test_2 (X1, N1, X2, N2, ALT)
If X1 and N1 are the counts of successes and trials in one sample, and X2 and N2 those in a second one, test the null hypothesis that the success probabilities P1 and P2 are the same. Under the null, the test statistic Z approximately follows a standard normal distribution.
With the optional argument string ALT, the alternative of interest can be selected. If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative P1 != P2. If ALT is `">"', the one-sided alternative P1 > P2 is used. Similarly for `"<"', the one-sided alternative P1 < P2 is used. The default is the two-sided case.
The p-value of the test is returned in PVAL.
If no output argument is given, the p-value of the test is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 183
If X1 and N1 are the counts of successes and trials in one sample, and X2 and N2 those in a second one, test the null hypothesis that the success probabilities P1 and P2 are the same.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
bartlett_test
# name: <cell-element>
# type: string
# elements: 1
# length: 471
-- Function File: [PVAL, CHISQ, DF] = bartlett_test (X1, ...)
Perform a Bartlett test for the homogeneity of variances in the data vectors X1, X2, ..., XK, where K > 1.
Under the null of equal variances, the test statistic CHISQ approximately follows a chi-square distribution with DF degrees of freedom.
The p-value (1 minus the CDF of this distribution at CHISQ) is returned in PVAL.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Perform a Bartlett test for the homogeneity of variances in the data vectors X1, X2, .
# name: <cell-element>
# type: string
# elements: 1
# length: 26
chisquare_test_homogeneity
# name: <cell-element>
# type: string
# elements: 1
# length: 586
-- Function File: [PVAL, CHISQ, DF] = chisquare_test_homogeneity (X, Y, C)
Given two samples X and Y, perform a chisquare test for homogeneity of the null hypothesis that X and Y come from the same distribution, based on the partition induced by the (strictly increasing) entries of C.
For large samples, the test statistic CHISQ approximately follows a chisquare distribution with DF = `length (C)' degrees of freedom.
The p-value (1 minus the CDF of this distribution at CHISQ) is returned in PVAL.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 210
Given two samples X and Y, perform a chisquare test for homogeneity of the null hypothesis that X and Y come from the same distribution, based on the partition induced by the (strictly increasing) entries of C.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
stdnormal_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 158
-- Function File: stdnormal_pdf (X)
For each element of X, compute the probability density function (PDF) of the standard normal distribution at X.
# name: <cell-element>
# type: string
# elements: 1
# length: 111
For each element of X, compute the probability density function (PDF) of the standard normal distribution at X.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
binoinv
# name: <cell-element>
# type: string
# elements: 1
# length: 149
-- Function File: binoinv (X, N, P)
For each element of X, compute the quantile at X of the binomial distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 102
For each element of X, compute the quantile at X of the binomial distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
frnd
# name: <cell-element>
# type: string
# elements: 1
# length: 386
-- Function File: frnd (M, N, R, C)
-- Function File: frnd (M, N, SZ)
Return an R by C matrix of random samples from the F distribution with M and N degrees of freedom. Both M and N must be scalar or of size R by C. If SZ is a vector the random samples are in a matrix of size SZ.
If R and C are omitted, the size of the result matrix is the common size of M and N.
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Return an R by C matrix of random samples from the F distribution with M and N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
gamrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 398
-- Function File: gamrnd (A, B, R, C)
-- Function File: gamrnd (A, B, SZ)
Return an R by C or a `size (SZ)' matrix of random samples from the Gamma distribution with parameters A and B. Both A and B must be scalar or of size R by C.
If R and C are omitted, the size of the result matrix is the common size of A and B. See also: gamma, gammaln, gammainc, gampdf, gamcdf, gaminv.
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Return an R by C or a `size (SZ)' matrix of random samples from the Gamma distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
norminv
# name: <cell-element>
# type: string
# elements: 1
# length: 224
-- Function File: norminv (X, M, S)
For each element of X, compute the quantile (the inverse of the CDF) at X of the normal distribution with mean M and standard deviation S.
Default values are M = 0, S = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 138
For each element of X, compute the quantile (the inverse of the CDF) at X of the normal distribution with mean M and standard deviation S.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
poisscdf
# name: <cell-element>
# type: string
# elements: 1
# length: 179
-- Function File: poisscdf (X, LAMBDA)
For each element of X, compute the cumulative distribution function (CDF) at X of the Poisson distribution with parameter lambda.
# name: <cell-element>
# type: string
# elements: 1
# length: 129
For each element of X, compute the cumulative distribution function (CDF) at X of the Poisson distribution with parameter lambda.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
poisspdf
# name: <cell-element>
# type: string
# elements: 1
# length: 175
-- Function File: poisspdf (X, LAMBDA)
For each element of X, compute the probability density function (PDF) at X of the poisson distribution with parameter LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 125
For each element of X, compute the probability density function (PDF) at X of the poisson distribution with parameter LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
geocdf
# name: <cell-element>
# type: string
# elements: 1
# length: 134
-- Function File: geocdf (X, P)
For each element of X, compute the CDF at X of the geometric distribution with parameter P.
# name: <cell-element>
# type: string
# elements: 1
# length: 91
For each element of X, compute the CDF at X of the geometric distribution with parameter P.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
empirical_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 198
-- Function File: empirical_inv (X, DATA)
For each element of X, compute the quantile (the inverse of the CDF) at X of the empirical distribution obtained from the univariate sample DATA.
# name: <cell-element>
# type: string
# elements: 1
# length: 145
For each element of X, compute the quantile (the inverse of the CDF) at X of the empirical distribution obtained from the univariate sample DATA.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
gaminv
# name: <cell-element>
# type: string
# elements: 1
# length: 233
-- Function File: gaminv (X, A, B)
For each component of X, compute the quantile (the inverse of the CDF) at X of the Gamma distribution with parameters A and B. See also: gamma, gammaln, gammainc, gampdf, gamcdf, gamrnd.
# name: <cell-element>
# type: string
# elements: 1
# length: 126
For each component of X, compute the quantile (the inverse of the CDF) at X of the Gamma distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
discrete_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 220
-- Function File: discrete_cdf (X, V, P)
For each element of X, compute the cumulative distribution function (CDF) at X of a univariate discrete distribution which assumes the values in V with probabilities P.
# name: <cell-element>
# type: string
# elements: 1
# length: 168
For each element of X, compute the cumulative distribution function (CDF) at X of a univariate discrete distribution which assumes the values in V with probabilities P.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
cauchy_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 265
-- Function File: cauchy_pdf (X, LAMBDA, SIGMA)
For each element of X, compute the probability density function (PDF) at X of the Cauchy distribution with location parameter LAMBDA and scale parameter SIGMA > 0. Default values are LAMBDA = 0, SIGMA = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 163
For each element of X, compute the probability density function (PDF) at X of the Cauchy distribution with location parameter LAMBDA and scale parameter SIGMA > 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
betarnd
# name: <cell-element>
# type: string
# elements: 1
# length: 337
-- Function File: betarnd (A, B, R, C)
-- Function File: betarnd (A, B, SZ)
Return an R by C or `size (SZ)' matrix of random samples from the Beta distribution with parameters A and B. Both A and B must be scalar or of size R by C.
If R and C are omitted, the size of the result matrix is the common size of A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 108
Return an R by C or `size (SZ)' matrix of random samples from the Beta distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
empirical_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 377
-- Function File: empirical_rnd (N, DATA)
-- Function File: empirical_rnd (DATA, R, C)
-- Function File: empirical_rnd (DATA, SZ)
Generate a bootstrap sample of size N from the empirical distribution obtained from the univariate sample DATA.
If R and C are given create a matrix with R rows and C columns. Or if SZ is a vector, create a matrix of size SZ.
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Generate a bootstrap sample of size N from the empirical distribution obtained from the univariate sample DATA.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
stdnormal_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 159
-- Function File: stdnormal_inv (X)
For each component of X, compute the quantile (the inverse of the CDF) at X of the standard normal distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 112
For each component of X, compute the quantile (the inverse of the CDF) at X of the standard normal distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
normcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 229
-- Function File: normcdf (X, M, S)
For each element of X, compute the cumulative distribution function (CDF) at X of the normal distribution with mean M and standard deviation S.
Default values are M = 0, S = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 143
For each element of X, compute the cumulative distribution function (CDF) at X of the normal distribution with mean M and standard deviation S.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
gampdf
# name: <cell-element>
# type: string
# elements: 1
# length: 231
-- Function File: gampdf (X, A, B)
For each element of X, return the probability density function (PDF) at X of the Gamma distribution with parameters A and B. See also: gamma, gammaln, gammainc, gamcdf, gaminv, gamrnd.
# name: <cell-element>
# type: string
# elements: 1
# length: 124
For each element of X, return the probability density function (PDF) at X of the Gamma distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
discrete_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 427
-- Function File: discrete_rnd (N, V, P)
-- Function File: discrete_rnd (V, P, R, C)
-- Function File: discrete_rnd (V, P, SZ)
Generate a row vector containing a random sample of size N from the univariate distribution which assumes the values in V with probabilities P. N must be a scalar.
If R and C are given create a matrix with R rows and C columns. Or if SZ is a vector, create a matrix of size SZ.
# name: <cell-element>
# type: string
# elements: 1
# length: 143
Generate a row vector containing a random sample of size N from the univariate distribution which assumes the values in V with probabilities P.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
chi2cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 179
-- Function File: chi2cdf (X, N)
For each element of X, compute the cumulative distribution function (CDF) at X of the chisquare distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 135
For each element of X, compute the cumulative distribution function (CDF) at X of the chisquare distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
expinv
# name: <cell-element>
# type: string
# elements: 1
# length: 171
-- Function File: expinv (X, LAMBDA)
For each element of X, compute the quantile (the inverse of the CDF) at X of the exponential distribution with mean LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 123
For each element of X, compute the quantile (the inverse of the CDF) at X of the exponential distribution with mean LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
chi2pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 181
-- Function File: chisquare_pdf (X, N)
For each element of X, compute the probability density function (PDF) at X of the chisquare distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 131
For each element of X, compute the probability density function (PDF) at X of the chisquare distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
unifcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 178
-- Function File: unifcdf (X, A, B)
Return the CDF at X of the uniform distribution on [A, B], i.e., PROB (uniform (A, B) <= x).
Default values are A = 0, B = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Return the CDF at X of the uniform distribution on [A, B], i.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
betapdf
# name: <cell-element>
# type: string
# elements: 1
# length: 140
-- Function File: betapdf (X, A, B)
For each element of X, returns the PDF at X of the beta distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 93
For each element of X, returns the PDF at X of the beta distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
stdnormal_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 184
-- Function File: stdnormal_rnd (R, C)
-- Function File: stdnormal_rnd (SZ)
Return an R by C or `size (SZ)' matrix of random numbers from the standard normal distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 95
Return an R by C or `size (SZ)' matrix of random numbers from the standard normal distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
unidrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 461
-- Function File: unidrnd (MX);
-- Function File: unidrnd (MX, V);
-- Function File: unidrnd (MX, M, N, ...);
Return random values from discrete uniform distribution, with maximum value(s) given by the integer MX, which may be a scalar or multidimensional array.
If MX is a scalar, the size of the result is specified by the vector V, or by the optional arguments M, N, .... Otherwise, the size of the result is the same as the size of MX.
# name: <cell-element>
# type: string
# elements: 1
# length: 152
Return random values from discrete uniform distribution, with maximum value(s) given by the integer MX, which may be a scalar or multidimensional array.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
hygepdf
# name: <cell-element>
# type: string
# elements: 1
# length: 394
-- Function File: hygepdf (X, T, M, N)
Compute the probability density function (PDF) at X of the hypergeometric distribution with parameters T, M, and N. This is the probability of obtaining X marked items when randomly drawing a sample of size N without replacement from a population of total size T containing M marked items.
The arguments must be of common size or scalar.
# name: <cell-element>
# type: string
# elements: 1
# length: 115
Compute the probability density function (PDF) at X of the hypergeometric distribution with parameters T, M, and N.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
wblrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 395
-- Function File: wblrnd (SCALE, SHAPE, R, C)
-- Function File: wblrnd (SCALE, SHAPE, SZ)
Return an R by C matrix of random samples from the Weibull distribution with parameters SCALE and SHAPE which must be scalar or of size R by C. Or if SZ is a vector return a matrix of size SZ.
If R and C are omitted, the size of the result matrix is the common size of ALPHA and SIGMA.
# name: <cell-element>
# type: string
# elements: 1
# length: 143
Return an R by C matrix of random samples from the Weibull distribution with parameters SCALE and SHAPE which must be scalar or of size R by C.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
cauchy_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 265
-- Function File: cauchy_cdf (X, LAMBDA, SIGMA)
For each element of X, compute the cumulative distribution function (CDF) at X of the Cauchy distribution with location parameter LAMBDA and scale parameter SIGMA. Default values are LAMBDA = 0, SIGMA = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 163
For each element of X, compute the cumulative distribution function (CDF) at X of the Cauchy distribution with location parameter LAMBDA and scale parameter SIGMA.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
normrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 363
-- Function File: normrnd (M, S, R, C)
-- Function File: normrnd (M, S, SZ)
Return an R by C or `size (SZ)' matrix of random samples from the normal distribution with parameters mean M and standard deviation S. Both M and S must be scalar or of size R by C.
If R and C are omitted, the size of the result matrix is the common size of M and S.
# name: <cell-element>
# type: string
# elements: 1
# length: 134
Return an R by C or `size (SZ)' matrix of random samples from the normal distribution with parameters mean M and standard deviation S.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
exppdf
# name: <cell-element>
# type: string
# elements: 1
# length: 167
-- Function File: exppdf (X, LAMBDA)
For each element of X, compute the probability density function (PDF) of the exponential distribution with mean LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 119
For each element of X, compute the probability density function (PDF) of the exponential distribution with mean LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
unidinv
# name: <cell-element>
# type: string
# elements: 1
# length: 212
-- Function File: unidinv (X, V)
For each component of X, compute the quantile (the inverse of the CDF) at X of the univariate discrete distribution which assumes the values in V with equal probability
# name: <cell-element>
# type: string
# elements: 1
# length: 170
For each component of X, compute the quantile (the inverse of the CDF) at X of the univariate discrete distribution which assumes the values in V with equal probability
# name: <cell-element>
# type: string
# elements: 1
# length: 4
finv
# name: <cell-element>
# type: string
# elements: 1
# length: 166
-- Function File: finv (X, M, N)
For each component of X, compute the quantile (the inverse of the CDF) at X of the F distribution with parameters M and N.
# name: <cell-element>
# type: string
# elements: 1
# length: 122
For each component of X, compute the quantile (the inverse of the CDF) at X of the F distribution with parameters M and N.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
normpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 225
-- Function File: normpdf (X, M, S)
For each element of X, compute the probability density function (PDF) at X of the normal distribution with mean M and standard deviation S.
Default values are M = 0, S = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 139
For each element of X, compute the probability density function (PDF) at X of the normal distribution with mean M and standard deviation S.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
logninv
# name: <cell-element>
# type: string
# elements: 1
# length: 357
-- Function File: logninv (X, MU, SIGMA)
For each element of X, compute the quantile (the inverse of the CDF) at X of the lognormal distribution with parameters MU and SIGMA. If a random variable follows this distribution, its logarithm is normally distributed with mean `log (MU)' and variance SIGMA.
Default values are MU = 1, SIGMA = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 133
For each element of X, compute the quantile (the inverse of the CDF) at X of the lognormal distribution with parameters MU and SIGMA.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
expcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 229
-- Function File: expcdf (X, LAMBDA)
For each element of X, compute the cumulative distribution function (CDF) at X of the exponential distribution with mean LAMBDA.
The arguments can be of common size or scalar.
# name: <cell-element>
# type: string
# elements: 1
# length: 128
For each element of X, compute the cumulative distribution function (CDF) at X of the exponential distribution with mean LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
logncdf
# name: <cell-element>
# type: string
# elements: 1
# length: 364
-- Function File: logncdf (X, MU, SIGMA)
For each element of X, compute the cumulative distribution function (CDF) at X of the lognormal distribution with parameters MU and SIGMA. If a random variable follows this distribution, its logarithm is normally distributed with mean MU and standard deviation SIGMA.
Default values are MU = 1, SIGMA = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 138
For each element of X, compute the cumulative distribution function (CDF) at X of the lognormal distribution with parameters MU and SIGMA.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
laplace_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 148
-- Function File: laplace_pdf (X)
For each element of X, compute the probability density function (PDF) at X of the Laplace distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 103
For each element of X, compute the probability density function (PDF) at X of the Laplace distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
laplace_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 204
-- Function File: laplace_rnd (R, C)
-- Function File: laplace_rnd (SZ);
Return an R by C matrix of random numbers from the Laplace distribution. Or if SZ is a vector, create a matrix of SZ.
# name: <cell-element>
# type: string
# elements: 1
# length: 72
Return an R by C matrix of random numbers from the Laplace distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
lognrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 402
-- Function File: lognrnd (MU, SIGMA, R, C)
-- Function File: lognrnd (MU, SIGMA, SZ)
Return an R by C matrix of random samples from the lognormal distribution with parameters MU and SIGMA. Both MU and SIGMA must be scalar or of size R by C. Or if SZ is a vector, create a matrix of size SZ.
If R and C are omitted, the size of the result matrix is the common size of MU and SIGMA.
# name: <cell-element>
# type: string
# elements: 1
# length: 103
Return an R by C matrix of random samples from the lognormal distribution with parameters MU and SIGMA.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
poissinv
# name: <cell-element>
# type: string
# elements: 1
# length: 176
-- Function File: poissinv (X, LAMBDA)
For each component of X, compute the quantile (the inverse of the CDF) at X of the Poisson distribution with parameter LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 126
For each component of X, compute the quantile (the inverse of the CDF) at X of the Poisson distribution with parameter LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
hygeinv
# name: <cell-element>
# type: string
# elements: 1
# length: 251
-- Function File: hygeinv (X, T, M, N)
For each element of X, compute the quantile at X of the hypergeometric distribution with parameters T, M, and N.
The parameters T, M, and N must positive integers with M and N not greater than T.
# name: <cell-element>
# type: string
# elements: 1
# length: 112
For each element of X, compute the quantile at X of the hypergeometric distribution with parameters T, M, and N.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
fcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 170
-- Function File: fcdf (X, M, N)
For each element of X, compute the CDF at X of the F distribution with M and N degrees of freedom, i.e., PROB (F (M, N) <= X).
# name: <cell-element>
# type: string
# elements: 1
# length: 101
For each element of X, compute the CDF at X of the F distribution with M and N degrees of freedom, i.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
stdnormal_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 129
-- Function File: stdnormal_cdf (X)
For each component of X, compute the CDF of the standard normal distribution at X.
# name: <cell-element>
# type: string
# elements: 1
# length: 82
For each component of X, compute the CDF of the standard normal distribution at X.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
nbininv
# name: <cell-element>
# type: string
# elements: 1
# length: 300
-- Function File: nbininv (X, N, P)
For each element of X, compute the quantile at X of the Pascal (negative binomial) distribution with parameters N and P.
The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 120
For each element of X, compute the quantile at X of the Pascal (negative binomial) distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
logistic_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 151
-- Function File: logistic_inv (X)
For each component of X, compute the quantile (the inverse of the CDF) at X of the logistic distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 105
For each component of X, compute the quantile (the inverse of the CDF) at X of the logistic distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
hygecdf
# name: <cell-element>
# type: string
# elements: 1
# length: 447
-- Function File: hygecdf (X, T, M, N)
Compute the cumulative distribution function (CDF) at X of the hypergeometric distribution with parameters T, M, and N. This is the probability of obtaining not more than X marked items when randomly drawing a sample of size N without replacement from a population of total size T containing M marked items.
The parameters T, M, and N must positive integers with M and N not greater than T.
# name: <cell-element>
# type: string
# elements: 1
# length: 119
Compute the cumulative distribution function (CDF) at X of the hypergeometric distribution with parameters T, M, and N.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
unidpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 210
-- Function File: unidpdf (X, V)
For each element of X, compute the probability density function (PDF) at X of a univariate discrete distribution which assumes the values in V with equal probability.
# name: <cell-element>
# type: string
# elements: 1
# length: 166
For each element of X, compute the probability density function (PDF) at X of a univariate discrete distribution which assumes the values in V with equal probability.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
logistic_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 121
-- Function File: logistic_cdf (X)
For each component of X, compute the CDF at X of the logistic distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 75
For each component of X, compute the CDF at X of the logistic distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
gamcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 236
-- Function File: gamcdf (X, A, B)
For each element of X, compute the cumulative distribution function (CDF) at X of the Gamma distribution with parameters A and B. See also: gamma, gammaln, gammainc, gampdf, gaminv, gamrnd.
# name: <cell-element>
# type: string
# elements: 1
# length: 129
For each element of X, compute the cumulative distribution function (CDF) at X of the Gamma distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
unifinv
# name: <cell-element>
# type: string
# elements: 1
# length: 198
-- Function File: unifinv (X, A, B)
For each element of X, compute the quantile (the inverse of the CDF) at X of the uniform distribution on [A, B].
Default values are A = 0, B = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 112
For each element of X, compute the quantile (the inverse of the CDF) at X of the uniform distribution on [A, B].
# name: <cell-element>
# type: string
# elements: 1
# length: 4
tpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 174
-- Function File: tpdf (X, N)
For each element of X, compute the probability density function (PDF) at X of the T (Student) distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 133
For each element of X, compute the probability density function (PDF) at X of the T (Student) distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
nbinpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 326
-- Function File: nbinpdf (X, N, P)
For each element of X, compute the probability density function (PDF) at X of the Pascal (negative binomial) distribution with parameters N and P.
The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 146
For each element of X, compute the probability density function (PDF) at X of the Pascal (negative binomial) distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
geoinv
# name: <cell-element>
# type: string
# elements: 1
# length: 139
-- Function File: geoinv (X, P)
For each element of X, compute the quantile at X of the geometric distribution with parameter P.
# name: <cell-element>
# type: string
# elements: 1
# length: 96
For each element of X, compute the quantile at X of the geometric distribution with parameter P.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
discrete_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 210
-- Function File: discrete_inv (X, V, P)
For each component of X, compute the quantile (the inverse of the CDF) at X of the univariate distribution which assumes the values in V with probabilities P.
# name: <cell-element>
# type: string
# elements: 1
# length: 158
For each component of X, compute the quantile (the inverse of the CDF) at X of the univariate distribution which assumes the values in V with probabilities P.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
unidcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 214
-- Function File: unidcdf (X, V)
For each element of X, compute the cumulative distribution function (CDF) at X of a univariate discrete distribution which assumes the values in V with equal probability.
# name: <cell-element>
# type: string
# elements: 1
# length: 170
For each element of X, compute the cumulative distribution function (CDF) at X of a univariate discrete distribution which assumes the values in V with equal probability.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
binopdf
# name: <cell-element>
# type: string
# elements: 1
# length: 175
-- Function File: binopdf (X, N, P)
For each element of X, compute the probability density function (PDF) at X of the binomial distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 128
For each element of X, compute the probability density function (PDF) at X of the binomial distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
wblcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 254
-- Function File: wblcdf (X, SCALE, SHAPE)
Compute the cumulative distribution function (CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE, which is
1 - exp(-(x/shape)^scale)
for X >= 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 147
Compute the cumulative distribution function (CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE, which is
# name: <cell-element>
# type: string
# elements: 1
# length: 7
hygernd
# name: <cell-element>
# type: string
# elements: 1
# length: 474
-- Function File: hygernd (T, M, N, R, C)
-- Function File: hygernd (T, M, N, SZ)
-- Function File: hygernd (T, M, N)
Return an R by C matrix of random samples from the hypergeometric distribution with parameters T, M, and N.
The parameters T, M, and N must positive integers with M and N not greater than T.
The parameter SZ must be scalar or a vector of matrix dimensions. If SZ is scalar, then a SZ by SZ matrix of random samples is generated.
# name: <cell-element>
# type: string
# elements: 1
# length: 107
Return an R by C matrix of random samples from the hypergeometric distribution with parameters T, M, and N.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
trnd
# name: <cell-element>
# type: string
# elements: 1
# length: 346
-- Function File: trnd (N, R, C)
-- Function File: trnd (N, SZ)
Return an R by C matrix of random samples from the t (Student) distribution with N degrees of freedom. N must be a scalar or of size R by C. Or if SZ is a vector create a matrix of size SZ.
If R and C are omitted, the size of the result matrix is the size of N.
# name: <cell-element>
# type: string
# elements: 1
# length: 102
Return an R by C matrix of random samples from the t (Student) distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
kolmogorov_smirnov_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 365
-- Function File: kolmogorov_smirnov_cdf (X, TOL)
Return the CDF at X of the Kolmogorov-Smirnov distribution,
Inf
Q(x) = SUM (-1)^k exp(-2 k^2 x^2)
k = -Inf
for X > 0.
The optional parameter TOL specifies the precision up to which the series should be evaluated; the default is TOL = `eps'.
# name: <cell-element>
# type: string
# elements: 1
# length: 110
Return the CDF at X of the Kolmogorov-Smirnov distribution, Inf Q(x) = SUM (-1)^k exp(-2 k^2 x^2) k = -Inf
# name: <cell-element>
# type: string
# elements: 1
# length: 11
laplace_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 152
-- Function File: laplace_cdf (X)
For each element of X, compute the cumulative distribution function (CDF) at X of the Laplace distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 107
For each element of X, compute the cumulative distribution function (CDF) at X of the Laplace distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
exprnd
# name: <cell-element>
# type: string
# elements: 1
# length: 360
-- Function File: exprnd (LAMBDA, R, C)
-- Function File: exprnd (LAMBDA, SZ)
Return an R by C matrix of random samples from the exponential distribution with mean LAMBDA, which must be a scalar or of size R by C. Or if SZ is a vector, create a matrix of size SZ.
If R and C are omitted, the size of the result matrix is the size of LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 135
Return an R by C matrix of random samples from the exponential distribution with mean LAMBDA, which must be a scalar or of size R by C.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
poissrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 272
-- Function File: poissrnd (LAMBDA, R, C)
Return an R by C matrix of random samples from the Poisson distribution with parameter LAMBDA, which must be a scalar or of size R by C.
If R and C are omitted, the size of the result matrix is the size of LAMBDA.
# name: <cell-element>
# type: string
# elements: 1
# length: 136
Return an R by C matrix of random samples from the Poisson distribution with parameter LAMBDA, which must be a scalar or of size R by C.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
chi2inv
# name: <cell-element>
# type: string
# elements: 1
# length: 174
-- Function File: chi2inv (X, N)
For each element of X, compute the quantile (the inverse of the CDF) at X of the chisquare distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 130
For each element of X, compute the quantile (the inverse of the CDF) at X of the chisquare distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
unifrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 327
-- Function File: unifrnd (A, B, R, C)
-- Function File: unifrnd (A, B, SZ)
Return an R by C or a `size (SZ)' matrix of random samples from the uniform distribution on [A, B]. Both A and B must be scalar or of size R by C.
If R and C are omitted, the size of the result matrix is the common size of A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 99
Return an R by C or a `size (SZ)' matrix of random samples from the uniform distribution on [A, B].
# name: <cell-element>
# type: string
# elements: 1
# length: 12
logistic_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 206
-- Function File: logistic_rnd (R, C)
-- Function File: logistic_rnd (SZ)
Return an R by C matrix of random numbers from the logistic distribution. Or if SZ is a vector, create a matrix of SZ.
# name: <cell-element>
# type: string
# elements: 1
# length: 73
Return an R by C matrix of random numbers from the logistic distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
cauchy_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 378
-- Function File: cauchy_rnd (LAMBDA, SIGMA, R, C)
-- Function File: cauchy_rnd (LAMBDA, SIGMA, SZ)
Return an R by C or a `size (SZ)' matrix of random samples from the Cauchy distribution with parameters LAMBDA and SIGMA which must both be scalar or of size R by C.
If R and C are omitted, the size of the result matrix is the common size of LAMBDA and SIGMA.
# name: <cell-element>
# type: string
# elements: 1
# length: 165
Return an R by C or a `size (SZ)' matrix of random samples from the Cauchy distribution with parameters LAMBDA and SIGMA which must both be scalar or of size R by C.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
betainv
# name: <cell-element>
# type: string
# elements: 1
# length: 172
-- Function File: betainv (X, A, B)
For each component of X, compute the quantile (the inverse of the CDF) at X of the Beta distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 125
For each component of X, compute the quantile (the inverse of the CDF) at X of the Beta distribution with parameters A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
unifpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 168
-- Function File: unifpdf (X, A, B)
For each element of X, compute the PDF at X of the uniform distribution on [A, B].
Default values are A = 0, B = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 82
For each element of X, compute the PDF at X of the uniform distribution on [A, B].
# name: <cell-element>
# type: string
# elements: 1
# length: 7
betacdf
# name: <cell-element>
# type: string
# elements: 1
# length: 171
-- Function File: betacdf (X, A, B)
For each element of X, returns the CDF at X of the beta distribution with parameters A and B, i.e., PROB (beta (A, B) <= X).
# name: <cell-element>
# type: string
# elements: 1
# length: 96
For each element of X, returns the CDF at X of the beta distribution with parameters A and B, i.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
lognpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 360
-- Function File: lognpdf (X, MU, SIGMA)
For each element of X, compute the probability density function (PDF) at X of the lognormal distribution with parameters MU and SIGMA. If a random variable follows this distribution, its logarithm is normally distributed with mean MU and standard deviation SIGMA.
Default values are MU = 1, SIGMA = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 134
For each element of X, compute the probability density function (PDF) at X of the lognormal distribution with parameters MU and SIGMA.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
nbincdf
# name: <cell-element>
# type: string
# elements: 1
# length: 295
-- Function File: nbincdf (X, N, P)
For each element of X, compute the CDF at x of the Pascal (negative binomial) distribution with parameters N and P.
The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 115
For each element of X, compute the CDF at x of the Pascal (negative binomial) distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
geopdf
# name: <cell-element>
# type: string
# elements: 1
# length: 165
-- Function File: geopdf (X, P)
For each element of X, compute the probability density function (PDF) at X of the geometric distribution with parameter P.
# name: <cell-element>
# type: string
# elements: 1
# length: 122
For each element of X, compute the probability density function (PDF) at X of the geometric distribution with parameter P.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
wienrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 432
-- Function File: wienrnd (T, D, N)
Return a simulated realization of the D-dimensional Wiener Process on the interval [0, T]. If D is omitted, D = 1 is used. The first column of the return matrix contains time, the remaining columns contain the Wiener process.
The optional parameter N gives the number of summands used for simulating the process over an interval of length 1. If N is omitted, N = 1000 is used.
# name: <cell-element>
# type: string
# elements: 1
# length: 90
Return a simulated realization of the D-dimensional Wiener Process on the interval [0, T].
# name: <cell-element>
# type: string
# elements: 1
# length: 13
empirical_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 203
-- Function File: empirical_cdf (X, DATA)
For each element of X, compute the cumulative distribution function (CDF) at X of the empirical distribution obtained from the univariate sample DATA.
# name: <cell-element>
# type: string
# elements: 1
# length: 150
For each element of X, compute the cumulative distribution function (CDF) at X of the empirical distribution obtained from the univariate sample DATA.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
geornd
# name: <cell-element>
# type: string
# elements: 1
# length: 335
-- Function File: geornd (P, R, C)
-- Function File: geornd (P, SZ)
Return an R by C matrix of random samples from the geometric distribution with parameter P, which must be a scalar or of size R by C.
If R and C are given create a matrix with R rows and C columns. Or if SZ is a vector, create a matrix of size SZ.
# name: <cell-element>
# type: string
# elements: 1
# length: 133
Return an R by C matrix of random samples from the geometric distribution with parameter P, which must be a scalar or of size R by C.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
binocdf
# name: <cell-element>
# type: string
# elements: 1
# length: 144
-- Function File: binocdf (X, N, P)
For each element of X, compute the CDF at X of the binomial distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 97
For each element of X, compute the CDF at X of the binomial distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
tinv
# name: <cell-element>
# type: string
# elements: 1
# length: 294
-- Function File: tinv (X, N)
For each probability value X, compute the inverse of the cumulative distribution function (CDF) of the t (Student) distribution with degrees of freedom N. This function is analogous to looking in a table for the t-value of a single-tailed distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 154
For each probability value X, compute the inverse of the cumulative distribution function (CDF) of the t (Student) distribution with degrees of freedom N.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
binornd
# name: <cell-element>
# type: string
# elements: 1
# length: 343
-- Function File: binornd (N, P, R, C)
-- Function File: binornd (N, P, SZ)
Return an R by C or a `size (SZ)' matrix of random samples from the binomial distribution with parameters N and P. Both N and P must be scalar or of size R by C.
If R and C are omitted, the size of the result matrix is the common size of N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 114
Return an R by C or a `size (SZ)' matrix of random samples from the binomial distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
tcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 202
-- Function File: tcdf (X, N)
For each element of X, compute the cumulative distribution function (CDF) at X of the t (Student) distribution with N degrees of freedom, i.e., PROB (t(N) <= X).
# name: <cell-element>
# type: string
# elements: 1
# length: 140
For each element of X, compute the cumulative distribution function (CDF) at X of the t (Student) distribution with N degrees of freedom, i.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
fpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 173
-- Function File: fpdf (X, M, N)
For each element of X, compute the probability density function (PDF) at X of the F distribution with M and N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 129
For each element of X, compute the probability density function (PDF) at X of the F distribution with M and N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
wblinv
# name: <cell-element>
# type: string
# elements: 1
# length: 186
-- Function File: wblinv (X, SCALE, SHAPE)
Compute the quantile (the inverse of the CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE.
# name: <cell-element>
# type: string
# elements: 1
# length: 132
Compute the quantile (the inverse of the CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
cauchy_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 260
-- Function File: cauchy_inv (X, LAMBDA, SIGMA)
For each element of X, compute the quantile (the inverse of the CDF) at X of the Cauchy distribution with location parameter LAMBDA and scale parameter SIGMA. Default values are LAMBDA = 0, SIGMA = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 158
For each element of X, compute the quantile (the inverse of the CDF) at X of the Cauchy distribution with location parameter LAMBDA and scale parameter SIGMA.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
nbinrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 394
-- Function File: nbinrnd (N, P, R, C)
-- Function File: nbinrnd (N, P, SZ)
Return an R by C matrix of random samples from the Pascal (negative binomial) distribution with parameters N and P. Both N and P must be scalar or of size R by C.
If R and C are omitted, the size of the result matrix is the common size of N and P. Or if SZ is a vector, create a matrix of size SZ.
# name: <cell-element>
# type: string
# elements: 1
# length: 115
Return an R by C matrix of random samples from the Pascal (negative binomial) distribution with parameters N and P.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
empirical_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 199
-- Function File: empirical_pdf (X, DATA)
For each element of X, compute the probability density function (PDF) at X of the empirical distribution obtained from the univariate sample DATA.
# name: <cell-element>
# type: string
# elements: 1
# length: 146
For each element of X, compute the probability density function (PDF) at X of the empirical distribution obtained from the univariate sample DATA.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
wblpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 296
-- Function File: wblpdf (X, SCALE, SHAPE)
Compute the probability density function (PDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE which is given by
scale * shape^(-scale) * x^(scale-1) * exp(-(x/shape)^scale)
for X > 0.
# name: <cell-element>
# type: string
# elements: 1
# length: 151
Compute the probability density function (PDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE which is given by
# name: <cell-element>
# type: string
# elements: 1
# length: 11
laplace_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 147
-- Function File: laplace_inv (X)
For each element of X, compute the quantile (the inverse of the CDF) at X of the Laplace distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 102
For each element of X, compute the quantile (the inverse of the CDF) at X of the Laplace distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
chi2rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 318
-- Function File: chi2rnd (N, R, C)
-- Function File: chi2rnd (N, SZ)
Return an R by C or a `size (SZ)' matrix of random samples from the chisquare distribution with N degrees of freedom. N must be a scalar or of size R by C.
If R and C are omitted, the size of the result matrix is the size of N.
# name: <cell-element>
# type: string
# elements: 1
# length: 117
Return an R by C or a `size (SZ)' matrix of random samples from the chisquare distribution with N degrees of freedom.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
discrete_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 216
-- Function File: discrete_pdf (X, V, P)
For each element of X, compute the probability density function (PDF) at X of a univariate discrete distribution which assumes the values in V with probabilities P.
# name: <cell-element>
# type: string
# elements: 1
# length: 164
For each element of X, compute the probability density function (PDF) at X of a univariate discrete distribution which assumes the values in V with probabilities P.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
logistic_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 121
-- Function File: logistic_pdf (X)
For each component of X, compute the PDF at X of the logistic distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 75
For each component of X, compute the PDF at X of the logistic distribution.
# name: <cell-element>
# type: string
# elements: 1
# length: 31
logistic_regression_derivatives
# name: <cell-element>
# type: string
# elements: 1
# length: 206
-- Function File: [DL, D2L] = logistic_regression_derivatives (X, Z, Z1, G, G1, P)
Called by logistic_regression. Calculates derivates of the log-likelihood for ordinal logistic regression model.
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Called by logistic_regression.
# name: <cell-element>
# type: string
# elements: 1
# length: 19
logistic_regression
# name: <cell-element>
# type: string
# elements: 1
# length: 1609
-- Function File: [THETA, BETA, DEV, DL, D2L, P] = logistic_regression (Y, X, PRINT, THETA, BETA)
Perform ordinal logistic regression.
Suppose Y takes values in K ordered categories, and let `gamma_i (X)' be the cumulative probability that Y falls in one of the first I categories given the covariate X. Then
[theta, beta] = logistic_regression (y, x)
fits the model
logit (gamma_i (x)) = theta_i - beta' * x, i = 1 ... k-1
The number of ordinal categories, K, is taken to be the number of distinct values of `round (Y)'. If K equals 2, Y is binary and the model is ordinary logistic regression. The matrix X is assumed to have full column rank.
Given Y only, `theta = logistic_regression (y)' fits the model with baseline logit odds only.
The full form is
[theta, beta, dev, dl, d2l, gamma]
= logistic_regression (y, x, print, theta, beta)
in which all output arguments and all input arguments except Y are optional.
Setting PRINT to 1 requests summary information about the fitted model to be displayed. Setting PRINT to 2 requests information about convergence at each iteration. Other values request no information to be displayed. The input arguments THETA and BETA give initial estimates for THETA and BETA.
The returned value DEV holds minus twice the log-likelihood.
The returned values DL and D2L are the vector of first and the matrix of second derivatives of the log-likelihood with respect to THETA and BETA.
P holds estimates for the conditional distribution of Y given X.
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Perform ordinal logistic regression.
# name: <cell-element>
# type: string
# elements: 1
# length: 30
logistic_regression_likelihood
# name: <cell-element>
# type: string
# elements: 1
# length: 193
-- Function File: [G, G1, P, DEV] = logistic_regression_likelihood (Y, X, BETA, Z, Z1)
Calculates likelihood for the ordinal logistic regression model. Called by logistic_regression.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Calculates likelihood for the ordinal logistic regression model.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
spearman
# name: <cell-element>
# type: string
# elements: 1
# length: 598
-- Function File: spearman (X, Y)
Compute Spearman's rank correlation coefficient RHO for each of the variables specified by the input arguments.
For matrices, each row is an observation and each column a variable; vectors are always observations and may be row or column vectors.
`spearman (X)' is equivalent to `spearman (X, X)'.
For two data vectors X and Y, Spearman's RHO is the correlation of the ranks of X and Y.
If X and Y are drawn from independent distributions, RHO has zero mean and variance `1 / (n - 1)', and is asymptotically normally distributed.
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Compute Spearman's rank correlation coefficient RHO for each of the variables specified by the input arguments.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
ols
# name: <cell-element>
# type: string
# elements: 1
# length: 754
-- Function File: [BETA, SIGMA, R] = ols (Y, X)
Ordinary least squares estimation for the multivariate model y = x b + e with mean (e) = 0 and cov (vec (e)) = kron (s, I). where y is a t by p matrix, x is a t by k matrix, b is a k by p matrix, and e is a t by p matrix.
Each row of Y and X is an observation and each column a variable.
The return values BETA, SIGMA, and R are defined as follows.
BETA
The OLS estimator for B, `BETA = pinv (X) * Y', where `pinv (X)' denotes the pseudoinverse of X.
SIGMA
The OLS estimator for the matrix S,
SIGMA = (Y-X*BETA)'
* (Y-X*BETA)
/ (T-rank(X))
R
The matrix of OLS residuals, `R = Y - X * BETA'.
# name: <cell-element>
# type: string
# elements: 1
# length: 123
Ordinary least squares estimation for the multivariate model y = x b + e with mean (e) = 0 and cov (vec (e)) = kron (s, I).
# name: <cell-element>
# type: string
# elements: 1
# length: 4
mode
# name: <cell-element>
# type: string
# elements: 1
# length: 497
-- Function File: [M, F, C] = mode (X, DIM)
Count the most frequently appearing value. `mode' counts the frequency along the first non-singleton dimension and if two or more values have the same frequency returns the smallest of the two in M. The dimension along which to count can be specified by the DIM parameter.
The variable F counts the frequency of each of the most frequently occurring elements. The cell array C contains all of the elements with the maximum frequency .
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Count the most frequently appearing value.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
probit
# name: <cell-element>
# type: string
# elements: 1
# length: 139
-- Function File: probit (P)
For each component of P, return the probit (the quantile of the standard normal distribution) of P.
# name: <cell-element>
# type: string
# elements: 1
# length: 99
For each component of P, return the probit (the quantile of the standard normal distribution) of P.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
ppplot
# name: <cell-element>
# type: string
# elements: 1
# length: 827
-- Function File: [P, Y] = ppplot (X, DIST, PARAMS)
Perform a PP-plot (probability plot).
If F is the CDF of the distribution DIST with parameters PARAMS and X a sample vector of length N, the PP-plot graphs ordinate Y(I) = F (I-th largest element of X) versus abscissa P(I) = (I - 0.5)/N. If the sample comes from F, the pairs will approximately follow a straight line.
The default for DIST is the standard normal distribution. The optional argument PARAMS contains a list of parameters of DIST. For example, for a probability plot of the uniform distribution on [2,4] and X, use
ppplot (x, "uniform", 2, 4)
DIST can be any string for which a function DIST_CDF that calculates the CDF of distribution DIST exists.
If no output arguments are given, the data are plotted directly.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Perform a PP-plot (probability plot).
# name: <cell-element>
# type: string
# elements: 1
# length: 6
qqplot
# name: <cell-element>
# type: string
# elements: 1
# length: 903
-- Function File: [Q, S] = qqplot (X, DIST, PARAMS)
Perform a QQ-plot (quantile plot).
If F is the CDF of the distribution DIST with parameters PARAMS and G its inverse, and X a sample vector of length N, the QQ-plot graphs ordinate S(I) = I-th largest element of x versus abscissa Q(If) = G((I - 0.5)/N).
If the sample comes from F except for a transformation of location and scale, the pairs will approximately follow a straight line.
The default for DIST is the standard normal distribution. The optional argument PARAMS contains a list of parameters of DIST. For example, for a quantile plot of the uniform distribution on [2,4] and X, use
qqplot (x, "uniform", 2, 4)
DIST can be any string for which a function DIST_INV that calculates the inverse CDF of distribution DIST exists.
If no output arguments are given, the data are plotted directly.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Perform a QQ-plot (quantile plot).
# name: <cell-element>
# type: string
# elements: 1
# length: 6
median
# name: <cell-element>
# type: string
# elements: 1
# length: 489
-- Function File: median (X, DIM)
If X is a vector, compute the median value of the elements of X. If the elements of X are sorted, the median is defined as
x(ceil(N/2)), N odd
median(x) =
(x(N/2) + x((N/2)+1))/2, N even
If X is a matrix, compute the median value for each column and return them in a row vector. If the optional DIM argument is given, operate along this dimension. See also: std, mean.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
If X is a vector, compute the median value of the elements of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
cov
# name: <cell-element>
# type: string
# elements: 1
# length: 302
-- Function File: cov (X, Y)
Compute covariance.
If each row of X and Y is an observation and each column is a variable, the (I, J)-th entry of `cov (X, Y)' is the covariance between the I-th variable in X and the J-th variable in Y. If called with one argument, compute `cov (X, X)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 19
Compute covariance.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
table
# name: <cell-element>
# type: string
# elements: 1
# length: 254
-- Function File: [T, L_X] = table (X)
-- Function File: [T, L_X, L_Y] = table (X, Y)
Create a contingency table T from data vectors. The L vectors are the corresponding levels.
Currently, only 1- and 2-dimensional tables are supported.
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Create a contingency table T from data vectors.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
histc
# name: <cell-element>
# type: string
# elements: 1
# length: 1039
-- Function File: N = histc (Y, EDGES)
-- Function File: N = histc (Y, EDGES, DIM)
-- Function File: [N, IDX] = histc (...)
Produce histogram counts.
When Y is a vector, the function counts the number of elements of Y that fall in the histogram bins defined by EDGES. This must be a vector of monotonically non-decreasing values that define the edges of the histogram bins. So, `N (k)' contains the number of elements in Y for which `EDGES (k) <= Y < EDGES (k+1)'. The final element of N contains the number of elements of Y that was equal to the last element of EDGES.
When Y is a N-dimensional array, the same operation as above is repeated along dimension DIM. If this argument is given, the operation is performed along the first non-singleton dimension.
If a second output argument is requested an index matrix is also returned. The IDX matrix has same size as Y. Each element of IDX contains the index of the histogram bin in which the corresponding element of Y was counted.
See also: hist.
# name: <cell-element>
# type: string
# elements: 1
# length: 25
Produce histogram counts.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
std
# name: <cell-element>
# type: string
# elements: 1
# length: 780
-- Function File: std (X)
-- Function File: std (X, OPT)
-- Function File: std (X, OPT, DIM)
If X is a vector, compute the standard deviation of the elements of X.
std (x) = sqrt (sumsq (x - mean (x)) / (n - 1))
If X is a matrix, compute the standard deviation for each column and return them in a row vector.
The argument OPT determines the type of normalization to use. Valid values are
0:
normalizes with N-1, provides the square root of best unbiased estimator of the variance [default]
1:
normalizes with N, this provides the square root of the second moment around the mean
The third argument DIM determines the dimension along which the standard deviation is calculated. See also: mean, median.
# name: <cell-element>
# type: string
# elements: 1
# length: 70
If X is a vector, compute the standard deviation of the elements of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
range
# name: <cell-element>
# type: string
# elements: 1
# length: 319
-- Function File: range (X)
-- Function File: range (X, DIM)
If X is a vector, return the range, i.e., the difference between the maximum and the minimum, of the input data.
If X is a matrix, do the above for each column of X.
If the optional argument DIM is supplied, work along dimension DIM.
# name: <cell-element>
# type: string
# elements: 1
# length: 38
If X is a vector, return the range, i.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
skewness
# name: <cell-element>
# type: string
# elements: 1
# length: 340
-- Function File: skewness (X, DIM)
If X is a vector of length n, return the skewness
skewness (x) = N^(-1) std(x)^(-3) sum ((x - mean(x)).^3)
of X. If X is a matrix, return the skewness along the first non-singleton dimension of the matrix. If the optional DIM argument is given, operate along this dimension.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
If X is a vector of length n, return the skewness
# name: <cell-element>
# type: string
# elements: 1
# length: 10
studentize
# name: <cell-element>
# type: string
# elements: 1
# length: 274
-- Function File: studentize (X, DIM)
If X is a vector, subtract its mean and divide by its standard deviation.
If X is a matrix, do the above along the first non-singleton dimension. If the optional argument DIM is given then operate along this dimension.
# name: <cell-element>
# type: string
# elements: 1
# length: 73
If X is a vector, subtract its mean and divide by its standard deviation.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
var
# name: <cell-element>
# type: string
# elements: 1
# length: 553
-- Function File: var (X)
For vector arguments, return the (real) variance of the values. For matrix arguments, return a row vector containing the variance for each column.
The argument OPT determines the type of normalization to use. Valid values are
0:
Normalizes with N-1, provides the best unbiased estimator of the variance [default].
1:
Normalizes with N, this provides the second moment around the mean.
The third argument DIM determines the dimension along which the variance is calculated.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
For vector arguments, return the (real) variance of the values.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
values
# name: <cell-element>
# type: string
# elements: 1
# length: 192
-- Function File: values (X)
Return the different values in a column vector, arranged in ascending order.
As an example, `values([1, 2, 3, 1])' returns the vector `[1, 2, 3]'.
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Return the different values in a column vector, arranged in ascending order.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
ranks
# name: <cell-element>
# type: string
# elements: 1
# length: 192
-- Function File: ranks (X, DIM)
Return the ranks of X along the first non-singleton dimension adjust for ties. If the optional argument DIM is given, operate along this dimension.
# name: <cell-element>
# type: string
# elements: 1
# length: 78
Return the ranks of X along the first non-singleton dimension adjust for ties.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
prctile
# name: <cell-element>
# type: string
# elements: 1
# length: 721
-- Function File: Y = prctile (X, P)
-- Function File: Q = prctile (X, P, DIM)
For a sample X, compute the quantiles, Y, corresponding to the cumulative probability values, P, in percent. All non-numeric values (NaNs) of X are ignored.
If X is a matrix, compute the percentiles for each column and return them in a matrix, such that the i-th row of Y contains the P(i)th percentiles of each column of X.
The optional argument DIM determines the dimension along which the percentiles are calculated. If DIM is omitted, and X is a vector or matrix, it defaults to 1 (column wise quantiles). In the instance that X is a N-d array, DIM defaults to the first dimension whose size greater than unity.
# name: <cell-element>
# type: string
# elements: 1
# length: 108
For a sample X, compute the quantiles, Y, corresponding to the cumulative probability values, P, in percent.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
kendall
# name: <cell-element>
# type: string
# elements: 1
# length: 859
-- Function File: kendall (X, Y)
Compute Kendall's TAU for each of the variables specified by the input arguments.
For matrices, each row is an observation and each column a variable; vectors are always observations and may be row or column vectors.
`kendall (X)' is equivalent to `kendall (X, X)'.
For two data vectors X, Y of common length N, Kendall's TAU is the correlation of the signs of all rank differences of X and Y; i.e., if both X and Y have distinct entries, then
1
tau = ------- SUM sign (q(i) - q(j)) * sign (r(i) - r(j))
n (n-1) i,j
in which the Q(I) and R(I) are the ranks of X and Y, respectively.
If X and Y are drawn from independent distributions, Kendall's TAU is asymptotically normal with mean 0 and variance `(2 * (2N+5)) / (9 * N * (N-1))'.
# name: <cell-element>
# type: string
# elements: 1
# length: 81
Compute Kendall's TAU for each of the variables specified by the input arguments.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
center
# name: <cell-element>
# type: string
# elements: 1
# length: 250
-- Function File: center (X)
-- Function File: center (X, DIM)
If X is a vector, subtract its mean. If X is a matrix, do the above for each column. If the optional argument DIM is given, perform the above operation along this dimension
# name: <cell-element>
# type: string
# elements: 1
# length: 36
If X is a vector, subtract its mean.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
iqr
# name: <cell-element>
# type: string
# elements: 1
# length: 319
-- Function File: iqr (X, DIM)
If X is a vector, return the interquartile range, i.e., the difference between the upper and lower quartile, of the input data.
If X is a matrix, do the above for first non-singleton dimension of X. If the option DIM argument is given, then operate along this dimension.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
If X is a vector, return the interquartile range, i.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
statistics
# name: <cell-element>
# type: string
# elements: 1
# length: 312
-- Function File: statistics (X)
If X is a matrix, return a matrix with the minimum, first quartile, median, third quartile, maximum, mean, standard deviation, skewness and kurtosis of the columns of X as its columns.
If X is a vector, calculate the statistics along the non-singleton dimension.
# name: <cell-element>
# type: string
# elements: 1
# length: 184
If X is a matrix, return a matrix with the minimum, first quartile, median, third quartile, maximum, mean, standard deviation, skewness and kurtosis of the columns of X as its columns.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
meansq
# name: <cell-element>
# type: string
# elements: 1
# length: 315
-- Function File: meansq (X)
-- Function File: meansq (X, DIM)
For vector arguments, return the mean square of the values. For matrix arguments, return a row vector containing the mean square of each column. With the optional DIM argument, returns the mean squared of the values along this dimension.
# name: <cell-element>
# type: string
# elements: 1
# length: 59
For vector arguments, return the mean square of the values.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
mahalanobis
# name: <cell-element>
# type: string
# elements: 1
# length: 244
-- Function File: mahalanobis (X, Y)
Return the Mahalanobis' D-square distance between the multivariate samples X and Y, which must have the same number of components (columns), but may have a different number of observations (rows).
# name: <cell-element>
# type: string
# elements: 1
# length: 196
Return the Mahalanobis' D-square distance between the multivariate samples X and Y, which must have the same number of components (columns), but may have a different number of observations (rows).
# name: <cell-element>
# type: string
# elements: 1
# length: 7
cloglog
# name: <cell-element>
# type: string
# elements: 1
# length: 138
-- Function File: cloglog (X)
Return the complementary log-log function of X, defined as
cloglog(x) = - log (- log (X))
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Return the complementary log-log function of X, defined as
# name: <cell-element>
# type: string
# elements: 1
# length: 8
quantile
# name: <cell-element>
# type: string
# elements: 1
# length: 2540
-- Function File: Q = quantile (X, P)
-- Function File: Q = quantile (X, P, DIM)
-- Function File: Q = quantile (X, P, DIM, METHOD)
For a sample, X, calculate the quantiles, Q, corresponding to the cumulative probability values in P. All non-numeric values (NaNs) of X are ignored.
If X is a matrix, compute the quantiles for each column and return them in a matrix, such that the i-th row of Q contains the P(i)th quantiles of each column of X.
The optional argument DIM determines the dimension along which the percentiles are calculated. If DIM is omitted, and X is a vector or matrix, it defaults to 1 (column wise quantiles). In the instance that X is a N-d array, DIM defaults to the first dimension whose size greater than unity.
The methods available to calculate sample quantiles are the nine methods used by R (http://www.r-project.org/). The default value is METHOD = 5.
Discontinuous sample quantile methods 1, 2, and 3
1. Method 1: Inverse of empirical distribution function.
2. Method 2: Similar to method 1 but with averaging at discontinuities.
3. Method 3: SAS definition: nearest even order statistic.
Continuous sample quantile methods 4 through 9, where p(k) is the linear interpolation function respecting each methods' representative cdf.
4. Method 4: p(k) = k / n. That is, linear interpolation of the empirical cdf.
5. Method 5: p(k) = (k - 0.5) / n. That is a piecewise linear function where the knots are the values midway through the steps of the empirical cdf.
6. Method 6: p(k) = k / (n + 1).
7. Method 7: p(k) = (k - 1) / (n - 1).
8. Method 8: p(k) = (k - 1/3) / (n + 1/3). The resulting quantile estimates are approximately median-unbiased regardless of the distribution of X.
9. Method 9: p(k) = (k - 3/8) / (n + 1/4). The resulting quantile estimates are approximately unbiased for the expected order statistics if X is normally distributed.
Hyndman and Fan (1996) recommend method 8. Maxima, S, and R (versions prior to 2.0.0) use 7 as their default. Minitab and SPSS use method 6. MATLAB uses method 5.
References:
* Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.
* Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in statistical packages, American Statistician, 50, 361-365.
* R: A Language and Environment for Statistical Computing; `http://cran.r-project.org/doc/manuals/fullrefman.pdf'.
# name: <cell-element>
# type: string
# elements: 1
# length: 101
For a sample, X, calculate the quantiles, Q, corresponding to the cumulative probability values in P.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
moment
# name: <cell-element>
# type: string
# elements: 1
# length: 530
-- Function File: moment (X, P, OPT, DIM)
If X is a vector, compute the P-th moment of X.
If X is a matrix, return the row vector containing the P-th moment of each column.
With the optional string opt, the kind of moment to be computed can be specified. If opt contains `"c"' or `"a"', central and/or absolute moments are returned. For example,
moment (x, 3, "ac")
computes the third central absolute moment of X.
If the optional argument DIM is supplied, work along dimension DIM.
# name: <cell-element>
# type: string
# elements: 1
# length: 47
If X is a vector, compute the P-th moment of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
corrcoef
# name: <cell-element>
# type: string
# elements: 1
# length: 376
-- Function File: corrcoef (X, Y)
Compute correlation.
If each row of X and Y is an observation and each column is a variable, the (I, J)-th entry of `corrcoef (X, Y)' is the correlation between the I-th variable in X and the J-th variable in Y.
corrcoef(x,y) = cov(x,y)/(std(x)*std(y))
If called with one argument, compute `corrcoef (X, X)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 20
Compute correlation.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
logit
# name: <cell-element>
# type: string
# elements: 1
# length: 130
-- Function File: logit (P)
For each component of P, return the logit of P defined as
logit(P) = log (P / (1-P))
# name: <cell-element>
# type: string
# elements: 1
# length: 86
For each component of P, return the logit of P defined as logit(P) = log (P / (1-P))
# name: <cell-element>
# type: string
# elements: 1
# length: 3
cor
# name: <cell-element>
# type: string
# elements: 1
# length: 484
-- Function File: cor (X, Y)
Compute correlation.
The (I, J)-th entry of `cor (X, Y)' is the correlation between the I-th variable in X and the J-th variable in Y.
corrcoef(x,y) = cov(x,y)/(std(x)*std(y))
For matrices, each row is an observation and each column a variable; vectors are always observations and may be row or column vectors.
`cor (X)' is equivalent to `cor (X, X)'.
Note that the `corrcoef' function does the same as `cor'.
# name: <cell-element>
# type: string
# elements: 1
# length: 20
Compute correlation.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
kurtosis
# name: <cell-element>
# type: string
# elements: 1
# length: 354
-- Function File: kurtosis (X, DIM)
If X is a vector of length N, return the kurtosis
kurtosis (x) = N^(-1) std(x)^(-4) sum ((x - mean(x)).^4) - 3
of X. If X is a matrix, return the kurtosis over the first non-singleton dimension. The optional argument DIM can be given to force the kurtosis to be given over that dimension.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
If X is a vector of length N, return the kurtosis
# name: <cell-element>
# type: string
# elements: 1
# length: 3
cut
# name: <cell-element>
# type: string
# elements: 1
# length: 519
-- Function File: cut (X, BREAKS)
Create categorical data out of numerical or continuous data by cutting into intervals.
If BREAKS is a scalar, the data is cut into that many equal-width intervals. If BREAKS is a vector of break points, the category has `length (BREAKS) - 1' groups.
The returned value is a vector of the same size as X telling which group each point in X belongs to. Groups are labelled from 1 to the number of groups; points outside the range of BREAKS are labelled by `NaN'.
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Create categorical data out of numerical or continuous data by cutting into intervals.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
gls
# name: <cell-element>
# type: string
# elements: 1
# length: 582
-- Function File: [BETA, V, R] = gls (Y, X, O)
Generalized least squares estimation for the multivariate model y = x b + e with mean (e) = 0 and cov (vec (e)) = (s^2) o, where y is a t by p matrix, x is a t by k matrix, b is a k by p matrix, e is a t by p matrix, and o is a t p by t p matrix.
Each row of Y and X is an observation and each column a variable. The return values BETA, V, and R are defined as follows.
BETA
The GLS estimator for b.
V
The GLS estimator for s^2.
R
The matrix of GLS residuals, r = y - x beta.
# name: <cell-element>
# type: string
# elements: 1
# length: 246
Generalized least squares estimation for the multivariate model y = x b + e with mean (e) = 0 and cov (vec (e)) = (s^2) o, where y is a t by p matrix, x is a t by k matrix, b is a k by p matrix, e is a t by p matrix, and o is a t p by t p matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
run_count
# name: <cell-element>
# type: string
# elements: 1
# length: 237
-- Function File: run_count (X, N)
Count the upward runs along the first non-singleton dimension of X of length 1, 2, ..., N-1 and greater than or equal to N. If the optional argument DIM is given operate along this dimension
# name: <cell-element>
# type: string
# elements: 1
# length: 84
Count the upward runs along the first non-singleton dimension of X of length 1, 2, .
# name: <cell-element>
# type: string
# elements: 1
# length: 4
mean
# name: <cell-element>
# type: string
# elements: 1
# length: 688
-- Function File: mean (X, DIM, OPT)
If X is a vector, compute the mean of the elements of X
mean (x) = SUM_i x(i) / N
If X is a matrix, compute the mean for each column and return them in a row vector.
With the optional argument OPT, the kind of mean computed can be selected. The following options are recognized:
`"a"'
Compute the (ordinary) arithmetic mean. This is the default.
`"g"'
Compute the geometric mean.
`"h"'
Compute the harmonic mean.
If the optional argument DIM is supplied, work along dimension DIM.
Both DIM and OPT are optional. If both are supplied, either may appear first.
# name: <cell-element>
# type: string
# elements: 1
# length: 56
If X is a vector, compute the mean of the elements of X
# name: <cell-element>
# type: string
# elements: 1
# length: 9
griddatan
# name: <cell-element>
# type: string
# elements: 1
# length: 360
-- Function File: YI = griddatan (X, Y, XI, METHOD, OPTIONS)
Generate a regular mesh from irregular data using interpolation. The function is defined by `Y = f (X)'. The interpolation points are all XI.
The interpolation method can be `"nearest"' or `"linear"'. If method is omitted it defaults to `"linear"'. See also: griddata, delaunayn.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Generate a regular mesh from irregular data using interpolation.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
delaunay3
# name: <cell-element>
# type: string
# elements: 1
# length: 481
-- Function File: T = delaunay3 (X, Y, Z)
-- Function File: T = delaunay3 (X, Y, Z, OPT)
A matrix of size [n, 4] is returned. Each row contains a set of tetrahedron which are described by the indices to the data point vectors (x,y,z).
A fourth optional argument, which must be a string or cell array of strings, contains extra options passed to the underlying qhull command. See the documentation for the Qhull library for details. See also: delaunay,delaunayn.
# name: <cell-element>
# type: string
# elements: 1
# length: 36
A matrix of size [n, 4] is returned.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
griddata3
# name: <cell-element>
# type: string
# elements: 1
# length: 377
-- Function File: VI = griddata3 (X, Y, Z, V XI, YI, ZI, METHOD, OPTIONS)
Generate a regular mesh from irregular data using interpolation. The function is defined by `Y = f (X,Y,Z)'. The interpolation points are all XI.
The interpolation method can be `"nearest"' or `"linear"'. If method is omitted it defaults to `"linear"'. See also: griddata, delaunayn.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Generate a regular mesh from irregular data using interpolation.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
trisurf
# name: <cell-element>
# type: string
# elements: 1
# length: 360
-- Function File: trisurf (TRI, X, Y, Z)
-- Function File: H = trisurf (...)
Plot a triangular surface in 3D. The variable TRI is the triangular meshing of the points `(X, Y)' which is returned from `delaunay'. The variable Z is value at the point `(X, Y)'. The output argument H is the graphic handle to the plot. See also: triplot, delaunay3.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Plot a triangular surface in 3D.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
rectint
# name: <cell-element>
# type: string
# elements: 1
# length: 436
-- Function File: AREA = rectint (A, B)
Compute the area of intersection of rectangles in A and rectangles in B. Rectangles are defined as [x y width height] where x and y are the minimum values of the two orthogonal dimensions.
If A or B are matrices, then the output, AREA, is a matrix where the i-th row corresponds to the i-th row of a and the j-th column corresponds to the j-th row of b.
See also: polyarea.
# name: <cell-element>
# type: string
# elements: 1
# length: 72
Compute the area of intersection of rectangles in A and rectangles in B.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
voronoi
# name: <cell-element>
# type: string
# elements: 1
# length: 878
-- Function File: voronoi (X, Y)
-- Function File: voronoi (X, Y, "plotstyle")
-- Function File: voronoi (X, Y, "plotstyle", OPTIONS)
-- Function File: [VX, VY] = voronoi (...)
plots voronoi diagram of points `(X, Y)'. The voronoi facets with points at infinity are not drawn. [VX, VY] = voronoi(...) returns the vertices instead of plotting the diagram. plot (VX, VY) shows the voronoi diagram.
A fourth optional argument, which must be a string, contains extra options passed to the underlying qhull command. See the documentation for the Qhull library for details.
x = rand (10, 1);
y = rand (size (x));
h = convhull (x, y);
[vx, vy] = voronoi (x, y);
plot (vx, vy, "-b", x, y, "o", x(h), y(h), "-g")
legend ("", "points", "hull");
See also: voronoin, delaunay, convhull.
# name: <cell-element>
# type: string
# elements: 1
# length: 41
plots voronoi diagram of points `(X, Y)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
dsearch
# name: <cell-element>
# type: string
# elements: 1
# length: 293
-- Function File: IDX = dsearch (X, Y, TRI, XI, YI)
-- Function File: IDX = dsearch (X, Y, TRI, XI, YI, S)
Returns the index IDX or the closest point in `X, Y' to the elements `[XI(:), YI(:)]'. The variable S is accepted but ignored for compatibility. See also: dsearchn, tsearch.
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Returns the index IDX or the closest point in `X, Y' to the elements `[XI(:), YI(:)]'.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
delaunayn
# name: <cell-element>
# type: string
# elements: 1
# length: 1199
-- Function File: T = delaunayn (P)
-- Function File: T = delaunayn (P, OPT)
Form the Delaunay triangulation for a set of points. The Delaunay triangulation is a tessellation of the convex hull of the points such that no n-sphere defined by the n-triangles contains any other points from the set. The input matrix P of size `[n, dim]' contains N points in a space of dimension dim. The return matrix T has the size `[m, dim+1]'. It contains for each row a set of indices to the points, which describes a simplex of dimension dim. For example, a 2d simplex is a triangle and 3d simplex is a tetrahedron.
Extra options for the underlying Qhull command can be specified by the second argument. This argument is a cell array of strings. The default options depend on the dimension of the input:
* 2D and 3D: OPT = `{"Qt", "Qbb", "Qc"}'
* 4D and higher: OPT = `{"Qt", "Qbb", "Qc", "Qz"}'
If OPT is [], then the default arguments are used. If OPT is `{""}', then none of the default arguments are used by Qhull. See the Qhull documentation for the available options.
All options can also be specified as single string, for example `"Qt Qbb Qc Qz"'.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Form the Delaunay triangulation for a set of points.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
tsearchn
# name: <cell-element>
# type: string
# elements: 1
# length: 357
-- Function File: [IDX, P] = tsearchn (X, T, XI)
Searches for the enclosing Delaunay convex hull. For `T = delaunayn (X)', finds the index in T containing the points XI. For points outside the convex hull, IDX is NaN. If requested `tsearchn' also returns the Barycentric coordinates P of the enclosing triangles. See also: delaunay, delaunayn.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Searches for the enclosing Delaunay convex hull.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
convhull
# name: <cell-element>
# type: string
# elements: 1
# length: 428
-- Function File: H = convhull (X, Y)
-- Function File: H = convhull (X, Y, OPT)
Returns the index vector to the points of the enclosing convex hull. The data points are defined by the x and y vectors.
A third optional argument, which must be a string, contains extra options passed to the underlying qhull command. See the documentation for the Qhull library for details.
See also: delaunay, convhulln.
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Returns the index vector to the points of the enclosing convex hull.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
voronoin
# name: <cell-element>
# type: string
# elements: 1
# length: 555
-- Function File: [C, F] = voronoin (PTS)
-- Function File: [C, F] = voronoin (PTS, OPTIONS)
computes n- dimensional voronoi facets. The input matrix PTS of size [n, dim] contains n points of dimension dim. C contains the points of the voronoi facets. The list F contains for each facet the indices of the voronoi points.
A second optional argument, which must be a string, contains extra options passed to the underlying qhull command. See the documentation for the Qhull library for details. See also: voronoin, delaunay, convhull.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
computes n- dimensional voronoi facets.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
inpolygon
# name: <cell-element>
# type: string
# elements: 1
# length: 293
-- Function File: [IN, ON] = inpolygon (X, Y, XV, XY)
For a polygon defined by `(XV, YV)' points, determine if the points `(X, Y)' are inside or outside the polygon. The variables X, Y, must have the same dimension. The optional output ON gives the points that are on the polygon.
# name: <cell-element>
# type: string
# elements: 1
# length: 111
For a polygon defined by `(XV, YV)' points, determine if the points `(X, Y)' are inside or outside the polygon.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
griddata
# name: <cell-element>
# type: string
# elements: 1
# length: 495
-- Function File: ZI = griddata (X, Y, Z, XI, YI, METHOD)
-- Function File: [XI, YI, ZI] = griddata (X, Y, Z, XI, YI, METHOD)
Generate a regular mesh from irregular data using interpolation. The function is defined by `Z = f (X, Y)'. The interpolation points are all `(XI, YI)'. If XI, YI are vectors then they are made into a 2D mesh.
The interpolation method can be `"nearest"', `"cubic"' or `"linear"'. If method is omitted it defaults to `"linear"'. See also: delaunay.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Generate a regular mesh from irregular data using interpolation.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
trimesh
# name: <cell-element>
# type: string
# elements: 1
# length: 357
-- Function File: trimesh (TRI, X, Y, Z)
-- Function File: H = trimesh (...)
Plot a triangular mesh in 3D. The variable TRI is the triangular meshing of the points `(X, Y)' which is returned from `delaunay'. The variable Z is value at the point `(X, Y)'. The output argument H is the graphic handle to the plot. See also: triplot, delaunay3.
# name: <cell-element>
# type: string
# elements: 1
# length: 29
Plot a triangular mesh in 3D.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
dsearchn
# name: <cell-element>
# type: string
# elements: 1
# length: 465
-- Function File: IDX = dsearchn (X, TRI, XI)
-- Function File: IDX = dsearchn (X, TRI, XI, OUTVAL)
-- Function File: IDX = dsearchn (X, XI)
-- Function File: [IDX, D] = dsearchn (...)
Returns the index IDX or the closest point in X to the elements XI. If OUTVAL is supplied, then the values of XI that are not contained within one of the simplicies TRI are set to OUTVAL. Generally, TRI is returned from `delaunayn (X)'. See also: dsearch, tsearch.
# name: <cell-element>
# type: string
# elements: 1
# length: 67
Returns the index IDX or the closest point in X to the elements XI.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
triplot
# name: <cell-element>
# type: string
# elements: 1
# length: 433
-- Function File: triplot (TRI, X, Y)
-- Function File: triplot (TRI, X, Y, LINESPEC)
-- Function File: H = triplot (...)
Plot a triangular mesh in 2D. The variable TRI is the triangular meshing of the points `(X, Y)' which is returned from `delaunay'. If given, the LINESPEC determines the properties to use for the lines. The output argument H is the graphic handle to the plot. See also: plot, trimesh, delaunay.
# name: <cell-element>
# type: string
# elements: 1
# length: 29
Plot a triangular mesh in 2D.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
delaunay
# name: <cell-element>
# type: string
# elements: 1
# length: 863
-- Function File: TRI = delaunay (X, Y)
-- Function File: TRI = delaunay (X, Y, OPT)
The return matrix of size [n, 3] contains a set triangles which are described by the indices to the data point x and y vector. The triangulation satisfies the Delaunay circum-circle criterion. No other data point is in the circum-circle of the defining triangle.
A third optional argument, which must be a string, contains extra options passed to the underlying qhull command. See the documentation for the Qhull library for details.
x = rand (1, 10);
y = rand (size (x));
T = delaunay (x, y);
X = [x(T(:,1)); x(T(:,2)); x(T(:,3)); x(T(:,1))];
Y = [y(T(:,1)); y(T(:,2)); y(T(:,3)); y(T(:,1))];
axis ([0,1,0,1]);
plot (X, Y, "b", x, y, "r*");
See also: voronoi, delaunay3, delaunayn.
# name: <cell-element>
# type: string
# elements: 1
# length: 126
The return matrix of size [n, 3] contains a set triangles which are described by the indices to the data point x and y vector.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
isonormals
# name: <cell-element>
# type: string
# elements: 1
# length: 3208
-- Function File: [N] = isonormals (VAL, V)
-- Function File: [N] = isonormals (VAL, P)
-- Function File: [N] = isonormals (X, Y, Z, VAL, V)
-- Function File: [N] = isonormals (X, Y, Z, VAL, P)
-- Function File: [N] = isonormals (..., "negate")
-- Function File: isonormals (..., P)
If called with one output argument and the first input argument VAL is a three-dimensional array that contains the data for an isosurface geometry and the second input argument V keeps the vertices of an isosurface then return the normals N in form of a matrix with the same size than V at computed points `[x, y, z] = meshgrid (1:l, 1:m, 1:n)'. The output argument N can be taken to manually set VERTEXNORMALS of a patch.
If called with further input arguments X, Y and Z which are three-dimensional arrays with the same size than VAL then the volume data is taken at those given points. Instead of the vertices data V a patch handle P can be passed to this function.
If given the string input argument "negate" as last input argument then compute the reverse vector normals of an isosurface geometry.
If no output argument is given then directly redraw the patch that is given by the patch handle P.
For example,
function [] = isofinish (p)
set (gca, "DataAspectRatioMode","manual","DataAspectRatio",[1 1 1]);
set (p, "VertexNormals", -get(p,"VertexNormals")); ## Revert normals
set (p, "FaceColor", "interp");
## set (p, "FaceLighting", "phong");
## light ("Position", [1 1 5]); ## Available with JHandles
endfunction
N = 15; ## Increase number of vertices in each direction
iso = .4; ## Change isovalue to .1 to display a sphere
lin = linspace (0, 2, N);
[x, y, z] = meshgrid (lin, lin, lin);
c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);
figure (); ## Open another figure window
subplot (2, 2, 1); view (-38, 20);
[f, v, cdat] = isosurface (x, y, z, c, iso, y);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, \
"FaceColor", "interp", "EdgeColor", "none");
isofinish (p); ## Call user function isofinish
subplot (2, 2, 2); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, \
"FaceColor", "interp", "EdgeColor", "none");
isonormals (x, y, z, c, p); ## Directly modify patch
isofinish (p);
subplot (2, 2, 3); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, \
"FaceColor", "interp", "EdgeColor", "none");
n = isonormals (x, y, z, c, v); ## Compute normals of isosurface
set (p, "VertexNormals", n); ## Manually set vertex normals
isofinish (p);
subplot (2, 2, 4); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, \
"FaceColor", "interp", "EdgeColor", "none");
isonormals (x, y, z, c, v, "negate"); ## Use reverse directly
isofinish (p);
See also: isosurface, isocolors, isocaps, marching_cube.
# name: <cell-element>
# type: string
# elements: 1
# length: 345
If called with one output argument and the first input argument VAL is a three-dimensional array that contains the data for an isosurface geometry and the second input argument V keeps the vertices of an isosurface then return the normals N in form of a matrix with the same size than V at computed points `[x, y, z] = meshgrid (1:l, 1:m, 1:n)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
grid
# name: <cell-element>
# type: string
# elements: 1
# length: 569
-- Function File: grid (ARG)
-- Function File: grid ("minor", ARG2)
-- Function File: grid (HAX, ...)
Force the display of a grid on the plot. The argument may be either `"on"', or `"off"'. If it is omitted, the current grid state is toggled.
If ARG is `"minor"' then the minor grid is toggled. When using a minor grid a second argument ARG2 is allowed, which can be either `"on"' or `"off"' to explicitly set the state of the minor grid.
If the first argument is an axis handle, HAX, operate on the specified axis object. See also: plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Force the display of a grid on the plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
semilogx
# name: <cell-element>
# type: string
# elements: 1
# length: 239
-- Function File: semilogx (ARGS)
Produce a two-dimensional plot using a log scale for the X axis. See the description of `plot' for a description of the arguments that `semilogx' will accept. See also: plot, semilogy, loglog.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Produce a two-dimensional plot using a log scale for the X axis.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
surface
# name: <cell-element>
# type: string
# elements: 1
# length: 765
-- Function File: surface (X, Y, Z, C)
-- Function File: surface (X, Y, Z)
-- Function File: surface (Z, C)
-- Function File: surface (Z)
-- Function File: surface (..., PROP, VAL)
-- Function File: surface (H, ...)
-- Function File: H = surface (...)
Plot a surface graphic object given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the surface. If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)). Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values. If X and Y are missing, they are constructed from size of the matrix Z.
Any additional properties passed are assigned to the surface. See also: surf, mesh, patch, line.
# name: <cell-element>
# type: string
# elements: 1
# length: 141
Plot a surface graphic object given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the surface.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
title
# name: <cell-element>
# type: string
# elements: 1
# length: 138
-- Function File: title (TITLE)
-- Function File: title (TITLE, P1, V1, ...)
Create a title object and return a handle to it.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Create a title object and return a handle to it.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
ellipsoid
# name: <cell-element>
# type: string
# elements: 1
# length: 380
-- Function File: [X, Y, Z] = ellipsoid (XC,YC, ZC, XR, YR, ZR, N)
-- Function File: ellipsoid (H, ...)
Generate three matrices in `meshgrid' format that define an ellipsoid. Called with no return arguments, `ellipsoid' calls directly `surf (X, Y, Z)'. If an axes handle is passed as the first argument, the surface is plotted to this set of axes. See also: sphere.
# name: <cell-element>
# type: string
# elements: 1
# length: 70
Generate three matrices in `meshgrid' format that define an ellipsoid.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
isfigure
# name: <cell-element>
# type: string
# elements: 1
# length: 130
-- Function File: isfigure (H)
Return true if H is a graphics handle that contains a figure object and false otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 88
Return true if H is a graphics handle that contains a figure object and false otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
findobj
# name: <cell-element>
# type: string
# elements: 1
# length: 1576
-- Function File: H = findobj ()
-- Function File: H = findobj (PROP_NAME, PROP_VALUE)
-- Function File: H = findobj ('-property', PROP_NAME)
-- Function File: H = findobj ('-regexp', PROP_NAME, PATTERN)
-- Function File: H = findobj ('flat', ...)
-- Function File: H = findobj (H, ...)
-- Function File: H = findobj (H, '-depth', D, ...)
Find object with specified property values. The simplest form is
findobj (PROP_NAME, PROP_VALUE)
which returns all of the handles to the objects with the name PROP_NAME and the name PROP_VALUE. The search can be limited to a particular object or set of objects and their descendants by passing a handle or set of handles H as the first argument to `findobj'.
The depth of hierarchy of objects to which to search to can be limited with the '-depth' argument. To limit the number depth of the hierarchy to search to D generations of children, and example is
findobj (H, '-depth', D, PROP_NAME, PROP_VALUE)
Specifying a depth D of 0, limits the search to the set of object passed in H. A depth D of 0 is equivalent to the '-flat' argument.
A specified logical operator may be applied to the pairs of PROP_NAME and PROP_VALUE. The supported logical operators are '-and', '-or', '-xor', '-not'.
The objects may also be matched by comparing a regular expression to the property values, where property values that match `regexp (PROP_VALUE, PATTERN)' are returned. Finally, objects may be matched by property name only, using the '-property' option. See also: get, set.
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Find object with specified property values.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
loglogerr
# name: <cell-element>
# type: string
# elements: 1
# length: 479
-- Function File: loglogerr (ARGS)
Produce two-dimensional plots on double logarithm axis with errorbars. Many different combinations of arguments are possible. The most used form is
loglogerr (X, Y, EY, FMT)
which produces a double logarithm plot of Y versus X with errors in the Y-scale defined by EY and the plot format defined by FMT. See errorbar for available formats and additional information. See also: errorbar, semilogxerr, semilogyerr.
# name: <cell-element>
# type: string
# elements: 1
# length: 70
Produce two-dimensional plots on double logarithm axis with errorbars.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
gcbo
# name: <cell-element>
# type: string
# elements: 1
# length: 514
-- Function File: H = gcbo ()
-- Function File: [H, FIG] = gcbo ()
Return a handle to the object whose callback is currently executing. If no callback is executing, this function returns the empty matrix. This handle is obtained from the root object property "CallbackObject".
Additionally return the handle of the figure containing the object whose callback is currently executing. If no callback is executing, the second output is also set to the empty matrix.
See also: gcf, gca, gcbf.
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Return a handle to the object whose callback is currently executing.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
stem
# name: <cell-element>
# type: string
# elements: 1
# length: 1419
-- Function File: H = stem (X, Y, LINESPEC)
-- Function File: H = stem (..., "filled")
Plot a stem graph from two vectors of x-y data. If only one argument is given, it is taken as the y-values and the x coordinates are taken from the indices of the elements.
If Y is a matrix, then each column of the matrix is plotted as a separate stem graph. In this case X can either be a vector, the same length as the number of rows in Y, or it can be a matrix of the same size as Y.
The default color is `"r"' (red). The default line style is `"-"' and the default marker is `"o"'. The line style can be altered by the `linespec' argument in the same manner as the `plot' command. For example
x = 1:10;
y = ones (1, length (x))*2.*x;
stem (x, y, "b");
plots 10 stems with heights from 2 to 20 in blue;
The return value of `stem' is a vector if "stem series" graphics handles, with one handle per column of the variable Y. This handle regroups the elements of the stem graph together as the children of the "stem series" handle, allowing them to be altered together. For example
x = [0 : 10].';
y = [sin(x), cos(x)]
h = stem (x, y);
set (h(2), "color", "g");
set (h(1), "basevalue", -1)
changes the color of the second "stem series" and moves the base line of the first. See also: bar, barh, plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Plot a stem graph from two vectors of x-y data.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
ezplot
# name: <cell-element>
# type: string
# elements: 1
# length: 1395
-- Function File: ezplot (F)
-- Function File: ezplot (FX, FY)
-- Function File: ezplot (..., DOM)
-- Function File: ezplot (..., N)
-- Function File: ezplot (H, ...)
-- Function File: H = ezplot (...)
Plots in two-dimensions the curve defined by F. The function F may be a string, inline function or function handle and can have either one or two variables. If F has one variable, then the function is plotted over the domain `-2*pi < X < 2*pi' with 500 points.
If F has two variables then `F(X,Y) = 0' is calculated over the meshed domain `-2*pi < X | Y < 2*pi' with 60 by 60 in the mesh. For example
ezplot (@(X, Y) X .^ 2 - Y .^ 2 - 1)
If two functions are passed as strings, inline functions or function handles, then the parametric function
X = FX (T)
Y = FY (T)
is plotted over the domain `-2*pi < T < 2*pi' with 500 points.
If DOM is a two element vector, it represents the minimum and maximum value of X, Y and T. If it is a four element vector, then the minimum and maximum values of X and T are determined by the first two elements and the minimum and maximum of Y by the second pair of elements.
N is a scalar defining the number of points to use in plotting the function.
The optional return value H provides a list of handles to the the line objects plotted.
See also: plot, ezplot3.
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Plots in two-dimensions the curve defined by F.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
ezcontourf
# name: <cell-element>
# type: string
# elements: 1
# length: 1013
-- Function File: ezcontourf (F)
-- Function File: ezcontourf (..., DOM)
-- Function File: ezcontourf (..., N)
-- Function File: ezcontourf (H, ...)
-- Function File: H = ezcontourf (...)
Plots the filled contour lines of a function. F is a string, inline function or function handle with two arguments defining the function. By default the plot is over the domain `-2*pi < X < 2*pi' and `-2*pi < Y < 2*pi' with 60 points in each dimension.
If DOM is a two element vector, it represents the minimum and maximum value of both X and Y. If DOM is a four element vector, then the minimum and maximum value of X and Y are specify separately.
N is a scalar defining the number of points to use in each dimension.
The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).
f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezcontourf (f, [-3, 3]);
See also: ezplot, ezcontour, ezsurfc, ezmeshc.
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Plots the filled contour lines of a function.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
ezcontour
# name: <cell-element>
# type: string
# elements: 1
# length: 1001
-- Function File: ezcontour (F)
-- Function File: ezcontour (..., DOM)
-- Function File: ezcontour (..., N)
-- Function File: ezcontour (H, ...)
-- Function File: H = ezcontour (...)
Plots the contour lines of a function. F is a string, inline function or function handle with two arguments defining the function. By default the plot is over the domain `-2*pi < X < 2*pi' and `-2*pi < Y < 2*pi' with 60 points in each dimension.
If DOM is a two element vector, it represents the minimum and maximum value of both X and Y. If DOM is a four element vector, then the minimum and maximum value of X and Y are specify separately.
N is a scalar defining the number of points to use in each dimension.
The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).
f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezcontour (f, [-3, 3]);
See also: ezplot, ezcontourf, ezsurfc, ezmeshc.
# name: <cell-element>
# type: string
# elements: 1
# length: 38
Plots the contour lines of a function.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
orient
# name: <cell-element>
# type: string
# elements: 1
# length: 361
-- Function File: orient (ORIENTATION)
Set the default print orientation. Valid values for ORIENTATION include `"landscape"', `"portrait"', and `"tall"'.
The `"tall"' option sets the orientation to portait and fills the page with the plot, while leaving a 0.25in border.
If called with no arguments, return the default print orientation.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Set the default print orientation.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
ginput
# name: <cell-element>
# type: string
# elements: 1
# length: 281
-- Function File: [X, Y, BUTTONS] = ginput (N)
Return which mouse buttons were pressed and keys were hit on the current figure. If N is defined, then wait for N mouse clicks before returning. If N is not defined, then `ginput' will loop until the return key is pressed.
# name: <cell-element>
# type: string
# elements: 1
# length: 80
Return which mouse buttons were pressed and keys were hit on the current figure.
# name: <cell-element>
# type: string
# elements: 1
# length: 14
gnuplot_binary
# name: <cell-element>
# type: string
# elements: 1
# length: 236
-- Loadable Function: VAL = gnuplot_binary ()
-- Loadable Function: OLD_VAL = gnuplot_binary (NEW_VAL)
Query or set the name of the program invoked by the plot command. The default value `\"gnuplot\"'. *Note Installation::.
# name: <cell-element>
# type: string
# elements: 1
# length: 65
Query or set the name of the program invoked by the plot command.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
barh
# name: <cell-element>
# type: string
# elements: 1
# length: 1088
-- Function File: barh (X, Y)
-- Function File: barh (Y)
-- Function File: barh (X, Y, W)
-- Function File: barh (X, Y, W, STYLE)
-- Function File: H = barh (..., PROP, VAL)
-- Function File: barh (H, ...)
Produce a horizontal bar graph from two vectors of x-y data.
If only one argument is given, it is taken as a vector of y-values and the x coordinates are taken to be the indices of the elements.
The default width of 0.8 for the bars can be changed using W.
If Y is a matrix, then each column of Y is taken to be a separate bar graph plotted on the same graph. By default the columns are plotted side-by-side. This behavior can be changed by the STYLE argument, which can take the values `"grouped"' (the default), or `"stacked"'.
The optional return value H provides a handle to the bar series object. See `bar' for a description of the use of the bar series.
The optional input handle H allows an axis handle to be passed. Properties of the patch graphics object can be changed using PROP, VAL pairs.
See also: bar, plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Produce a horizontal bar graph from two vectors of x-y data.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
ylim
# name: <cell-element>
# type: string
# elements: 1
# length: 771
-- Function File: XL = ylim ()
-- Function File: ylim (XL)
-- Function File: M = ylim ('mode')
-- Function File: ylim (M)
-- Function File: ylim (H, ...)
Get or set the limits of the y-axis of the current plot. Called without arguments `ylim' returns the y-axis limits of the current plot. If passed a two element vector XL, the limits of the y-axis are set to this value.
The current mode for calculation of the y-axis can be returned with a call `ylim ('mode')', and can be either 'auto' or 'manual'. The current plotting mode can be set by passing either 'auto' or 'manual' as the argument.
If passed an handle as the first argument, then operate on this handle rather than the current axes handle. See also: xlim, zlim, set, get, gca.
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Get or set the limits of the y-axis of the current plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
scatter3
# name: <cell-element>
# type: string
# elements: 1
# length: 1391
-- Function File: scatter3 (X, Y, Z, S, C)
-- Function File: scatter3 (..., 'filled')
-- Function File: scatter3 (..., STYLE)
-- Function File: scatter3 (..., PROP, VAL)
-- Function File: scatter3 (H, ...)
-- Function File: H = scatter3 (...)
Plot a scatter plot of the data in 3D. A marker is plotted at each point defined by the points in the vectors X, Y and Z. The size of the markers used is determined by S, which can be a scalar or a vector of the same length of X, Y and Z. If S is not given or is an empty matrix, then the default value of 8 points is used.
The color of the markers is determined by C, which can be a string defining a fixed color, a 3 element vector giving the red, green and blue components of the color, a vector of the same length as X that gives a scaled index into the current colormap, or a N-by-3 matrix defining the colors of each of the markers individually.
The marker to use can be changed with the STYLE argument, that is a string defining a marker in the same manner as the `plot' command. If the argument 'filled' is given then the markers as filled. All additional arguments are passed to the underlying patch command.
The optional return value H provides a handle to the patch object
[x, y, z] = peaks (20);
scatter3 (x(:), y(:), z(:), [], z(:));
See also: plot, patch, scatter.
# name: <cell-element>
# type: string
# elements: 1
# length: 38
Plot a scatter plot of the data in 3D.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
patch
# name: <cell-element>
# type: string
# elements: 1
# length: 741
-- Function File: patch ()
-- Function File: patch (X, Y, C)
-- Function File: patch (X, Y, Z, C)
-- Function File: patch (FV)
-- Function File: patch ('Faces', F, 'Vertices', V, ...)
-- Function File: patch (..., PROP, VAL)
-- Function File: patch (H, ...)
-- Function File: H = patch (...)
Create patch object from X and Y with color C and insert in the current axes object. Return handle to patch object.
For a uniform colored patch, C can be given as an RGB vector, scalar value referring to the current colormap, or string value (for example, "r" or "red").
If passed a structure FV contain the fields "vertices", "faces" and optionally "facevertexcdata", create the patch based on these properties.
# name: <cell-element>
# type: string
# elements: 1
# length: 84
Create patch object from X and Y with color C and insert in the current axes object.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
allchild
# name: <cell-element>
# type: string
# elements: 1
# length: 413
-- Function File: H = allchild (HANDLES)
Find all children, including hidden children, of a graphics object.
This function is similar to `get (h, "children")', but also returns includes hidden objects. If HANDLES is a scalar, H will be a vector. Otherwise, H will be a cell matrix of the same size as HANDLES and each cell will contain a vector of handles. See also: get, set, findall, findobj.
# name: <cell-element>
# type: string
# elements: 1
# length: 67
Find all children, including hidden children, of a graphics object.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
ezsurf
# name: <cell-element>
# type: string
# elements: 1
# length: 1533
-- Function File: ezsurf (F)
-- Function File: ezsurf (FX, FY, FZ)
-- Function File: ezsurf (..., DOM)
-- Function File: ezsurf (..., N)
-- Function File: ezsurf (..., 'circ')
-- Function File: ezsurf (H, ...)
-- Function File: H = ezsurf (...)
Plots the surface defined by a function. F is a string, inline function or function handle with two arguments defining the function. By default the plot is over the domain `-2*pi < X < 2*pi' and `-2*pi < Y < 2*pi' with 60 points in each dimension.
If DOM is a two element vector, it represents the minimum and maximum value of both X and Y. If DOM is a four element vector, then the minimum and maximum value of X and Y are specify separately.
N is a scalar defining the number of points to use in each dimension.
If three functions are passed, then plot the parametrically defined function `[FX (S, T), FY (S, T), FZ (S, T)]'.
If the argument 'circ' is given, then the function is plotted over a disk centered on the middle of the domain DOM.
The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).
f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezsurf (f, [-3, 3]);
An example of a parametrically defined function is
fx = @(s,t) cos (s) .* cos(t);
fy = @(s,t) sin (s) .* cos(t);
fz = @(s,t) sin(t);
ezsurf (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);
See also: ezplot, ezmesh, ezsurfc, ezmeshc.
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Plots the surface defined by a function.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
view
# name: <cell-element>
# type: string
# elements: 1
# length: 183
-- Function File: view (AZIMUTH, ELEVATION)
-- Function File: view (DIMS)
-- Function File: [AZIMUTH, ELEVATION] = view ()
Set or get the viewpoint for the current axes.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Set or get the viewpoint for the current axes.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
findall
# name: <cell-element>
# type: string
# elements: 1
# length: 446
-- Function File: H = findall ()
-- Function File: H = findall (PROP_NAME, PROP_VALUE)
-- Function File: H = findall (H, ...)
-- Function File: H = findall (H, "-depth", D, ...)
Find object with specified property values including hidden handles.
This function performs the same function as `findobj', but it includes hidden objects in its search. For full documentation, see `findobj'. See also: get, set, findobj, allchild.
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Find object with specified property values including hidden handles.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
gca
# name: <cell-element>
# type: string
# elements: 1
# length: 417
-- Function File: gca ()
Return a handle to the current axis object. If no axis object exists, create one and return its handle. The handle may then be used to examine or set properties of the axes. For example,
ax = gca ();
set (ax, "position", [0.5, 0.5, 0.5, 0.5]);
creates an empty axes object, then changes its location and size in the figure window. See also: get, set.
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Return a handle to the current axis object.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
semilogxerr
# name: <cell-element>
# type: string
# elements: 1
# length: 477
-- Function File: semilogxerr (ARGS)
Produce two-dimensional plots on a semilogarithm axis with errorbars. Many different combinations of arguments are possible. The most used form is
semilogxerr (X, Y, EY, FMT)
which produces a semi-logarithm plot of Y versus X with errors in the Y-scale defined by EY and the plot format defined by FMT. See errorbar for available formats and additional information. See also: errorbar, loglogerr semilogyerr.
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Produce two-dimensional plots on a semilogarithm axis with errorbars.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
semilogyerr
# name: <cell-element>
# type: string
# elements: 1
# length: 477
-- Function File: semilogyerr (ARGS)
Produce two-dimensional plots on a semilogarithm axis with errorbars. Many different combinations of arguments are possible. The most used form is
semilogyerr (X, Y, EY, FMT)
which produces a semi-logarithm plot of Y versus X with errors in the Y-scale defined by EY and the plot format defined by FMT. See errorbar for available formats and additional information. See also: errorbar, loglogerr semilogxerr.
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Produce two-dimensional plots on a semilogarithm axis with errorbars.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
sphere
# name: <cell-element>
# type: string
# elements: 1
# length: 468
-- Function File: [X, Y, Z] = sphere (N)
-- Function File: sphere (H, ...)
Generates three matrices in `meshgrid' format, such that `surf (X, Y, Z)' generates a unit sphere. The matrices of `N+1'-by-`N+1'. If N is omitted then a default value of 20 is assumed.
Called with no return arguments, `sphere' call directly `surf (X, Y, Z)'. If an axes handle is passed as the first argument, the surface is plotted to this set of axes. See also: peaks.
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Generates three matrices in `meshgrid' format, such that `surf (X, Y, Z)' generates a unit sphere.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
xlabel
# name: <cell-element>
# type: string
# elements: 1
# length: 351
-- Function File: xlabel (STRING)
-- Function File: ylabel (STRING)
-- Function File: zlabel (STRING)
-- Function File: xlabel (H, STRING)
Specify x, y, and z axis labels for the current figure. If H is specified then label the axis defined by H. See also: plot, semilogx, semilogy, loglog, polar, mesh, contour, bar, stairs, title.
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Specify x, y, and z axis labels for the current figure.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
meshz
# name: <cell-element>
# type: string
# elements: 1
# length: 382
-- Function File: meshz (X, Y, Z)
Plot a curtain mesh given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh. If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)). Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values. See also: meshgrid, mesh, contour.
# name: <cell-element>
# type: string
# elements: 1
# length: 128
Plot a curtain mesh given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
ezplot3
# name: <cell-element>
# type: string
# elements: 1
# length: 885
-- Function File: ezplot3 (FX, FY, FZ)
-- Function File: ezplot3 (..., DOM)
-- Function File: ezplot3 (..., N)
-- Function File: ezplot3 (H, ...)
-- Function File: H = ezplot3 (...)
Plots in three-dimensions the curve defined parametrically. FX, FY, and FZ are strings, inline functions or function handles with one arguments defining the function. By default the plot is over the domain `-2*pi < X < 2*pi' with 60 points.
If DOM is a two element vector, it represents the minimum and maximum value of T. N is a scalar defining the number of points to use.
The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).
fx = @(t) cos (t);
fy = @(t) sin (t);
fz = @(t) t;
ezplot3 (fx, fy, fz, [0, 10*pi], 100);
See also: plot3, ezplot, ezsurf, ezmesh.
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Plots in three-dimensions the curve defined parametrically.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
hidden
# name: <cell-element>
# type: string
# elements: 1
# length: 312
-- Function File: hidden (MODE)
-- Function File: hidden ()
Manipulation the mesh hidden line removal. Called with no argument the hidden line removal is toggled. The argument MODE can be either 'on' or 'off' and the set of the hidden line removal is set accordingly. See also: mesh, meshc, surf.
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Manipulation the mesh hidden line removal.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
shg
# name: <cell-element>
# type: string
# elements: 1
# length: 136
-- Function File: shg
Show the graph window. Currently, this is the same as executing `drawnow'. See also: drawnow, figure.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Show the graph window.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
specular
# name: <cell-element>
# type: string
# elements: 1
# length: 525
-- Function File: specular (SX, SY, SZ, L, V)
-- Function File: specular (SX, SY, SZ, L, V, SE)
Calculate specular reflection strength of a surface defined by the normal vector elements SX, SY, SZ using Phong's approximation. The light and view vectors can be specified using parameter L and V respectively. Both can be given as 2-element vectors [azimuth, elevation] in degrees or as 3-element vector [x, y, z]. An optional 6th argument describes the specular exponent (spread) SE. See also: surfl, diffuse.
# name: <cell-element>
# type: string
# elements: 1
# length: 129
Calculate specular reflection strength of a surface defined by the normal vector elements SX, SY, SZ using Phong's approximation.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
gcf
# name: <cell-element>
# type: string
# elements: 1
# length: 533
-- Function File: gcf ()
Return the current figure handle. If a figure does not exist, create one and return its handle. The handle may then be used to examine or set properties of the figure. For example,
fplot (@sin, [-10, 10]);
fig = gcf ();
set (fig, "visible", "off");
plots a sine wave, finds the handle of the current figure, and then makes that figure invisible. Setting the visible property of the figure to `"on"' will cause it to be displayed again. See also: get, set.
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Return the current figure handle.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
ezmesh
# name: <cell-element>
# type: string
# elements: 1
# length: 1530
-- Function File: ezmesh (F)
-- Function File: ezmesh (FX, FY, FZ)
-- Function File: ezmesh (..., DOM)
-- Function File: ezmesh (..., N)
-- Function File: ezmesh (..., 'circ')
-- Function File: ezmesh (H, ...)
-- Function File: H = ezmesh (...)
Plots the mesh defined by a function. F is a string, inline function or function handle with two arguments defining the function. By default the plot is over the domain `-2*pi < X < 2*pi' and `-2*pi < Y < 2*pi' with 60 points in each dimension.
If DOM is a two element vector, it represents the minimum and maximum value of both X and Y. If DOM is a four element vector, then the minimum and maximum value of X and Y are specify separately.
N is a scalar defining the number of points to use in each dimension.
If three functions are passed, then plot the parametrically defined function `[FX (S, T), FY (S, T), FZ (S, T)]'.
If the argument 'circ' is given, then the function is plotted over a disk centered on the middle of the domain DOM.
The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).
f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezmesh (f, [-3, 3]);
An example of a parametrically defined function is
fx = @(s,t) cos (s) .* cos(t);
fy = @(s,t) sin (s) .* cos(t);
fz = @(s,t) sin(t);
ezmesh (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);
See also: ezplot, ezsurf, ezsurfc, ezmeshc.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Plots the mesh defined by a function.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
bar
# name: <cell-element>
# type: string
# elements: 1
# length: 1384
-- Function File: bar (X, Y)
-- Function File: bar (Y)
-- Function File: bar (X, Y, W)
-- Function File: bar (X, Y, W, STYLE)
-- Function File: H = bar (..., PROP, VAL)
-- Function File: bar (H, ...)
Produce a bar graph from two vectors of x-y data.
If only one argument is given, it is taken as a vector of y-values and the x coordinates are taken to be the indices of the elements.
The default width of 0.8 for the bars can be changed using W.
If Y is a matrix, then each column of Y is taken to be a separate bar graph plotted on the same graph. By default the columns are plotted side-by-side. This behavior can be changed by the STYLE argument, which can take the values `"grouped"' (the default), or `"stacked"'.
The optional return value H provides a handle to the "bar series" object with one handle per column of the variable Y. This series allows common elements of the group of bar series objects to be changed in a single bar series and the same properties are changed in the other "bar series". For example
h = bar (rand (5, 10));
set (h(1), "basevalue", 0.5);
changes the position on the base of all of the bar series.
The optional input handle H allows an axis handle to be passed. Properties of the patch graphics object can be changed using PROP, VAL pairs.
See also: barh, plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Produce a bar graph from two vectors of x-y data.
# name: <cell-element>
# type: string
# elements: 1
# length: 18
waitforbuttonpress
# name: <cell-element>
# type: string
# elements: 1
# length: 208
-- Function File: B = waitforbuttonpress ()
Wait for button or mouse press.over a figure window. The value of B returns 0 if a mouse button was pressed or 1 is a key was pressed. See also: ginput.
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Wait for button or mouse press.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
pie
# name: <cell-element>
# type: string
# elements: 1
# length: 717
-- Function File: pie (Y)
-- Function File: pie (Y, EXPLODE)
-- Function File: pie (..., LABELS)
-- Function File: pie (H, ...);
-- Function File: H = pie (...);
Produce a pie chart.
Called with a single vector argument, produces a pie chart of the elements in X, with the size of the slice determined by percentage size of the values of X.
The variable EXPLODE is a vector of the same length as X that if non zero 'explodes' the slice from the pie chart.
If given LABELS is a cell array of strings of the same length as X, giving the labels of each of the slices of the pie chart.
The optional return value H provides a handle to the patch object.
See also: bar, stem.
# name: <cell-element>
# type: string
# elements: 1
# length: 20
Produce a pie chart.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
surfc
# name: <cell-element>
# type: string
# elements: 1
# length: 389
-- Function File: surfc (X, Y, Z)
Plot a surface and contour given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh. If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)). Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values. See also: meshgrid, surf, contour.
# name: <cell-element>
# type: string
# elements: 1
# length: 135
Plot a surface and contour given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
fplot
# name: <cell-element>
# type: string
# elements: 1
# length: 685
-- Function File: fplot (FN, LIMITS)
-- Function File: fplot (FN, LIMITS, TOL)
-- Function File: fplot (FN, LIMITS, N)
-- Function File: fplot (..., FMT)
Plot a function FN, within the defined limits. FN an be either a string, a function handle or an inline function. The limits of the plot are given by LIMITS of the form `[XLO, XHI]' or `[XLO, XHI, YLO, YHI]'. TOL is the default tolerance to use for the plot, and if TOL is an integer it is assumed that it defines the number points to use in the plot. The FMT argument is passed to the plot command.
fplot ("cos", [0, 2*pi])
fplot ("[cos(x), sin(x)]", [0, 2*pi])
See also: plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Plot a function FN, within the defined limits.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
ylabel
# name: <cell-element>
# type: string
# elements: 1
# length: 102
-- Function File: ylabel (STRING)
-- Function File: ylabel (H, STRING)
See also: xlabel..
# name: <cell-element>
# type: string
# elements: 1
# length: 17
See also: xlabel.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
sombrero
# name: <cell-element>
# type: string
# elements: 1
# length: 284
-- Function File: sombrero (N)
Produce the familiar three-dimensional sombrero plot using N grid lines. If N is omitted, a value of 41 is assumed.
The function plotted is
z = sin (sqrt (x^2 + y^2)) / (sqrt (x^2 + y^2))
See also: surf, meshgrid, mesh.
# name: <cell-element>
# type: string
# elements: 1
# length: 72
Produce the familiar three-dimensional sombrero plot using N grid lines.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
pcolor
# name: <cell-element>
# type: string
# elements: 1
# length: 1144
-- Function File: pcolor (X, Y, C)
-- Function File: pcolor (C)
Density plot for given matrices X, and Y from `meshgrid' and a matrix C corresponding to the X and Y coordinates of the mesh's vertices. If X and Y are vectors, then a typical vertex is (X(j), Y(i), C(i,j)). Thus, columns of C correspond to different X values and rows of C correspond to different Y values.
The `colormap' is scaled to the extents of C. Limits may be placed on the color axis by the command `caxis', or by setting the `clim' property of the parent axis.
The face color of each cell of the mesh is determined by interpolating the values of C for the cell's vertices. Contrast this with `imagesc' which renders one cell for each element of C.
`shading' modifies an attribute determining the manner by which the face color of each cell is interpolated from the values of C, and the visibility of the cells' edges. By default the attribute is "faceted", which renders a single color for each cell's face with the edge visible.
H is the handle to the surface object.
See also: caxis, contour, meshgrid, imagesc, shading.
# name: <cell-element>
# type: string
# elements: 1
# length: 136
Density plot for given matrices X, and Y from `meshgrid' and a matrix C corresponding to the X and Y coordinates of the mesh's vertices.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
surfnorm
# name: <cell-element>
# type: string
# elements: 1
# length: 1094
-- Function File: surfnorm (X, Y, Z)
-- Function File: surfnorm (Z)
-- Function File: [NX, NY, NZ] = surfnorm (...)
-- Function File: surfnorm (H, ...)
Find the vectors normal to a meshgridded surface. The meshed gridded surface is defined by X, Y, and Z. If X and Y are not defined, then it is assumed that they are given by
[X, Y] = meshgrid (1:size(Z, 1),
1:size(Z, 2));
If no return arguments are requested, a surface plot with the normal vectors to the surface is plotted. Otherwise the components of the normal vectors at the mesh gridded points are returned in NX, NY, and NZ.
The normal vectors are calculated by taking the cross product of the diagonals of each of the quadrilaterals in the meshgrid to find the normal vectors of the centers of these quadrilaterals. The four nearest normal vectors to the meshgrid points are then averaged to obtain the normal to the surface at the meshgridded points.
An example of the use of `surfnorm' is
surfnorm (peaks (25));
See also: surf, quiver3.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Find the vectors normal to a meshgridded surface.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
text
# name: <cell-element>
# type: string
# elements: 1
# length: 375
-- Function File: H = text (X, Y, LABEL)
-- Function File: H = text (X, Y, Z, LABEL)
-- Function File: H = text (X, Y, LABEL, P1, V1, ...)
-- Function File: H = text (X, Y, Z, LABEL, P1, V1, ...)
Create a text object with text LABEL at position X, Y, Z on the current axes. Property-value pairs following LABEL may be used to specify the appearance of the text.
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Create a text object with text LABEL at position X, Y, Z on the current axes.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
ezmeshc
# name: <cell-element>
# type: string
# elements: 1
# length: 1326
-- Function File: ezmeshc (F)
-- Function File: ezmeshc (FX, FY, FZ)
-- Function File: ezmeshc (..., DOM)
-- Function File: ezmeshc (..., N)
-- Function File: ezmeshc (..., 'circ')
-- Function File: ezmeshc (H, ...)
-- Function File: H = ezmeshc (...)
Plots the mesh and contour lines defined by a function. F is a string, inline function or function handle with two arguments defining the function. By default the plot is over the domain `-2*pi < X < 2*pi' and `-2*pi < Y < 2*pi' with 60 points in each dimension.
If DOM is a two element vector, it represents the minimum and maximum value of both X and Y. If DOM is a four element vector, then the minimum and maximum value of X and Y are specify separately.
N is a scalar defining the number of points to use in each dimension.
If three functions are passed, then plot the parametrically defined function `[FX (S, T), FY (S, T), FZ (S, T)]'.
If the argument 'circ' is given, then the function is plotted over a disk centered on the middle of the domain DOM.
The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).
f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezmeshc (f, [-3, 3]);
See also: ezplot, ezsurfc, ezsurf, ezmesh.
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Plots the mesh and contour lines defined by a function.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
plotyy
# name: <cell-element>
# type: string
# elements: 1
# length: 1209
-- Function File: plotyy (X1, Y1, X2, Y2)
-- Function File: plotyy (..., FUN)
-- Function File: plotyy (..., FUN1, FUN2)
-- Function File: plotyy (H, ...)
-- Function File: [AX, H1, H2] = plotyy (...)
Plots two sets of data with independent y-axes. The arguments X1 and Y1 define the arguments for the first plot and X1 and Y2 for the second.
By default the arguments are evaluated with `feval (@plot, X, Y)'. However the type of plot can be modified with the FUN argument, in which case the plots are generated by `feval (FUN, X, Y)'. FUN can be a function handle, an inline function or a string of a function name.
The function to use for each of the plots can be independently defined with FUN1 and FUN2.
If given, H defines the principal axis in which to plot the X1 and Y1 data. The return value AX is a two element vector with the axis handles of the two plots. H1 and H2 are handles to the objects generated by the plot commands.
x = 0:0.1:2*pi;
y1 = sin (x);
y2 = exp (x - 1);
ax = plotyy (x, y1, x - 1, y2, @plot, @semilogy);
xlabel ("X");
ylabel (ax(1), "Axis 1");
ylabel (ax(2), "Axis 2");
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Plots two sets of data with independent y-axes.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
rose
# name: <cell-element>
# type: string
# elements: 1
# length: 892
-- Function File: rose (TH, R)
-- Function File: rose (H, ...)
-- Function File: H = rose (...)
-- Function File: [R, TH] = rose (...)
Plot an angular histogram. With one vector argument TH, plots the histogram with 20 angular bins. If TH is a matrix, then each column of TH produces a separate histogram.
If R is given and is a scalar, then the histogram is produced with R bins. If R is a vector, then the center of each bin are defined by the values of R.
The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).
If two output arguments are requested, then rather than plotting the histogram, the polar vectors necessary to plot the histogram are returned.
[r, t] = rose ([2*randn(1e5,1), pi + 2 * randn(1e5,1)]);
polar (r, t);
See also: plot, compass, polar, hist.
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Plot an angular histogram.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
comet
# name: <cell-element>
# type: string
# elements: 1
# length: 560
-- Function File: comet (Y)
-- Function File: comet (X, Y)
-- Function File: comet (X, Y, P)
-- Function File: comet (AX, ...)
Produce a simple comet style animation along the trajectory provided by the input coordinate vectors (X, Y), where X will default to the indices of Y.
The speed of the comet may be controlled by P, which represents the time which passes as the animation passes from one point to the next. The default for P is 0.1 seconds.
If AX is specified the animation is produced in that axis rather than the `gca'.
# name: <cell-element>
# type: string
# elements: 1
# length: 150
Produce a simple comet style animation along the trajectory provided by the input coordinate vectors (X, Y), where X will default to the indices of Y.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
clabel
# name: <cell-element>
# type: string
# elements: 1
# length: 1453
-- Function File: clabel (C, H)
-- Function File: clabel (C, H, V)
-- Function File: clabel (C, H, "manual")
-- Function File: clabel (C)
-- Function File: clabel (C, H)
-- Function File: clabel (..., PROP, VAL, ...)
-- Function File: H = clabel (...)
Adds labels to the contours of a contour plot. The contour plot is specified by the contour matrix C and optionally the contourgroup object H that are returned by `contour', `contourf' and `contour3'. The contour labels are rotated and placed in the contour itself.
By default, all contours are labelled. However, the contours to label can be specified by the vector V. If the "manual" argument is given then the contours to label can be selected with the mouse.
Additional property/value pairs that are valid properties of text objects can be given and are passed to the underlying text objects. Additionally, the property "LabelSpacing" is available allowing the spacing between labels on a contour (in points) to be specified. The default is 144 points, or 2 inches.
The returned value H is the set of text object that represent the contour labels. The "userdata" property of the text objects contains the numerical value of the contour label.
An example of the use of `clabel' is
[c, h] = contour (peaks(), -4 : 6);
clabel (c, h, -4 : 2 : 6, 'fontsize', 12);
See also: contour, contourf, contour3, meshc, surfc, text.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Adds labels to the contours of a contour plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
axis
# name: <cell-element>
# type: string
# elements: 1
# length: 2333
-- Function File: axis (LIMITS)
Set axis limits for plots.
The argument LIMITS should be a 2, 4, or 6 element vector. The first and second elements specify the lower and upper limits for the x axis. The third and fourth specify the limits for the y-axis, and the fifth and sixth specify the limits for the z-axis.
Without any arguments, `axis' turns autoscaling on.
With one output argument, `x = axis' returns the current axes
The vector argument specifying limits is optional, and additional string arguments may be used to specify various axis properties. For example,
axis ([1, 2, 3, 4], "square");
forces a square aspect ratio, and
axis ("labely", "tic");
turns tic marks on for all axes and tic mark labels on for the y-axis only.
The following options control the aspect ratio of the axes.
`"square"'
Force a square aspect ratio.
`"equal"'
Force x distance to equal y-distance.
`"normal"'
Restore the balance.
The following options control the way axis limits are interpreted.
`"auto"'
Set the specified axes to have nice limits around the data or all if no axes are specified.
`"manual"'
Fix the current axes limits.
`"tight"'
Fix axes to the limits of the data.
The option `"image"' is equivalent to `"tight"' and `"equal"'.
The following options affect the appearance of tic marks.
`"on"'
Turn tic marks and labels on for all axes.
`"off"'
Turn tic marks off for all axes.
`"tic[xyz]"'
Turn tic marks on for all axes, or turn them on for the specified axes and off for the remainder.
`"label[xyz]"'
Turn tic labels on for all axes, or turn them on for the specified axes and off for the remainder.
`"nolabel"'
Turn tic labels off for all axes.
Note, if there are no tic marks for an axis, there can be no labels.
The following options affect the direction of increasing values on the axes.
`"ij"'
Reverse y-axis, so lower values are nearer the top.
`"xy"'
Restore y-axis, so higher values are nearer the top.
If an axes handle is passed as the first argument, then operate on this axes rather than the current axes.
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Set axis limits for plots.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
cla
# name: <cell-element>
# type: string
# elements: 1
# length: 406
-- Function File: cla ()
-- Function File: cla ("reset")
-- Function File: cla (HAX)
-- Function File: cla (HAX, "reset")
Delete the children of the current axes with visible handles. If HAX is specified and is an axes object handle, operate on it instead of the current axes. If the optional argument `"reset"' is specified, also delete the children with hidden handles. See also: clf.
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Delete the children of the current axes with visible handles.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
surfl
# name: <cell-element>
# type: string
# elements: 1
# length: 1410
-- Function File: surfl (X, Y, Z)
-- Function File: surfl (Z)
-- Function File: surfl (X, Y, Z, L)
-- Function File: surfl (X, Y, Z, L, P)
-- Function File: surfl (...,"light")
Plot a lighted surface given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh. If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)). Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.
The light direction can be specified using L. It can be given as 2-element vector [azimuth, elevation] in degrees or as 3-element vector [lx, ly, lz]. The default value is rotated 45° counter-clockwise from the current view.
The material properties of the surface can specified using a 4-element vector P = [AM D SP EXP] which defaults to P = [0.55 0.6 0.4 10].
`"AM" strength of ambient light'
`"D" strength of diffuse reflection'
`"SP" strength of specular reflection'
`"EXP" specular exponent'
The default lighting mode "cdata", changes the cdata property to give the impression of a lighted surface. Please note: the alternative "light" mode, which creates a light object to illuminate the surface is not implemented (yet).
Example:
colormap(bone);
surfl(peaks);
shading interp;
See also: surf, diffuse, specular, surface.
# name: <cell-element>
# type: string
# elements: 1
# length: 131
Plot a lighted surface given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
subplot
# name: <cell-element>
# type: string
# elements: 1
# length: 736
-- Function File: subplot (ROWS, COLS, INDEX)
-- Function File: subplot (RCN)
Set up a plot grid with COLS by ROWS subwindows and plot in location given by INDEX.
If only one argument is supplied, then it must be a three digit value specifying the location in digits 1 (rows) and 2 (columns) and the plot index in digit 3.
The plot index runs row-wise. First all the columns in a row are filled and then the next row is filled.
For example, a plot with 2 by 3 grid will have plot indices running as follows:
+-----+-----+-----+
| 1 | 2 | 3 |
+-----+-----+-----+
| 4 | 5 | 6 |
+-----+-----+-----+
See also: plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 84
Set up a plot grid with COLS by ROWS subwindows and plot in location given by INDEX.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
contourc
# name: <cell-element>
# type: string
# elements: 1
# length: 1036
-- Function File: [C, LEV] = contourc (X, Y, Z, VN)
Compute isolines (contour lines) of the matrix Z. Parameters X, Y and VN are optional.
The return value LEV is a vector of the contour levels. The return value C is a 2 by N matrix containing the contour lines in the following format
C = [lev1, x1, x2, ..., levn, x1, x2, ...
len1, y1, y2, ..., lenn, y1, y2, ...]
in which contour line N has a level (height) of LEVN and length of LENN.
If X and Y are omitted they are taken as the row/column index of Z. VN is either a scalar denoting the number of lines to compute or a vector containing the values of the lines. If only one value is wanted, set `VN = [val, val]'; If VN is omitted it defaults to 10.
For example,
x = 0:2;
y = x;
z = x' * y;
contourc (x, y, z, 2:3)
=> 2.0000 2.0000 1.0000 3.0000 1.5000 2.0000
2.0000 1.0000 2.0000 2.0000 2.0000 1.5000
See also: contour.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Compute isolines (contour lines) of the matrix Z.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
plot3
# name: <cell-element>
# type: string
# elements: 1
# length: 1525
-- Function File: plot3 (ARGS)
Produce three-dimensional plots. Many different combinations of arguments are possible. The simplest form is
plot3 (X, Y, Z)
in which the arguments are taken to be the vertices of the points to be plotted in three dimensions. If all arguments are vectors of the same length, then a single continuous line is drawn. If all arguments are matrices, then each column of the matrices is treated as a separate line. No attempt is made to transpose the arguments to make the number of rows match.
If only two arguments are given, as
plot3 (X, C)
the real and imaginary parts of the second argument are used as the Y and Z coordinates, respectively.
If only one argument is given, as
plot3 (C)
the real and imaginary parts of the argument are used as the Y and Z values, and they are plotted versus their index.
Arguments may also be given in groups of three as
plot3 (X1, Y1, Z1, X2, Y2, Z2, ...)
in which each set of three arguments is treated as a separate line or set of lines in three dimensions.
To plot multiple one- or two-argument groups, separate each group with an empty format string, as
plot3 (X1, C1, "", C2, "", ...)
An example of the use of `plot3' is
z = [0:0.05:5];
plot3 (cos(2*pi*z), sin(2*pi*z), z, ";helix;");
plot3 (z, exp(2i*pi*z), ";complex sinusoid;");
See also: plot, xlabel, ylabel, zlabel, title, print.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Produce three-dimensional plots.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
ezpolar
# name: <cell-element>
# type: string
# elements: 1
# length: 773
-- Function File: ezpolar (F)
-- Function File: ezpolar (..., DOM)
-- Function File: ezpolar (..., N)
-- Function File: ezpolar (H, ...)
-- Function File: H = ezpolar (...)
Plots in polar plot defined by a function. The function F is either a string, inline function or function handle with one arguments defining the function. By default the plot is over the domain `0 < X < 2*pi' with 60 points.
If DOM is a two element vector, it represents the minimum and maximum value of both T. N is a scalar defining the number of points to use.
The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).
ezpolar (@(t) 1 + sin (t));
See also: polar, ezplot, ezsurf, ezmesh.
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Plots in polar plot defined by a function.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
ribbon
# name: <cell-element>
# type: string
# elements: 1
# length: 428
-- Function File: ribbon (X, Y, WIDTH)
-- Function File: ribbon (Y)
-- Function File: H = ribbon (...)
Plot a ribbon plot for the columns of Y vs. X. The optional parameter WIDTH specifies the width of a single ribbon (default is 0.75). If X is omitted, a vector containing the row numbers is assumed (1:rows(Y)). If requested, return a vector H of the handles to the surface objects. See also: gca, colorbar.
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Plot a ribbon plot for the columns of Y vs.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
pareto
# name: <cell-element>
# type: string
# elements: 1
# length: 1386
-- Function File: pareto (X)
-- Function File: pareto (X, Y)
-- Function File: pareto (H, ...)
-- Function File: H = pareto (...)
Draw a Pareto chart, also called ABC chart. A Pareto chart is a bar graph used to arrange information in such a way that priorities for process improvement can be established. It organizes and displays information to show the relative importance of data. The chart is similar to the histogram or bar chart, except that the bars are arranged in decreasing order from left to right along the abscissa.
The fundamental idea (Pareto principle) behind the use of Pareto diagrams is that the majority of an effect is due to a small subset of the causes, so for quality improvement the first few (as presented on the diagram) contributing causes to a problem usually account for the majority of the result. Thus, targeting these "major causes" for elimination results in the most cost-effective improvement scheme.
The data are passed as X and the abscissa as Y. If Y is absent, then the abscissa are assumed to be `1 : length (X)'. Y can be a string array, a cell array of strings or a numerical vector.
An example of the use of `pareto' is
Cheese = {"Cheddar", "Swiss", "Camembert", ...
"Munster", "Stilton", "Blue"};
Sold = [105, 30, 70, 10, 15, 20];
pareto(Sold, Cheese);
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Draw a Pareto chart, also called ABC chart.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
legend
# name: <cell-element>
# type: string
# elements: 1
# length: 3141
-- Function File: legend (ST1, ST2, ...)
-- Function File: legend (ST1, ST2, ..., "location", POS)
-- Function File: legend (MATSTR)
-- Function File: legend (MATSTR, "location", POS)
-- Function File: legend (CELL)
-- Function File: legend (CELL, "location", POS)
-- Function File: legend ('FUNC')
Display a legend for the current axes using the specified strings as labels. Legend entries may be specified as individual character string arguments, a character array, or a cell array of character strings. Legend works on line graphs, bar graphs, etc. A plot must exist before legend is called.
The optional parameter POS specifies the location of the legend as follows:
north center top
south center bottom
east right center
west left center
northeast right top (default)
northwest left top
southeast right bottom
southwest left bottom
outside can be appended to any location string
Some specific functions are directly available using FUNC:
"show"
Show legends from the plot
"hide"
"off"
Hide legends from the plot
"boxon"
Draw a box around legends
"boxoff"
Withdraw the box around legends
"left"
Text is to the left of the keys
"right"
Text is to the right of the keys
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Display a legend for the current axes using the specified strings as labels.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
mesh
# name: <cell-element>
# type: string
# elements: 1
# length: 367
-- Function File: mesh (X, Y, Z)
Plot a mesh given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh. If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)). Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values. See also: meshgrid, contour.
# name: <cell-element>
# type: string
# elements: 1
# length: 120
Plot a mesh given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
peaks
# name: <cell-element>
# type: string
# elements: 1
# length: 854
-- Function File: peaks ()
-- Function File: peaks (N)
-- Function File: peaks (X, Y)
-- Function File: Z = peaks (...)
-- Function File: [X, Y, Z] = peaks (...)
Generate a function with lots of local maxima and minima. The function has the form
f(x,y) = 3*(1-x)^2*exp(-x^2 - (y+1)^2) ...
- 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2) ...
- 1/3*exp(-(x+1)^2 - y^2)
Called without a return argument, `peaks' plots the surface of the above function using `mesh'. If N is a scalar, the `peaks' returns the values of the above function on a N-by-N mesh over the range `[-3,3]'. The default value for N is 49.
If N is a vector, then it represents the X and Y values of the grid on which to calculate the above function. The X and Y values can be specified separately. See also: surf, mesh, meshgrid.
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Generate a function with lots of local maxima and minima.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
contour
# name: <cell-element>
# type: string
# elements: 1
# length: 982
-- Function File: contour (Z)
-- Function File: contour (Z, VN)
-- Function File: contour (X, Y, Z)
-- Function File: contour (X, Y, Z, VN)
-- Function File: contour (..., STYLE)
-- Function File: contour (H, ...)
-- Function File: [C, H] = contour (...)
Plot level curves (contour lines) of the matrix Z, using the contour matrix C computed by `contourc' from the same arguments; see the latter for their interpretation. The set of contour levels, C, is only returned if requested. For example:
x = 0:2;
y = x;
z = x' * y;
contour (x, y, z, 2:3)
The style to use for the plot can be defined with a line style STYLE in a similar manner to the line styles used with the `plot' command. Any markers defined by STYLE are ignored.
The optional input and output argument H allows an axis handle to be passed to `contour' and the handles to the contour objects to be returned. See also: contourc, patch, plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 166
Plot level curves (contour lines) of the matrix Z, using the contour matrix C computed by `contourc' from the same arguments; see the latter for their interpretation.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
isosurface
# name: <cell-element>
# type: string
# elements: 1
# length: 3902
-- Function File: [FV] = isosurface (VAL, ISO)
-- Function File: [FV] = isosurface (X, Y, Z, VAL, ISO)
-- Function File: [FV] = isosurface (..., "noshare", "verbose")
-- Function File: [FVC] = isosurface (..., COL)
-- Function File: [F, V] = isosurface (X, Y, Z, VAL, ISO)
-- Function File: [F, V, C] = isosurface (X, Y, Z, VAL, ISO, COL)
-- Function File: isosurface (X, Y, Z, VAL, ISO, COL, OPT)
If called with one output argument and the first input argument VAL is a three-dimensional array that contains the data of an isosurface geometry and the second input argument ISO keeps the isovalue as a scalar value then return a structure array FV that contains the fields FACES and VERTICES at computed points `[x, y, z] = meshgrid (1:l, 1:m, 1:n)'. The output argument FV can directly be taken as an input argument for the `patch' function.
If called with further input arguments X, Y and Z which are three-dimensional arrays with the same size than VAL then the volume data is taken at those given points.
The string input argument "noshare" is only for compatibility and has no effect. If given the string input argument "verbose" then print messages to the command line interface about the current progress.
If called with the input argument COL which is a three-dimensional array of the same size than VAL then take those values for the interpolation of coloring the isosurface geometry. Add the field FACEVERTEXCDATA to the structure array FV.
If called with two or three output arguments then return the information about the faces F, vertices V and color data C as seperate arrays instead of a single structure array.
If called with no output argument then directly process the isosurface geometry with the `patch' command.
For example
[x, y, z] = meshgrid (1:5, 1:5, 1:5);
val = rand (5, 5, 5);
isosurface (x, y, z, val, .5);
will directly draw a random isosurface geometry in a graphics window. Another example for an isosurface geometry with different additional coloring
N = 15; ## Increase number of vertices in each direction
iso = .4; ## Change isovalue to .1 to display a sphere
lin = linspace (0, 2, N);
[x, y, z] = meshgrid (lin, lin, lin);
c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);
figure (); ## Open another figure window
subplot (2, 2, 1); view (-38, 20);
[f, v] = isosurface (x, y, z, c, iso);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
set (gca, "DataAspectRatioMode","manual", "DataAspectRatio", [1 1 1]);
set (p, "FaceColor", "green", "FaceLighting", "phong");
light ("Position", [1 1 5]); ## Available with the JHandles package
subplot (2, 2, 2); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "blue");
set (gca, "DataAspectRatioMode","manual", "DataAspectRatio", [1 1 1]);
set (p, "FaceColor", "none", "FaceLighting", "phong");
light ("Position", [1 1 5]);
subplot (2, 2, 3); view (-38, 20);
[f, v, c] = isosurface (x, y, z, c, iso, y);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", c, \
"FaceColor", "interp", "EdgeColor", "none");
set (gca, "DataAspectRatioMode","manual", "DataAspectRatio", [1 1 1]);
set (p, "FaceLighting", "phong");
light ("Position", [1 1 5]);
subplot (2, 2, 4); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", c, \
"FaceColor", "interp", "EdgeColor", "blue");
set (gca, "DataAspectRatioMode","manual", "DataAspectRatio", [1 1 1]);
set (p, "FaceLighting", "phong");
light ("Position", [1 1 5]);
See also: isocolors, isonormals, isocaps.
# name: <cell-element>
# type: string
# elements: 1
# length: 352
If called with one output argument and the first input argument VAL is a three-dimensional array that contains the data of an isosurface geometry and the second input argument ISO keeps the isovalue as a scalar value then return a structure array FV that contains the fields FACES and VERTICES at computed points `[x, y, z] = meshgrid (1:l, 1:m, 1:n)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
isocolors
# name: <cell-element>
# type: string
# elements: 1
# length: 3332
-- Function File: [CD] = isocolors (C, V)
-- Function File: [CD] = isocolors (X, Y, Z, C, V)
-- Function File: [CD] = isocolors (X, Y, Z, R, G, B, V)
-- Function File: [CD] = isocolors (R, G, B, V)
-- Function File: [CD] = isocolors (..., P)
-- Function File: isocolors (...)
If called with one output argument and the first input argument C is a three-dimensional array that contains color values and the second input argument V keeps the vertices of a geometry then return a matrix CD with color data information for the geometry at computed points `[x, y, z] = meshgrid (1:l, 1:m, 1:n)'. The output argument CD can be taken to manually set FaceVertexCData of a patch.
If called with further input arguments X, Y and Z which are three-dimensional arrays of the same size than C then the color data is taken at those given points. Instead of the color data C this function can also be called with RGB values R, G, B. If input argumnets X, Y, Z are not given then again `meshgrid' computed values are taken.
Optionally, the patch handle P can be given as the last input argument to all variations of function calls instead of the vertices data V. Finally, if no output argument is given then directly change the colors of a patch that is given by the patch handle P.
For example,
function [] = isofinish (p)
set (gca, "DataAspectRatioMode", "manual", \
"DataAspectRatio", [1 1 1]);
set (p, "FaceColor", "interp");
## set (p, "FaceLighting", "flat");
## light ("Position", [1 1 5]); ## Available with JHandles
endfunction
N = 15; ## Increase number of vertices in each direction
iso = .4; ## Change isovalue to .1 to display a sphere
lin = linspace (0, 2, N);
[x, y, z] = meshgrid (lin, lin, lin);
c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);
figure (); ## Open another figure window
subplot (2, 2, 1); view (-38, 20);
[f, v] = isosurface (x, y, z, c, iso);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
cdat = rand (size (c)); ## Compute random patch color data
isocolors (x, y, z, cdat, p); ## Directly set colors of patch
isofinish (p); ## Call user function isofinish
subplot (2, 2, 2); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
[r, g, b] = meshgrid (lin, 2-lin, 2-lin);
cdat = isocolors (x, y, z, c, v); ## Compute color data vertices
set (p, "FaceVertexCData", cdat); ## Set color data manually
isofinish (p);
subplot (2, 2, 3); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
cdat = isocolors (r, g, b, c, p); ## Compute color data patch
set (p, "FaceVertexCData", cdat); ## Set color data manually
isofinish (p);
subplot (2, 2, 4); view (-38, 20);
p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
r = g = b = repmat ([1:N] / N, [N, 1, N]); ## Black to white
cdat = isocolors (x, y, z, r, g, b, v);
set (p, "FaceVertexCData", cdat);
isofinish (p);
See also: isosurface, isonormals, isocaps.
# name: <cell-element>
# type: string
# elements: 1
# length: 314
If called with one output argument and the first input argument C is a three-dimensional array that contains color values and the second input argument V keeps the vertices of a geometry then return a matrix CD with color data information for the geometry at computed points `[x, y, z] = meshgrid (1:l, 1:m, 1:n)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 15
gnuplot_drawnow
# name: <cell-element>
# type: string
# elements: 1
# length: 228
-- Function File: drawnow ()
Update and display the current graphics.
Octave automatically calls drawnow just before printing a prompt, when `sleep' or `pause' is called, or while waiting for command-line input.
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Update and display the current graphics.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
quiver3
# name: <cell-element>
# type: string
# elements: 1
# length: 1453
-- Function File: quiver3 (U, V, W)
-- Function File: quiver3 (X, Y, Z, U, V, W)
-- Function File: quiver3 (..., S)
-- Function File: quiver3 (..., STYLE)
-- Function File: quiver3 (..., 'filled')
-- Function File: quiver3 (H, ...)
-- Function File: H = quiver3 (...)
Plot the `(U, V, W)' components of a vector field in an `(X, Y), Z' meshgrid. If the grid is uniform, you can specify X, Y Z as vectors.
If X, Y and Z are undefined they are assumed to be `(1:M, 1:N, 1:P)' where `[M, N] = size(U)' and `P = max (size (W))'.
The variable S is a scalar defining a scaling factor to use for the arrows of the field relative to the mesh spacing. A value of 0 disables all scaling. The default value is 1.
The style to use for the plot can be defined with a line style STYLE in a similar manner to the line styles used with the `plot' command. If a marker is specified then markers at the grid points of the vectors are printed rather than arrows. If the argument 'filled' is given then the markers as filled.
The optional return value H provides a quiver group that regroups the components of the quiver plot (body, arrow and marker), and allows them to be changed together
[x, y, z] = peaks (25);
surf (x, y, z);
hold on;
[u, v, w] = surfnorm (x, y, z / 10);
h = quiver3 (x, y, z, u, v, w);
set (h, "maxheadsize", 0.33);
See also: plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Plot the `(U, V, W)' components of a vector field in an `(X, Y), Z' meshgrid.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
clf
# name: <cell-element>
# type: string
# elements: 1
# length: 481
-- Function File: clf ()
-- Function File: clf ("reset")
-- Function File: clf (HFIG)
-- Function File: clf (HFIG, "reset")
Clear the current figure window. `clf' operates by deleting child graphics objects with visible handles (`HandleVisibility' = on). If HFIG is specified operate on it instead of the current figure. If the optional argument `"reset"' is specified, all objects including those with hidden handles are deleted. See also: cla, close, delete.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Clear the current figure window.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
hggroup
# name: <cell-element>
# type: string
# elements: 1
# length: 379
-- Function File: hggroup ()
-- Function File: hggroup (H)
-- Function File: hggroup (..., PROPERTY, VALUE, ...)
Create group object with parent H. If no parent is specified, the group is created in the current axes. Return the handle of the group object created.
Multiple property-value pairs may be specified for the group, but they must appear in pairs.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Create group object with parent H.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
backend
# name: <cell-element>
# type: string
# elements: 1
# length: 399
-- Function File: backend (NAME)
-- Function File: backend (HLIST, NAME)
Change the default graphics backend to NAME. If the backend is not already loaded, it is first initialized (initialization is done through the execution of `__init_NAME__').
When called with a list of figure handles, HLIST, the backend is changed only for the listed figures. See also: available_backends.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Change the default graphics backend to NAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
refreshdata
# name: <cell-element>
# type: string
# elements: 1
# length: 886
-- Function File: refreshdata ()
-- Function File: refreshdata (H)
-- Function File: refreshdata (H, WORKSPACE)
Evaluate any `datasource' properties of the current figure and update the plot if the corresponding data has changed. If called with one or more arguments H is a scalar or array of figure handles to refresh. The optional second argument WORKSPACE can take the following values.
`"base"'
Evaluate the datasource properties in the base workspace. (default).
`"caller"'
Evaluate the datasource properties in the workspace of the function that called `refreshdata'.
An example of the use of `refreshdata' is:
x = 0:0.1:10;
y = sin (x);
plot (x, y, "ydatasource", "y");
for i = 1 : 100
pause(0.1)
y = sin (x + 0.1 * i);
refreshdata();
endfor
# name: <cell-element>
# type: string
# elements: 1
# length: 117
Evaluate any `datasource' properties of the current figure and update the plot if the corresponding data has changed.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
line
# name: <cell-element>
# type: string
# elements: 1
# length: 394
-- Function File: line ()
-- Function File: line (X, Y)
-- Function File: line (X, Y, Z)
-- Function File: line (X, Y, Z, PROPERTY, VALUE, ...)
Create line object from X and Y and insert in current axes object. Return a handle (or vector of handles) to the line objects created.
Multiple property-value pairs may be specified for the line, but they must appear in pairs.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Create line object from X and Y and insert in current axes object.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
ezsurfc
# name: <cell-element>
# type: string
# elements: 1
# length: 1329
-- Function File: ezsurfc (F)
-- Function File: ezsurfc (FX, FY, FZ)
-- Function File: ezsurfc (..., DOM)
-- Function File: ezsurfc (..., N)
-- Function File: ezsurfc (..., 'circ')
-- Function File: ezsurfc (H, ...)
-- Function File: H = ezsurfc (...)
Plots the surface and contour lines defined by a function. F is a string, inline function or function handle with two arguments defining the function. By default the plot is over the domain `-2*pi < X < 2*pi' and `-2*pi < Y < 2*pi' with 60 points in each dimension.
If DOM is a two element vector, it represents the minimum and maximum value of both X and Y. If DOM is a four element vector, then the minimum and maximum value of X and Y are specify separately.
N is a scalar defining the number of points to use in each dimension.
If three functions are passed, then plot the parametrically defined function `[FX (S, T), FY (S, T), FZ (S, T)]'.
If the argument 'circ' is given, then the function is plotted over a disk centered on the middle of the domain DOM.
The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).
f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezsurfc (f, [-3, 3]);
See also: ezplot, ezmeshc, ezsurf, ezmesh.
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Plots the surface and contour lines defined by a function.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
refresh
# name: <cell-element>
# type: string
# elements: 1
# length: 243
-- Function File: refresh ()
-- Function File: refresh (H)
Refresh a figure, forcing it to be redrawn. Called without an argument the current figure is redrawn, otherwise the figure pointed to by H is redrawn. See also: drawnow.
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Refresh a figure, forcing it to be redrawn.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
caxis
# name: <cell-element>
# type: string
# elements: 1
# length: 669
-- Function File: caxis (LIMITS)
-- Function File: caxis (H, ...)
Set color axis limits for plots.
The argument LIMITS should be a 2 element vector specifying the lower and upper limits to assign to the first and last value in the colormap. Values outside this range are clamped to the first and last colormap entries.
If LIMITS is 'auto', then automatic colormap scaling is applied, whereas if LIMITS is 'manual' the colormap scaling is set to manual.
Called without any arguments to current color axis limits are returned.
If an axes handle is passed as the first argument, then operate on this axes rather than the current axes.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Set color axis limits for plots.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
quiver
# name: <cell-element>
# type: string
# elements: 1
# length: 1332
-- Function File: quiver (U, V)
-- Function File: quiver (X, Y, U, V)
-- Function File: quiver (..., S)
-- Function File: quiver (..., STYLE)
-- Function File: quiver (..., 'filled')
-- Function File: quiver (H, ...)
-- Function File: H = quiver (...)
Plot the `(U, V)' components of a vector field in an `(X, Y)' meshgrid. If the grid is uniform, you can specify X and Y as vectors.
If X and Y are undefined they are assumed to be `(1:M, 1:N)' where `[M, N] = size(U)'.
The variable S is a scalar defining a scaling factor to use for the arrows of the field relative to the mesh spacing. A value of 0 disables all scaling. The default value is 1.
The style to use for the plot can be defined with a line style STYLE in a similar manner to the line styles used with the `plot' command. If a marker is specified then markers at the grid points of the vectors are printed rather than arrows. If the argument 'filled' is given then the markers as filled.
The optional return value H provides a quiver group that regroups the components of the quiver plot (body, arrow and marker), and allows them to be changed together
[x, y] = meshgrid (1:2:20);
h = quiver (x, y, sin (2*pi*x/10), sin (2*pi*y/10));
set (h, "maxheadsize", 0.33);
See also: plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Plot the `(U, V)' components of a vector field in an `(X, Y)' meshgrid.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
plot
# name: <cell-element>
# type: string
# elements: 1
# length: 3989
-- Function File: plot (Y)
-- Function File: plot (X, Y)
-- Function File: plot (X, Y, PROPERTY, VALUE, ...)
-- Function File: plot (X, Y, FMT)
-- Function File: plot (H, ...)
Produces two-dimensional plots. Many different combinations of arguments are possible. The simplest form is
plot (Y)
where the argument is taken as the set of Y coordinates and the X coordinates are taken to be the indices of the elements, starting with 1.
To save a plot, in one of several image formats such as PostScript or PNG, use the `print' command.
If more than one argument is given, they are interpreted as
plot (Y, PROPERTY, VALUE, ...)
or
plot (X, Y, PROPERTY, VALUE, ...)
or
plot (X, Y, FMT, ...)
and so on. Any number of argument sets may appear. The X and Y values are interpreted as follows:
* If a single data argument is supplied, it is taken as the set of Y coordinates and the X coordinates are taken to be the indices of the elements, starting with 1.
* If the X is a vector and Y is a matrix, then the columns (or rows) of Y are plotted versus X. (using whichever combination matches, with columns tried first.)
* If the X is a matrix and Y is a vector, Y is plotted versus the columns (or rows) of X. (using whichever combination matches, with columns tried first.)
* If both arguments are vectors, the elements of Y are plotted versus the elements of X.
* If both arguments are matrices, the columns of Y are plotted versus the columns of X. In this case, both matrices must have the same number of rows and columns and no attempt is made to transpose the arguments to make the number of rows match.
If both arguments are scalars, a single point is plotted.
Multiple property-value pairs may be specified, but they must appear in pairs. These arguments are applied to the lines drawn by `plot'.
If the FMT argument is supplied, it is interpreted as follows. If FMT is missing, the default gnuplot line style is assumed.
`-'
Set lines plot style (default).
`.'
Set dots plot style.
`N'
Interpreted as the plot color if N is an integer in the range 1 to 6.
`NM'
If NM is a two digit integer and M is an integer in the range 1 to 6, M is interpreted as the point style. This is only valid in combination with the `@' or `-@' specifiers.
`C'
If C is one of `"k"' (black), `"r"' (red), `"g"' (green), `"b"' (blue), `"m"' (magenta), `"c"' (cyan), or `"w"' (white), it is interpreted as the line plot color.
`";title;"'
Here `"title"' is the label for the key.
`+'
`*'
`o'
`x'
`^'
Used in combination with the points or linespoints styles, set the point style.
The FMT argument may also be used to assign key titles. To do so, include the desired title between semi-colons after the formatting sequence described above, e.g., "+3;Key Title;" Note that the last semi-colon is required and will generate an error if it is left out.
Here are some plot examples:
plot (x, y, "@12", x, y2, x, y3, "4", x, y4, "+")
This command will plot `y' with points of type 2 (displayed as `+') and color 1 (red), `y2' with lines, `y3' with lines of color 4 (magenta) and `y4' with points displayed as `+'.
plot (b, "*", "markersize", 3)
This command will plot the data in the variable `b', with points displayed as `*' with a marker size of 3.
t = 0:0.1:6.3;
plot (t, cos(t), "-;cos(t);", t, sin(t), "+3;sin(t);");
This will plot the cosine and sine functions and label them accordingly in the key.
If the first argument is an axis handle, then plot into these axes, rather than the current axis handle returned by `gca'. See also: semilogx, semilogy, loglog, polar, mesh, contour, bar, stairs, errorbar, xlabel, ylabel, title, print.
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Produces two-dimensional plots.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
scatter
# name: <cell-element>
# type: string
# elements: 1
# length: 1399
-- Function File: scatter (X, Y, S, C)
-- Function File: scatter (..., 'filled')
-- Function File: scatter (..., STYLE)
-- Function File: scatter (..., PROP, VAL)
-- Function File: scatter (H, ...)
-- Function File: H = scatter (...)
Plot a scatter plot of the data. A marker is plotted at each point defined by the points in the vectors X and Y. The size of the markers used is determined by the S, which can be a scalar, a vector of the same length of X and Y. If S is not given or is an empty matrix, then the default value of 8 points is used.
The color of the markers is determined by C, which can be a string defining a fixed color, a 3 element vector giving the red, green and blue components of the color, a vector of the same length as X that gives a scaled index into the current colormap, or a N-by-3 matrix defining the colors of each of the markers individually.
The marker to use can be changed with the STYLE argument, that is a string defining a marker in the same manner as the `plot' command. If the argument 'filled' is given then the markers as filled. All additional arguments are passed to the underlying patch command.
The optional return value H provides a handle to the patch object
x = randn (100, 1);
y = randn (100, 1);
scatter (x, y, [], sqrt(x.^2 + y.^2));
See also: plot, patch, scatter3.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Plot a scatter plot of the data.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
surf
# name: <cell-element>
# type: string
# elements: 1
# length: 366
-- Function File: surf (X, Y, Z)
Plot a surface given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh. If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)). Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values. See also: mesh, surface.
# name: <cell-element>
# type: string
# elements: 1
# length: 123
Plot a surface given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
feather
# name: <cell-element>
# type: string
# elements: 1
# length: 760
-- Function File: feather (U, V)
-- Function File: feather (Z)
-- Function File: feather (..., STYLE)
-- Function File: feather (H, ...)
-- Function File: H = feather (...)
Plot the `(U, V)' components of a vector field emanating from equidistant points on the x-axis. If a single complex argument Z is given, then `U = real (Z)' and `V = imag (Z)'.
The style to use for the plot can be defined with a line style STYLE in a similar manner to the line styles used with the `plot' command.
The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).
phi = [0 : 15 : 360] * pi / 180;
feather (sin (phi), cos (phi))
See also: plot, quiver, compass.
# name: <cell-element>
# type: string
# elements: 1
# length: 95
Plot the `(U, V)' components of a vector field emanating from equidistant points on the x-axis.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
newplot
# name: <cell-element>
# type: string
# elements: 1
# length: 173
-- Function File: newplot ()
Prepare graphics engine to produce a new plot. This function should be called at the beginning of all high-level plotting functions.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Prepare graphics engine to produce a new plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
polar
# name: <cell-element>
# type: string
# elements: 1
# length: 199
-- Function File: polar (THETA, RHO, FMT)
Make a two-dimensional plot given the polar coordinates THETA and RHO.
The optional third argument specifies the line type. See also: plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 70
Make a two-dimensional plot given the polar coordinates THETA and RHO.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
closereq
# name: <cell-element>
# type: string
# elements: 1
# length: 143
-- Function File: closereq ()
Close the current figure and delete all graphics objects associated with it. See also: close, delete.
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Close the current figure and delete all graphics objects associated with it.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
area
# name: <cell-element>
# type: string
# elements: 1
# length: 836
-- Function File: area (X, Y)
-- Function File: area (X, Y, LVL)
-- Function File: area (..., PROP, VAL, ...)
-- Function File: area (Y, ...)
-- Function File: area (H, ...)
-- Function File: H = area (...)
Area plot of cumulative sum of the columns of Y. This shows the contributions of a value to a sum, and is functionally similar to `plot (X, cumsum (Y, 2))', except that the area under the curve is shaded.
If the X argument is omitted it is assumed to be given by `1 : rows (Y)'. A value LVL can be defined that determines where the base level of the shading under the curve should be defined.
Additional arguments to the `area' function are passed to the `patch'. The optional return value H provides a handle to area series object representing the patches of the areas. See also: plot, patch.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Area plot of cumulative sum of the columns of Y.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
xlim
# name: <cell-element>
# type: string
# elements: 1
# length: 771
-- Function File: XL = xlim ()
-- Function File: xlim (XL)
-- Function File: M = xlim ('mode')
-- Function File: xlim (M)
-- Function File: xlim (H, ...)
Get or set the limits of the x-axis of the current plot. Called without arguments `xlim' returns the x-axis limits of the current plot. If passed a two element vector XL, the limits of the x-axis are set to this value.
The current mode for calculation of the x-axis can be returned with a call `xlim ('mode')', and can be either 'auto' or 'manual'. The current plotting mode can be set by passing either 'auto' or 'manual' as the argument.
If passed an handle as the first argument, then operate on this handle rather than the current axes handle. See also: ylim, zlim, set, get, gca.
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Get or set the limits of the x-axis of the current plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
ancestor
# name: <cell-element>
# type: string
# elements: 1
# length: 570
-- Function File: PARENT = ancestor (H, TYPE)
-- Function File: PARENT = ancestor (H, TYPE, 'toplevel')
Return the first ancestor of handle object H whose type matches TYPE, where TYPE is a character string. If TYPE is a cell array of strings, return the first parent whose type matches any of the given type strings.
If the handle object H is of type TYPE, return H.
If `"toplevel"' is given as a 3rd argument, return the highest parent in the object hierarchy that matches the condition, instead of the first (nearest) one. See also: get, set.
# name: <cell-element>
# type: string
# elements: 1
# length: 103
Return the first ancestor of handle object H whose type matches TYPE, where TYPE is a character string.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
gtext
# name: <cell-element>
# type: string
# elements: 1
# length: 399
-- Function File: gtext (S)
-- Function File: gtext ({S1; S2; ...})
-- Function File: gtext (..., PROP, VAL)
Place text on the current figure using the mouse. The text is defined by the string S. If S is a cell array, each element of the cell array is written to a separate line. Additional arguments are passed to the underlying text object as properties. See also: ginput, text.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Place text on the current figure using the mouse.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
spinmap
# name: <cell-element>
# type: string
# elements: 1
# length: 302
-- Function File: spinmap (T, INC)
Cycle the colormap for T seconds with an increment of INC. Both parameters are optional. The default cycle time is 5 seconds and the default increment is 2.
A higher value of INC causes a faster cycle through the colormap. See also: gca, colorbar.
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Cycle the colormap for T seconds with an increment of INC.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
ishold
# name: <cell-element>
# type: string
# elements: 1
# length: 173
-- Function File: ishold
Return true if the next line will be added to the current plot, or false if the plot device will be cleared before drawing the next line.
# name: <cell-element>
# type: string
# elements: 1
# length: 137
Return true if the next line will be added to the current plot, or false if the plot device will be cleared before drawing the next line.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
diffuse
# name: <cell-element>
# type: string
# elements: 1
# length: 341
-- Function File: diffuse (SX, SY, SZ, L)
Calculate diffuse reflection strength of a surface defined by the normal vector elements SX, SY, SZ. The light vector can be specified using parameter L. It can be given as 2-element vector [azimuth, elevation] in degrees or as 3-element vector [lx, ly, lz]. See also: specular, surfl.
# name: <cell-element>
# type: string
# elements: 1
# length: 100
Calculate diffuse reflection strength of a surface defined by the normal vector elements SX, SY, SZ.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
semilogy
# name: <cell-element>
# type: string
# elements: 1
# length: 239
-- Function File: semilogy (ARGS)
Produce a two-dimensional plot using a log scale for the Y axis. See the description of `plot' for a description of the arguments that `semilogy' will accept. See also: plot, semilogx, loglog.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Produce a two-dimensional plot using a log scale for the Y axis.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
figure
# name: <cell-element>
# type: string
# elements: 1
# length: 314
-- Function File: figure (N)
-- Function File: figure (N, PROPERTY, VALUE, ...)
Set the current plot window to plot window N. If no arguments are specified, the next available window number is chosen.
Multiple property-value pairs may be specified for the figure, but they must appear in pairs.
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Set the current plot window to plot window N.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
stem3
# name: <cell-element>
# type: string
# elements: 1
# length: 542
-- Function File: H = stem3 (X, Y, Z, LINESPEC)
Plot a three-dimensional stem graph and return the handles of the line and marker objects used to draw the stems as "stem series" object. The default color is `"r"' (red). The default line style is `"-"' and the default marker is `"o"'.
For example,
theta = 0:0.2:6;
stem3 (cos (theta), sin (theta), theta)
plots 31 stems with heights from 0 to 6 lying on a circle. Color definitions with rgb-triples are not valid! See also: bar, barh, stem, plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 137
Plot a three-dimensional stem graph and return the handles of the line and marker objects used to draw the stems as "stem series" object.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
zlabel
# name: <cell-element>
# type: string
# elements: 1
# length: 102
-- Function File: zlabel (STRING)
-- Function File: zlabel (H, STRING)
See also: xlabel..
# name: <cell-element>
# type: string
# elements: 1
# length: 17
See also: xlabel.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
print
# name: <cell-element>
# type: string
# elements: 1
# length: 4534
-- Function File: print ()
-- Function File: print (OPTIONS)
-- Function File: print (FILENAME, OPTIONS)
-- Function File: print (H, FILENAME, OPTIONS)
Print a graph, or save it to a file
FILENAME defines the file name of the output file. If no filename is specified, the output is sent to the printer.
H specifies the figure handle. If no handle is specified the handle for the current figure is used.
OPTIONS:
`-PPRINTER'
Set the PRINTER name to which the graph is sent if no FILENAME is specified.
`-GGHOSTSCRIPT_COMMAND'
Specify the command for calling Ghostscript. For Unix and Windows, the defaults are 'gs' and 'gswin32c', respectively.
`-color'
`-mono'
Monochrome or color lines.
`-solid'
`-dashed'
Solid or dashed lines.
`-portrait'
`-landscape'
Specify the orientation of the plot for printed output.
`-dDEVICE'
Output device, where DEVICE is one of:
`ps'
`ps2'
`psc'
`psc2'
Postscript (level 1 and 2, mono and color)
`eps'
`eps2'
`epsc'
`epsc2'
Encapsulated postscript (level 1 and 2, mono and color)
`tex'
`epslatex'
`epslatexstandalone'
`pstex'
`pslatex'
Generate a LaTeX (or TeX) file for labels, and eps/ps for graphics. The file produced by `epslatexstandalone' can be processed directly by LaTeX. The other formats are intended to be included in a LaTeX (or TeX) document. The `tex' device is the same as the `epslatex' device.
`ill'
`aifm'
Adobe Illustrator
`cdr'
`corel'
CorelDraw
`dxf'
AutoCAD
`emf'
`meta'
Microsoft Enhanced Metafile
`fig'
XFig. If this format is selected the additional options `-textspecial' or `-textnormal' can be used to control whether the special flag should be set for the text in the figure (default is `-textnormal').
`hpgl'
HP plotter language
`mf'
Metafont
`png'
Portable network graphics
`jpg'
`jpeg'
JPEG image
`gif'
GIF image
`pbm'
PBMplus
`svg'
Scalable vector graphics
`pdf'
Portable document format
If the device is omitted, it is inferred from the file extension, or if there is no filename it is sent to the printer as postscript.
`-dGS_DEVICE'
Additional devices are supported by Ghostscript. Some examples are;
`ljet2p'
HP LaserJet IIP
`ljet3'
HP LaserJet III
`deskjet'
HP DeskJet and DeskJet Plus
`cdj550'
HP DeskJet 550C
`paintjet'
HP PointJet
`pcx24b'
24-bit color PCX file format
`ppm'
Portable Pixel Map file format
For a complete list, type `system ("gs -h")' to see what formats and devices are available.
When the ghostscript is sent to a printer the size is determined by the figure's "papersize" property. When the ghostscript output is sent to a file the size is determined by the figure's "paperposition" property.
`-rNUM'
Resolution of bitmaps in pixels per inch. For both metafiles and SVG the default is the screen resolution, for other it is 150 dpi. To specify screen resolution, use "-r0".
`-tight'
Forces a tight bounding box for eps-files. Since the ghostscript devices are conversion of an eps-file, this option works the those devices as well.
`-SXSIZE,YSIZE'
Plot size in pixels for EMF, GIF, JPEG, PBM, PNG and SVG. If using the command form of the print function, you must quote the XSIZE,YSIZE option. For example, by writing `"-S640,480"'. The size defaults to that specified by the figure's paperposition property.
`-FFONTNAME'
`-FFONTNAME:SIZE'
`-F:SIZE'
FONTNAME set the postscript font (for use with postscript, aifm, corel and fig). By default, 'Helvetica' is set for PS/Aifm, and 'SwitzerlandLight' for Corel. It can also be 'Times-Roman'. SIZE is given in points. FONTNAME is ignored for the fig device.
The filename and options can be given in any order.
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Print a graph, or save it to a file
# name: <cell-element>
# type: string
# elements: 1
# length: 10
plotmatrix
# name: <cell-element>
# type: string
# elements: 1
# length: 1351
-- Function File: plotmatrix (X, Y)
-- Function File: plotmatrix (X)
-- Function File: plotmatrix (..., STYLE)
-- Function File: plotmatrix (H, ...)
-- Function File: [H, AX, BIGAX, P, PAX] = plotmatrix (...)
Scatter plot of the columns of one matrix against another. Given the arguments X and Y, that have a matching number of rows, `plotmatrix' plots a set of axes corresponding to
plot (X (:, i), Y (:, j)
Given a single argument X, then this is equivalent to
plotmatrix (X, X)
except that the diagonal of the set of axes will be replaced with the histogram `hist (X (:, i))'.
The marker to use can be changed with the STYLE argument, that is a string defining a marker in the same manner as the `plot' command. If a leading axes handle H is passed to `plotmatrix', then this axis will be used for the plot.
The optional return value H provides handles to the individual graphics objects in the scatter plots, whereas AX returns the handles to the scatter plot axis objects. BIGAX is a hidden axis object that surrounds the other axes, such that the commands `xlabel', `title', etc., will be associated with this hidden axis. Finally P returns the graphics objects associated with the histogram and PAX the corresponding axes objects.
plotmatrix (randn (100, 3), 'g+')
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Scatter plot of the columns of one matrix against another.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
fill
# name: <cell-element>
# type: string
# elements: 1
# length: 279
-- Function File: fill (X, Y, C)
-- Function File: fill (X1, Y1, C1, X2, Y2, C2)
-- Function File: fill (..., PROP, VAL)
-- Function File: fill (H, ...)
-- Function File: H = fill (...)
Create one or more filled patch objects, returning a patch object for each.
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Create one or more filled patch objects, returning a patch object for each.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
cylinder
# name: <cell-element>
# type: string
# elements: 1
# length: 787
-- Function File: cylinder
-- Function File: cylinder (R)
-- Function File: cylinder (R, N)
-- Function File: [X, Y, Z] = cylinder (...)
-- Function File: cylinder (AX, ...)
Generates three matrices in `meshgrid' format, such that `surf (X, Y, Z)' generates a unit cylinder. The matrices are of size `N+1'-by-`N+1'. R is a vector containing the radius along the z-axis. If N or R are omitted then default values of 20 or [1 1] are assumed.
Called with no return arguments, `cylinder' calls directly `surf (X, Y, Z)'. If an axes handle AX is passed as the first argument, the surface is plotted to this set of axes.
Examples:
disp ("plotting a cone")
[x, y, z] = cylinder (10:-1:0,50);
surf (x, y, z);
See also: sphere.
# name: <cell-element>
# type: string
# elements: 1
# length: 100
Generates three matrices in `meshgrid' format, such that `surf (X, Y, Z)' generates a unit cylinder.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
meshc
# name: <cell-element>
# type: string
# elements: 1
# length: 386
-- Function File: meshc (X, Y, Z)
Plot a mesh and contour given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh. If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)). Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values. See also: meshgrid, mesh, contour.
# name: <cell-element>
# type: string
# elements: 1
# length: 132
Plot a mesh and contour given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
box
# name: <cell-element>
# type: string
# elements: 1
# length: 237
-- Function File: box (ARG)
-- Function File: box (H, ...)
Control the display of a border around the plot. The argument may be either `"on"' or `"off"'. If it is omitted, the current box state is toggled. See also: grid.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Control the display of a border around the plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
gcbf
# name: <cell-element>
# type: string
# elements: 1
# length: 323
-- Function File: FIG = gcbf ()
Return a handle to the figure containing the object whose callback is currently executing. If no callback is executing, this function returns the empty matrix. The handle returned by this function is the same as the second output argument of gcbo.
See also: gcf, gca, gcbo.
# name: <cell-element>
# type: string
# elements: 1
# length: 90
Return a handle to the figure containing the object whose callback is currently executing.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
compass
# name: <cell-element>
# type: string
# elements: 1
# length: 760
-- Function File: compass (U, V)
-- Function File: compass (Z)
-- Function File: compass (..., STYLE)
-- Function File: compass (H, ...)
-- Function File: H = compass (...)
Plot the `(U, V)' components of a vector field emanating from the origin of a polar plot. If a single complex argument Z is given, then `U = real (Z)' and `V = imag (Z)'.
The style to use for the plot can be defined with a line style STYLE in a similar manner to the line styles used with the `plot' command.
The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).
a = toeplitz([1;randn(9,1)],[1,randn(1,9)]);
compass (eig (a))
See also: plot, polar, quiver, feather.
# name: <cell-element>
# type: string
# elements: 1
# length: 89
Plot the `(U, V)' components of a vector field emanating from the origin of a polar plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
loglog
# name: <cell-element>
# type: string
# elements: 1
# length: 235
-- Function File: loglog (ARGS)
Produce a two-dimensional plot using log scales for both axes. See the description of `plot' for a description of the arguments that `loglog' will accept. See also: plot, semilogx, semilogy.
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Produce a two-dimensional plot using log scales for both axes.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
meshgrid
# name: <cell-element>
# type: string
# elements: 1
# length: 599
-- Function File: [XX, YY, ZZ] = meshgrid (X, Y, Z)
-- Function File: [XX, YY] = meshgrid (X, Y)
-- Function File: [XX, YY] = meshgrid (X)
Given vectors of X and Y and Z coordinates, and returning 3 arguments, return three-dimensional arrays corresponding to the X, Y, and Z coordinates of a mesh. When returning only 2 arguments, return matrices corresponding to the X and Y coordinates of a mesh. The rows of XX are copies of X, and the columns of YY are copies of Y. If Y is omitted, then it is assumed to be the same as X, and Z is assumed the same as Y. See also: mesh, contour.
# name: <cell-element>
# type: string
# elements: 1
# length: 158
Given vectors of X and Y and Z coordinates, and returning 3 arguments, return three-dimensional arrays corresponding to the X, Y, and Z coordinates of a mesh.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
ndgrid
# name: <cell-element>
# type: string
# elements: 1
# length: 522
-- Function File: [Y1, Y2, ..., Yn] = ndgrid (X1, X2, ..., Xn)
-- Function File: [Y1, Y2, ..., Yn] = ndgrid (X)
Given n vectors X1, ... Xn, `ndgrid' returns n arrays of dimension n. The elements of the i-th output argument contains the elements of the vector Xi repeated over all dimensions different from the i-th dimension. Calling ndgrid with only one input argument X is equivalent of calling ndgrid with all n input arguments equal to X:
[Y1, Y2, ..., Yn] = ndgrid (X, ..., X) See also: meshgrid.
# name: <cell-element>
# type: string
# elements: 1
# length: 21
Given n vectors X1, .
# name: <cell-element>
# type: string
# elements: 1
# length: 4
hist
# name: <cell-element>
# type: string
# elements: 1
# length: 859
-- Function File: hist (Y, X, NORM)
Produce histogram counts or plots.
With one vector input argument, plot a histogram of the values with 10 bins. The range of the histogram bins is determined by the range of the data. With one matrix input argument, plot a histogram where each bin contains a bar per input column.
Given a second scalar argument, use that as the number of bins.
Given a second vector argument, use that as the centers of the bins, with the width of the bins determined from the adjacent values in the vector.
If third argument is provided, the histogram is normalized such that the sum of the bars is equal to NORM.
Extreme values are lumped in the first and last bins.
With two output arguments, produce the values NN and XX such that `bar (XX, NN)' will plot the histogram. See also: bar.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Produce histogram counts or plots.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
errorbar
# name: <cell-element>
# type: string
# elements: 1
# length: 2097
-- Function File: errorbar (ARGS)
This function produces two-dimensional plots with errorbars. Many different combinations of arguments are possible. The simplest form is
errorbar (Y, EY)
where the first argument is taken as the set of Y coordinates and the second argument EY is taken as the errors of the Y values. X coordinates are taken to be the indices of the elements, starting with 1.
If more than two arguments are given, they are interpreted as
errorbar (X, Y, ..., FMT, ...)
where after X and Y there can be up to four error parameters such as EY, EX, LY, UY, etc., depending on the plot type. Any number of argument sets may appear, as long as they are separated with a format string FMT.
If Y is a matrix, X and error parameters must also be matrices having same dimensions. The columns of Y are plotted versus the corresponding columns of X and errorbars are drawn from the corresponding columns of error parameters.
If FMT is missing, yerrorbars ("~") plot style is assumed.
If the FMT argument is supplied, it is interpreted as in normal plots. In addition the following plot styles are supported by errorbar:
`~'
Set yerrorbars plot style (default).
`>'
Set xerrorbars plot style.
`~>'
Set xyerrorbars plot style.
`#'
Set boxes plot style.
`#~'
Set boxerrorbars plot style.
`#~>'
Set boxxyerrorbars plot style.
Examples:
errorbar (X, Y, EX, ">")
produces an xerrorbar plot of Y versus X with X errorbars drawn from X-EX to X+EX.
errorbar (X, Y1, EY, "~",
X, Y2, LY, UY)
produces yerrorbar plots with Y1 and Y2 versus X. Errorbars for Y1 are drawn from Y1-EY to Y1+EY, errorbars for Y2 from Y2-LY to Y2+UY.
errorbar (X, Y, LX, UX,
LY, UY, "~>")
produces an xyerrorbar plot of Y versus X in which X errorbars are drawn from X-LX to X+UX and Y errorbars from Y-LY to Y+UY. See also: semilogxerr, semilogyerr, loglogerr.
# name: <cell-element>
# type: string
# elements: 1
# length: 60
This function produces two-dimensional plots with errorbars.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
zlim
# name: <cell-element>
# type: string
# elements: 1
# length: 771
-- Function File: XL = zlim ()
-- Function File: zlim (XL)
-- Function File: M = zlim ('mode')
-- Function File: zlim (M)
-- Function File: zlim (H, ...)
Get or set the limits of the z-axis of the current plot. Called without arguments `zlim' returns the z-axis limits of the current plot. If passed a two element vector XL, the limits of the z-axis are set to this value.
The current mode for calculation of the z-axis can be returned with a call `zlim ('mode')', and can be either 'auto' or 'manual'. The current plotting mode can be set by passing either 'auto' or 'manual' as the argument.
If passed an handle as the first argument, then operate on this handle rather than the current axes handle. See also: xlim, ylim, set, get, gca.
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Get or set the limits of the z-axis of the current plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
ishghandle
# name: <cell-element>
# type: string
# elements: 1
# length: 102
-- Function File: ishghandle (H)
Return true if H is a graphics handle and false otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Return true if H is a graphics handle and false otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
contour3
# name: <cell-element>
# type: string
# elements: 1
# length: 1119
-- Function File: contour3 (Z)
-- Function File: contour3 (Z, VN)
-- Function File: contour3 (X, Y, Z)
-- Function File: contour3 (X, Y, Z, VN)
-- Function File: contour3 (..., STYLE)
-- Function File: contour3 (H, ...)
-- Function File: [C, H] = contour3 (...)
Plot level curves (contour lines) of the matrix Z, using the contour matrix C computed by `contourc' from the same arguments; see the latter for their interpretation. The contours are plotted at the Z level corresponding to their contour. The set of contour levels, C, is only returned if requested. For example:
contour3 (peaks (19));
hold on
surface (peaks (19), "facecolor", "none", "EdgeColor", "black")
colormap hot
The style to use for the plot can be defined with a line style STYLE in a similar manner to the line styles used with the `plot' command. Any markers defined by STYLE are ignored.
The optional input and output argument H allows an axis handle to be passed to `contour' and the handles to the contour objects to be returned. See also: contourc, patch, plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 166
Plot level curves (contour lines) of the matrix Z, using the contour matrix C computed by `contourc' from the same arguments; see the latter for their interpretation.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
stairs
# name: <cell-element>
# type: string
# elements: 1
# length: 721
-- Function File: stairs (X, Y)
-- Function File: stairs (..., STYLE)
-- Function File: stairs (..., PROP, VAL)
-- Function File: stairs (H, ...)
-- Function File: H = stairs (...)
Produce a stairstep plot. The arguments may be vectors or matrices.
If only one argument is given, it is taken as a vector of y-values and the x coordinates are taken to be the indices of the elements.
If two output arguments are specified, the data are generated but not plotted. For example,
stairs (x, y);
and
[xs, ys] = stairs (x, y);
plot (xs, ys);
are equivalent. See also: plot, semilogx, semilogy, loglog, polar, mesh, contour, bar, xlabel, ylabel, title.
# name: <cell-element>
# type: string
# elements: 1
# length: 25
Produce a stairstep plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
close
# name: <cell-element>
# type: string
# elements: 1
# length: 284
-- Command: close
-- Command: close (N)
-- Command: close all
-- Command: close all hidden
Close figure window(s) by calling the function specified by the `"closerequestfcn"' property for each figure. By default, the function `closereq' is used. See also: closereq.
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Close figure window(s) by calling the function specified by the `"closerequestfcn"' property for each figure.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
axes
# name: <cell-element>
# type: string
# elements: 1
# length: 162
-- Function File: axes ()
-- Function File: axes (PROPERTY, VALUE, ...)
-- Function File: axes (H)
Create an axes object and return a handle to it.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Create an axes object and return a handle to it.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
colorbar
# name: <cell-element>
# type: string
# elements: 1
# length: 933
-- Function File: colorbar (S)
-- Function File: colorbar ("peer", H, ...)
Adds a colorbar to the current axes. Valid values for S are
"EastOutside"
Place the colorbar outside the plot to the right. This is the default.
"East"
Place the colorbar inside the plot to the right.
"WestOutside"
Place the colorbar outside the plot to the left.
"West"
Place the colorbar inside the plot to the left.
"NorthOutside"
Place the colorbar above the plot.
"North"
Place the colorbar at the top of the plot.
"SouthOutside"
Place the colorbar under the plot.
"South"
Place the colorbar at the bottom of the plot.
"Off", "None"
Remove any existing colorbar from the plot.
If the argument "peer" is given, then the following argument is treated as the axes handle on which to add the colorbar.
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Adds a colorbar to the current axes.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
shading
# name: <cell-element>
# type: string
# elements: 1
# length: 494
-- Function File: shading (TYPE)
-- Function File: shading (AX, ...)
Set the shading of surface or patch graphic objects. Valid arguments for TYPE are
`"flat"'
Single colored patches with invisible edges.
`"faceted"'
Single colored patches with visible edges.
`"interp"'
Color between patch vertices are interpolated and the patch edges are invisible.
If AX is given the shading is applied to axis AX instead of the current axis.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Set the shading of surface or patch graphic objects.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
contourf
# name: <cell-element>
# type: string
# elements: 1
# length: 1326
-- Function File: [C, H] = contourf (X, Y, Z, LVL)
-- Function File: [C, H] = contourf (X, Y, Z, N)
-- Function File: [C, H] = contourf (X, Y, Z)
-- Function File: [C, H] = contourf (Z, N)
-- Function File: [C, H] = contourf (Z, LVL)
-- Function File: [C, H] = contourf (Z)
-- Function File: [C, H] = contourf (AX, ...)
-- Function File: [C, H] = contourf (..., "PROPERTY", VAL)
Compute and plot filled contours of the matrix Z. Parameters X, Y and N or LVL are optional.
The return value C is a 2xn matrix containing the contour lines as described in the help to the contourc function.
The return value H is handle-vector to the patch objects creating the filled contours.
If X and Y are omitted they are taken as the row/column index of Z. N is a scalar denoting the number of lines to compute. Alternatively LVL is a vector containing the contour levels. If only one value (e.g., lvl0) is wanted, set LVL to [lvl0, lvl0]. If both N or LVL are omitted a default value of 10 contour level is assumed.
If provided, the filled contours are added to the axes object AX instead of the current axis.
The following example plots filled contours of the `peaks' function.
[x, y, z] = peaks (50);
contourf (x, y, z, -7:9)
See also: contour, contourc, patch.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Compute and plot filled contours of the matrix Z.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
replot
# name: <cell-element>
# type: string
# elements: 1
# length: 63
-- Function File: replot ()
Refresh the plot window.
# name: <cell-element>
# type: string
# elements: 1
# length: 24
Refresh the plot window.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
hold
# name: <cell-element>
# type: string
# elements: 1
# length: 757
-- Function File: hold
-- Function File: hold STATE
-- Function File: hold (HAX, ...)
Toggle or set the 'hold' state of the plotting engine which determines whether new graphic objects are added to the plot or replace the existing objects.
`hold on'
Retain plot data and settings so that subsequent plot commands are displayed on a single graph.
`hold off'
Clear plot and restore default graphics settings before each new plot command. (default).
`hold'
Toggle the current 'hold' state.
When given the additional argument HAX, the hold state is modified only for the given axis handle.
To query the current 'hold' state use the `ishold' function. See also: ishold, cla, newplot, clf.
# name: <cell-element>
# type: string
# elements: 1
# length: 153
Toggle or set the 'hold' state of the plotting engine which determines whether new graphic objects are added to the plot or replace the existing objects.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
slice
# name: <cell-element>
# type: string
# elements: 1
# length: 1741
-- Function File: slice (X, Y, Z, V, SX, SY, SZ)
-- Function File: slice (X, Y, Z, V, XI, YI, ZI)
-- Function File: slice (V, SX, SY, SZ)
-- Function File: slice (V, XI, YI, ZI)
-- Function File: H = slice (...)
-- Function File: H = slice (..., METHOD)
Plot slices of 3D data/scalar fields. Each element of the 3-dimensional array V represents a scalar value at a location given by the parameters X, Y, and Z. The parameters X, X, and Z are either 3-dimensional arrays of the same size as the array V in the "meshgrid" format or vectors. The parameters XI, etc. respect a similar format to X, etc., and they represent the points at which the array VI is interpolated using interp3. The vectors SX, SY, and SZ contain points of orthogonal slices of the respective axes.
If X, Y, Z are omitted, they are assumed to be `x = 1:size (V, 2)', `y = 1:size (V, 1)' and `z = 1:size (V, 3)'.
METHOD is one of:
`"nearest"'
Return the nearest neighbor.
`"linear"'
Linear interpolation from nearest neighbors.
`"cubic"'
Cubic interpolation from four nearest neighbors (not implemented yet).
`"spline"'
Cubic spline interpolation--smooth first and second derivatives throughout the curve.
The default method is `"linear"'. The optional return value H is a vector of handles to the surface graphic objects.
Examples:
[x, y, z] = meshgrid (linspace (-8, 8, 32));
v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
slice (x, y, z, v, [], 0, []);
[xi, yi] = meshgrid (linspace (-7, 7));
zi = xi + yi;
slice (x, y, z, v, xi, yi, zi);
See also: interp3, surface, pcolor.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Plot slices of 3D data/scalar fields.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
linkprop
# name: <cell-element>
# type: string
# elements: 1
# length: 620
-- Function File: HLINK = linkprop (H, PROP)
Links graphics object properties, such that a change in one is propagated to the others. The properties to link are given as a string of cell string array by PROP and the objects containing these properties by the handle array H.
An example of the use of linkprops is
x = 0:0.1:10;
subplot (1, 2, 1);
h1 = plot (x, sin (x));
subplot (1, 2, 2);
h2 = plot (x, cos (x));
hlink = linkprop ([h1, h2], {"color","linestyle"});
set (h1, "color", "green");
set (h2, "linestyle", "--");
# name: <cell-element>
# type: string
# elements: 1
# length: 88
Links graphics object properties, such that a change in one is propagated to the others.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
unpack
# name: <cell-element>
# type: string
# elements: 1
# length: 558
-- Function File: FILES = unpack (FILE, DIR)
-- Function File: FILES = unpack (FILE, DIR, FILETYPE)
Unpack the archive FILE based on its extension to the directory DIR. If FILE is a cellstr, then all files will be handled individually. If DIR is not specified, it defaults to the current directory. It returns a list of FILES unpacked. If a directory is in the file list, then the FILETYPE to unpack must also be specified.
The FILES includes the entire path to the output files. See also: bunzip2, tar, untar, gzip, gunzip, zip, unzip.
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Unpack the archive FILE based on its extension to the directory DIR.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
orderfields
# name: <cell-element>
# type: string
# elements: 1
# length: 484
-- Function File: [T, P] = orderfields (S1, S2)
Return a struct with fields arranged alphabetically or as specified by S2 and a corresponding permutation vector.
Given one struct, arrange field names in S1 alphabetically.
Given two structs, arrange field names in S1 as they appear in S2. The second argument may also specify the order in a permutation vector or a cell array of strings.
See also: getfield, rmfield, isfield, isstruct, fieldnames, struct.
# name: <cell-element>
# type: string
# elements: 1
# length: 113
Return a struct with fields arranged alphabetically or as specified by S2 and a corresponding permutation vector.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
movefile
# name: <cell-element>
# type: string
# elements: 1
# length: 438
-- Function File: [STATUS, MSG, MSGID] = movefile (F1, F2)
Move the file F1 to the new name F2. The name F1 may contain globbing patterns. If F1 expands to multiple file names, F2 must be a directory.
If successful, STATUS is 1, with MSG and MSGID empty\n\ character strings. Otherwise, STATUS is 0, MSG contains a\n\ system-dependent error message, and MSGID contains a unique\n\ message identifier.\n\ See also: glob.
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Move the file F1 to the new name F2.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
tempname
# name: <cell-element>
# type: string
# elements: 1
# length: 90
-- Function File: filename = tempname ()
This function is an alias for `tmpnam'.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is an alias for `tmpnam'.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
unzip
# name: <cell-element>
# type: string
# elements: 1
# length: 225
-- Function File: unzip (ZIPFILE, DIR)
Unpack the ZIP archive ZIPFILE to the directory DIR. If DIR is not specified, it defaults to the current directory. See also: unpack, bunzip2, tar, untar, gzip, gunzip, zip.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Unpack the ZIP archive ZIPFILE to the directory DIR.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
perl
# name: <cell-element>
# type: string
# elements: 1
# length: 292
-- Function File: [OUTPUT, STATUS] = perl (SCRIPTFILE)
-- Function File: [OUTPUT, STATUS] = perl (SCRIPTFILE, ARGUMENT1, ARGUMENT2, ...)
Invoke perl script SCRIPTFILE with possibly a list of command line arguments. Returns output in OUTPUT and status in STATUS. See also: system.
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Invoke perl script SCRIPTFILE with possibly a list of command line arguments.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
ispc
# name: <cell-element>
# type: string
# elements: 1
# length: 129
-- Function File: ispc ()
Return 1 if Octave is running on a Windows system and 0 otherwise. See also: ismac, isunix.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Return 1 if Octave is running on a Windows system and 0 otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
debug
# name: <cell-element>
# type: string
# elements: 1
# length: 1567
-- Function File: debug ()
Summary of the debugging commands. The debugging commands that are available in Octave are
`keyboard'
Force entry into debug mode.
`dbstop'
Add a breakpoint.
`dbclear'
Remove a breakpoint.
`dbstatus'
List all breakpoints.
`dbcont'
Continue execution from the debug prompt.
`dbstack'
Print a backtrace of the execution stack.
`dbstep'
Execute one or more lines and re-enter debug mode
`dbtype'
List the function where execution is currently stopped, enumerating the lines.
`dbup'
The workspace up the execution stack.
`dbdown'
The workspace down the execution stack.
`dbquit'
Quit debugging mode and return to the main prompt.
`debug_on_error'
Flag whether to enter debug mode in case Octave encounters an error.
`debug_on_warning'
Flag whether to enter debug mode in case Octave encounters a warning.
`debug_on_interrupt'
Flag whether to enter debug mode in case Octave encounters an interupt.
when Octave encounters a breakpoint or other reason to enter debug mode, the prompt changes to `"debug>"'. The workspace of the function where the breakpoint was encountered becomes available and any Octave command that works within that workspace may be executed.
See also: dbstop, dbclear, dbstatus, dbcont, dbstack, dbstep, dbtype, dbup, dbdown, dbquit, debug_on_error, debug_on_warning, debug_on_interrupt.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Summary of the debugging commands.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
tar
# name: <cell-element>
# type: string
# elements: 1
# length: 413
-- Function File: ENTRIES = tar (TARFILE, FILES, ROOT)
Pack FILES FILES into the TAR archive TARFILE. The list of files must be a string or a cell array of strings.
The optional argument ROOT changes the relative path of FILES from the current directory.
If an output argument is requested the entries in the archive are returned in a cell array. See also: untar, gzip, gunzip, zip, unzip.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Pack FILES FILES into the TAR archive TARFILE.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
dir
# name: <cell-element>
# type: string
# elements: 1
# length: 864
-- Function File: dir (DIRECTORY)
-- Function File: [LIST] = dir (DIRECTORY)
Display file listing for directory DIRECTORY. If a return value is requested, return a structure array with the fields
name
bytes
date
isdir
statinfo
in which `statinfo' is the structure returned from `stat'.
If DIRECTORY is not a directory, return information about the named FILENAME. DIRECTORY may be a list of directories specified either by name or with wildcard characters (like * and ?) which will be expanded with glob.
Note that for symbolic links, `dir' returns information about the file that a symbolic link points to instead of the link itself. However, if the link points to a nonexistent file, `dir' returns information about the link. See also: ls, stat, lstat, readdir, glob, filesep.
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Display file listing for directory DIRECTORY.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
license
# name: <cell-element>
# type: string
# elements: 1
# length: 1080
-- Function File: license
Display the license of Octave.
-- Function File: license ("inuse")
Display a list of packages currently being used.
-- Function File: RETVAL = license ("inuse")
Return a structure containing the fields `feature' and `user'.
-- Function File: RETVAL = license ("test", FEATURE)
Return 1 if a license exists for the product identified by the string FEATURE and 0 otherwise. The argument FEATURE is case insensitive and only the first 27 characters are checked.
-- Function File: license ("test", FEATURE, TOGGLE)
Enable or disable license testing for FEATURE, depending on TOGGLE, which may be one of:
`"enable"'
Future tests for the specified license of FEATURE are conducted as usual.
`"disable"'
Future tests for the specified license of FEATURE return 0.
-- Function File: RETVAL = license ("checkout", FEATURE)
Check out a license for FEATURE, returning 1 on success and 0 on failure.
This function is provided for compatibility with MATLAB. See also: ver, version.
# name: <cell-element>
# type: string
# elements: 1
# length: 73
Check out a license for FEATURE, returning 1 on success and 0 on failure.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
xor
# name: <cell-element>
# type: string
# elements: 1
# length: 215
-- Mapping Function: xor (X, Y)
Return the `exclusive or' of the entries of X and Y. For boolean expressions X and Y, `xor (X, Y)' is true if and only if X or Y is true, but not if both X and Y are true.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return the `exclusive or' of the entries of X and Y.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
menu
# name: <cell-element>
# type: string
# elements: 1
# length: 450
-- Function File: menu (TITLE, OPT1, ...)
Print a title string followed by a series of options. Each option will be printed along with a number. The return value is the number of the option selected by the user. This function is useful for interactive programs. There is no limit to the number of options that may be passed in, but it may be confusing to present more than will fit easily on one screen. See also: disp, printf, input.
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Print a title string followed by a series of options.
# name: <cell-element>
# type: string
# elements: 1
# length: 16
compare_versions
# name: <cell-element>
# type: string
# elements: 1
# length: 1140
-- Function File: compare_versions (V1, V2, OPERATOR)
Compares to version strings using the given OPERATOR.
This function assumes that versions V1 and V2 are arbitrarily long strings made of numeric and period characters possibly followed by an arbitrary string (e.g., "1.2.3", "0.3", "0.1.2+", or "1.2.3.4-test1").
The version is first split into the numeric and the character parts then the parts are padded to be the same length (i.e., "1.1" would be padded to be like "1.1.0" when being compared with "1.1.1", and separately, the character parts of the strings are padded with nulls).
The operator can be any logical operator from the set
* "==" equal
* "<" less than
* "<=" less than or equal to
* ">" greater than
* ">=" greater than or equal to
* "!=" not equal
* "~=" not equal
Note that version "1.1-test2" would compare as greater than "1.1-test10". Also, since the numeric part is compared first, "a" compares less than "1a" because the second string starts with a numeric part even though double("a") is greater than double("1").
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Compares to version strings using the given OPERATOR.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
bincoeff
# name: <cell-element>
# type: string
# elements: 1
# length: 505
-- Mapping Function: bincoeff (N, K)
Return the binomial coefficient of N and K, defined as
/ \
| n | n (n-1) (n-2) ... (n-k+1)
| | = -------------------------
| k | k!
\ /
For example,
bincoeff (5, 2)
=> 10
In most cases, the `nchoosek' function is faster for small scalar integer arguments. It also warns about loss of precision for big arguments.
See also: nchoosek.
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Return the binomial coefficient of N and K, defined as
# name: <cell-element>
# type: string
# elements: 1
# length: 6
delete
# name: <cell-element>
# type: string
# elements: 1
# length: 258
-- Function File: delete (FILE)
-- Function File: delete (HANDLE)
Delete the named file or graphics handle.
Deleting graphics objects is the proper way to remove features from a plot without clearing the entire figure. See also: clf, cla.
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Delete the named file or graphics handle.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
ans
# name: <cell-element>
# type: string
# elements: 1
# length: 229
-- Automatic Variable: ans
The most recently computed result that was not explicitly assigned to a variable. For example, after the expression
3^2 + 4^2
is evaluated, the value returned by `ans' is 25.
# name: <cell-element>
# type: string
# elements: 1
# length: 81
The most recently computed result that was not explicitly assigned to a variable.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
list_primes
# name: <cell-element>
# type: string
# elements: 1
# length: 209
-- Function File: list_primes (N)
List the first N primes. If N is unspecified, the first 25 primes are listed.
The algorithm used is from page 218 of the TeXbook. See also: primes, isprime.
# name: <cell-element>
# type: string
# elements: 1
# length: 24
List the first N primes.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
comma
# name: <cell-element>
# type: string
# elements: 1
# length: 100
-- Operator: ,
Array index, function argument, or command separator. See also: semicolon.
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Array index, function argument, or command separator.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
mkoctfile
# name: <cell-element>
# type: string
# elements: 1
# length: 3026
-- Function File: mkoctfile [-options] file ...
The `mkoctfile' function compiles source code written in C, C++, or Fortran. Depending on the options used with `mkoctfile', the compiled code can be called within Octave or can be used as a stand-alone application.
`mkoctfile' can be called from the shell prompt or from the Octave prompt.
`mkoctfile' accepts the following options, all of which are optional except for the file name of the code you wish to compile:
`-I DIR'
Add the include directory DIR to compile commands.
`-D DEF'
Add the definition DEF to the compiler call.
`-l LIB'
Add the library LIB to the link command.
`-L DIR'
Add the library directory DIR to the link command.
`-M'
`--depend'
Generate dependency files (.d) for C and C++ source files.
`-c'
Compile but do not link.
`-g'
Enable debugging options for compilers.
`-o FILE'
`--output FILE'
Output file name. Default extension is .oct (or .mex if -mex is specified) unless linking a stand-alone executable.
`-p VAR'
`--print VAR'
Print the configuration variable VAR. Recognized variables are:
ALL_CFLAGS FFTW_LIBS
ALL_CXXFLAGS FLIBS
ALL_FFLAGS FPICFLAG
ALL_LDFLAGS INCFLAGS
BLAS_LIBS LDFLAGS
CC LD_CXX
CFLAGS LD_STATIC_FLAG
CPICFLAG LFLAGS
CPPFLAGS LIBCRUFT
CXX LIBOCTAVE
CXXFLAGS LIBOCTINTERP
CXXPICFLAG LIBREADLINE
DEPEND_EXTRA_SED_PATTERN LIBS
DEPEND_FLAGS OCTAVE_LIBS
DL_LD RDYNAMIC_FLAG
DL_LDFLAGS RLD_FLAG
F2C SED
F2CFLAGS XTRA_CFLAGS
F77 XTRA_CXXFLAGS
FFLAGS
`--link-stand-alone'
Link a stand-alone executable file.
`--mex'
Assume we are creating a MEX file. Set the default output extension to ".mex".
`-s'
`--strip'
Strip the output file.
`-v'
`--verbose'
Echo commands as they are executed.
`file'
The file to compile or link. Recognized file types are
.c C source
.cc C++ source
.C C++ source
.cpp C++ source
.f Fortran source
.F Fortran source
.o object file
# name: <cell-element>
# type: string
# elements: 1
# length: 76
The `mkoctfile' function compiles source code written in C, C++, or Fortran.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
dump_prefs
# name: <cell-element>
# type: string
# elements: 1
# length: 216
-- Function File: dump_prefs (FILE)
Have Octave dump all the current user preference variables to FILE in a format that can be parsed by Octave later. If FILE is omitted, the listing is printed to stdout.
# name: <cell-element>
# type: string
# elements: 1
# length: 114
Have Octave dump all the current user preference variables to FILE in a format that can be parsed by Octave later.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
untar
# name: <cell-element>
# type: string
# elements: 1
# length: 225
-- Function File: untar (TARFILE, DIR)
Unpack the TAR archive TARFILE to the directory DIR. If DIR is not specified, it defaults to the current directory. See also: unpack, bunzip2, tar, gzip, gunzip, zip, unzip.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Unpack the TAR archive TARFILE to the directory DIR.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
fullfile
# name: <cell-element>
# type: string
# elements: 1
# length: 159
-- Function File: FILENAME = fullfile (DIR1, DIR2, ..., FILE)
Return a complete filename constructed from the given components. See also: fileparts.
# name: <cell-element>
# type: string
# elements: 1
# length: 65
Return a complete filename constructed from the given components.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
fileattrib
# name: <cell-element>
# type: string
# elements: 1
# length: 1167
-- Function File: [STATUS, MSG, MSGID] = fileattrib (FILE)
Return information about FILE.
If successful, STATUS is 1, with RESULT containing a structure with the following fields:
`Name'
Full name of FILE.
`archive'
True if FILE is an archive (Windows).
`system'
True if FILE is a system file (Windows).
`hidden'
True if FILE is a hidden file (Windows).
`directory'
True if FILE is a directory.
`UserRead'
`GroupRead'
`OtherRead'
True if the user (group; other users) has read permission for FILE.
`UserWrite'
`GroupWrite'
`OtherWrite'
True if the user (group; other users) has write permission for FILE.
`UserExecute'
`GroupExecute'
`OtherExecute'
True if the user (group; other users) has execute permission for FILE.
If an attribute does not apply (i.e., archive on a Unix system) then the field is set to NaN.
With no input arguments, return information about the current directory.
If FILE contains globbing characters, return information about all the matching files. See also: glob.
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Return information about FILE.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
setfield
# name: <cell-element>
# type: string
# elements: 1
# length: 455
-- Function File: [K1, ..., V1] = setfield (S, K1, V1, ...)
Set field members in a structure.
oo(1,1).f0 = 1;
oo = setfield (oo, {1,2}, "fd", {3}, "b", 6);
oo(1,2).fd(3).b == 6
=> ans = 1
Note that this function could be written
i1 = {1,2}; i2 = "fd"; i3 = {3}; i4 = "b";
oo(i1{:}).(i2)(i3{:}).(i4) == 6;
See also: getfield, rmfield, isfield, isstruct, fieldnames, struct.
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Set field members in a structure.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
what
# name: <cell-element>
# type: string
# elements: 1
# length: 325
-- Command: what
-- Command: what DIR
-- Function File: w = what (DIR)
List the Octave specific files in a directory. If the variable DIR is given then check that directory rather than the current directory. If a return argument is requested, the files found are returned in the structure W. See also: which.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
List the Octave specific files in a directory.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
computer
# name: <cell-element>
# type: string
# elements: 1
# length: 657
-- Function File: [C, MAXSIZE, ENDIAN] = computer ()
Print or return a string of the form CPU-VENDOR-OS that identifies the kind of computer Octave is running on. If invoked with an output argument, the value is returned instead of printed. For example,
computer ()
-| i586-pc-linux-gnu
x = computer ()
=> x = "i586-pc-linux-gnu"
If two output arguments are requested, also return the maximum number of elements for an array.
If three output arguments are requested, also return the byte order of the current system as a character (`"B"' for big-endian or `"L"' for little-endian).
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Print or return a string of the form CPU-VENDOR-OS that identifies the kind of computer Octave is running on.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
ls_command
# name: <cell-element>
# type: string
# elements: 1
# length: 233
-- Function File: [OLD_CMD = ls_command (CMD)
Set or return the shell command used by Octave's `ls' command. The value of CMD must be a character string. With no arguments, simply return the previous value. See also: ls.
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Set or return the shell command used by Octave's `ls' command.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
flops
# name: <cell-element>
# type: string
# elements: 1
# length: 126
-- Function File: flops ()
This function is provided for MATLAB compatibility, but it doesn't actually do anything.
# name: <cell-element>
# type: string
# elements: 1
# length: 88
This function is provided for MATLAB compatibility, but it doesn't actually do anything.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
copyfile
# name: <cell-element>
# type: string
# elements: 1
# length: 535
-- Function File: [STATUS, MSG, MSGID] = copyfile (F1, F2, FORCE)
Copy the file F1 to the new name F2. The name F1 may contain globbing patterns. If F1 expands to multiple file names, F2 must be a directory. If FORCE is given and equals the string "f" the copy operation will be forced.
If successful, STATUS is 1, with MSG and MSGID empty\n\ character strings. Otherwise, STATUS is 0, MSG contains a\n\ system-dependent error message, and MSGID contains a unique\n\ message identifier.\n\ See also: glob, movefile.
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Copy the file F1 to the new name F2.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
zip
# name: <cell-element>
# type: string
# elements: 1
# length: 350
-- Function File: ENTRIES = zip (ZIPFILE, FILES)
-- Function File: ENTRIES = zip (ZIPFILE, FILES, ROOTDIR)
Compress the list of files and/or directories specified in FILES into the archive ZIPFILES in the same directory. If ROOTDIR is defined the FILES is located relative to ROOTDIR rather than the current directory See also: unzip,tar.
# name: <cell-element>
# type: string
# elements: 1
# length: 113
Compress the list of files and/or directories specified in FILES into the archive ZIPFILES in the same directory.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
tempdir
# name: <cell-element>
# type: string
# elements: 1
# length: 107
-- Function File: DIR = tempdir ()
Return the name of the system's directory for temporary files.
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Return the name of the system's directory for temporary files.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
intwarning
# name: <cell-element>
# type: string
# elements: 1
# length: 1533
-- Function File: intwarning (ACTION)
-- Function File: intwarning (S)
-- Function File: S = intwarning (...)
Control the state of the warning for integer conversions and math operations.
"query"
The state of the Octave integer conversion and math warnings is queried. If there is no output argument, then the state is printed. Otherwise it is returned in a structure with the fields "identifier" and "state".
intwarning ("query")
The state of warning "Octave:int-convert-nan" is "off"
The state of warning "Octave:int-convert-non-int-val" is "off"
The state of warning "Octave:int-convert-overflow" is "off"
The state of warning "Octave:int-math-overflow" is "off"
"on"
Turn integer conversion and math warnings "on". If there is no output argument, then nothing is printed. Otherwise the original state of the state of the integer conversion and math warnings is returned in a structure array.
"off"
Turn integer conversion and math warnings "on". If there is no output argument, then nothing is printed. Otherwise the original state of the state of the integer conversion and math warnings is returned in a structure array.
The original state of the integer warnings can be restored by passing the structure array returned by `intwarning' to a later call to `intwarning'. For example
s = intwarning ("off");
...
intwarning (s);
See also: warning.
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Control the state of the warning for integer conversions and math operations.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
semicolon
# name: <cell-element>
# type: string
# elements: 1
# length: 74
-- Operator: ;
Array row or command separator. See also: comma.
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Array row or command separator.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
pack
# name: <cell-element>
# type: string
# elements: 1
# length: 130
-- Function File: pack ()
This function is provided for compatibility with MATLAB, but it doesn't actually do anything.
# name: <cell-element>
# type: string
# elements: 1
# length: 93
This function is provided for compatibility with MATLAB, but it doesn't actually do anything.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
version
# name: <cell-element>
# type: string
# elements: 1
# length: 150
-- Function File: version ()
Return Octave's version number as a string. This is also the value of the built-in variable `OCTAVE_VERSION'.
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Return Octave's version number as a string.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
cast
# name: <cell-element>
# type: string
# elements: 1
# length: 153
-- Function File: cast (VAL, TYPE)
Convert VAL to data type TYPE. See also: int8, uint8, int16, uint16, int32, uint32, int64, uint64, double.
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Convert VAL to data type TYPE.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
bunzip2
# name: <cell-element>
# type: string
# elements: 1
# length: 232
-- Function File: bunzip2 (BZFILE, DIR)
Unpack the bzip2 archive BZFILE to the directory DIR. If DIR is not specified, it defaults to the current directory. See also: unpack, bzip2, tar, untar, gzip, gunzip, zip, unzip.
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Unpack the bzip2 archive BZFILE to the directory DIR.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
bug_report
# name: <cell-element>
# type: string
# elements: 1
# length: 202
-- Function File: bug_report ()
Have Octave create a bug report template file, invoke your favorite editor, and submit the report to the bug-octave mailing list when you are finished editing.
# name: <cell-element>
# type: string
# elements: 1
# length: 159
Have Octave create a bug report template file, invoke your favorite editor, and submit the report to the bug-octave mailing list when you are finished editing.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
isunix
# name: <cell-element>
# type: string
# elements: 1
# length: 131
-- Function File: isunix ()
Return 1 if Octave is running on a Unix-like system and 0 otherwise. See also: ismac, ispc.
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Return 1 if Octave is running on a Unix-like system and 0 otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
getfield
# name: <cell-element>
# type: string
# elements: 1
# length: 461
-- Function File: [V1, ...] = getfield (S, KEY, ...)
Extract fields from a structure. For example
ss(1,2).fd(3).b = 5;
getfield (ss, {1,2}, "fd", {3}, "b")
=> ans = 5
Note that the function call in the previous example is equivalent to the expression
i1 = {1,2}; i2 = "fd"; i3 = {3}; i4= "b";
ss(i1{:}).(i2)(i3{:}).(i4)
See also: setfield, rmfield, isfield, isstruct, fieldnames, struct.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Extract fields from a structure.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
ver
# name: <cell-element>
# type: string
# elements: 1
# length: 788
-- Function File: ver ()
Display a header containing the current Octave version number, license string and operating system, followed by the installed package names, versions, and installation directories.
-- Function File: v = ver ()
Return a vector of structures, respecting Octave and each installed package. The structure includes the following fields.
`Name'
Package name.
`Version'
Version of the package.
`Revision'
Revision of the package.
`Date'
Date respecting the version/revision.
-- Function File: v = ver (`"Octave"')
Return version information for Octave only..
-- Function File: v = ver (PKG)
Return version information for the specified package PKG. See also: license, version.
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Return version information for the specified package PKG.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
news
# name: <cell-element>
# type: string
# elements: 1
# length: 78
-- Function File: news ()
Display the current NEWS file for Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Display the current NEWS file for Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
gzip
# name: <cell-element>
# type: string
# elements: 1
# length: 467
-- Function File: ENTRIES = gzip (FILES)
-- Function File: ENTRIES = gzip (FILES, OUTDIR)
Compress the list of files and/or directories specified in FILES. Each file is compressed separately and a new file with a '.gz' extension is created. The original files are not touched. Existing compressed files are silently overwritten. If OUTDIR is defined the compressed versions of the files are placed in this directory. See also: gunzip, bzip2, zip, tar.
# name: <cell-element>
# type: string
# elements: 1
# length: 65
Compress the list of files and/or directories specified in FILES.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
parseparams
# name: <cell-element>
# type: string
# elements: 1
# length: 643
-- Function File: [REG, PROP] = parseparams (PARAMS)
Return in REG the cell elements of PARAM up to the first string element and in PROP all remaining elements beginning with the first string element. For example
[reg, prop] = parseparams ({1, 2, "linewidth", 10})
reg =
{
[1,1] = 1
[1,2] = 2
}
prop =
{
[1,1] = linewidth
[1,2] = 10
}
The parseparams function may be used to separate 'regular' arguments and additional arguments given as property/value pairs of the VARARGIN cell array. See also: varargin.
# name: <cell-element>
# type: string
# elements: 1
# length: 147
Return in REG the cell elements of PARAM up to the first string element and in PROP all remaining elements beginning with the first string element.
# name: <cell-element>
# type: string
# elements: 1
# length: 2
ls
# name: <cell-element>
# type: string
# elements: 1
# length: 470
-- Command: ls options
List directory contents. For example,
ls -l
-| total 12
-| -rw-r--r-- 1 jwe users 4488 Aug 19 04:02 foo.m
-| -rw-r--r-- 1 jwe users 1315 Aug 17 23:14 bar.m
The `dir' and `ls' commands are implemented by calling your system's directory listing command, so the available options may vary from system to system. See also: dir, stat, readdir, glob, filesep, ls_command.
# name: <cell-element>
# type: string
# elements: 1
# length: 24
List directory contents.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
ismac
# name: <cell-element>
# type: string
# elements: 1
# length: 130
-- Function File: ismac ()
Return 1 if Octave is running on a Mac OS X system and 0 otherwise. See also: ispc, isunix.
# name: <cell-element>
# type: string
# elements: 1
# length: 67
Return 1 if Octave is running on a Mac OS X system and 0 otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
unix
# name: <cell-element>
# type: string
# elements: 1
# length: 463
-- Function File: [STATUS, TEXT] unix (COMMAND)
-- Function File: [STATUS, TEXT] unix (COMMAND, "-echo")
Execute a system command if running under a Unix-like operating system, otherwise do nothing. Return the exit status of the program in STATUS and any output sent to the standard output in TEXT. If the optional second argument `"-echo"' is given, then also send the output from the command to the standard output. See also: isunix, ispc, system.
# name: <cell-element>
# type: string
# elements: 1
# length: 93
Execute a system command if running under a Unix-like operating system, otherwise do nothing.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
inputname
# name: <cell-element>
# type: string
# elements: 1
# length: 95
-- Function File: inputname (N)
Return the text defining N-th input to the function.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return the text defining N-th input to the function.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
fileparts
# name: <cell-element>
# type: string
# elements: 1
# length: 168
-- Function File: [DIR, NAME, EXT, VER] = fileparts (FILENAME)
Return the directory, name, extension, and version components of FILENAME. See also: fullfile.
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Return the directory, name, extension, and version components of FILENAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
substruct
# name: <cell-element>
# type: string
# elements: 1
# length: 153
-- Function File: substruct (TYPE, SUBS, ...)
Create a subscript structure for use with `subsref' or `subsasgn'. See also: subsref, subsasgn.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Create a subscript structure for use with `subsref' or `subsasgn'.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
info
# name: <cell-element>
# type: string
# elements: 1
# length: 94
-- Function File: info ()
Display contact information for the GNU Octave community.
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Display contact information for the GNU Octave community.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
bzip2
# name: <cell-element>
# type: string
# elements: 1
# length: 449
-- Function File: ENTRIES = bzip2 (FILES)
-- Function File: ENTRIES = bzip2 (FILES, OUTDIR)
Compress the list of files specified in FILES. Each file is compressed separately and a new file with a '.bz2' extension is created. The original files are not touched. Existing compressed files are silently overwritten.If OUTDIR is defined the compressed versions of the files are placed in this directory. See also: bunzip2, gzip, zip, tar.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Compress the list of files specified in FILES.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
swapbytes
# name: <cell-element>
# type: string
# elements: 1
# length: 255
-- Function File: swapbytes (X)
Swaps the byte order on values, converting from little endian to big endian and vice versa. For example
swapbytes (uint16 (1:4))
=> [ 256 512 768 1024]
See also: typecast, cast.
# name: <cell-element>
# type: string
# elements: 1
# length: 91
Swaps the byte order on values, converting from little endian to big endian and vice versa.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
mexext
# name: <cell-element>
# type: string
# elements: 1
# length: 88
-- Function File: mexext ()
Return the filename extension used for MEX files.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Return the filename extension used for MEX files.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
paren
# name: <cell-element>
# type: string
# elements: 1
# length: 84
-- Operator: (
-- Operator: )
Array index or function argument delimeter.
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Array index or function argument delimeter.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
dos
# name: <cell-element>
# type: string
# elements: 1
# length: 474
-- Function File: [STATUS, TEXT] = dos (COMMAND)
-- Function File: [STATUS, TEXT] = dos (COMMAND, "-echo")
Execute a system command if running under a Windows-like operating system, otherwise do nothing. Return the exit status of the program in STATUS and any output sent to the standard output in TEXT. If the optional second argument `"-echo"' is given, then also send the output from the command to the standard output. See also: unix, isunix, ispc, system.
# name: <cell-element>
# type: string
# elements: 1
# length: 96
Execute a system command if running under a Windows-like operating system, otherwise do nothing.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
run
# name: <cell-element>
# type: string
# elements: 1
# length: 337
-- Function File: run (F)
-- Command: run F
Run scripts in the current workspace that are not necessarily on the path. If F is the script to run, including its path, then `run' change the directory to the directory where F is found. `run' then executes the script, and returns to the original directory. See also: system.
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Run scripts in the current workspace that are not necessarily on the path.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
texas_lotto
# name: <cell-element>
# type: string
# elements: 1
# length: 143
-- Function File: texas_lotto ()
Pick 6 unique numbers between 1 and 50 that are guaranteed to win the Texas Lotto. See also: rand.
# name: <cell-element>
# type: string
# elements: 1
# length: 82
Pick 6 unique numbers between 1 and 50 that are guaranteed to win the Texas Lotto.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
mex
# name: <cell-element>
# type: string
# elements: 1
# length: 196
-- Function File: mex [options] file ...
Compile source code written in C, C++, or Fortran, to a MEX file. This is equivalent to `mkoctfile --mex [options] file'. See also: mkoctfile.
# name: <cell-element>
# type: string
# elements: 1
# length: 65
Compile source code written in C, C++, or Fortran, to a MEX file.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
gunzip
# name: <cell-element>
# type: string
# elements: 1
# length: 321
-- Function File: gunzip (GZFILE, DIR)
Unpack the gzip archive GZFILE to the directory DIR. If DIR is not specified, it defaults to the current directory. If the GZFILE is a directory, all files in the directory will be recursively gunzipped. See also: unpack, bunzip2, tar, untar, gzip, gunzip, zip, unzip.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Unpack the gzip archive GZFILE to the directory DIR.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
namelengthmax
# name: <cell-element>
# type: string
# elements: 1
# length: 423
-- Function File: namelengthmax ()
Returns the MATLAB compatible maximum variable name length. Octave is capable of storing strings up to `2 ^ 31 - 1' in length. However for MATLAB compatibility all variable, function and structure field names should be shorter than the length supplied by `namelengthmax'. In particular variables stored to a MATLAB file format will have their names truncated to this length.
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Returns the MATLAB compatible maximum variable name length.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
symvar
# name: <cell-element>
# type: string
# elements: 1
# length: 325
-- Function File: symvar (S)
Identifies the argument names in the function defined by a string. Common constant names such as `pi', `NaN', `Inf', `eps', `i' or `j' are ignored. The arguments that are found are returned in a cell array of strings. If no variables are found then the returned cell array is empty.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Identifies the argument names in the function defined by a string.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
edit
# name: <cell-element>
# type: string
# elements: 1
# length: 4371
-- Command: edit NAME
-- Command: edit FIELD VALUE
-- Command: VALUE = edit get FIELD
Edit the named function, or change editor settings.
If `edit' is called with the name of a file or function as its argument it will be opened in a text editor.
* If the function NAME is available in a file on your path and that file is modifiable, then it will be edited in place. If it is a system function, then it will first be copied to the directory `HOME' (see further down) and then edited. If no file is found, then the m-file variant, ending with ".m", will be considered. If still no file is found, then variants with a leading "@" and then with both a leading "@" and trailing ".m" will be considered.
* If NAME is the name of a function defined in the interpreter but not in an m-file, then an m-file will be created in `HOME' to contain that function along with its current definition.
* If `name.cc' is specified, then it will search for `name.cc' in the path and try to modify it, otherwise it will create a new `.cc' file in `HOME'. If NAME happens to be an m-file or interpreter defined function, then the text of that function will be inserted into the .cc file as a comment.
* If NAME.EXT is on your path then it will be edited, otherwise the editor will be started with `HOME/name.ext' as the filename. If `name.ext' is not modifiable, it will be copied to `HOME' before editing.
*WARNING!* You may need to clear name before the new definition is available. If you are editing a .cc file, you will need to mkoctfile `name.cc' before the definition will be available.
If `edit' is called with FIELD and VALUE variables, the value of the control field FIELD will be VALUE. If an output argument is requested and the first argument is `get' then `edit' will return the value of the control field FIELD. If the control field does not exist, edit will return a structure containing all fields and values. Thus, `edit get all' returns a complete control structure. The following control fields are used:
`editor'
This is the editor to use to modify the functions. By default it uses Octave's `EDITOR' built-in function, which comes from `getenv("EDITOR")' and defaults to `emacs'. Use `%s' In place of the function name. For example,
`[EDITOR, " %s"]'
Use the editor which Octave uses for `bug_report'.
`"xedit %s &"'
pop up simple X11 editor in a separate window
`"gnudoit -q \"(find-file \\\"%s\\\")\""'
Send it to current Emacs; must have `(gnuserv-start)' in `.emacs'.
See also field 'mode', which controls how the editor is run by Octave.
On Cygwin, you will need to convert the Cygwin path to a Windows path if you are using a native Windows editor. For example
'"C:/Program Files/Good Editor/Editor.exe" "$(cygpath -wa %s)"'
`home'
This is the location of user local m-files. Be be sure it is in your path. The default is `~/octave'.
`author'
This is the name to put after the "## Author:" field of new functions. By default it guesses from the `gecos' field of password database.
`email'
This is the e-mail address to list after the name in the author field. By default it guesses `<$LOGNAME@$HOSTNAME>', and if `$HOSTNAME' is not defined it uses `uname -n'. You probably want to override this. Be sure to use `<user@host>' as your format.
`license'
`gpl'
GNU General Public License (default).
`bsd'
BSD-style license without advertising clause.
`pd'
Public domain.
`"text"'
Your own default copyright and license.
Unless you specify `pd', edit will prepend the copyright statement with "Copyright (C) yyyy Function Author".
`mode'
This value determines whether the editor should be started in async mode (editor is started in the background and Octave continues) or sync mode (Octave waits until the editor exits). Set it to "async" to start the editor in async mode. The default is "sync" (see also "system").
`editinplace'
Determines whether files should be edited in place, without regard to whether they are modifiable or not. The default is `false'.
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Edit the named function, or change editor settings.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
pkg
# name: <cell-element>
# type: string
# elements: 1
# length: 5938
-- Command: pkg COMMAND PKG_NAME
-- Command: pkg COMMAND OPTION PKG_NAME
This command interacts with the package manager. Different actions will be taken depending on the value of COMMAND.
`install'
Install named packages. For example,
pkg install image-1.0.0.tar.gz
installs the package found in the file `image-1.0.0.tar.gz'.
The OPTION variable can contain options that affect the manner in which a package is installed. These options can be one or more of
`-nodeps'
The package manager will disable the dependency checking. That way it is possible to install a package even if it depends on another package that's not installed on the system. *Use this option with care.*
`-noauto'
The package manager will not automatically load the installed package when starting Octave, even if the package requests that it is.
`-auto'
The package manager will automatically load the installed package when starting Octave, even if the package requests that it isn't.
`-local'
A local installation is forced, even if the user has system privileges.
`-global'
A global installation is forced, even if the user doesn't normally have system privileges
`-verbose'
The package manager will print the output of all of the commands that are performed.
`uninstall'
Uninstall named packages. For example,
pkg uninstall image
removes the `image' package from the system. If another installed package depends on the `image' package an error will be issued. The package can be uninstalled anyway by using the `-nodeps' option.
`load'
Add named packages to the path. After loading a package it is possible to use the functions provided by the package. For example,
pkg load image
adds the `image' package to the path. It is possible to load all installed packages at once with the command
pkg load all
`unload'
Removes named packages from the path. After unloading a package it is no longer possible to use the functions provided by the package. This command behaves like the `load' command.
`list'
Show a list of the currently installed packages. By requesting one or two output argument it is possible to get a list of the currently installed packages. For example,
installed_packages = pkg list;
returns a cell array containing a structure for each installed package. The command
[USER_PACKAGES, SYSTEM_PACKAGES] = pkg list
splits the list of installed packages into those who are installed by the current user, and those installed by the system administrator.
`describe'
Show a short description of the named installed packages, with the option '-verbose' also list functions provided by the package, e.g.:
pkg describe -verbose all
will describe all installed packages and the functions they provide. If one output is requested a cell of structure containing the description and list of functions of each package is returned as output rather than printed on screen:
desc = pkg ("describe", "secs1d", "image")
If any of the requested packages is not installed, pkg returns an error, unless a second output is requested:
[ desc, flag] = pkg ("describe", "secs1d", "image")
FLAG will take one of the values "Not installed", "Loaded" or "Not loaded" for each of the named packages.
`prefix'
Set the installation prefix directory. For example,
pkg prefix ~/my_octave_packages
sets the installation prefix to `~/my_octave_packages'. Packages will be installed in this directory.
It is possible to get the current installation prefix by requesting an output argument. For example,
p = pkg prefix
The location in which to install the architecture dependent files can be independent specified with an addition argument. For example
pkg prefix ~/my_octave_packages ~/my_arch_dep_pkgs
`local_list'
Set the file in which to look for information on the locally installed packages. Locally installed packages are those that are typically available only to the current user. For example
pkg local_list ~/.octave_packages
It is possible to get the current value of local_list with the following
pkg local_list
`global_list'
Set the file in which to look for, for information on the globally installed packages. Globally installed packages are those that are typically available to all users. For example
pkg global_list /usr/share/octave/octave_packages
It is possible to get the current value of global_list with the following
pkg global_list
`rebuild'
Rebuilds the package database from the installed directories. This can be used in cases where for some reason the package database is corrupted. It can also take the `-auto' and `-noauto' options to allow the autoloading state of a package to be changed. For example
pkg rebuild -noauto image
will remove the autoloading status of the image package.
`build'
Builds a binary form of a package or packages. The binary file produced will itself be an Octave package that can be installed normally with `pkg'. The form of the command to build a binary package is
pkg build builddir image-1.0.0.tar.gz ...
where `builddir' is the name of a directory where the temporary installation will be produced and the binary packages will be found. The options `-verbose' and `-nodeps' are respected, while the other options are ignored.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
This command interacts with the package manager.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
csvread
# name: <cell-element>
# type: string
# elements: 1
# length: 203
-- Function File: X = csvread (FILENAME)
Read the matrix X from a file.
This function is equivalent to
dlmread (FILENAME, "," , ...)
See also: dlmread, dlmwrite, csvwrite.
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Read the matrix X from a file.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
beep
# name: <cell-element>
# type: string
# elements: 1
# length: 127
-- Function File: beep ()
Produce a beep from the speaker (or visual bell). See also: puts, fputs, printf, fprintf.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Produce a beep from the speaker (or visual bell).
# name: <cell-element>
# type: string
# elements: 1
# length: 8
dlmwrite
# name: <cell-element>
# type: string
# elements: 1
# length: 1504
-- Function File: dlmwrite (FILE, A)
-- Function File: dlmwrite (FILE, A, DELIM, R, C)
-- Function File: dlmwrite (FILE, A, KEY, VAL ...)
-- Function File: dlmwrite (FILE, A, "-append", ...)
Write the matrix A to the named file using delimiters.
The parameter DELIM specifies the delimiter to use to separate values on a row.
The value of R specifies the number of delimiter-only lines to add to the start of the file.
The value of C specifies the number of delimiters to prepend to each line of data.
If the argument `"-append"' is given, append to the end of the FILE.
In addition, the following keyword value pairs may appear at the end of the argument list:
`"append"'
Either `"on"' or `"off"'. See `"-append"' above.
`"delimiter"'
See DELIM above.
`"newline"'
The character(s) to use to separate each row. Three special cases exist for this option. `"unix"' is changed into '\n', `"pc"' is changed into '\r\n', and `"mac"' is changed into '\r'. Other values for this option are kept as is.
`"roffset"'
See R above.
`"coffset"'
See C above.
`"precision"'
The precision to use when writing the file. It can either be a format string (as used by fprintf) or a number of significant digits.
dlmwrite ("file.csv", reshape (1:16, 4, 4));
dlmwrite ("file.tex", a, "delimiter", "&", "newline", "\\n")
See also: dlmread, csvread, csvwrite.
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Write the matrix A to the named file using delimiters.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
csvwrite
# name: <cell-element>
# type: string
# elements: 1
# length: 208
-- Function File: X = csvwrite (FILENAME, X)
Write the matrix X to a file.
This function is equivalent to
dlmwrite (FILENAME, X, ",", ...)
See also: dlmread, dlmwrite, csvread.
# name: <cell-element>
# type: string
# elements: 1
# length: 29
Write the matrix X to a file.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
magic
# name: <cell-element>
# type: string
# elements: 1
# length: 145
-- Function File: magic (N)
Create an N-by-N magic square. Note that `magic (2)' is undefined since there is no 2-by-2 magic square.
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Create an N-by-N magic square.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
hankel
# name: <cell-element>
# type: string
# elements: 1
# length: 571
-- Function File: hankel (C, R)
Return the Hankel matrix constructed given the first column C, and (optionally) the last row R. If the last element of C is not the same as the first element of R, the last element of C is used. If the second argument is omitted, it is assumed to be a vector of zeros with the same size as C.
A Hankel matrix formed from an m-vector C, and an n-vector R, has the elements
H(i,j) = c(i+j-1), i+j-1 <= m;
H(i,j) = r(i+j-m), otherwise
See also: vander, sylvester_matrix, hilb, invhilb, toeplitz.
# name: <cell-element>
# type: string
# elements: 1
# length: 95
Return the Hankel matrix constructed given the first column C, and (optionally) the last row R.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
hilb
# name: <cell-element>
# type: string
# elements: 1
# length: 233
-- Function File: hilb (N)
Return the Hilbert matrix of order N. The i, j element of a Hilbert matrix is defined as
H (i, j) = 1 / (i + j - 1)
See also: hankel, vander, sylvester_matrix, invhilb, toeplitz.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Return the Hilbert matrix of order N.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
pascal
# name: <cell-element>
# type: string
# elements: 1
# length: 646
-- Function File: pascal (N, T)
Return the Pascal matrix of order N if `T = 0'. T defaults to 0. Return lower triangular Cholesky factor of the Pascal matrix if `T = 1'. This matrix is its own inverse, that is `pascal (N, 1) ^ 2 == eye (N)'. If `T = -1', return its absolute value. This is the standard pascal triangle as a lower-triangular matrix. If `T = 2', return a transposed and permuted version of `pascal (N, 1)', which is the cube-root of the identity matrix. That is `pascal (N, 2) ^ 3 == eye (N)'.
See also: hankel, vander, sylvester_matrix, hilb, invhilb, toeplitz hadamard, wilkinson, compan, rosser.
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Return the Pascal matrix of order N if `T = 0'.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
vander
# name: <cell-element>
# type: string
# elements: 1
# length: 569
-- Function File: vander (C, N)
Return the Vandermonde matrix whose next to last column is C. If N is specified, it determines the number of columns; otherwise, N is taken to be equal to the length of C.
A Vandermonde matrix has the form:
c(1)^(n-1) ... c(1)^2 c(1) 1
c(2)^(n-1) ... c(2)^2 c(2) 1
. . . . .
. . . . .
. . . . .
c(n)^(n-1) ... c(n)^2 c(n) 1
See also: hankel, sylvester_matrix, hilb, invhilb, toeplitz.
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Return the Vandermonde matrix whose next to last column is C.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
wilkinson
# name: <cell-element>
# type: string
# elements: 1
# length: 200
-- Function File: wilkinson (N)
Return the Wilkinson matrix of order N.
See also: hankel, vander, sylvester_matrix, hilb, invhilb, toeplitz hadamard, rosser, compan, pascal.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Return the Wilkinson matrix of order N.
# name: <cell-element>
# type: string
# elements: 1
# length: 16
sylvester_matrix
# name: <cell-element>
# type: string
# elements: 1
# length: 147
-- Function File: sylvester_matrix (K)
Return the Sylvester matrix of order n = 2^k. See also: hankel, vander, hilb, invhilb, toeplitz.
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Return the Sylvester matrix of order n = 2^k.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
invhilb
# name: <cell-element>
# type: string
# elements: 1
# length: 1020
-- Function File: invhilb (N)
Return the inverse of a Hilbert matrix of order N. This can be computed exactly using
(i+j) /n+i-1\ /n+j-1\ /i+j-2\ 2
A(i,j) = -1 (i+j-1)( )( ) ( )
\ n-j / \ n-i / \ i-2 /
= p(i) p(j) / (i+j-1)
where
k /k+n-1\ /n\
p(k) = -1 ( ) ( )
\ k-1 / \k/
The validity of this formula can easily be checked by expanding the binomial coefficients in both formulas as factorials. It can be derived more directly via the theory of Cauchy matrices: see J. W. Demmel, Applied Numerical Linear Algebra, page 92.
Compare this with the numerical calculation of `inverse (hilb (n))', which suffers from the ill-conditioning of the Hilbert matrix, and the finite precision of your computer's floating point arithmetic. See also: hankel, vander, sylvester_matrix, hilb, toeplitz.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Return the inverse of a Hilbert matrix of order N.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
hadamard
# name: <cell-element>
# type: string
# elements: 1
# length: 602
-- Function File: hadamard (N)
Construct a Hadamard matrix HN of size N-by-N. The size N must be of the form `2 ^ K * P' in which P is one of 1, 12, 20 or 28. The returned matrix is normalized, meaning `Hn(:,1) == 1' and `H(1,:) == 1'.
Some of the properties of Hadamard matrices are:
* `kron (HM, HN)' is a Hadamard matrix of size M-by-N.
* `Hn * Hn' == N * eye (N)'.
* The rows of HN are orthogonal.
* `det (A) <= abs(det (HN))' for all A with `abs (A (I, J)) <= 1'.
* Multiply any row or column by -1 and still have a Hadamard matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Construct a Hadamard matrix HN of size N-by-N.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
rosser
# name: <cell-element>
# type: string
# elements: 1
# length: 253
-- Function File: rosser ()
Returns the Rosser matrix. This is a difficult test case used to test eigenvalue algorithms.
See also: hankel, vander, sylvester_matrix, hilb, invhilb, toeplitz hadamard, wilkinson, compan, pascal.
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Returns the Rosser matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
toeplitz
# name: <cell-element>
# type: string
# elements: 1
# length: 719
-- Function File: toeplitz (C, R)
Return the Toeplitz matrix constructed given the first column C, and (optionally) the first row R. If the first element of C is not the same as the first element of R, the first element of C is used. If the second argument is omitted, the first row is taken to be the same as the first column.
A square Toeplitz matrix has the form:
c(0) r(1) r(2) ... r(n)
c(1) c(0) r(1) ... r(n-1)
c(2) c(1) c(0) ... r(n-2)
. , , . .
. , , . .
. , , . .
c(n) c(n-1) c(n-2) ... c(0)
See also: hankel, vander, sylvester_matrix, hilb, invhilb.
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Return the Toeplitz matrix constructed given the first column C, and (optionally) the first row R.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
logm
# name: <cell-element>
# type: string
# elements: 1
# length: 211
-- Function File: logm (A)
Compute the matrix logarithm of the square matrix A. Note that this is currently implemented in terms of an eigenvalue expansion and needs to be improved to be more robust.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Compute the matrix logarithm of the square matrix A.
# name: <cell-element>
# type: string
# elements: 1
# length: 18
commutation_matrix
# name: <cell-element>
# type: string
# elements: 1
# length: 375
-- Function File: commutation_matrix (M, N)
Return the commutation matrix K(m,n) which is the unique M*N by M*N matrix such that K(m,n) * vec(A) = vec(A') for all m by n matrices A.
If only one argument M is given, K(m,m) is returned.
See Magnus and Neudecker (1988), Matrix differential calculus with applications in statistics and econometrics.
# name: <cell-element>
# type: string
# elements: 1
# length: 137
Return the commutation matrix K(m,n) which is the unique M*N by M*N matrix such that K(m,n) * vec(A) = vec(A') for all m by n matrices A.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
expm
# name: <cell-element>
# type: string
# elements: 1
# length: 842
-- Function File: expm (A)
Return the exponential of a matrix, defined as the infinite Taylor series
expm(a) = I + a + a^2/2! + a^3/3! + ...
The Taylor series is _not_ the way to compute the matrix exponential; see Moler and Van Loan, `Nineteen Dubious Ways to Compute the Exponential of a Matrix', SIAM Review, 1978. This routine uses Ward's diagonal Pade' approximation method with three step preconditioning (SIAM Journal on Numerical Analysis, 1977). Diagonal Pade' approximations are rational polynomials of matrices
-1
D (a) N (a)
whose Taylor series matches the first `2q+1' terms of the Taylor series above; direct evaluation of the Taylor series (with the same preconditioning steps) may be desirable in lieu of the Pade' approximation when `Dq(a)' is ill-conditioned.
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Return the exponential of a matrix, defined as the infinite Taylor series
# name: <cell-element>
# type: string
# elements: 1
# length: 3
dot
# name: <cell-element>
# type: string
# elements: 1
# length: 266
-- Function File: dot (X, Y, DIM)
Computes the dot product of two vectors. If X and Y are matrices, calculate the dot-product along the first non-singleton dimension. If the optional argument DIM is given, calculate the dot-product along this dimension.
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Computes the dot product of two vectors.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
cross
# name: <cell-element>
# type: string
# elements: 1
# length: 436
-- Function File: cross (X, Y)
-- Function File: cross (X, Y, DIM)
Compute the vector cross product of two 3-dimensional vectors X and Y.
cross ([1,1,0], [0,1,1])
=> [ 1; -1; 1 ]
If X and Y are matrices, the cross product is applied along the first dimension with 3 elements. The optional argument DIM forces the cross product to be calculated along the specified dimension. See also: dot.
# name: <cell-element>
# type: string
# elements: 1
# length: 70
Compute the vector cross product of two 3-dimensional vectors X and Y.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
cond
# name: <cell-element>
# type: string
# elements: 1
# length: 367
-- Function File: cond (A,P)
Compute the P-norm condition number of a matrix. `cond (A)' is defined as `norm (A, P) * norm (inv (A), P)'. By default `P=2' is used which implies a (relatively slow) singular value decomposition. Other possible selections are `P= 1, Inf, inf, 'Inf', 'fro'' which are generally faster. See also: condest, rcond, norm, svd.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Compute the P-norm condition number of a matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
planerot
# name: <cell-element>
# type: string
# elements: 1
# length: 180
-- Function File: [G, Y] = planerot (X)
Given a two-element column vector, returns the 2 by 2 orthogonal matrix G such that `Y = G * X' and `Y(2) = 0'. See also: givens.
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Given a two-element column vector, returns the 2 by 2 orthogonal matrix G such that `Y = G * X' and `Y(2) = 0'.
# name: <cell-element>
# type: string
# elements: 1
# length: 18
duplication_matrix
# name: <cell-element>
# type: string
# elements: 1
# length: 319
-- Function File: duplication_matrix (N)
Return the duplication matrix Dn which is the unique n^2 by n*(n+1)/2 matrix such that Dn vech (A) = vec (A) for all symmetric n by n matrices A.
See Magnus and Neudecker (1988), Matrix differential calculus with applications in statistics and econometrics.
# name: <cell-element>
# type: string
# elements: 1
# length: 145
Return the duplication matrix Dn which is the unique n^2 by n*(n+1)/2 matrix such that Dn vech (A) = vec (A) for all symmetric n by n matrices A.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
onenormest
# name: <cell-element>
# type: string
# elements: 1
# length: 1270
-- Function File: [EST, V, W, ITER] = onenormest (A, T)
-- Function File: [EST, V, W, ITER] = onenormest (APPLY, APPLY_T, N, T)
Apply Higham and Tisseur's randomized block 1-norm estimator to matrix A using T test vectors. If T exceeds 5, then only 5 test vectors are used.
If the matrix is not explicit, e.g., when estimating the norm of `inv (A)' given an LU factorization, `onenormest' applies A and its conjugate transpose through a pair of functions APPLY and APPLY_T, respectively, to a dense matrix of size N by T. The implicit version requires an explicit dimension N.
Returns the norm estimate EST, two vectors V and W related by norm `(W, 1) = EST * norm (V, 1)', and the number of iterations ITER. The number of iterations is limited to 10 and is at least 2.
References:
* Nicholas J. Higham and Françoise Tisseur, "A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra." SIMAX vol 21, no 4, pp 1185-1201. `http://dx.doi.org/10.1137/S0895479899356080'
* Nicholas J. Higham and Françoise Tisseur, "A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra." `http://citeseer.ist.psu.edu/223007.html'
See also: condest, norm, cond.
# name: <cell-element>
# type: string
# elements: 1
# length: 94
Apply Higham and Tisseur's randomized block 1-norm estimator to matrix A using T test vectors.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
housh
# name: <cell-element>
# type: string
# elements: 1
# length: 593
-- Function File: [HOUSV, BETA, ZER] = housh (X, J, Z)
Compute Householder reflection vector HOUSV to reflect X to be the j-th column of identity, i.e.,
(I - beta*housv*housv')x = norm(x)*e(j) if x(1) < 0,
(I - beta*housv*housv')x = -norm(x)*e(j) if x(1) >= 0
Inputs
X
vector
J
index into vector
Z
threshold for zero (usually should be the number 0)
Outputs (see Golub and Van Loan):
BETA
If beta = 0, then no reflection need be applied (zer set to 0)
HOUSV
householder vector
# name: <cell-element>
# type: string
# elements: 1
# length: 94
Compute Householder reflection vector HOUSV to reflect X to be the j-th column of identity, i.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
rref
# name: <cell-element>
# type: string
# elements: 1
# length: 299
-- Function File: [R, K] = rref (A, TOL)
Returns the reduced row echelon form of A. TOL defaults to `eps * max (size (A)) * norm (A, inf)'.
Called with two return arguments, K returns the vector of "bound variables", which are those columns on which elimination has been performed.
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Returns the reduced row echelon form of A.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
krylov
# name: <cell-element>
# type: string
# elements: 1
# length: 1133
-- Function File: [U, H, NU] = krylov (A, V, K, EPS1, PFLG)
Construct an orthogonal basis U of block Krylov subspace
[v a*v a^2*v ... a^(k+1)*v]
Using Householder reflections to guard against loss of orthogonality.
If V is a vector, then H contains the Hessenberg matrix such that `a*u == u*h+rk*ek'', in which `rk = a*u(:,k)-u*h(:,k)', and `ek'' is the vector `[0, 0, ..., 1]' of length `k'. Otherwise, H is meaningless.
If V is a vector and K is greater than `length(A)-1', then H contains the Hessenberg matrix such that `a*u == u*h'.
The value of NU is the dimension of the span of the krylov subspace (based on EPS1).
If B is a vector and K is greater than M-1, then H contains the Hessenberg decomposition of A.
The optional parameter EPS1 is the threshold for zero. The default value is 1e-12.
If the optional parameter PFLG is nonzero, row pivoting is used to improve numerical behavior. The default value is 0.
Reference: Hodel and Misra, "Partial Pivoting in the Computation of Krylov Subspaces", to be submitted to Linear Algebra and its Applications
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Construct an orthogonal basis U of block Krylov subspace
# name: <cell-element>
# type: string
# elements: 1
# length: 6
qzhess
# name: <cell-element>
# type: string
# elements: 1
# length: 720
-- Function File: [AA, BB, Q, Z] = qzhess (A, B)
Compute the Hessenberg-triangular decomposition of the matrix pencil `(A, B)', returning `AA = Q * A * Z', `BB = Q * B * Z', with Q and Z orthogonal. For example,
[aa, bb, q, z] = qzhess ([1, 2; 3, 4], [5, 6; 7, 8])
=> aa = [ -3.02244, -4.41741; 0.92998, 0.69749 ]
=> bb = [ -8.60233, -9.99730; 0.00000, -0.23250 ]
=> q = [ -0.58124, -0.81373; -0.81373, 0.58124 ]
=> z = [ 1, 0; 0, 1 ]
The Hessenberg-triangular decomposition is the first step in Moler and Stewart's QZ decomposition algorithm.
Algorithm taken from Golub and Van Loan, `Matrix Computations, 2nd edition'.
# name: <cell-element>
# type: string
# elements: 1
# length: 149
Compute the Hessenberg-triangular decomposition of the matrix pencil `(A, B)', returning `AA = Q * A * Z', `BB = Q * B * Z', with Q and Z orthogonal.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
subspace
# name: <cell-element>
# type: string
# elements: 1
# length: 151
-- Function File: ANGLE = subspace (A, B)
Determine the largest principal angle between two subspaces spanned by columns of matrices A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 99
Determine the largest principal angle between two subspaces spanned by columns of matrices A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
vech
# name: <cell-element>
# type: string
# elements: 1
# length: 181
-- Function File: vech (X)
Return the vector obtained by eliminating all supradiagonal elements of the square matrix X and stacking the result one column above the other.
# name: <cell-element>
# type: string
# elements: 1
# length: 143
Return the vector obtained by eliminating all supradiagonal elements of the square matrix X and stacking the result one column above the other.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
krylovb
# name: <cell-element>
# type: string
# elements: 1
# length: 84
-- Function File: [U, UCOLS] = krylovb (A, V, K, EPS1, PFLG)
See `krylov'.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
See `krylov'.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
condest
# name: <cell-element>
# type: string
# elements: 1
# length: 1554
-- Function File: [EST, V] = condest (A, T)
-- Function File: [EST, V] = condest (A, SOLVE, SOLVE_T, T)
-- Function File: [EST, V] = condest (APPLY, APPLY_T, SOLVE, SOLVE_T, N, T)
Estimate the 1-norm condition number of a matrix A using T test vectors using a randomized 1-norm estimator. If T exceeds 5, then only 5 test vectors are used.
If the matrix is not explicit, e.g., when estimating the condition number of A given an LU factorization, `condest' uses the following functions:
APPLY
`A*x' for a matrix `x' of size N by T.
APPLY_T
`A'*x' for a matrix `x' of size N by T.
SOLVE
`A \ b' for a matrix `b' of size N by T.
SOLVE_T
`A' \ b' for a matrix `b' of size N by T.
The implicit version requires an explicit dimension N.
`condest' uses a randomized algorithm to approximate the 1-norms.
`condest' returns the 1-norm condition estimate EST and a vector V satisfying `norm (A*v, 1) == norm (A, 1) * norm (V, 1) / EST'. When EST is large, V is an approximate null vector.
References:
* Nicholas J. Higham and Françoise Tisseur, "A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra." SIMAX vol 21, no 4, pp 1185-1201. `http://dx.doi.org/10.1137/S0895479899356080'
* Nicholas J. Higham and Françoise Tisseur, "A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra." `http://citeseer.ist.psu.edu/223007.html'
See also: cond, norm, onenormest.
# name: <cell-element>
# type: string
# elements: 1
# length: 108
Estimate the 1-norm condition number of a matrix A using T test vectors using a randomized 1-norm estimator.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
rank
# name: <cell-element>
# type: string
# elements: 1
# length: 410
-- Function File: rank (A, TOL)
Compute the rank of A, using the singular value decomposition. The rank is taken to be the number of singular values of A that are greater than the specified tolerance TOL. If the second argument is omitted, it is taken to be
tol = max (size (A)) * sigma(1) * eps;
where `eps' is machine precision and `sigma(1)' is the largest singular value of A.
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Compute the rank of A, using the singular value decomposition.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
trace
# name: <cell-element>
# type: string
# elements: 1
# length: 80
-- Function File: trace (A)
Compute the trace of A, `sum (diag (A))'.
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Compute the trace of A, `sum (diag (A))'.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
null
# name: <cell-element>
# type: string
# elements: 1
# length: 297
-- Function File: null (A, TOL)
Return an orthonormal basis of the null space of A.
The dimension of the null space is taken as the number of singular values of A not greater than TOL. If the argument TOL is missing, it is computed as
max (size (A)) * max (svd (A)) * eps
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Return an orthonormal basis of the null space of A.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
orth
# name: <cell-element>
# type: string
# elements: 1
# length: 295
-- Function File: orth (A, TOL)
Return an orthonormal basis of the range space of A.
The dimension of the range space is taken as the number of singular values of A greater than TOL. If the argument TOL is missing, it is computed as
max (size (A)) * max (svd (A)) * eps
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return an orthonormal basis of the range space of A.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
vec
# name: <cell-element>
# type: string
# elements: 1
# length: 124
-- Function File: vec (X)
Return the vector obtained by stacking the columns of the matrix X one above the other.
# name: <cell-element>
# type: string
# elements: 1
# length: 87
Return the vector obtained by stacking the columns of the matrix X one above the other.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
findstr
# name: <cell-element>
# type: string
# elements: 1
# length: 523
-- Function File: findstr (S, T, OVERLAP)
Return the vector of all positions in the longer of the two strings S and T where an occurrence of the shorter of the two starts. If the optional argument OVERLAP is nonzero, the returned vector can include overlapping positions (this is the default). For example,
findstr ("ababab", "a")
=> [1, 3, 5]
findstr ("abababa", "aba", 0)
=> [1, 5]
See also: strfind, strmatch, strcmp, strncmp, strcmpi, strncmpi, find.
# name: <cell-element>
# type: string
# elements: 1
# length: 129
Return the vector of all positions in the longer of the two strings S and T where an occurrence of the shorter of the two starts.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
strtrunc
# name: <cell-element>
# type: string
# elements: 1
# length: 275
-- Function File: strtrunc (S, N)
Truncate the character string S to length N. If S is a char matrix, then the number of columns is adjusted.
If S is a cell array of strings, then the operation is performed on its members and the new cell array is returned.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Truncate the character string S to length N.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
isstrprop
# name: <cell-element>
# type: string
# elements: 1
# length: 1385
-- Function File: isstrprop (STR, PRED)
Test character string properties. For example,
isstrprop ("abc123", "alpha")
=> [1, 1, 1, 0, 0, 0]
If STR is a cell array, `isstrpop' is applied recursively to each element of the cell array.
Numeric arrays are converted to character strings.
The second argument PRED may be one of
`"alpha"'
True for characters that are alphabetic
`"alnum"'
`"alphanum"'
True for characters that are alphabetic or digits.
`"ascii"'
True for characters that are in the range of ASCII encoding.
`"cntrl"'
True for control characters.
`"digit"'
True for decimal digits.
`"graph"'
`"graphic"'
True for printing characters except space.
`"lower"'
True for lower-case letters.
`"print"'
True for printing characters including space.
`"punct"'
True for printing characters except space or letter or digit.
`"space"'
`"wspace"'
True for whitespace characters (space, formfeed, newline, carriage return, tab, vertical tab).
`"upper"'
True for upper-case letters.
`"xdigit"'
True for hexadecimal digits.
See also: isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit.
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Test character string properties.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
bin2dec
# name: <cell-element>
# type: string
# elements: 1
# length: 372
-- Function File: bin2dec (S)
Return the decimal number corresponding to the binary number stored in the string S. For example,
bin2dec ("1110")
=> 14
If S is a string matrix, returns a column vector of converted numbers, one per row of S. Invalid rows evaluate to NaN. See also: dec2hex, base2dec, dec2base, hex2dec, dec2bin.
# name: <cell-element>
# type: string
# elements: 1
# length: 84
Return the decimal number corresponding to the binary number stored in the string S.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
strcmpi
# name: <cell-element>
# type: string
# elements: 1
# length: 705
-- Function File: strcmpi (S1, S2)
Ignoring case, return 1 if the character strings (or character arrays) S1 and S2 are the same, and 0 otherwise.
If either S1 or S2 is a cell array of strings, then an array of the same size is returned, containing the values described above for every member of the cell array. The other argument may also be a cell array of strings (of the same size or with only one element), char matrix or character string.
*Caution:* For compatibility with MATLAB, Octave's strcmpi function returns 1 if the character strings are equal, and 0 otherwise. This is just the opposite of the corresponding C library function. See also: strcmp, strncmp, strncmpi.
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Ignoring case, return 1 if the character strings (or character arrays) S1 and S2 are the same, and 0 otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
isletter
# name: <cell-element>
# type: string
# elements: 1
# length: 109
-- Function File: isletter (S)
Returns true if S is a letter, false otherwise. See also: isalpha.
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Returns true if S is a letter, false otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
strsplit
# name: <cell-element>
# type: string
# elements: 1
# length: 320
-- Function File: [S] = strsplit (P, SEP, STRIP_EMPTY)
Split a single string using one or more delimiters and return a cell array of strings. Consecutive delimiters and delimiters at boundaries result in empty strings, unless STRIP_EMPTY is true. The default value of STRIP_EMPTY is false. See also: strtok.
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Split a single string using one or more delimiters and return a cell array of strings.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
cstrcat
# name: <cell-element>
# type: string
# elements: 1
# length: 417
-- Function File: cstrcat (S1, S2, ...)
Return a string containing all the arguments concatenated horizontally. Trailing white space is preserved. For example,
cstrcat ("ab ", "cd")
=> "ab cd"
s = [ "ab"; "cde" ];
cstrcat (s, s, s)
=> ans =
"ab ab ab "
"cdecdecde"
See also: strcat, char, strvcat.
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Return a string containing all the arguments concatenated horizontally.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
mat2str
# name: <cell-element>
# type: string
# elements: 1
# length: 1032
-- Function File: S = mat2str (X, N)
-- Function File: S = mat2str (..., 'class')
Format real/complex numerical matrices as strings. This function returns values that are suitable for the use of the `eval' function.
The precision of the values is given by N. If N is a scalar then both real and imaginary parts of the matrix are printed to the same precision. Otherwise `N (1)' defines the precision of the real part and `N (2)' defines the precision of the imaginary part. The default for N is 17.
If the argument 'class' is given, then the class of X is included in the string in such a way that the eval will result in the construction of a matrix of the same class.
mat2str ([ -1/3 + i/7; 1/3 - i/7 ], [4 2])
=> "[-0.3333+0.14i;0.3333-0.14i]"
mat2str ([ -1/3 +i/7; 1/3 -i/7 ], [4 2])
=> "[-0.3333+0i,0+0.14i;0.3333+0i,-0-0.14i]"
mat2str (int16([1 -1]), 'class')
=> "int16([1,-1])"
See also: sprintf, num2str, int2str.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Format real/complex numerical matrices as strings.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
base2dec
# name: <cell-element>
# type: string
# elements: 1
# length: 646
-- Function File: base2dec (S, B)
Convert S from a string of digits of base B into an integer.
base2dec ("11120", 3)
=> 123
If S is a matrix, returns a column vector with one value per row of S. If a row contains invalid symbols then the corresponding value will be NaN. Rows are right-justified before converting so that trailing spaces are ignored.
If B is a string, the characters of B are used as the symbols for the digits of S. Space (' ') may not be used as a symbol.
base2dec ("yyyzx", "xyz")
=> 123
See also: dec2base, dec2bin, bin2dec, hex2dec, dec2hex.
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Convert S from a string of digits of base B into an integer.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
strmatch
# name: <cell-element>
# type: string
# elements: 1
# length: 700
-- Function File: strmatch (S, A, "exact")
Return indices of entries of A that match the string S. The second argument A may be a string matrix or a cell array of strings. If the third argument `"exact"' is not given, then S only needs to match A up to the length of S. Nul characters match blanks. Results are returned as a column vector. For example:
strmatch ("apple", "apple juice")
=> 1
strmatch ("apple", ["apple pie"; "apple juice"; "an apple"])
=> [1; 2]
strmatch ("apple", {"apple pie"; "apple juice"; "tomato"})
=> [1; 2]
See also: strfind, findstr, strcmp, strncmp, strcmpi, strncmpi, find.
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Return indices of entries of A that match the string S.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
strncmpi
# name: <cell-element>
# type: string
# elements: 1
# length: 731
-- Function File: strncmpi (S1, S2, N)
Ignoring case, return 1 if the first N characters of character strings (or character arrays) S1 and S2 are the same, and 0 otherwise.
If either S1 or S2 is a cell array of strings, then an array of the same size is returned, containing the values described above for every member of the cell array. The other argument may also be a cell array of strings (of the same size or with only one element), char matrix or character string.
*Caution:* For compatibility with MATLAB, Octave's strncmpi function returns 1 if the character strings are equal, and 0 otherwise. This is just the opposite of the corresponding C library function. See also: strcmp, strcmpi, strncmp.
# name: <cell-element>
# type: string
# elements: 1
# length: 133
Ignoring case, return 1 if the first N characters of character strings (or character arrays) S1 and S2 are the same, and 0 otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
strfind
# name: <cell-element>
# type: string
# elements: 1
# length: 868
-- Function File: IDX = strfind (STR, PATTERN)
-- Function File: IDX = strfind (CELLSTR, PATTERN)
Search for PATTERN in the string STR and return the starting index of every such occurrence in the vector IDX. If there is no such occurrence, or if PATTERN is longer than STR, then IDX is the empty array `[]'.
If the cell array of strings CELLSTR is specified instead of the string STR, then IDX is a cell array of vectors, as specified above. Examples:
strfind ("abababa", "aba")
=> [1, 3, 5]
strfind ({"abababa", "bebebe", "ab"}, "aba")
=> ans =
{
[1,1] =
1 3 5
[1,2] = [](1x0)
[1,3] = [](1x0)
}
See also: findstr, strmatch, strcmp, strncmp, strcmpi, strncmpi, find.
# name: <cell-element>
# type: string
# elements: 1
# length: 110
Search for PATTERN in the string STR and return the starting index of every such occurrence in the vector IDX.
# name: <cell-element>
# type: string
# elements: 1
# length: 14
validatestring
# name: <cell-element>
# type: string
# elements: 1
# length: 855
-- Function File: VALIDSTR = validatestring (STR, STRARRAY)
-- Function File: VALIDSTR = validatestring (STR, STRARRAY, FUNCNAME)
-- Function File: VALIDSTR = validatestring (STR, STRARRAY, FUNCNAME, VARNAME)
-- Function File: VALIDSTR = validatestring (..., POSITION)
Verify that STR is a string or substring of an element of STRARRAY.
STR is a character string to be tested, and STRARRAY is a cellstr of valid values. VALIDSTR will be the validated form of STR where validation is defined as STR being a member or substring of VALIDSTR. If STR is a substring of VALIDSTR and there are multiple matches, the shortest match will be returned if all matches are substrings of each other, and an error will be raised if the matches are not substrings of each other.
All comparisons are case insensitive. See also: strcmp, strcmpi.
# name: <cell-element>
# type: string
# elements: 1
# length: 67
Verify that STR is a string or substring of an element of STRARRAY.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
strtok
# name: <cell-element>
# type: string
# elements: 1
# length: 567
-- Function File: [TOK, REM] = strtok (STR, DELIM)
Find all characters up to but not including the first character which is in the string delim. If REM is requested, it contains the remainder of the string, starting at the first delimiter. Leading delimiters are ignored. If DELIM is not specified, space is assumed. For example:
strtok ("this is the life")
=> "this"
[tok, rem] = strtok ("14*27+31", "+-*/")
=>
tok = 14
rem = *27+31
See also: index, strsplit.
# name: <cell-element>
# type: string
# elements: 1
# length: 93
Find all characters up to but not including the first character which is in the string delim.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
strrep
# name: <cell-element>
# type: string
# elements: 1
# length: 304
-- Function File: strrep (S, X, Y)
Replace all occurrences of the substring X of the string S with the string Y and return the result. For example,
strrep ("This is a test string", "is", "&%$")
=> "Th&%$ &%$ a test string"
See also: regexprep, strfind, findstr.
# name: <cell-element>
# type: string
# elements: 1
# length: 99
Replace all occurrences of the substring X of the string S with the string Y and return the result.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
dec2base
# name: <cell-element>
# type: string
# elements: 1
# length: 663
-- Function File: dec2base (N, B, LEN)
Return a string of symbols in base B corresponding to the non-negative integer N.
dec2base (123, 3)
=> "11120"
If N is a vector, return a string matrix with one row per value, padded with leading zeros to the width of the largest value.
If B is a string then the characters of B are used as the symbols for the digits of N. Space (' ') may not be used as a symbol.
dec2base (123, "aei")
=> "eeeia"
The optional third argument, LEN, specifies the minimum number of digits in the result. See also: base2dec, dec2bin, bin2dec, hex2dec, dec2hex.
# name: <cell-element>
# type: string
# elements: 1
# length: 81
Return a string of symbols in base B corresponding to the non-negative integer N.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
dec2hex
# name: <cell-element>
# type: string
# elements: 1
# length: 466
-- Function File: dec2hex (N, LEN)
Return the hexadecimal string corresponding to the non-negative integer N. For example,
dec2hex (2748)
=> "ABC"
If N is a vector, returns a string matrix, one row per value, padded with leading zeros to the width of the largest value.
The optional second argument, LEN, specifies the minimum number of digits in the result. See also: hex2dec, dec2base, base2dec, bin2dec, dec2bin.
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Return the hexadecimal string corresponding to the non-negative integer N.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
str2double
# name: <cell-element>
# type: string
# elements: 1
# length: 1962
-- Function File: [NUM, STATUS, STRARRAY] = str2double (STR, CDELIM, RDELIM, DDELIM)
Convert strings into numeric values.
`str2double' can replace `str2num', but avoids the use of `eval' on unknown data.
STR can be the form `[+-]d[.]dd[[eE][+-]ddd]' in which `d' can be any of digit from 0 to 9, and `[]' indicate optional elements.
NUM is the corresponding numeric value. If the conversion fails, status is -1 and NUM is NaN.
STATUS is 0 if the conversion was successful and -1 otherwise.
STRARRAY is a cell array of strings.
Elements which are not defined or not valid return NaN and the STATUS becomes -1.
If STR is a character array or a cell array of strings, then NUM and STATUS return matrices of appropriate size.
STR can also contain multiple elements separated by row and column delimiters (CDELIM and RDELIM).
The parameters CDELIM, RDELIM, and DDELIM are optional column, row, and decimal delimiters.
The default row-delimiters are newline, carriage return and semicolon (ASCII 10, 13 and 59). The default column-delimiters are tab, space and comma (ASCII 9, 32, and 44). The default decimal delimiter is `.' (ASCII 46).
CDELIM, RDELIM, and DDELIM must contain only nul, newline, carriage return, semicolon, colon, slash, tab, space, comma, or `()[]{}' (ASCII 0, 9, 10, 11, 12, 13, 14, 32, 33, 34, 40, 41, 44, 47, 58, 59, 91, 93, 123, 124, 125).
Examples:
str2double ("-.1e-5")
=> -1.0000e-006
str2double (".314e1, 44.44e-1, .7; -1e+1")
=>
3.1400 4.4440 0.7000
-10.0000 NaN NaN
line = "200, 300, NaN, -inf, yes, no, 999, maybe, NaN";
[x, status] = str2double (line)
=> x =
200 300 NaN -Inf NaN NaN 999 NaN NaN
=> status =
0 0 0 0 -1 -1 0 -1 0
See also: str2num.
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Convert strings into numeric values.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
strtrim
# name: <cell-element>
# type: string
# elements: 1
# length: 397
-- Function File: strtrim (S)
Remove leading and trailing blanks and nulls from S. If S is a matrix, STRTRIM trims each row to the length of longest string. If S is a cell array, operate recursively on each element of the cell array. For example:
strtrim (" abc ")
=> "abc"
strtrim ([" abc "; " def "])
=> ["abc "; " def"]
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Remove leading and trailing blanks and nulls from S.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
substr
# name: <cell-element>
# type: string
# elements: 1
# length: 498
-- Function File: substr (S, OFFSET, LEN)
Return the substring of S which starts at character number OFFSET and is LEN characters long.
If OFFSET is negative, extraction starts that far from the end of the string. If LEN is omitted, the substring extends to the end of S.
For example,
substr ("This is a test string", 6, 9)
=> "is a test"
This function is patterned after AWK. You can get the same result by `S(OFFSET : (OFFSET + LEN - 1))'.
# name: <cell-element>
# type: string
# elements: 1
# length: 93
Return the substring of S which starts at character number OFFSET and is LEN characters long.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
deblank
# name: <cell-element>
# type: string
# elements: 1
# length: 234
-- Function File: deblank (S)
Remove trailing blanks and nulls from S. If S is a matrix, DEBLANK trims each row to the length of longest string. If S is a cell array, operate recursively on each element of the cell array.
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Remove trailing blanks and nulls from S.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
dec2bin
# name: <cell-element>
# type: string
# elements: 1
# length: 496
-- Function File: dec2bin (N, LEN)
Return a binary number corresponding to the non-negative decimal number N, as a string of ones and zeros. For example,
dec2bin (14)
=> "1110"
If N is a vector, returns a string matrix, one row per value, padded with leading zeros to the width of the largest value.
The optional second argument, LEN, specifies the minimum number of digits in the result. See also: bin2dec, dec2base, base2dec, hex2dec, dec2hex.
# name: <cell-element>
# type: string
# elements: 1
# length: 105
Return a binary number corresponding to the non-negative decimal number N, as a string of ones and zeros.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
blanks
# name: <cell-element>
# type: string
# elements: 1
# length: 377
-- Function File: blanks (N)
Return a string of N blanks, for example:
blanks(10);
whos ans;
=>
Attr Name Size Bytes Class
==== ==== ==== ===== =====
ans 1x10 10 char
See also: repmat.
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Return a string of N blanks, for example:
# name: <cell-element>
# type: string
# elements: 1
# length: 7
str2num
# name: <cell-element>
# type: string
# elements: 1
# length: 529
-- Function File: str2num (S)
Convert the string (or character array) S to a number (or an array). Examples:
str2num("3.141596")
=> 3.141596
str2num(["1, 2, 3"; "4, 5, 6"]);
=> ans =
1 2 3
4 5 6
*Caution:* As `str2num' uses the `eval' function to do the conversion, `str2num' will execute any code contained in the string S. Use `str2double' instead if you want to avoid the use of `eval'. See also: str2double, eval.
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Convert the string (or character array) S to a number (or an array).
# name: <cell-element>
# type: string
# elements: 1
# length: 7
hex2dec
# name: <cell-element>
# type: string
# elements: 1
# length: 418
-- Function File: hex2dec (S)
Return the integer corresponding to the hexadecimal number stored in the string S. For example,
hex2dec ("12B")
=> 299
hex2dec ("12b")
=> 299
If S is a string matrix, returns a column vector of converted numbers, one per row of S. Invalid rows evaluate to NaN. See also: dec2hex, base2dec, dec2base, bin2dec, dec2bin.
# name: <cell-element>
# type: string
# elements: 1
# length: 82
Return the integer corresponding to the hexadecimal number stored in the string S.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
strcat
# name: <cell-element>
# type: string
# elements: 1
# length: 746
-- Function File: strcat (S1, S2, ...)
Return a string containing all the arguments concatenated horizontally. If the arguments are cells strings, `strcat' returns a cell string with the individual cells concatenated. For numerical input, each element is converted to the corresponding ASCII character. Trailing white space is eliminated. For example,
s = [ "ab"; "cde" ];
strcat (s, s, s)
=> ans =
"ab ab ab "
"cdecdecde"
s = { "ab"; "cde" };
strcat (s, s, s)
=> ans =
{
[1,1] = ababab
[2,1] = cdecdecde
}
See also: cstrcat, char, strvcat.
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Return a string containing all the arguments concatenated horizontally.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
index
# name: <cell-element>
# type: string
# elements: 1
# length: 572
-- Function File: index (S, T)
-- Function File: index (S, T, DIRECTION)
Return the position of the first occurrence of the string T in the string S, or 0 if no occurrence is found. For example,
index ("Teststring", "t")
=> 4
If DIRECTION is `"first"', return the first element found. If DIRECTION is `"last"', return the last element found. The `rindex' function is equivalent to `index' with DIRECTION set to `"last"'.
*Caution:* This function does not work for arrays of character strings. See also: find, rindex.
# name: <cell-element>
# type: string
# elements: 1
# length: 108
Return the position of the first occurrence of the string T in the string S, or 0 if no occurrence is found.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
strjust
# name: <cell-element>
# type: string
# elements: 1
# length: 486
-- Function File: strjust (S, ["left"|"right"|"center"])
Shift the non-blank text of S to the left, right or center of the string. If S is a string array, justify each string in the array. Null characters are replaced by blanks. If no justification is specified, then all rows are right-justified. For example:
strjust (["a"; "ab"; "abc"; "abcd"])
=> ans =
a
ab
abc
abcd
# name: <cell-element>
# type: string
# elements: 1
# length: 73
Shift the non-blank text of S to the left, right or center of the string.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
strchr
# name: <cell-element>
# type: string
# elements: 1
# length: 410
-- Function File: IDX = strchr (STR, CHARS)
-- Function File: IDX = strchr (STR, CHARS, N)
-- Function File: IDX = strchr (STR, CHARS, N, DIRECTION)
Search for the string STR for occurrences of characters from the set CHARS. The return value, as well as the N and DIRECTION arguments behave identically as in `find'.
This will be faster than using regexp in most cases.
See also: find.
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Search for the string STR for occurrences of characters from the set CHARS.
# name: <cell-element>
# type: string
# elements: 1
# length: 15
regexptranslate
# name: <cell-element>
# type: string
# elements: 1
# length: 772
-- Function File: regexptranslate (OP, S)
Translate a string for use in a regular expression. This might include either wildcard replacement or special character escaping. The behavior can be controlled by the OP that can have the values
"wildcard"
The wildcard characters `.', `*' and `?' are replaced with wildcards that are appropriate for a regular expression. For example:
regexptranslate ("wildcard", "*.m")
=> ".*\.m"
"escape"
The characters `$.?[]', that have special meaning for regular expressions are escaped so that they are treated literally. For example:
regexptranslate ("escape", "12.5")
=> "12\.5"
See also: regexp, regexpi, regexprep.
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Translate a string for use in a regular expression.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
rindex
# name: <cell-element>
# type: string
# elements: 1
# length: 345
-- Function File: rindex (S, T)
Return the position of the last occurrence of the character string T in the character string S, or 0 if no occurrence is found. For example,
rindex ("Teststring", "t")
=> 6
*Caution:* This function does not work for arrays of character strings. See also: find, index.
# name: <cell-element>
# type: string
# elements: 1
# length: 127
Return the position of the last occurrence of the character string T in the character string S, or 0 if no occurrence is found.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
glpk
# name: <cell-element>
# type: string
# elements: 1
# length: 11571
-- Function File: [XOPT, FMIN, STATUS, EXTRA] = glpk (C, A, B, LB, UB, CTYPE, VARTYPE, SENSE, PARAM)
Solve a linear program using the GNU GLPK library. Given three arguments, `glpk' solves the following standard LP:
min C'*x
subject to
A*x = b
x >= 0
but may also solve problems of the form
[ min | max ] C'*x
subject to
A*x [ "=" | "<=" | ">=" ] b
x >= LB
x <= UB
Input arguments:
C
A column array containing the objective function coefficients.
A
A matrix containing the constraints coefficients.
B
A column array containing the right-hand side value for each constraint in the constraint matrix.
LB
An array containing the lower bound on each of the variables. If LB is not supplied, the default lower bound for the variables is zero.
UB
An array containing the upper bound on each of the variables. If UB is not supplied, the default upper bound is assumed to be infinite.
CTYPE
An array of characters containing the sense of each constraint in the constraint matrix. Each element of the array may be one of the following values
`"F"'
A free (unbounded) constraint (the constraint is ignored).
`"U"'
An inequality constraint with an upper bound (`A(i,:)*x <= b(i)').
`"S"'
An equality constraint (`A(i,:)*x = b(i)').
`"L"'
An inequality with a lower bound (`A(i,:)*x >= b(i)').
`"D"'
An inequality constraint with both upper and lower bounds (`A(i,:)*x >= -b(i)' _and_ (`A(i,:)*x <= b(i)').
VARTYPE
A column array containing the types of the variables.
`"C"'
A continuous variable.
`"I"'
An integer variable.
SENSE
If SENSE is 1, the problem is a minimization. If SENSE is -1, the problem is a maximization. The default value is 1.
PARAM
A structure containing the following parameters used to define the behavior of solver. Missing elements in the structure take on default values, so you only need to set the elements that you wish to change from the default.
Integer parameters:
`msglev (`LPX_K_MSGLEV', default: 1)'
Level of messages output by solver routines:
0
No output.
1
Error messages only.
2
Normal output .
3
Full output (includes informational messages).
`scale (`LPX_K_SCALE', default: 1)'
Scaling option:
0
No scaling.
1
Equilibration scaling.
2
Geometric mean scaling, then equilibration scaling.
`dual (`LPX_K_DUAL', default: 0)'
Dual simplex option:
0
Do not use the dual simplex.
1
If initial basic solution is dual feasible, use the dual simplex.
`price (`LPX_K_PRICE', default: 1)'
Pricing option (for both primal and dual simplex):
0
Textbook pricing.
1
Steepest edge pricing.
`round (`LPX_K_ROUND', default: 0)'
Solution rounding option:
0
Report all primal and dual values "as is".
1
Replace tiny primal and dual values by exact zero.
`itlim (`LPX_K_ITLIM', default: -1)'
Simplex iterations limit. If this value is positive, it is decreased by one each time when one simplex iteration has been performed, and reaching zero value signals the solver to stop the search. Negative value means no iterations limit.
`itcnt (`LPX_K_OUTFRQ', default: 200)'
Output frequency, in iterations. This parameter specifies how frequently the solver sends information about the solution to the standard output.
`branch (`LPX_K_BRANCH', default: 2)'
Branching heuristic option (for MIP only):
0
Branch on the first variable.
1
Branch on the last variable.
2
Branch using a heuristic by Driebeck and Tomlin.
`btrack (`LPX_K_BTRACK', default: 2)'
Backtracking heuristic option (for MIP only):
0
Depth first search.
1
Breadth first search.
2
Backtrack using the best projection heuristic.
`presol (`LPX_K_PRESOL', default: 1)'
If this flag is set, the routine lpx_simplex solves the problem using the built-in LP presolver. Otherwise the LP presolver is not used.
`lpsolver (default: 1)'
Select which solver to use. If the problem is a MIP problem this flag will be ignored.
1
Revised simplex method.
2
Interior point method.
`save (default: 0)'
If this parameter is nonzero, save a copy of the problem in CPLEX LP format to the file `"outpb.lp"'. There is currently no way to change the name of the output file.
Real parameters:
`relax (`LPX_K_RELAX', default: 0.07)'
Relaxation parameter used in the ratio test. If it is zero, the textbook ratio test is used. If it is non-zero (should be positive), Harris' two-pass ratio test is used. In the latter case on the first pass of the ratio test basic variables (in the case of primal simplex) or reduced costs of non-basic variables (in the case of dual simplex) are allowed to slightly violate their bounds, but not more than `relax*tolbnd' or `relax*toldj (thus, `relax' is a percentage of `tolbnd' or `toldj''.
`tolbnd (`LPX_K_TOLBND', default: 10e-7)'
Relative tolerance used to check if the current basic solution is primal feasible. It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.
`toldj (`LPX_K_TOLDJ', default: 10e-7)'
Absolute tolerance used to check if the current basic solution is dual feasible. It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.
`tolpiv (`LPX_K_TOLPIV', default: 10e-9)'
Relative tolerance used to choose eligible pivotal elements of the simplex table. It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.
`objll (`LPX_K_OBJLL', default: -DBL_MAX)'
Lower limit of the objective function. If on the phase II the objective function reaches this limit and continues decreasing, the solver stops the search. This parameter is used in the dual simplex method only.
`objul (`LPX_K_OBJUL', default: +DBL_MAX)'
Upper limit of the objective function. If on the phase II the objective function reaches this limit and continues increasing, the solver stops the search. This parameter is used in the dual simplex only.
`tmlim (`LPX_K_TMLIM', default: -1.0)'
Searching time limit, in seconds. If this value is positive, it is decreased each time when one simplex iteration has been performed by the amount of time spent for the iteration, and reaching zero value signals the solver to stop the search. Negative value means no time limit.
`outdly (`LPX_K_OUTDLY', default: 0.0)'
Output delay, in seconds. This parameter specifies how long the solver should delay sending information about the solution to the standard output. Non-positive value means no delay.
`tolint (`LPX_K_TOLINT', default: 10e-5)'
Relative tolerance used to check if the current basic solution is integer feasible. It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.
`tolobj (`LPX_K_TOLOBJ', default: 10e-7)'
Relative tolerance used to check if the value of the objective function is not better than in the best known integer feasible solution. It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.
Output values:
XOPT
The optimizer (the value of the decision variables at the optimum).
FOPT
The optimum value of the objective function.
STATUS
Status of the optimization.
Simplex Method:
180 (`LPX_OPT')
Solution is optimal.
181 (`LPX_FEAS')
Solution is feasible.
182 (`LPX_INFEAS')
Solution is infeasible.
183 (`LPX_NOFEAS')
Problem has no feasible solution.
184 (`LPX_UNBND')
Problem has no unbounded solution.
185 (`LPX_UNDEF')
Solution status is undefined.
Interior Point Method:
150 (`LPX_T_UNDEF')
The interior point method is undefined.
151 (`LPX_T_OPT')
The interior point method is optimal.
Mixed Integer Method:
170 (`LPX_I_UNDEF')
The status is undefined.
171 (`LPX_I_OPT')
The solution is integer optimal.
172 (`LPX_I_FEAS')
Solution integer feasible but its optimality has not been proven
173 (`LPX_I_NOFEAS')
No integer feasible solution.
If an error occurs, STATUS will contain one of the following codes:
204 (`LPX_E_FAULT')
Unable to start the search.
205 (`LPX_E_OBJLL')
Objective function lower limit reached.
206 (`LPX_E_OBJUL')
Objective function upper limit reached.
207 (`LPX_E_ITLIM')
Iterations limit exhausted.
208 (`LPX_E_TMLIM')
Time limit exhausted.
209 (`LPX_E_NOFEAS')
No feasible solution.
210 (`LPX_E_INSTAB')
Numerical instability.
211 (`LPX_E_SING')
Problems with basis matrix.
212 (`LPX_E_NOCONV')
No convergence (interior).
213 (`LPX_E_NOPFS')
No primal feasible solution (LP presolver).
214 (`LPX_E_NODFS')
No dual feasible solution (LP presolver).
EXTRA
A data structure containing the following fields:
`lambda'
Dual variables.
`redcosts'
Reduced Costs.
`time'
Time (in seconds) used for solving LP/MIP problem.
`mem'
Memory (in bytes) used for solving LP/MIP problem (this is not available if the version of GLPK is 4.15 or later).
Example:
c = [10, 6, 4]';
a = [ 1, 1, 1;
10, 4, 5;
2, 2, 6];
b = [100, 600, 300]';
lb = [0, 0, 0]';
ub = [];
ctype = "UUU";
vartype = "CCC";
s = -1;
param.msglev = 1;
param.itlim = 100;
[xmin, fmin, status, extra] = ...
glpk (c, a, b, lb, ub, ctype, vartype, s, param);
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Solve a linear program using the GNU GLPK library.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
lsqnonneg
# name: <cell-element>
# type: string
# elements: 1
# length: 1204
-- Function File: X = lsqnonneg (C, D)
-- Function File: X = lsqnonneg (C, D, X0)
-- Function File: [X, RESNORM] = lsqnonneg (...)
-- Function File: [X, RESNORM, RESIDUAL] = lsqnonneg (...)
-- Function File: [X, RESNORM, RESIDUAL, EXITFLAG] = lsqnonneg (...)
-- Function File: [X, RESNORM, RESIDUAL, EXITFLAG, OUTPUT] = lsqnonneg (...)
-- Function File: [X, RESNORM, RESIDUAL, EXITFLAG, OUTPUT, LAMBDA] = lsqnonneg (...)
Minimize `norm (C*X-d)' subject to `X >= 0'. C and D must be real. X0 is an optional initial guess for X.
Outputs:
* resnorm
The squared 2-norm of the residual: norm(C*X-D)^2
* residual
The residual: D-C*X
* exitflag
An indicator of convergence. 0 indicates that the iteration count was exceeded, and therefore convergence was not reached; >0 indicates that the algorithm converged. (The algorithm is stable and will converge given enough iterations.)
* output
A structure with two fields:
* "algorithm": The algorithm used ("nnls")
* "iterations": The number of iterations taken.
* lambda
Not implemented.
See also: optimset.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Minimize `norm (C*X-d)' subject to `X >= 0'.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
fsolve
# name: <cell-element>
# type: string
# elements: 1
# length: 4012
-- Function File: fsolve (FCN, X0, OPTIONS)
-- Function File: [X, FVEC, INFO, OUTPUT, FJAC] = fsolve (FCN, ...)
Solve a system of nonlinear equations defined by the function FCN. FCN should accepts a vector (array) defining the unknown variables, and return a vector of left-hand sides of the equations. Right-hand sides are defined to be zeros. In other words, this function attempts to determine a vector X such that `FCN (X)' gives (approximately) all zeros. X0 determines a starting guess. The shape of X0 is preserved in all calls to FCN, but otherwise it is treated as a column vector. OPTIONS is a structure specifying additional options. Currently, `fsolve' recognizes these options: `"FunValCheck"', `"OutputFcn"', `"TolX"', `"TolFun"', `"MaxIter"', `"MaxFunEvals"', `"Jacobian"', `"Updating"' and `"ComplexEqn"'.
If `"Jacobian"' is `"on"', it specifies that FCN, called with 2 output arguments, also returns the Jacobian matrix of right-hand sides at the requested point. `"TolX"' specifies the termination tolerance in the unknown variables, while `"TolFun"' is a tolerance for equations. Default is `1e-7' for both `"TolX"' and `"TolFun"'. If `"Updating"' is "on", the function will attempt to use Broyden updates to update the Jacobian, in order to reduce the amount of jacobian calculations. If your user function always calculates the Jacobian (regardless of number of output arguments), this option provides no advantage and should be set to false.
`"ComplexEqn"' is `"on"', `fsolve' will attempt to solve complex equations in complex variables, assuming that the equations possess a complex derivative (i.e., are holomorphic). If this is not what you want, should unpack the real and imaginary parts of the system to get a real system.
For description of the other options, see `optimset'.
On return, FVAL contains the value of the function FCN evaluated at X, and INFO may be one of the following values:
1
Converged to a solution point. Relative residual error is less than specified by TolFun.
2
Last relative step size was less that TolX.
3
Last relative decrease in residual was less than TolF.
0
Iteration limit exceeded.
-3
The trust region radius became excessively small.
Note: If you only have a single nonlinear equation of one variable, using `fzero' is usually a much better idea. See also: fzero, optimset.
Note about user-supplied jacobians: As an inherent property of the algorithm, jacobian is always requested for a solution vector whose residual vector is already known, and it is the last accepted successful step. Often this will be one of the last two calls, but not always. If the savings by reusing intermediate results from residual calculation in jacobian calculation are significant, the best strategy is to employ OutputFcn: After a vector is evaluated for residuals, if OutputFcn is called with that vector, then the intermediate results should be saved for future jacobian evaluation, and should be kept until a jacobian evaluation is requested or until outputfcn is called with a different vector, in which case they should be dropped in favor of this most recent vector. A short example how this can be achieved follows:
function [fvec, fjac] = user_func (x, optimvalues, state)
persistent sav = [], sav0 = [];
if (nargin == 1)
## evaluation call
if (nargout == 1)
sav0.x = x; # mark saved vector
## calculate fvec, save results to sav0.
elseif (nargout == 2)
## calculate fjac using sav.
endif
else
## outputfcn call.
if (all (x == sav0.x))
sav = sav0;
endif
## maybe output iteration status, etc.
endif
endfunction
....
fsolve (@user_func, x0, optimset ("OutputFcn", @user_func, ...))
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Solve a system of nonlinear equations defined by the function FCN.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
optimget
# name: <cell-element>
# type: string
# elements: 1
# length: 293
-- Function File: optimget (OPTIONS, PARNAME)
-- Function File: optimget (OPTIONS, PARNAME, DEFAULT)
Return a specific option from a structure created by `optimset'. If PARNAME is not a field of the OPTIONS structure, return DEFAULT if supplied, otherwise return an empty matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return a specific option from a structure created by `optimset'.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
fzero
# name: <cell-element>
# type: string
# elements: 1
# length: 962
-- Function File: [X, FVAL, INFO, OUTPUT] = fzero (FUN, X0, OPTIONS)
Find a zero point of a univariate function. FUN should be a function handle or name. X0 specifies a starting point. OPTIONS is a structure specifying additional options. Currently, `fzero' recognizes these options: `"FunValCheck"', `"OutputFcn"', `"TolX"', `"MaxIter"', `"MaxFunEvals"'. For description of these options, see *note optimset: doc-optimset.
On exit, the function returns X, the approximate zero point and FVAL, the function value thereof. INFO is an exit flag that can have these values:
* 1 The algorithm converged to a solution.
* 0 Maximum number of iterations or function evaluations has been exhausted.
* -1 The algorithm has been terminated from user output function.
* -2 A general unexpected error.
* -3 A non-real value encountered.
* -4 A NaN value encountered.
See also: optimset, fsolve.
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Find a zero point of a univariate function.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
glpkmex
# name: <cell-element>
# type: string
# elements: 1
# length: 293
-- Function File: [XOPT, FMIN, STATUS, EXTRA] = glpkmex (SENSE, C, A, B, CTYPE, LB, UB, VARTYPE, PARAM, LPSOLVER, SAVE_PB)
This function is provided for compatibility with the old MATLAB interface to the GNU GLPK library. For Octave code, you should use the `glpk' function instead.
# name: <cell-element>
# type: string
# elements: 1
# length: 98
This function is provided for compatibility with the old MATLAB interface to the GNU GLPK library.
# name: <cell-element>
# type: string
# elements: 1
# length: 2
qp
# name: <cell-element>
# type: string
# elements: 1
# length: 1066
-- Function File: [X, OBJ, INFO, LAMBDA] = qp (X0, H, Q, A, B, LB, UB, A_LB, A_IN, A_UB)
Solve the quadratic program
min 0.5 x'*H*x + x'*q
x
subject to
A*x = b
lb <= x <= ub
A_lb <= A_in*x <= A_ub
using a null-space active-set method.
Any bound (A, B, LB, UB, A_LB, A_UB) may be set to the empty matrix (`[]') if not present. If the initial guess is feasible the algorithm is faster.
The value INFO is a structure with the following fields:
`solveiter'
The number of iterations required to find the solution.
`info'
An integer indicating the status of the solution, as follows:
0
The problem is feasible and convex. Global solution found.
1
The problem is not convex. Local solution found.
2
The problem is not convex and unbounded.
3
Maximum number of iterations reached.
6
The problem is infeasible.
# name: <cell-element>
# type: string
# elements: 1
# length: 28
Solve the quadratic program
# name: <cell-element>
# type: string
# elements: 1
# length: 7
fminunc
# name: <cell-element>
# type: string
# elements: 1
# length: 1805
-- Function File: fminunc (FCN, X0, OPTIONS)
-- Function File: [X, FVEC, INFO, OUTPUT, FJAC] = fminunc (FCN, ...)
Solve a unconstrained optimization problem defined by the function FCN. FCN should accepts a vector (array) defining the unknown variables, and return the objective function value, optionally with gradient. In other words, this function attempts to determine a vector X such that `FCN (X)' is a local minimum. X0 determines a starting guess. The shape of X0 is preserved in all calls to FCN, but otherwise it is treated as a column vector. OPTIONS is a structure specifying additional options. Currently, `fminunc' recognizes these options: `"FunValCheck"', `"OutputFcn"', `"TolX"', `"TolFun"', `"MaxIter"', `"MaxFunEvals"', `"GradObj"', `"FinDiffType"'.
If `"GradObj"' is `"on"', it specifies that FCN, called with 2 output arguments, also returns the Jacobian matrix of right-hand sides at the requested point. `"TolX"' specifies the termination tolerance in the unknown variables, while `"TolFun"' is a tolerance for equations. Default is `1e-7' for both `"TolX"' and `"TolFun"'.
For description of the other options, see `optimset'.
On return, FVAL contains the value of the function FCN evaluated at X, and INFO may be one of the following values:
1
Converged to a solution point. Relative gradient error is less than specified by TolFun.
2
Last relative step size was less that TolX.
3
Last relative decrease in func value was less than TolF.
0
Iteration limit exceeded.
-3
The trust region radius became excessively small.
Note: If you only have a single nonlinear equation of one variable, using `fminbnd' is usually a much better idea. See also: fminbnd, optimset.
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Solve a unconstrained optimization problem defined by the function FCN.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
sqp
# name: <cell-element>
# type: string
# elements: 1
# length: 3958
-- Function File: [X, OBJ, INFO, ITER, NF, LAMBDA] = sqp (X, PHI, G, H, LB, UB, MAXITER, TOLERANCE)
Solve the nonlinear program
min phi (x)
x
subject to
g(x) = 0
h(x) >= 0
lb <= x <= ub
using a successive quadratic programming method.
The first argument is the initial guess for the vector X.
The second argument is a function handle pointing to the objective function. The objective function must be of the form
y = phi (x)
in which X is a vector and Y is a scalar.
The second argument may also be a 2- or 3-element cell array of function handles. The first element should point to the objective function, the second should point to a function that computes the gradient of the objective function, and the third should point to a function to compute the hessian of the objective function. If the gradient function is not supplied, the gradient is computed by finite differences. If the hessian function is not supplied, a BFGS update formula is used to approximate the hessian.
If supplied, the gradient function must be of the form
g = gradient (x)
in which X is a vector and G is a vector.
If supplied, the hessian function must be of the form
h = hessian (x)
in which X is a vector and H is a matrix.
The third and fourth arguments are function handles pointing to functions that compute the equality constraints and the inequality constraints, respectively.
If your problem does not have equality (or inequality) constraints, you may pass an empty matrix for CEF (or CIF).
If supplied, the equality and inequality constraint functions must be of the form
r = f (x)
in which X is a vector and R is a vector.
The third and fourth arguments may also be 2-element cell arrays of function handles. The first element should point to the constraint function and the second should point to a function that computes the gradient of the constraint function:
[ d f(x) d f(x) d f(x) ]
transpose ( [ ------ ----- ... ------ ] )
[ dx_1 dx_2 dx_N ]
The fifth and sixth arguments are vectors containing lower and upper bounds on X. These must be consistent with equality and inequality constraints G and H. If the bounds are not specified, or are empty, they are set to -REALMAX and REALMAX by default.
The seventh argument is max. number of iterations. If not specified, the default value is 100.
The eighth argument is tolerance for stopping criteria. If not specified, the default value is EPS.
Here is an example of calling `sqp':
function r = g (x)
r = [ sumsq(x)-10;
x(2)*x(3)-5*x(4)*x(5);
x(1)^3+x(2)^3+1 ];
endfunction
function obj = phi (x)
obj = exp(prod(x)) - 0.5*(x(1)^3+x(2)^3+1)^2;
endfunction
x0 = [-1.8; 1.7; 1.9; -0.8; -0.8];
[x, obj, info, iter, nf, lambda] = sqp (x0, @phi, @g, [])
x =
-1.71714
1.59571
1.82725
-0.76364
-0.76364
obj = 0.053950
info = 101
iter = 8
nf = 10
lambda =
-0.0401627
0.0379578
-0.0052227
The value returned in INFO may be one of the following:
101
The algorithm terminated because the norm of the last step was less than `tol * norm (x))' (the value of tol is currently fixed at `sqrt (eps)'--edit `sqp.m' to modify this value.
102
The BFGS update failed.
103
The maximum number of iterations was reached (the maximum number of allowed iterations is currently fixed at 100--edit `sqp.m' to increase this value).
See also: qp.
# name: <cell-element>
# type: string
# elements: 1
# length: 28
Solve the nonlinear program
# name: <cell-element>
# type: string
# elements: 1
# length: 8
optimset
# name: <cell-element>
# type: string
# elements: 1
# length: 225
-- Function File: optimset ()
-- Function File: optimset (PAR, VAL, ...)
-- Function File: optimset (OLD, PAR, VAL, ...)
-- Function File: optimset (OLD, NEW)
Create options struct for optimization functions.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Create options struct for optimization functions.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
acoth
# name: <cell-element>
# type: string
# elements: 1
# length: 121
-- Mapping Function: acoth (X)
Compute the inverse hyperbolic cotangent of each element of X. See also: coth.
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Compute the inverse hyperbolic cotangent of each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
acotd
# name: <cell-element>
# type: string
# elements: 1
# length: 125
-- Function File: acotd (X)
Compute the inverse cotangent in degrees for each element of X. See also: cotd, acot.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Compute the inverse cotangent in degrees for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
tand
# name: <cell-element>
# type: string
# elements: 1
# length: 226
-- Function File: tand (X)
Compute the tangent for each element of X in degrees. Returns zero for elements where `X/180' is an integer and `Inf' for elements where `(X-90)/180' is an integer. See also: atand, tan.
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Compute the tangent for each element of X in degrees.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
acot
# name: <cell-element>
# type: string
# elements: 1
# length: 127
-- Mapping Function: acot (X)
Compute the inverse cotangent in radians for each element of X. See also: cot, acotd.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Compute the inverse cotangent in radians for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
coth
# name: <cell-element>
# type: string
# elements: 1
# length: 113
-- Mapping Function: coth (X)
Compute the hyperbolic cotangent of each element of X. See also: acoth.
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Compute the hyperbolic cotangent of each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
sec
# name: <cell-element>
# type: string
# elements: 1
# length: 121
-- Mapping Function: sec (X)
Compute the secant for each element of X in radians. See also: asec, secd, sech.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Compute the secant for each element of X in radians.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
atand
# name: <cell-element>
# type: string
# elements: 1
# length: 123
-- Function File: atand (X)
Compute the inverse tangent in degrees for each element of X. See also: tand, atan.
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Compute the inverse tangent in degrees for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
lcm
# name: <cell-element>
# type: string
# elements: 1
# length: 336
-- Mapping Function: lcm (X)
-- Mapping Function: lcm (X, ...)
Compute the least common multiple of the elements of X, or of the list of all arguments. For example,
lcm (a1, ..., ak)
is the same as
lcm ([a1, ..., ak]).
All elements must be the same size or scalar. See also: factor, gcd.
# name: <cell-element>
# type: string
# elements: 1
# length: 88
Compute the least common multiple of the elements of X, or of the list of all arguments.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
secd
# name: <cell-element>
# type: string
# elements: 1
# length: 113
-- Function File: secd (X)
Compute the secant for each element of X in degrees. See also: asecd, sec.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Compute the secant for each element of X in degrees.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
cotd
# name: <cell-element>
# type: string
# elements: 1
# length: 116
-- Function File: cotd (X)
Compute the cotangent for each element of X in degrees. See also: acotd, cot.
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Compute the cotangent for each element of X in degrees.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
csch
# name: <cell-element>
# type: string
# elements: 1
# length: 112
-- Mapping Function: csch (X)
Compute the hyperbolic cosecant of each element of X. See also: acsch.
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Compute the hyperbolic cosecant of each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
asind
# name: <cell-element>
# type: string
# elements: 1
# length: 120
-- Function File: asind (X)
Compute the inverse sine in degrees for each element of X. See also: sind, asin.
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Compute the inverse sine in degrees for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
asec
# name: <cell-element>
# type: string
# elements: 1
# length: 124
-- Mapping Function: asec (X)
Compute the inverse secant in radians for each element of X. See also: sec, asecd.
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Compute the inverse secant in radians for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
acosd
# name: <cell-element>
# type: string
# elements: 1
# length: 122
-- Function File: acosd (X)
Compute the inverse cosine in degrees for each element of X. See also: cosd, acos.
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Compute the inverse cosine in degrees for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
acsc
# name: <cell-element>
# type: string
# elements: 1
# length: 126
-- Mapping Function: acsc (X)
Compute the inverse cosecant in radians for each element of X. See also: csc, acscd.
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Compute the inverse cosecant in radians for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
csc
# name: <cell-element>
# type: string
# elements: 1
# length: 123
-- Mapping Function: csc (X)
Compute the cosecant for each element of X in radians. See also: acsc, cscd, csch.
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Compute the cosecant for each element of X in radians.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
cot
# name: <cell-element>
# type: string
# elements: 1
# length: 124
-- Mapping Function: cot (X)
Compute the cotangent for each element of X in radians. See also: acot, cotd, coth.
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Compute the cotangent for each element of X in radians.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
sind
# name: <cell-element>
# type: string
# elements: 1
# length: 167
-- Function File: sind (X)
Compute the sine for each element of X in degrees. Returns zero for elements where `X/180' is an integer. See also: asind, sin.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Compute the sine for each element of X in degrees.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
sech
# name: <cell-element>
# type: string
# elements: 1
# length: 110
-- Mapping Function: sech (X)
Compute the hyperbolic secant of each element of X. See also: asech.
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Compute the hyperbolic secant of each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
asech
# name: <cell-element>
# type: string
# elements: 1
# length: 118
-- Mapping Function: asech (X)
Compute the inverse hyperbolic secant of each element of X. See also: sech.
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Compute the inverse hyperbolic secant of each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
asecd
# name: <cell-element>
# type: string
# elements: 1
# length: 122
-- Function File: asecd (X)
Compute the inverse secant in degrees for each element of X. See also: secd, asec.
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Compute the inverse secant in degrees for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
cosd
# name: <cell-element>
# type: string
# elements: 1
# length: 174
-- Function File: cosd (X)
Compute the cosine for each element of X in degrees. Returns zero for elements where `(X-90)/180' is an integer. See also: acosd, cos.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Compute the cosine for each element of X in degrees.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
cscd
# name: <cell-element>
# type: string
# elements: 1
# length: 115
-- Function File: cscd (X)
Compute the cosecant for each element of X in degrees. See also: acscd, csc.
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Compute the cosecant for each element of X in degrees.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
acscd
# name: <cell-element>
# type: string
# elements: 1
# length: 124
-- Function File: acscd (X)
Compute the inverse cosecant in degrees for each element of X. See also: cscd, acsc.
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Compute the inverse cosecant in degrees for each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
acsch
# name: <cell-element>
# type: string
# elements: 1
# length: 120
-- Mapping Function: acsch (X)
Compute the inverse hyperbolic cosecant of each element of X. See also: csch.
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Compute the inverse hyperbolic cosecant of each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
etreeplot
# name: <cell-element>
# type: string
# elements: 1
# length: 286
-- Function File: etreeplot (TREE)
-- Function File: etreeplot (TREE, NODE_STYLE, EDGE_STYLE)
Plot the elimination tree of the matrix S or `S+S'' if S in non-symmetric. The optional parameters LINE_STYLE and EDGE_STYLE define the output style. See also: treeplot, gplot.
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Plot the elimination tree of the matrix S or `S+S'' if S in non-symmetric.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
gplot
# name: <cell-element>
# type: string
# elements: 1
# length: 564
-- Function File: gplot (A, XY)
-- Function File: gplot (A, XY, LINE_STYLE)
-- Function File: [X, Y] = gplot (A, XY)
Plot a graph defined by A and XY in the graph theory sense. A is the adjacency matrix of the array to be plotted and XY is an N-by-2 matrix containing the coordinates of the nodes of the graph.
The optional parameter LINE_STYLE defines the output style for the plot. Called with no output arguments the graph is plotted directly. Otherwise, return the coordinates of the plot in X and Y. See also: treeplot, etreeplot, spy.
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Plot a graph defined by A and XY in the graph theory sense.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
spstats
# name: <cell-element>
# type: string
# elements: 1
# length: 570
-- Function File: [COUNT, MEAN, VAR] = spstats (S)
-- Function File: [COUNT, MEAN, VAR] = spstats (S, J)
Return the stats for the non-zero elements of the sparse matrix S. COUNT is the number of non-zeros in each column, MEAN is the mean of the non-zeros in each column, and VAR is the variance of the non-zeros in each column.
Called with two input arguments, if S is the data and J is the bin number for the data, compute the stats for each bin. In this case, bins can contain data values of zero, whereas with `spstats (S)' the zeros may disappear.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Return the stats for the non-zero elements of the sparse matrix S.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
treeplot
# name: <cell-element>
# type: string
# elements: 1
# length: 373
-- Function File: treeplot (TREE)
-- Function File: treeplot (TREE, LINE_STYLE, EDGE_STYLE)
Produces a graph of tree or forest. The first argument is vector of predecessors, optional parameters LINE_STYLE and EDGE_STYLE define the output style. The complexity of the algorithm is O(n) in terms of is time and memory requirements. See also: etreeplot, gplot.
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Produces a graph of tree or forest.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
spones
# name: <cell-element>
# type: string
# elements: 1
# length: 147
-- Function File: Y = spones (X)
Replace the non-zero entries of X with ones. This creates a sparse matrix with the same structure as X.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Replace the non-zero entries of X with ones.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
nonzeros
# name: <cell-element>
# type: string
# elements: 1
# length: 105
-- Function File: nonzeros (S)
Returns a vector of the non-zero values of the sparse matrix S.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Returns a vector of the non-zero values of the sparse matrix S.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
bicgstab
# name: <cell-element>
# type: string
# elements: 1
# length: 1097
-- Function File: bicgstab (A, B)
-- Function File: bicgstab (A, B, TOL, MAXIT, M1, M2, X0)
This procedure attempts to solve a system of linear equations A*x = b for x. The A must be square, symmetric and positive definite real matrix N*N. The B must be a one column vector with a length of N. The TOL specifies the tolerance of the method, the default value is 1e-6. The MAXIT specifies the maximum number of iterations, the default value is min(20,N). The M1 specifies a preconditioner, can also be a function handler which returns M\X. The M2 combined with M1 defines preconditioner as preconditioner=M1*M2. The X0 is the initial guess, the default value is zeros(N,1).
The value X is a computed result of this procedure. The value FLAG can be 0 when we reach tolerance in MAXIT iterations, 1 when we don't reach tolerance in MAXIT iterations and 3 when the procedure stagnates. The value RELRES is a relative residual - norm(b-A*x)/norm(b). The value ITER is an iteration number in which x was computed. The value RESVEC is a vector of RELRES for each iteration.
# name: <cell-element>
# type: string
# elements: 1
# length: 76
This procedure attempts to solve a system of linear equations A*x = b for x.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
treelayout
# name: <cell-element>
# type: string
# elements: 1
# length: 381
-- Function File: treelayout (TREE)
-- Function File: treelayout (TREE, PERMUTATION)
treelayout lays out a tree or a forest. The first argument TREE is a vector of predecessors, optional parameter PERMUTATION is an optional postorder permutation. The complexity of the algorithm is O(n) in terms of time and memory requirements. See also: etreeplot, gplot,treeplot.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
treelayout lays out a tree or a forest.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
sphcat
# name: <cell-element>
# type: string
# elements: 1
# length: 211
-- Function File: Y = sphcat (A1, A2, ..., AN)
Return the horizontal concatenation of sparse matrices. This function is obselete and `horzcat' should be used. See also: spvcat, vertcat, horzcat, cat.
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Return the horizontal concatenation of sparse matrices.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
sprandsym
# name: <cell-element>
# type: string
# elements: 1
# length: 606
-- Function File: sprandsym (N, D)
-- Function File: sprandsym (S)
Generate a symmetric random sparse matrix. The size of the matrix will be N by N, with a density of values given by D. D should be between 0 and 1. Values will be normally distributed with mean of zero and variance 1.
Note: sometimes the actual density may be a bit smaller than D. This is unlikely to happen for large really sparse matrices.
If called with a single matrix argument, a random sparse matrix is generated wherever the matrix S is non-zero in its lower triangular part. See also: sprand, sprandn.
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Generate a symmetric random sparse matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
cgs
# name: <cell-element>
# type: string
# elements: 1
# length: 666
-- Function File: cgs (A, B)
-- Function File: cgs (A, B, TOL, MAXIT, M1, M2, X0)
This procedure attempts to solve a system of linear equations A*x = b for x. The A must be square, symmetric and positive definite real matrix N*N. The B must be a one column vector with a length of N. The TOL specifies the tolerance of the method, default value is 1e-6. The MAXIT specifies the maximum number of iteration, default value is MIN(20,N). The M1 specifies a preconditioner, can also be a function handler which returns M\X. The M2 combined with M1 defines preconditioner as preconditioner=M1*M2. The X0 is initial guess, default value is zeros(N,1).
# name: <cell-element>
# type: string
# elements: 1
# length: 76
This procedure attempts to solve a system of linear equations A*x = b for x.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
pcg
# name: <cell-element>
# type: string
# elements: 1
# length: 5631
-- Function File: X = pcg (A, B, TOL, MAXIT, M1, M2, X0, ...)
-- Function File: [X, FLAG, RELRES, ITER, RESVEC, EIGEST] = pcg (...)
Solves the linear system of equations `A * X = B' by means of the Preconditioned Conjugate Gradient iterative method. The input arguments are
* A can be either a square (preferably sparse) matrix or a function handle, inline function or string containing the name of a function which computes `A * X'. In principle A should be symmetric and positive definite; if `pcg' finds A to not be positive definite, you will get a warning message and the FLAG output parameter will be set.
* B is the right hand side vector.
* TOL is the required relative tolerance for the residual error, `B - A * X'. The iteration stops if `norm (B - A * X) <= TOL * norm (B - A * X0)'. If TOL is empty or is omitted, the function sets `TOL = 1e-6' by default.
* MAXIT is the maximum allowable number of iterations; if `[]' is supplied for `maxit', or `pcg' has less arguments, a default value equal to 20 is used.
* M = M1 * M2 is the (left) preconditioning matrix, so that the iteration is (theoretically) equivalent to solving by `pcg' `P * X = M \ B', with `P = M \ A'. Note that a proper choice of the preconditioner may dramatically improve the overall performance of the method. Instead of matrices M1 and M2, the user may pass two functions which return the results of applying the inverse of M1 and M2 to a vector (usually this is the preferred way of using the preconditioner). If `[]' is supplied for M1, or M1 is omitted, no preconditioning is applied. If M2 is omitted, M = M1 will be used as preconditioner.
* X0 is the initial guess. If X0 is empty or omitted, the function sets X0 to a zero vector by default.
The arguments which follow X0 are treated as parameters, and passed in a proper way to any of the functions (A or M) which are passed to `pcg'. See the examples below for further details. The output arguments are
* X is the computed approximation to the solution of `A * X = B'.
* FLAG reports on the convergence. `FLAG = 0' means the solution converged and the tolerance criterion given by TOL is satisfied. `FLAG = 1' means that the MAXIT limit for the iteration count was reached. `FLAG = 3' reports that the (preconditioned) matrix was found not positive definite.
* RELRES is the ratio of the final residual to its initial value, measured in the Euclidean norm.
* ITER is the actual number of iterations performed.
* RESVEC describes the convergence history of the method. `RESVEC (i,1)' is the Euclidean norm of the residual, and `RESVEC (i,2)' is the preconditioned residual norm, after the (I-1)-th iteration, `I = 1, 2, ..., ITER+1'. The preconditioned residual norm is defined as `norm (R) ^ 2 = R' * (M \ R)' where `R = B - A * X', see also the description of M. If EIGEST is not required, only `RESVEC (:,1)' is returned.
* EIGEST returns the estimate for the smallest `EIGEST (1)' and largest `EIGEST (2)' eigenvalues of the preconditioned matrix `P = M \ A'. In particular, if no preconditioning is used, the estimates for the extreme eigenvalues of A are returned. `EIGEST (1)' is an overestimate and `EIGEST (2)' is an underestimate, so that `EIGEST (2) / EIGEST (1)' is a lower bound for `cond (P, 2)', which nevertheless in the limit should theoretically be equal to the actual value of the condition number. The method which computes EIGEST works only for symmetric positive definite A and M, and the user is responsible for verifying this assumption.
Let us consider a trivial problem with a diagonal matrix (we exploit the sparsity of A)
n = 10;
a = diag (sparse (1:n));
b = rand (n, 1);
[l, u, p, q] = luinc (a, 1.e-3);
EXAMPLE 1: Simplest use of `pcg'
x = pcg(A,b)
EXAMPLE 2: `pcg' with a function which computes `A * X'
function y = apply_a (x)
y = [1:N]'.*x;
endfunction
x = pcg ("apply_a", b)
EXAMPLE 3: `pcg' with a preconditioner: L * U
x = pcg (a, b, 1.e-6, 500, l*u);
EXAMPLE 4: `pcg' with a preconditioner: L * U. Faster than EXAMPLE 3 since lower and upper triangular matrices are easier to invert
x = pcg (a, b, 1.e-6, 500, l, u);
EXAMPLE 5: Preconditioned iteration, with full diagnostics. The preconditioner (quite strange, because even the original matrix A is trivial) is defined as a function
function y = apply_m (x)
k = floor (length (x) - 2);
y = x;
y(1:k) = x(1:k)./[1:k]';
endfunction
[x, flag, relres, iter, resvec, eigest] = ...
pcg (a, b, [], [], "apply_m");
semilogy (1:iter+1, resvec);
EXAMPLE 6: Finally, a preconditioner which depends on a parameter K.
function y = apply_M (x, varargin)
K = varargin{1};
y = x;
y(1:K) = x(1:K)./[1:K]';
endfunction
[x, flag, relres, iter, resvec, eigest] = ...
pcg (A, b, [], [], "apply_m", [], [], 3)
REFERENCES
[1] C.T.Kelley, 'Iterative methods for linear and nonlinear equations', SIAM, 1995 (the base PCG algorithm)
[2] Y.Saad, 'Iterative methods for sparse linear systems', PWS 1996 (condition number estimate from PCG) Revised version of this book is available online at http://www-users.cs.umn.edu/~saad/books.html
See also: sparse, pcr.
# name: <cell-element>
# type: string
# elements: 1
# length: 117
Solves the linear system of equations `A * X = B' by means of the Preconditioned Conjugate Gradient iterative method.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
spvcat
# name: <cell-element>
# type: string
# elements: 1
# length: 207
-- Function File: Y = spvcat (A1, A2, ..., AN)
Return the vertical concatenation of sparse matrices. This function is obselete and `vertcat' should be used See also: sphcat, vertcat, horzcat, cat.
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Return the vertical concatenation of sparse matrices.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
normest
# name: <cell-element>
# type: string
# elements: 1
# length: 431
-- Function File: [N, C] = normest (A, TOL)
Estimate the 2-norm of the matrix A using a power series analysis. This is typically used for large matrices, where the cost of calculating the `norm (A)' is prohibitive and an approximation to the 2-norm is acceptable.
TOL is the tolerance to which the 2-norm is calculated. By default TOL is 1e-6. C returns the number of iterations needed for `normest' to converge.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Estimate the 2-norm of the matrix A using a power series analysis.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
pcr
# name: <cell-element>
# type: string
# elements: 1
# length: 4058
-- Function File: X = pcr (A, B, TOL, MAXIT, M, X0, ...)
-- Function File: [X, FLAG, RELRES, ITER, RESVEC] = pcr (...)
Solves the linear system of equations `A * X = B' by means of the Preconditioned Conjugate Residuals iterative method. The input arguments are
* A can be either a square (preferably sparse) matrix or a function handle, inline function or string containing the name of a function which computes `A * X'. In principle A should be symmetric and non-singular; if `pcr' finds A to be numerically singular, you will get a warning message and the FLAG output parameter will be set.
* B is the right hand side vector.
* TOL is the required relative tolerance for the residual error, `B - A * X'. The iteration stops if `norm (B - A * X) <= TOL * norm (B - A * X0)'. If TOL is empty or is omitted, the function sets `TOL = 1e-6' by default.
* MAXIT is the maximum allowable number of iterations; if `[]' is supplied for `maxit', or `pcr' has less arguments, a default value equal to 20 is used.
* M is the (left) preconditioning matrix, so that the iteration is (theoretically) equivalent to solving by `pcr' `P * X = M \ B', with `P = M \ A'. Note that a proper choice of the preconditioner may dramatically improve the overall performance of the method. Instead of matrix M, the user may pass a function which returns the results of applying the inverse of M to a vector (usually this is the preferred way of using the preconditioner). If `[]' is supplied for M, or M is omitted, no preconditioning is applied.
* X0 is the initial guess. If X0 is empty or omitted, the function sets X0 to a zero vector by default.
The arguments which follow X0 are treated as parameters, and passed in a proper way to any of the functions (A or M) which are passed to `pcr'. See the examples below for further details. The output arguments are
* X is the computed approximation to the solution of `A * X = B'.
* FLAG reports on the convergence. `FLAG = 0' means the solution converged and the tolerance criterion given by TOL is satisfied. `FLAG = 1' means that the MAXIT limit for the iteration count was reached. `FLAG = 3' reports t `pcr' breakdown, see [1] for details.
* RELRES is the ratio of the final residual to its initial value, measured in the Euclidean norm.
* ITER is the actual number of iterations performed.
* RESVEC describes the convergence history of the method, so that `RESVEC (i)' contains the Euclidean norms of the residual after the (I-1)-th iteration, `I = 1,2, ..., ITER+1'.
Let us consider a trivial problem with a diagonal matrix (we exploit the sparsity of A)
n = 10;
a = sparse (diag (1:n));
b = rand (N, 1);
EXAMPLE 1: Simplest use of `pcr'
x = pcr(A, b)
EXAMPLE 2: `pcr' with a function which computes `A * X'.
function y = apply_a (x)
y = [1:10]'.*x;
endfunction
x = pcr ("apply_a", b)
EXAMPLE 3: Preconditioned iteration, with full diagnostics. The preconditioner (quite strange, because even the original matrix A is trivial) is defined as a function
function y = apply_m (x)
k = floor (length(x)-2);
y = x;
y(1:k) = x(1:k)./[1:k]';
endfunction
[x, flag, relres, iter, resvec] = ...
pcr (a, b, [], [], "apply_m")
semilogy([1:iter+1], resvec);
EXAMPLE 4: Finally, a preconditioner which depends on a parameter K.
function y = apply_m (x, varargin)
k = varargin{1};
y = x; y(1:k) = x(1:k)./[1:k]';
endfunction
[x, flag, relres, iter, resvec] = ...
pcr (a, b, [], [], "apply_m"', [], 3)
REFERENCES
[1] W. Hackbusch, "Iterative Solution of Large Sparse Systems of Equations", section 9.5.4; Springer, 1994
See also: sparse, pcg.
# name: <cell-element>
# type: string
# elements: 1
# length: 118
Solves the linear system of equations `A * X = B' by means of the Preconditioned Conjugate Residuals iterative method.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
spy
# name: <cell-element>
# type: string
# elements: 1
# length: 395
-- Function File: spy (X)
-- Function File: spy (..., MARKERSIZE)
-- Function File: spy (..., LINE_SPEC)
Plot the sparsity pattern of the sparse matrix X. If the argument MARKERSIZE is given as an scalar value, it is used to determine the point size in the plot. If the string LINE_SPEC is given it is passed to `plot' and determines the appearance of the plot. See also: plot.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Plot the sparsity pattern of the sparse matrix X.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
spconvert
# name: <cell-element>
# type: string
# elements: 1
# length: 412
-- Function File: X = spconvert (M)
This function converts for a simple sparse matrix format easily produced by other programs into Octave's internal sparse format. The input X is either a 3 or 4 column real matrix, containing the row, column, real and imaginary parts of the elements of the sparse matrix. An element with a zero real and imaginary part can be used to force a particular matrix size.
# name: <cell-element>
# type: string
# elements: 1
# length: 128
This function converts for a simple sparse matrix format easily produced by other programs into Octave's internal sparse format.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
spalloc
# name: <cell-element>
# type: string
# elements: 1
# length: 703
-- Function File: S = spalloc (R, C, NZ)
Returns an empty sparse matrix of size R-by-C. As Octave resizes sparse matrices at the first opportunity, so that no additional space is needed, the argument NZ is ignored. This function is provided only for compatibility reasons.
It should be noted that this means that code like
k = 5;
nz = r * k;
s = spalloc (r, c, nz)
for j = 1:c
idx = randperm (r);
s (:, j) = [zeros(r - k, 1); rand(k, 1)] (idx);
endfor
will reallocate memory at each step. It is therefore vitally important that code like this is vectorized as much as possible. See also: sparse, nzmax.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Returns an empty sparse matrix of size R-by-C.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
svds
# name: <cell-element>
# type: string
# elements: 1
# length: 1986
-- Function File: S = svds (A)
-- Function File: S = svds (A, K)
-- Function File: S = svds (A, K, SIGMA)
-- Function File: S = svds (A, K, SIGMA, OPTS)
-- Function File: [U, S, V, FLAG] = svds (...)
Find a few singular values of the matrix A. The singular values are calculated using
[M, N] = size(A)
S = eigs([sparse(M, M), A; ...
A', sparse(N, N)])
The eigenvalues returned by `eigs' correspond to the singular values of A. The number of singular values to calculate is given by K, whose default value is 6.
The argument SIGMA can be used to specify which singular values to find. SIGMA can be either the string 'L', the default, in which case the largest singular values of A are found. Otherwise SIGMA should be a real scalar, in which case the singular values closest to SIGMA are found. Note that for relatively small values of SIGMA, there is the chance that the requested number of singular values are not returned. In that case SIGMA should be increased.
If OPTS is given, then it is a structure that defines options that `svds' will pass to EIGS. The possible fields of this structure are therefore determined by `eigs'. By default three fields of this structure are set by `svds'.
`tol'
The required convergence tolerance for the singular values. `eigs' is passed TOL divided by `sqrt(2)'. The default value is 1e-10.
`maxit'
The maximum number of iterations. The default is 300.
`disp'
The level of diagnostic printout. If `disp' is 0 then there is no printout. The default value is 0.
If more than one output argument is given, then `svds' also calculates the left and right singular vectors of A. FLAG is used to signal the convergence of `svds'. If `svds' converges to the desired tolerance, then FLAG given by
norm (A * V - U * S, 1) <= ...
TOL * norm (A, 1)
will be zero.
See also: eigs.
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Find a few singular values of the matrix A.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
spdiags
# name: <cell-element>
# type: string
# elements: 1
# length: 1036
-- Function File: [B, C] = spdiags (A)
-- Function File: B = spdiags (A, C)
-- Function File: B = spdiags (V, C, A)
-- Function File: B = spdiags (V, C, M, N)
A generalization of the function `diag'. Called with a single input argument, the non-zero diagonals C of A are extracted. With two arguments the diagonals to extract are given by the vector C.
The other two forms of `spdiags' modify the input matrix by replacing the diagonals. They use the columns of V to replace the columns represented by the vector C. If the sparse matrix A is defined then the diagonals of this matrix are replaced. Otherwise a matrix of M by N is created with the diagonals given by V.
Negative values of C represent diagonals below the main diagonal, and positive values of C diagonals above the main diagonal.
For example
spdiags (reshape (1:12, 4, 3), [-1 0 1], 5, 4)
=> 5 10 0 0
1 6 11 0
0 2 7 12
0 0 3 8
0 0 0 4
# name: <cell-element>
# type: string
# elements: 1
# length: 40
A generalization of the function `diag'.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
spfun
# name: <cell-element>
# type: string
# elements: 1
# length: 235
-- Function File: Y = spfun (F,X)
Compute `f(X)' for the non-zero values of X. This results in a sparse matrix with the same structure as X. The function F can be passed as a string, a function handle or an inline function.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Compute `f(X)' for the non-zero values of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
colperm
# name: <cell-element>
# type: string
# elements: 1
# length: 305
-- Function File: P = colperm (S)
Returns the column permutations such that the columns of `S (:, P)' are ordered in terms of increase number of non-zero elements. If S is symmetric, then P is chosen such that `S (P, P)' orders the rows and columns with increasing number of non zeros elements.
# name: <cell-element>
# type: string
# elements: 1
# length: 129
Returns the column permutations such that the columns of `S (:, P)' are ordered in terms of increase number of non-zero elements.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
sprand
# name: <cell-element>
# type: string
# elements: 1
# length: 540
-- Function File: sprand (M, N, D)
-- Function File: sprand (S)
Generate a random sparse matrix. The size of the matrix will be M by N, with a density of values given by D. D should be between 0 and 1. Values will be uniformly distributed between 0 and 1.
Note: sometimes the actual density may be a bit smaller than D. This is unlikely to happen for large really sparse matrices.
If called with a single matrix argument, a random sparse matrix is generated wherever the matrix S is non-zero. See also: sprandn.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Generate a random sparse matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
spaugment
# name: <cell-element>
# type: string
# elements: 1
# length: 1264
-- Function File: S = spaugment (A, C)
Creates the augmented matrix of A. This is given by
[C * eye(M, M),A; A', zeros(N,
N)]
This is related to the least squares solution of `A \\ B', by
S * [ R / C; x] = [B, zeros(N,
columns(B)]
where R is the residual error
R = B - A * X
As the matrix S is symmetric indefinite it can be factorized with `lu', and the minimum norm solution can therefore be found without the need for a `qr' factorization. As the residual error will be `zeros (M, M)' for under determined problems, and example can be
m = 11; n = 10; mn = max(m ,n);
a = spdiags ([ones(mn,1), 10*ones(mn,1), -ones(mn,1)],
[-1, 0, 1], m, n);
x0 = a \ ones (m,1);
s = spaugment (a);
[L, U, P, Q] = lu (s);
x1 = Q * (U \ (L \ (P * [ones(m,1); zeros(n,1)])));
x1 = x1(end - n + 1 : end);
To find the solution of an overdetermined problem needs an estimate of the residual error R and so it is more complex to formulate a minimum norm solution using the `spaugment' function.
In general the left division operator is more stable and faster than using the `spaugment' function.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Creates the augmented matrix of A.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
speye
# name: <cell-element>
# type: string
# elements: 1
# length: 472
-- Function File: Y = speye (M)
-- Function File: Y = speye (M, N)
-- Function File: Y = speye (SZ)
Returns a sparse identity matrix. This is significantly more efficient than `sparse (eye (M))' as the full matrix is not constructed.
Called with a single argument a square matrix of size M by M is created. Otherwise a matrix of M by N is created. If called with a single vector argument, this argument is taken to be the size of the matrix to create.
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Returns a sparse identity matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
sprandn
# name: <cell-element>
# type: string
# elements: 1
# length: 557
-- Function File: sprandn (M, N, D)
-- Function File: sprandn (S)
Generate a random sparse matrix. The size of the matrix will be M by N, with a density of values given by D. D should be between 0 and 1. Values will be normally distributed with mean of zero and variance 1.
Note: sometimes the actual density may be a bit smaller than D. This is unlikely to happen for large really sparse matrices.
If called with a single matrix argument, a random sparse matrix is generated wherever the matrix S is non-zero. See also: sprand.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Generate a random sparse matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
assert
# name: <cell-element>
# type: string
# elements: 1
# length: 1302
-- Function File: assert (COND)
-- Function File: assert (COND, ERRMSG, ...)
-- Function File: assert (COND, MSG_ID, ERRMSG, ...)
-- Function File: assert (OBSERVED,EXPECTED)
-- Function File: assert (OBSERVED,EXPECTED,TOL)
Produces an error if the condition is not met. `assert' can be called in three different ways.
`assert (COND)'
`assert (COND, ERRMSG, ...)'
`assert (COND, MSG_ID, ERRMSG, ...)'
Called with a single argument COND, `assert' produces an error if COND is zero. If called with a single argument a generic error message. With more than one argument, the additional arguments are passed to the `error' function.
`assert (OBSERVED, EXPECTED)'
Produce an error if observed is not the same as expected. Note that observed and expected can be strings, scalars, vectors, matrices, lists or structures.
`assert(OBSERVED, EXPECTED, TOL)'
Accept a tolerance when comparing numbers. If TOL is positive use it as an absolute tolerance, will produce an error if `abs(OBSERVED - EXPECTED) > abs(TOL)'. If TOL is negative use it as a relative tolerance, will produce an error if `abs(OBSERVED - EXPECTED) > abs(TOL * EXPECTED)'. If EXPECTED is zero TOL will always be used as an absolute tolerance.
See also: test.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Produces an error if the condition is not met.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
rundemos
# name: <cell-element>
# type: string
# elements: 1
# length: 44
-- Function File: rundemos (DIRECTORY)
# name: <cell-element>
# type: string
# elements: 0
# name: <cell-element>
# type: string
# elements: 1
# length: 7
example
# name: <cell-element>
# type: string
# elements: 1
# length: 453
-- Function File: example ('NAME',N)
-- Function File: [X, IDX] = example ('NAME',N)
Display the code for example N associated with the function 'NAME', but do not run it. If N is not given, all examples are displayed.
Called with output arguments, the examples are returned in the form of a string X, with IDX indicating the ending position of the various examples.
See `demo' for a complete explanation. See also: demo, test.
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Display the code for example N associated with the function 'NAME', but do not run it.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
speed
# name: <cell-element>
# type: string
# elements: 1
# length: 4706
-- Function File: speed (F, INIT, MAX_N, F2, TOL)
-- Function File: [ORDER, N, T_F, T_F2] = speed (...)
Determine the execution time of an expression for various N. The N are log-spaced from 1 to MAX_N. For each N, an initialization expression is computed to create whatever data are needed for the test. If a second expression is given, the execution times of the two expressions will be compared. Called without output arguments the results are presented graphically.
`F'
The expression to evaluate.
`MAX_N'
The maximum test length to run. Default value is 100. Alternatively, use `[min_n,max_n]' or for complete control, `[n1,n2,...,nk]'.
`INIT'
Initialization expression for function argument values. Use K for the test number and N for the size of the test. This should compute values for all variables listed in args. Note that init will be evaluated first for k = 0, so things which are constant throughout the test can be computed then. The default value is `X = randn (N, 1);'.
`F2'
An alternative expression to evaluate, so the speed of the two can be compared. Default is `[]'.
`TOL'
If TOL is `Inf', then no comparison will be made between the results of expression F and expression F2. Otherwise, expression F should produce a value V and expression F2 should produce a value V2, and these shall be compared using `assert(V,V2,TOL)'. If TOL is positive, the tolerance is assumed to be absolute. If TOL is negative, the tolerance is assumed to be relative. The default is `eps'.
`ORDER'
The time complexity of the expression `O(a n^p)'. This is a structure with fields `a' and `p'.
`N'
The values N for which the expression was calculated and the execution time was greater than zero.
`T_F'
The nonzero execution times recorded for the expression F in seconds.
`T_F2'
The nonzero execution times recorded for the expression F2 in seconds. If it is needed, the mean time ratio is just `mean(T_f./T_f2)'.
The slope of the execution time graph shows the approximate power of the asymptotic running time `O(n^p)'. This power is plotted for the region over which it is approximated (the latter half of the graph). The estimated power is not very accurate, but should be sufficient to determine the general order of your algorithm. It should indicate if for example your implementation is unexpectedly `O(n^2)' rather than `O(n)' because it extends a vector each time through the loop rather than preallocating one which is big enough. For example, in the current version of Octave, the following is not the expected `O(n)':
speed ("for i = 1:n, y{i} = x(i); end", "", [1000,10000])
but it is if you preallocate the cell array `y':
speed ("for i = 1:n, y{i} = x(i); end", ...
"x = rand (n, 1); y = cell (size (x));", [1000, 10000])
An attempt is made to approximate the cost of the individual operations, but it is wildly inaccurate. You can improve the stability somewhat by doing more work for each `n'. For example:
speed ("airy(x)", "x = rand (n, 10)", [10000, 100000])
When comparing a new and original expression, the line on the speedup ratio graph should be larger than 1 if the new expression is faster. Better algorithms have a shallow slope. Generally, vectorizing an algorithm will not change the slope of the execution time graph, but it will shift it relative to the original. For example:
speed ("v = sum (x)", "", [10000, 100000], ...
"v = 0; for i = 1:length (x), v += x(i); end")
A more complex example, if you had an original version of `xcorr' using for loops and another version using an FFT, you could compare the run speed for various lags as follows, or for a fixed lag with varying vector lengths as follows:
speed ("v = xcorr (x, n)", "x = rand (128, 1);", 100,
"v2 = xcorr_orig (x, n)", -100*eps)
speed ("v = xcorr (x, 15)", "x = rand (20+n, 1);", 100,
"v2 = xcorr_orig (x, n)", -100*eps)
Assuming one of the two versions is in XCORR_ORIG, this would compare their speed and their output values. Note that the FFT version is not exact, so we specify an acceptable tolerance on the comparison `100*eps', and the errors should be computed relatively, as `abs((X - Y)./Y)' rather than absolutely as `abs(X - Y)'.
Type `example('speed')' to see some real examples. Note for obscure reasons, you can't run examples 1 and 2 directly using `demo('speed')'. Instead use, `eval(example('speed',1))' and `eval(example('speed',2))'.
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Determine the execution time of an expression for various N.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
test
# name: <cell-element>
# type: string
# elements: 1
# length: 2033
-- Function File: test NAME
-- Function File: test NAME quiet|normal|verbose
-- Function File: test ('NAME', 'quiet|normal|verbose', FID)
-- Function File: test ([], 'explain', FID)
-- Function File: SUCCESS = test (...)
-- Function File: [N, MAX] = test (...)
-- Function File: [CODE, IDX] = test ('NAME','grabdemo')
Perform tests from the first file in the loadpath matching NAME. `test' can be called as a command or as a function. Called with a single argument NAME, the tests are run interactively and stop after the first error is encountered.
With a second argument the tests which are performed and the amount of output is selected.
'quiet'
Don't report all the tests as they happen, just the errors.
'normal'
Report all tests as they happen, but don't do tests which require user interaction.
'verbose'
Do tests which require user interaction.
The argument FID can be used to allow batch processing. Errors can be written to the already open file defined by FID, and hopefully when Octave crashes this file will tell you what was happening when it did. You can use `stdout' if you want to see the results as they happen. You can also give a file name rather than an FID, in which case the contents of the file will be replaced with the log from the current test.
Called with a single output argument SUCCESS, `test' returns true if all of the tests were successful. Called with two output arguments N and MAX, the number of successful tests and the total number of tests in the file NAME are returned.
If the second argument is the string 'grabdemo', the contents of the demo blocks are extracted but not executed. Code for all code blocks is concatenated and returned as CODE with IDX being a vector of positions of the ends of the demo blocks.
If the second argument is 'explain', then NAME is ignored and an explanation of the line markers used is written to the file FID. See also: error, assert, fail, demo, example.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Perform tests from the first file in the loadpath matching NAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
fail
# name: <cell-element>
# type: string
# elements: 1
# length: 715
-- Function File: fail (CODE,PATTERN)
-- Function File: fail (CODE,'warning',PATTERN)
Return true if CODE fails with an error message matching PATTERN, otherwise produce an error. Note that CODE is a string and if CODE runs successfully, the error produced is:
expected error but got none
If the code fails with a different error, the message produced is:
expected <pattern>
but got <text of actual error>
The angle brackets are not part of the output.
Called with three arguments, the behavior is similar to `fail(CODE, PATTERN)', but produces an error if no warning is given during code execution or if the code fails.
# name: <cell-element>
# type: string
# elements: 1
# length: 93
Return true if CODE fails with an error message matching PATTERN, otherwise produce an error.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
demo
# name: <cell-element>
# type: string
# elements: 1
# length: 1935
-- Function File: demo ('NAME',N)
Runs any examples associated with the function 'NAME'. Examples are stored in the script file, or in a file with the same name but no extension somewhere on your path. To keep them separate from the usual script code, all lines are prefixed by `%!'. Each example is introduced by the keyword 'demo' flush left to the prefix, with no intervening spaces. The remainder of the example can contain arbitrary Octave code. For example:
%!demo
%! t=0:0.01:2*pi; x = sin(t);
%! plot(t,x)
%! %-------------------------------------------------
%! % the figure window shows one cycle of a sine wave
Note that the code is displayed before it is executed, so a simple comment at the end suffices. It is generally not necessary to use disp or printf within the demo.
Demos are run in a function environment with no access to external variables. This means that all demos in your function must use separate initialization code. Alternatively, you can combine your demos into one huge demo, with the code:
%! input("Press <enter> to continue: ","s");
between the sections, but this is discouraged. Other techniques include using multiple plots by saying figure between each, or using subplot to put multiple plots in the same window.
Also, since demo evaluates inside a function context, you cannot define new functions inside a demo. Instead you will have to use `eval(example('function',n))' to see them. Because eval only evaluates one line, or one statement if the statement crosses multiple lines, you must wrap your demo in "if 1 <demo stuff> endif" with the 'if' on the same line as 'demo'. For example,
%!demo if 1
%! function y=f(x)
%! y=x;
%! endfunction
%! f(3)
%! endif
See also: test, example.
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Runs any examples associated with the function 'NAME'.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
setdiff
# name: <cell-element>
# type: string
# elements: 1
# length: 522
-- Function File: setdiff (A, B)
-- Function File: setdiff (A, B, "rows")
-- Function File: [C, I] = setdiff (A, B)
Return the elements in A that are not in B, sorted in ascending order. If A and B are both column vectors return a column vector, otherwise return a row vector.
Given the optional third argument `"rows"', return the rows in A that are not in B, sorted in ascending order by rows.
If requested, return I such that `c = a(i)'. See also: unique, union, intersect, setxor, ismember.
# name: <cell-element>
# type: string
# elements: 1
# length: 70
Return the elements in A that are not in B, sorted in ascending order.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
intersect
# name: <cell-element>
# type: string
# elements: 1
# length: 378
-- Function File: intersect (A, B)
-- Function File: [C, IA, IB] = intersect (A, B)
Return the elements in both A and B, sorted in ascending order. If A and B are both column vectors return a column vector, otherwise return a row vector.
Return index vectors IA and IB such that `a(ia)==c' and `b(ib)==c'.
See also: unique, union, setxor, setdiff, ismember.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return the elements in both A and B, sorted in ascending order.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
complement
# name: <cell-element>
# type: string
# elements: 1
# length: 222
-- Function File: complement (X, Y)
Return the elements of set Y that are not in set X. For example,
complement ([ 1, 2, 3 ], [ 2, 3, 5 ])
=> 5
See also: union, intersect, unique.
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Return the elements of set Y that are not in set X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
union
# name: <cell-element>
# type: string
# elements: 1
# length: 675
-- Function File: union (A, B)
-- Function File: union (A, B, "rows")
Return the set of elements that are in either of the sets A and B. For example,
union ([1, 2, 4], [2, 3, 5])
=> [1, 2, 3, 4, 5]
If the optional third input argument is the string "rows" each row of the matrices A and B will be considered an element of sets. For example,
union([1, 2; 2, 3], [1, 2; 3, 4], "rows")
=> 1 2
2 3
3 4
-- Function File: [C, IA, IB] = union (A, B)
Return index vectors IA and IB such that `a == c(ia)' and `b == c(ib)'.
See also: intersect, complement, unique.
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Return index vectors IA and IB such that `a == c(ia)' and `b == c(ib)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
unique
# name: <cell-element>
# type: string
# elements: 1
# length: 852
-- Function File: unique (X)
-- Function File: unique (X, "rows")
-- Function File: unique (..., "first")
-- Function File: unique (..., "last")
-- Function File: [Y, I, J] = unique (...)
Return the unique elements of X, sorted in ascending order. If X is a row vector, return a row vector, but if X is a column vector or a matrix return a column vector.
If the optional argument `"rows"' is supplied, return the unique rows of X, sorted in ascending order.
If requested, return index vectors I and J such that `x(i)==y' and `y(j)==x'.
Additionally, one of `"first"' or `"last"' may be given as an argument. If `"last"' is specified, return the highest possible indices in I, otherwise, if `"first"' is specified, return the lowest. The default is `"last"'. See also: union, intersect, setdiff, setxor, ismember.
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Return the unique elements of X, sorted in ascending order.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
ismember
# name: <cell-element>
# type: string
# elements: 1
# length: 1133
-- Function File: [TF = ismember (A, S)
-- Function File: [TF, S_IDX] = ismember (A, S)
-- Function File: [TF, S_IDX] = ismember (A, S, "rows")
Return a matrix TF with the same shape as A which has a 1 if `A(i,j)' is in S and 0 if it is not. If a second output argument is requested, the index into S of each of the matching elements is also returned.
a = [3, 10, 1];
s = [0:9];
[tf, s_idx] = ismember (a, s);
=> tf = [1, 0, 1]
=> s_idx = [4, 0, 2]
The inputs, A and S, may also be cell arrays.
a = {'abc'};
s = {'abc', 'def'};
[tf, s_idx] = ismember (a, s);
=> tf = [1, 0]
=> s_idx = [1, 0]
With the optional third argument `"rows"', and matrices A and S with the same number of columns, compare rows in A with the rows in S.
a = [1:3; 5:7; 4:6];
s = [0:2; 1:3; 2:4; 3:5; 4:6];
[tf, s_idx] = ismember(a, s, 'rows');
=> tf = logical ([1; 0; 1])
=> s_idx = [2; 0; 5];
See also: unique, union, intersect, setxor, setdiff.
# name: <cell-element>
# type: string
# elements: 1
# length: 97
Return a matrix TF with the same shape as A which has a 1 if `A(i,j)' is in S and 0 if it is not.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
setxor
# name: <cell-element>
# type: string
# elements: 1
# length: 429
-- Function File: setxor (A, B)
-- Function File: setxor (A, B, 'rows')
Return the elements exclusive to A or B, sorted in ascending order. If A and B are both column vectors return a column vector, otherwise return a row vector.
-- Function File: [C, IA, IB] = setxor (A, B)
Return index vectors IA and IB such that `a == c(ia)' and `b == c(ib)'.
See also: unique, union, intersect, setdiff, ismember.
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Return index vectors IA and IB such that `a == c(ia)' and `b == c(ib)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
imfinfo
# name: <cell-element>
# type: string
# elements: 1
# length: 2213
-- Function File: INFO = imfinfo (FILENAME)
-- Function File: INFO = imfinfo (URL)
Read image information from a file.
`imfinfo' returns a structure containing information about the image stored in the file FILENAME. The output structure contains the following fields.
`Filename'
The full name of the image file.
`FileSize'
Number of bytes of the image on disk
`FileModDate'
Date of last modification to the file.
`Height'
Image height in pixels.
`Width'
Image Width in pixels.
`BitDepth'
Number of bits per channel per pixel.
`Format'
Image format (e.g., `"jpeg"').
`LongFormat'
Long form image format description.
`XResolution'
X resolution of the image.
`YResolution'
Y resolution of the image.
`TotalColors'
Number of unique colors in the image.
`TileName'
Tile name.
`AnimationDelay'
Time in 1/100ths of a second (0 to 65535) which must expire before displaying the next image in an animated sequence.
`AnimationIterations'
Number of iterations to loop an animation (e.g., Netscape loop extension) for.
`ByteOrder'
Endian option for formats that support it. Is either `"little-endian"', `"big-endian"', or `"undefined"'.
`Gamma'
Gamma level of the image. The same color image displayed on two different workstations may look different due to differences in the display monitor.
`Matte'
`true' if the image has transparency.
`ModulusDepth'
Image modulus depth (minimum number of bits required to support red/green/blue components without loss of accuracy).
`Quality'
JPEG/MIFF/PNG compression level.
`QuantizeColors'
Preferred number of colors in the image.
`ResolutionUnits'
Units of image resolution. Is either `"pixels per inch"', `"pixels per centimeter"', or `"undefined"'.
`ColorType'
Image type. Is either `"grayscale"', `"indexed"', `"truecolor"', or `"undefined"'.
`View'
FlashPix viewing parameters.
See also: imread, imwrite.
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Read image information from a file.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
imread
# name: <cell-element>
# type: string
# elements: 1
# length: 473
-- Function File: [IMG, MAP, ALPHA] = imread (FILENAME)
Read images from various file formats.
The size and numeric class of the output depends on the format of the image. A color image is returned as an MxNx3 matrix. Grey-level and black-and-white images are of size MxN. The color depth of the image determines the numeric class of the output: "uint8" or "uint16" for grey and color, and "logical" for black and white.
See also: imwrite, imfinfo.
# name: <cell-element>
# type: string
# elements: 1
# length: 38
Read images from various file formats.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
brighten
# name: <cell-element>
# type: string
# elements: 1
# length: 677
-- Function File: MAP_OUT = brighten (MAP, BETA)
-- Function File: MAP_OUT = brighten (H, BETA)
-- Function File: MAP_OUT = brighten (BETA)
Darkens or brightens the given colormap. If the MAP argument is omitted, the function is applied to the current colormap. The first argument can also be a valid graphics handle H, in which case `brighten' is applied to the colormap associated with this handle.
Should the resulting colormap MAP_OUT not be assigned, it will be written to the current colormap.
The argument BETA should be a scalar between -1 and 1, where a negative value darkens and a positive value brightens the colormap. See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Darkens or brightens the given colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
gmap40
# name: <cell-element>
# type: string
# elements: 1
# length: 444
-- Function File: gmap40 (N)
Create a color colormap. The colormap is red, green, blue, yellow, magenta and cyan. These are the colors that are allowed with patch objects using gnuplot 4.0, and so this colormap function is specially designed for users of gnuplot 4.0. The argument N should be a scalar. If it is omitted, a length of 6 is assumed. Larger values of N result in a repetition of the above colors See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 24
Create a color colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
imshow
# name: <cell-element>
# type: string
# elements: 1
# length: 1061
-- Function File: imshow (IM)
-- Function File: imshow (IM, LIMITS)
-- Function File: imshow (IM, MAP)
-- Function File: imshow (RGB, ...)
-- Function File: imshow (FILENAME)
-- Function File: imshow (..., STRING_PARAM1, VALUE1, ...)
Display the image IM, where IM can be a 2-dimensional (gray-scale image) or a 3-dimensional (RGB image) matrix.
If LIMITS is a 2-element vector `[LOW, HIGH]', the image is shown using a display range between LOW and HIGH. If an empty matrix is passed for LIMITS, the display range is computed as the range between the minimal and the maximal value in the image.
If MAP is a valid color map, the image will be shown as an indexed image using the supplied color map.
If a file name is given instead of an image, the file will be read and shown.
If given, the parameter STRING_PARAM1 has value VALUE1. STRING_PARAM1 can be any of the following:
`"displayrange"'
VALUE1 is the display range as described above.
See also: image, imagesc, colormap, gray2ind, rgb2ind.
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Display the image IM, where IM can be a 2-dimensional (gray-scale image) or a 3-dimensional (RGB image) matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
gray2ind
# name: <cell-element>
# type: string
# elements: 1
# length: 222
-- Function File: [IMG, MAP] = gray2ind (I, N)
Convert a gray scale intensity image to an Octave indexed image. The indexed image will consist of N different intensity values. If not given N will default to 64.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Convert a gray scale intensity image to an Octave indexed image.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
spring
# name: <cell-element>
# type: string
# elements: 1
# length: 228
-- Function File: spring (N)
Create color colormap. This colormap is magenta to yellow. The argument N should be a scalar. If it is omitted, the length of the current colormap or 64 is assumed. See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
winter
# name: <cell-element>
# type: string
# elements: 1
# length: 224
-- Function File: winter (N)
Create color colormap. This colormap is blue to green. The argument N should be a scalar. If it is omitted, the length of the current colormap or 64 is assumed. See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
prism
# name: <cell-element>
# type: string
# elements: 1
# length: 264
-- Function File: prism (N)
Create color colormap. This colormap cycles trough red, orange, yellow, green, blue and violet. The argument N should be a scalar. If it is omitted, the length of the current colormap or 64 is assumed. See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
gray
# name: <cell-element>
# type: string
# elements: 1
# length: 222
-- Function File: gray (N)
Return a gray colormap with N entries corresponding to values from 0 to N-1. The argument N should be a scalar. If it is omitted, the length of the current colormap or 64 is assumed.
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Return a gray colormap with N entries corresponding to values from 0 to N-1.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
autumn
# name: <cell-element>
# type: string
# elements: 1
# length: 239
-- Function File: autumn (N)
Create color colormap. This colormap is red through orange to yellow. The argument N should be a scalar. If it is omitted, the length of the current colormap or 64 is assumed. See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
ind2gray
# name: <cell-element>
# type: string
# elements: 1
# length: 238
-- Function File: ind2gray (X, MAP)
Convert an Octave indexed image to a gray scale intensity image. If MAP is omitted, the current colormap is used to determine the intensities. See also: gray2ind, rgb2ntsc, image, colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Convert an Octave indexed image to a gray scale intensity image.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
flag
# name: <cell-element>
# type: string
# elements: 1
# length: 247
-- Function File: flag (N)
Create color colormap. This colormap cycles through red, white, blue and black. The argument N should be a scalar. If it is omitted, the length of the current colormap or 64 is assumed. See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
saveimage
# name: <cell-element>
# type: string
# elements: 1
# length: 891
-- Function File: saveimage (FILE, X, FMT, MAP)
Save the matrix X to FILE in image format FMT. Valid values for FMT are
`"img"'
Octave's image format. The current colormap is also saved in the file.
`"ppm"'
Portable pixmap format.
`"ps"'
PostScript format. Note that images saved in PostScript format cannot be read back into Octave with loadimage.
If the fourth argument is supplied, the specified colormap will also be saved along with the image.
Note: if the colormap contains only two entries and these entries are black and white, the bitmap ppm and PostScript formats are used. If the image is a gray scale image (the entries within each row of the colormap are equal) the gray scale ppm and PostScript image formats are used, otherwise the full color formats are used. See also: loadimage, save, load, colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Save the matrix X to FILE in image format FMT.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
ntsc2rgb
# name: <cell-element>
# type: string
# elements: 1
# length: 112
-- Function File: ntsc2rgb (YIQ)
Transform a colormap or image from NTSC to RGB. See also: rgb2ntsc.
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Transform a colormap or image from NTSC to RGB.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
ind2rgb
# name: <cell-element>
# type: string
# elements: 1
# length: 376
-- Function File: RGB = ind2rgb (X, MAP)
-- Function File: [R, G, B] = ind2rgb (X, MAP)
Convert an indexed image to red, green, and blue color components. If the colormap doesn't contain enough colors, pad it with the last color in the map. If MAP is omitted, the current colormap is used for the conversion. See also: rgb2ind, image, imshow, ind2gray, gray2ind.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Convert an indexed image to red, green, and blue color components.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
rgb2ind
# name: <cell-element>
# type: string
# elements: 1
# length: 179
-- Function File: [X, MAP] = rgb2ind (RGB)
-- Function File: [X, MAP] = rgb2ind (R, G, B)
Convert an RGB image to an Octave indexed image. See also: ind2rgb, rgb2ntsc.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Convert an RGB image to an Octave indexed image.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
jet
# name: <cell-element>
# type: string
# elements: 1
# length: 268
-- Function File: jet (N)
Create color colormap. This colormap is dark blue through blue, cyan, green, yellow, red to dark red. The argument N should be a scalar. If it is omitted, the length of the current colormap or 64 is assumed. See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
hot
# name: <cell-element>
# type: string
# elements: 1
# length: 260
-- Function File: hot (N)
Create color colormap. This colormap is black through dark red, red, orange, yellow to white. The argument N should be a scalar. If it is omitted, the length of the current colormap or 64 is assumed. See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
colormap
# name: <cell-element>
# type: string
# elements: 1
# length: 580
-- Function File: colormap (MAP)
-- Function File: colormap ("default")
Set the current colormap.
`colormap (MAP)' sets the current colormap to MAP. The color map should be an N row by 3 column matrix. The columns contain red, green, and blue intensities respectively. All entries should be between 0 and 1 inclusive. The new colormap is returned.
`colormap ("default")' restores the default colormap (the `jet' map with 64 entries). The default colormap is returned.
With no arguments, `colormap' returns the current color map. See also: jet.
# name: <cell-element>
# type: string
# elements: 1
# length: 25
Set the current colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
ocean
# name: <cell-element>
# type: string
# elements: 1
# length: 169
-- Function File: ocean (N)
Create color colormap. The argument N should be a scalar. If it is omitted, the length of the current colormap or 64 is assumed.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
bone
# name: <cell-element>
# type: string
# elements: 1
# length: 247
-- Function File: bone (N)
Create color colormap. This colormap is a gray colormap with a light blue tone. The argument N should be a scalar. If it is omitted, the length of the current colormap or 64 is assumed. See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
rgb2hsv
# name: <cell-element>
# type: string
# elements: 1
# length: 461
-- Function File: HSV_MAP = rgb2hsv (RGB_MAP)
Transform a colormap or image from the rgb space to the hsv space.
A color n the RGB space consists of the red, green and blue intensities.
In the HSV space each color is represented by their hue, saturation and value (brightness). Value gives the amount of light in the color. Hue describes the dominant wavelength. Saturation is the amount of Hue mixed into the color. See also: hsv2rgb.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Transform a colormap or image from the rgb space to the hsv space.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
cool
# name: <cell-element>
# type: string
# elements: 1
# length: 223
-- Function File: cool (N)
Create color colormap. The colormap is cyan to magenta. The argument N should be a scalar. If it is omitted, the length of the current colormap or 64 is assumed. See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
rainbow
# name: <cell-element>
# type: string
# elements: 1
# length: 261
-- Function File: rainbow (N)
Create color colormap. This colormap is red through orange, yellow, green, blue to violet. The argument N should be a scalar. If it is omitted, the length of the current colormap or 64 is assumed. See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
imagesc
# name: <cell-element>
# type: string
# elements: 1
# length: 686
-- Function File: imagesc (A)
-- Function File: imagesc (X, Y, A)
-- Function File: imagesc (..., LIMITS)
-- Function File: imagesc (H, ...)
-- Function File: H = imagesc (...)
Display a scaled version of the matrix A as a color image. The colormap is scaled so that the entries of the matrix occupy the entire colormap. If LIMITS = [LO, HI] are given, then that range is set to the 'clim' of the current axes.
The axis values corresponding to the matrix elements are specified in X and Y, either as pairs giving the minimum and maximum values for the respective axes, or as values for each row and column of the matrix A.
See also: image, imshow, caxis.
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Display a scaled version of the matrix A as a color image.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
summer
# name: <cell-element>
# type: string
# elements: 1
# length: 226
-- Function File: summer (N)
Create color colormap. This colormap is green to yellow. The argument N should be a scalar. If it is omitted, the length of the current colormap or 64 is assumed. See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
hsv
# name: <cell-element>
# type: string
# elements: 1
# length: 454
-- Function File: hsv (N)
Create color colormap. This colormap is red through yellow, green, cyan, blue, magenta to red. It is obtained by linearly varying the hue through all possible values while keeping constant maximum saturation and value and is equivalent to `hsv2rgb ([linspace(0,1,N)', ones(N,2)])'.
The argument N should be a scalar. If it is omitted, the length of the current colormap or 64 is assumed. See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
image
# name: <cell-element>
# type: string
# elements: 1
# length: 665
-- Function File: image (IMG)
-- Function File: image (X, Y, IMG)
Display a matrix as a color image. The elements of X are indices into the current colormap, and the colormap will be scaled so that the extremes of X are mapped to the extremes of the colormap.
It first tries to use `gnuplot', then `display' from `ImageMagick', then `xv', and then `xloadimage'. The actual program used can be changed using the `image_viewer' function.
The axis values corresponding to the matrix elements are specified in X and Y. If you're not using gnuplot 4.2 or later, these variables are ignored. See also: imshow, imagesc, colormap, image_viewer.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Display a matrix as a color image.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
white
# name: <cell-element>
# type: string
# elements: 1
# length: 226
-- Function File: white (N)
Create color colormap. This colormap is completely white. The argument N should be a scalar. If it is omitted, the length of the current colormap or 64 is assumed. See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
image_viewer
# name: <cell-element>
# type: string
# elements: 1
# length: 1707
-- Function File: [FCN, DEFAULT_ZOOM] = image_viewer (FCN, DEFAULT_ZOOM)
Change the program or function used for viewing images and return the previous values.
When the `image' or `imshow' function is called it will launch an external program to display the image. The default behavior is to use gnuplot if the installed version supports image viewing, and otherwise try the programs `display', `xv', and `xloadimage'. Using this function it is possible to change that behavior.
When called with one input argument images will be displayed by saving the image to a file and the system command COMMAND will be called to view the image. The COMMAND must be a string containing `%s' and possibly `%f'. The `%s' will be replaced by the filename of the image, and the `%f' will (if present) be replaced by the zoom factor given to the `image' function. For example,
image_viewer ("eog %s");
changes the image viewer to the `eog' program.
With two input arguments, images will be displayed by calling the function FUNCTION_HANDLE. For example,
image_viewer (data, @my_image_viewer);
sets the image viewer function to `my_image_viewer'. The image viewer function is called with
my_image_viewer (X, Y, IM, ZOOM, DATA)
where X and Y are the axis of the image, IM is the image variable, and DATA is extra user-supplied data to be passed to the viewer function.
With three input arguments it is possible to change the zooming. Some programs (like `xloadimage') require the zoom factor to be between 0 and 100, and not 0 and 1 like Octave assumes. This is solved by setting the third argument to 100.
See also: image, imshow.
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Change the program or function used for viewing images and return the previous values.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
hsv2rgb
# name: <cell-element>
# type: string
# elements: 1
# length: 142
-- Function File: RGB_MAP = hsv2rgb (HSV_MAP)
Transform a colormap or image from the hsv space to the rgb space. See also: rgb2hsv.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Transform a colormap or image from the hsv space to the rgb space.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
imwrite
# name: <cell-element>
# type: string
# elements: 1
# length: 627
-- Function File: imwrite (IMG, FILENAME, FMT, P1, V1, ...)
-- Function File: imwrite (IMG, MAP, FILENAME, FMT, P1, V1, ...)
Write images in various file formats.
If FMT is missing, the file extension (if any) of FILENAME is used to determine the format.
The parameter-value pairs (P1, V1, ...) are optional. Currently the following options are supported for JPEG images
`Quality'
Sets the quality of the compression. The corresponding value should be an integer between 0 and 100, with larger values meaning higher visual quality and less compression.
See also: imread, imfinfo.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Write images in various file formats.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
contrast
# name: <cell-element>
# type: string
# elements: 1
# length: 246
-- Function File: contrast (X, N)
Return a gray colormap that maximizes the contrast in an image. The returned colormap will have N rows. If N is not defined then the size of the current colormap is used instead. See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return a gray colormap that maximizes the contrast in an image.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
rgb2ntsc
# name: <cell-element>
# type: string
# elements: 1
# length: 112
-- Function File: rgb2ntsc (RGB)
Transform a colormap or image from RGB to NTSC. See also: ntsc2rgb.
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Transform a colormap or image from RGB to NTSC.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
pink
# name: <cell-element>
# type: string
# elements: 1
# length: 250
-- Function File: pink (N)
Create color colormap. This colormap gives a sepia tone on black and white images. The argument N should be a scalar. If it is omitted, the length of the current colormap or 64 is assumed. See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
copper
# name: <cell-element>
# type: string
# elements: 1
# length: 239
-- Function File: copper (N)
Create color colormap. This colormap is black to a light copper tone. The argument N should be a scalar. If it is omitted, the length of the current colormap or 64 is assumed. See also: colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
reallog
# name: <cell-element>
# type: string
# elements: 1
# length: 205
-- Function File: reallog (X)
Return the real-valued natural logarithm of each element of X. Report an error if any element results in a complex return value. See also: log, realpow, realsqrt.
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Return the real-valued natural logarithm of each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
factor
# name: <cell-element>
# type: string
# elements: 1
# length: 346
-- Function File: P = factor (Q)
-- Function File: [P, N] = factor (Q)
Return prime factorization of Q. That is, `prod (P) == Q' and every element of P is a prime number. If `Q == 1', returns 1.
With two output arguments, return the unique primes P and their multiplicities. That is, `prod (P .^ N) == Q'. See also: gcd, lcm.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Return prime factorization of Q.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
legendre
# name: <cell-element>
# type: string
# elements: 1
# length: 2244
-- Function File: L = legendre (N, X)
-- Function File: L = legendre (N, X, NORMALIZATION)
Compute the Legendre function of degree N and order M = 0 ... N. The optional argument, NORMALIZATION, may be one of `"unnorm"', `"sch"', or `"norm"'. The default is `"unnorm"'. The value of N must be a non-negative scalar integer.
If the optional argument NORMALIZATION is missing or is `"unnorm"', compute the Legendre function of degree N and order M and return all values for M = 0 ... N. The return value has one dimension more than X.
The Legendre Function of degree N and order M:
m m 2 m/2 d^m
P(x) = (-1) * (1-x ) * ---- P (x)
n dx^m n
with Legendre polynomial of degree N:
1 d^n 2 n
P (x) = ------ [----(x - 1) ]
n 2^n n! dx^n
`legendre (3, [-1.0, -0.9, -0.8])' returns the matrix:
x | -1.0 | -0.9 | -0.8
------------------------------------
m=0 | -1.00000 | -0.47250 | -0.08000
m=1 | 0.00000 | -1.99420 | -1.98000
m=2 | 0.00000 | -2.56500 | -4.32000
m=3 | 0.00000 | -1.24229 | -3.24000
If the optional argument `normalization' is `"sch"', compute the Schmidt semi-normalized associated Legendre function. The Schmidt semi-normalized associated Legendre function is related to the unnormalized Legendre functions by the following:
For Legendre functions of degree n and order 0:
0 0
SP (x) = P (x)
n n
For Legendre functions of degree n and order m:
m m m 2(n-m)! 0.5
SP (x) = P (x) * (-1) * [-------]
n n (n+m)!
If the optional argument NORMALIZATION is `"norm"', compute the fully normalized associated Legendre function. The fully normalized associated Legendre function is related to the unnormalized Legendre functions by the following:
For Legendre functions of degree N and order M
m m m (n+0.5)(n-m)! 0.5
NP (x) = P (x) * (-1) * [-------------]
n n (n+m)!
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Compute the Legendre function of degree N and order M = 0 .
# name: <cell-element>
# type: string
# elements: 1
# length: 5
betai
# name: <cell-element>
# type: string
# elements: 1
# length: 221
-- Function File: betai (A, B, X)
This function is provided for compatibility with older versions of Octave. New programs should use betainc instead.
`betai (A, B, X)' is the same as `betainc (X, A, B)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 74
This function is provided for compatibility with older versions of Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
perms
# name: <cell-element>
# type: string
# elements: 1
# length: 353
-- Function File: perms (V)
Generate all permutations of V, one row per permutation. The result has size `factorial (N) * N', where N is the length of V.
As an example, `perms([1, 2, 3])' returns the matrix
1 2 3
2 1 3
1 3 2
2 3 1
3 1 2
3 2 1
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Generate all permutations of V, one row per permutation.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
realsqrt
# name: <cell-element>
# type: string
# elements: 1
# length: 200
-- Function File: realsqrt (X)
Return the real-valued square root of each element of X. Report an error if any element results in a complex return value. See also: sqrt, realpow, reallog.
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Return the real-valued square root of each element of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
isprime
# name: <cell-element>
# type: string
# elements: 1
# length: 375
-- Function File: isprime (N)
Return true if N is a prime number, false otherwise.
Something like the following is much faster if you need to test a lot of small numbers:
T = ismember (N, primes (max (N (:))));
If max(n) is very large, then you should be using special purpose factorization code.
See also: primes, factor, gcd, lcm.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return true if N is a prime number, false otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
factorial
# name: <cell-element>
# type: string
# elements: 1
# length: 328
-- Function File: factorial (N)
Return the factorial of N where N is a positive integer. If N is a scalar, this is equivalent to `prod (1:N)'. For vector or matrix arguments, return the factorial of each element in the array. For non-integers see the generalized factorial function `gamma'. See also: prod, gamma.
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Return the factorial of N where N is a positive integer.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
erfinv
# name: <cell-element>
# type: string
# elements: 1
# length: 108
-- Mapping Function: erfinv (Z)
Computes the inverse of the error function. See also: erf, erfc.
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Computes the inverse of the error function.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
betaln
# name: <cell-element>
# type: string
# elements: 1
# length: 192
-- Mapping Function: betaln (A, B)
Return the log of the Beta function,
betaln (a, b) = gammaln (a) + gammaln (b) - gammaln (a + b)
See also: beta, betainc, gammaln.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Return the log of the Beta function,
# name: <cell-element>
# type: string
# elements: 1
# length: 7
realpow
# name: <cell-element>
# type: string
# elements: 1
# length: 237
-- Function File: realpow (X, Y)
Compute the real-valued, element-by-element power operator. This is equivalent to `X .^ Y', except that `realpow' reports an error if any return value is complex. See also: reallog, realsqrt.
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Compute the real-valued, element-by-element power operator.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
bessel
# name: <cell-element>
# type: string
# elements: 1
# length: 2013
-- Loadable Function: [J, IERR] = besselj (ALPHA, X, OPT)
-- Loadable Function: [Y, IERR] = bessely (ALPHA, X, OPT)
-- Loadable Function: [I, IERR] = besseli (ALPHA, X, OPT)
-- Loadable Function: [K, IERR] = besselk (ALPHA, X, OPT)
-- Loadable Function: [H, IERR] = besselh (ALPHA, K, X, OPT)
Compute Bessel or Hankel functions of various kinds:
`besselj'
Bessel functions of the first kind. If the argument OPT is supplied, the result is multiplied by `exp(-abs(imag(x)))'.
`bessely'
Bessel functions of the second kind. If the argument OPT is supplied, the result is multiplied by `exp(-abs(imag(x)))'.
`besseli'
Modified Bessel functions of the first kind. If the argument OPT is supplied, the result is multiplied by `exp(-abs(real(x)))'.
`besselk'
Modified Bessel functions of the second kind. If the argument OPT is supplied, the result is multiplied by `exp(x)'.
`besselh'
Compute Hankel functions of the first (K = 1) or second (K = 2) kind. If the argument OPT is supplied, the result is multiplied by `exp (-I*X)' for K = 1 or `exp (I*X)' for K = 2.
If ALPHA is a scalar, the result is the same size as X. If X is a scalar, the result is the same size as ALPHA. If ALPHA is a row vector and X is a column vector, the result is a matrix with `length (X)' rows and `length (ALPHA)' columns. Otherwise, ALPHA and X must conform and the result will be the same size.
The value of ALPHA must be real. The value of X may be complex.
If requested, IERR contains the following status information and is the same size as the result.
0. Normal return.
1. Input error, return `NaN'.
2. Overflow, return `Inf'.
3. Loss of significance by argument reduction results in less than half of machine accuracy.
4. Complete loss of significance by argument reduction, return `NaN'.
5. Error--no computation, algorithm termination condition not met, return `NaN'.
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Compute Bessel or Hankel functions of various kinds:
# name: <cell-element>
# type: string
# elements: 1
# length: 6
gammai
# name: <cell-element>
# type: string
# elements: 1
# length: 218
-- Function File: gammai (A, X)
This function is provided for compatibility with older versions of Octave. New programs should use `gammainc' instead.
`gammai (A, X)' is the same as `gammainc (X, A)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 74
This function is provided for compatibility with older versions of Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
primes
# name: <cell-element>
# type: string
# elements: 1
# length: 407
-- Function File: primes (N)
Return all primes up to N.
The algorithm used is the Sieve of Erastothenes.
Note that if you need a specific number of primes you can use the fact the distance from one prime to the next is, on average, proportional to the logarithm of the prime. Integrating, one finds that there are about k primes less than k*log(5*k). See also: list_primes, isprime.
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Return all primes up to N.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
pow2
# name: <cell-element>
# type: string
# elements: 1
# length: 209
-- Mapping Function: pow2 (X)
-- Mapping Function: pow2 (F, E)
With one argument, computes 2 .^ x for each element of X.
With two arguments, returns f .* (2 .^ e). See also: log2, nextpow2.
# name: <cell-element>
# type: string
# elements: 1
# length: 31
With one argument, computes 2 .
# name: <cell-element>
# type: string
# elements: 1
# length: 4
beta
# name: <cell-element>
# type: string
# elements: 1
# length: 147
-- Mapping Function: beta (A, B)
For real inputs, return the Beta function,
beta (a, b) = gamma (a) * gamma (b) / gamma (a + b).
# name: <cell-element>
# type: string
# elements: 1
# length: 43
For real inputs, return the Beta function,
# name: <cell-element>
# type: string
# elements: 1
# length: 8
nchoosek
# name: <cell-element>
# type: string
# elements: 1
# length: 777
-- Function File: C = nchoosek (N, K)
Compute the binomial coefficient or all combinations of N. If N is a scalar then, calculate the binomial coefficient of N and K, defined as
/ \
| n | n (n-1) (n-2) ... (n-k+1) n!
| | = ------------------------- = ---------
| k | k! k! (n-k)!
\ /
If N is a vector generate all combinations of the elements of N, taken K at a time, one row per combination. The resulting C has size `[nchoosek (length (N), K), K]'.
`nchoosek' works only for non-negative integer arguments; use `bincoeff' for non-integer scalar arguments and for using vector arguments to compute many coefficients at once.
See also: bincoeff.
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Compute the binomial coefficient or all combinations of N.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
wavread
# name: <cell-element>
# type: string
# elements: 1
# length: 765
-- Function File: Y = wavread (FILENAME)
Load the RIFF/WAVE sound file FILENAME, and return the samples in vector Y. If the file contains multichannel data, then Y is a matrix with the channels represented as columns.
-- Function File: [Y, FS, BITS] = wavread (FILENAME)
Additionally return the sample rate (FS) in Hz and the number of bits per sample (BITS).
-- Function File: [...] = wavread (FILENAME, N)
Read only the first N samples from each channel.
-- Function File: [...] = wavread (FILENAME,[N1 N2])
Read only samples N1 through N2 from each channel.
-- Function File: [SAMPLES, CHANNELS] = wavread (FILENAME, "size")
Return the number of samples (N) and channels (CH) instead of the audio data. See also: wavwrite.
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Return the number of samples (N) and channels (CH) instead of the audio data.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
lin2mu
# name: <cell-element>
# type: string
# elements: 1
# length: 383
-- Function File: lin2mu (X, N)
Converts audio data from linear to mu-law. Mu-law values use 8-bit unsigned integers. Linear values use N-bit signed integers or floating point values in the range -1<=X<=1 if N is 0. If N is not specified it defaults to 0, 8 or 16 depending on the range values in X. See also: mu2lin, loadaudio, saveaudio, playaudio, setaudio, record.
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Converts audio data from linear to mu-law.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
setaudio
# name: <cell-element>
# type: string
# elements: 1
# length: 111
-- Function File: setaudio ([W_TYPE [, VALUE]])
Execute the shell command `mixer [W_TYPE [, VALUE]]'
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Execute the shell command `mixer [W_TYPE [, VALUE]]'
# name: <cell-element>
# type: string
# elements: 1
# length: 6
record
# name: <cell-element>
# type: string
# elements: 1
# length: 339
-- Function File: record (SEC, SAMPLING_RATE)
Records SEC seconds of audio input into the vector X. The default value for SAMPLING_RATE is 8000 samples per second, or 8kHz. The program waits until the user types <RET> and then immediately starts to record. See also: lin2mu, mu2lin, loadaudio, saveaudio, playaudio, setaudio.
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Records SEC seconds of audio input into the vector X.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
mu2lin
# name: <cell-element>
# type: string
# elements: 1
# length: 341
-- Function File: mu2lin (X, BPS)
Converts audio data from linear to mu-law. Mu-law values are 8-bit unsigned integers. Linear values use N-bit signed integers or floating point values in the range -1<=y<=1 if N is 0. If N is not specified it defaults to 8. See also: lin2mu, loadaudio, saveaudio, playaudio, setaudio, record.
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Converts audio data from linear to mu-law.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
saveaudio
# name: <cell-element>
# type: string
# elements: 1
# length: 357
-- Function File: saveaudio (NAME, X, EXT, BPS)
Saves a vector X of audio data to the file `NAME.EXT'. The optional parameters EXT and BPS determine the encoding and the number of bits per sample used in the audio file (see `loadaudio'); defaults are `lin' and 8, respectively. See also: lin2mu, mu2lin, loadaudio, playaudio, setaudio, record.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Saves a vector X of audio data to the file `NAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
wavwrite
# name: <cell-element>
# type: string
# elements: 1
# length: 389
-- Function File: wavwrite (Y, FILENAME)
-- Function File: wavwrite (Y, FS, FILENAME)
-- Function File: wavwrite (Y, FS, BITS, FILENAME)
Write Y to the canonical RIFF/WAVE sound file FILENAME with sample rate FS and bits per sample BITS. The default sample rate is 8000 Hz with 16-bits per sample. Each column of the data represents a separate channel. See also: wavread.
# name: <cell-element>
# type: string
# elements: 1
# length: 100
Write Y to the canonical RIFF/WAVE sound file FILENAME with sample rate FS and bits per sample BITS.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
playaudio
# name: <cell-element>
# type: string
# elements: 1
# length: 225
-- Function File: playaudio (NAME, EXT)
-- Function File: playaudio (X)
Plays the audio file `NAME.EXT' or the audio data stored in the vector X. See also: lin2mu, mu2lin, loadaudio, saveaudio, setaudio, record.
# name: <cell-element>
# type: string
# elements: 1
# length: 27
Plays the audio file `NAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
loadaudio
# name: <cell-element>
# type: string
# elements: 1
# length: 509
-- Function File: loadaudio (NAME, EXT, BPS)
Loads audio data from the file `NAME.EXT' into the vector X.
The extension EXT determines how the data in the audio file is interpreted; the extensions `lin' (default) and `raw' correspond to linear, the extensions `au', `mu', or `snd' to mu-law encoding.
The argument BPS can be either 8 (default) or 16, and specifies the number of bits per sample used in the audio file. See also: lin2mu, mu2lin, saveaudio, playaudio, setaudio, record.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Loads audio data from the file `NAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
lookfor
# name: <cell-element>
# type: string
# elements: 1
# length: 1152
-- Command: lookfor STR
-- Command: lookfor -all STR
-- Function: [FUNC, HELPSTRING] = lookfor (STR)
-- Function: [FUNC, HELPSTRING] = lookfor ('-all', STR)
Search for the string STR in all functions found in the current function search path. By default, `lookfor' searches for STR in the first sentence of the help string of each function found. The entire help text of each function can be searched if the '-all' argument is supplied. All searches are case insensitive.
Called with no output arguments, `lookfor' prints the list of matching functions to the terminal. Otherwise, the output arguments FUNC and HELPSTRING define the matching functions and the first sentence of each of their help strings.
The ability of `lookfor' to correctly identify the first sentence of the help text is dependent on the format of the function's help. All Octave core functions are correctly formatted, but the same can not be guaranteed for external packages and user-supplied functions. Therefore, the use of the '-all' argument may be necessary to find related functions that are not a part of Octave. See also: help, doc, which.
# name: <cell-element>
# type: string
# elements: 1
# length: 85
Search for the string STR in all functions found in the current function search path.
# name: <cell-element>
# type: string
# elements: 1
# length: 13
gen_doc_cache
# name: <cell-element>
# type: string
# elements: 1
# length: 441
-- Function File: gen_doc_cache (OUT_FILE, DIRECTORY)
Generate documentation caches for all functions in a given directory.
A documentation cache is generated for all functions in DIRECTORY. The resulting cache is saved in the file OUT_FILE. The cache is used to speed up `lookfor'.
If no directory is given (or it is the empty matrix), a cache for builtin operators, etc. is generated.
See also: lookfor, path.
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Generate documentation caches for all functions in a given directory.
# name: <cell-element>
# type: string
# elements: 1
# length: 23
get_first_help_sentence
# name: <cell-element>
# type: string
# elements: 1
# length: 837
-- Function File: [RETVAL, STATUS] = get_first_help_sentence (NAME, MAX_LEN)
Return the first sentence of a function help text.
The function reads the first sentence of the help text of the function NAME. The first sentence is defined as the text after the function declaration until either the first period (".") or the first appearance of two consecutive end-lines ("\n\n"). The text is truncated to a maximum length of MAX_LEN, which defaults to 80.
The optional output argument STATUS returns the status reported by `makeinfo'. If only one output argument is requested, and STATUS is non-zero, a warning is displayed.
As an example, the first sentence of this help text is
get_first_help_sentence ("get_first_help_sentence")
-| ans = Return the first sentence of a function help text.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Return the first sentence of a function help text.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
help
# name: <cell-element>
# type: string
# elements: 1
# length: 501
-- Command: help NAME
Display the help text for NAME. If invoked without any arguments, `help' prints a list of all the available operators and functions.
For example, the command `help help' prints a short message describing the `help' command.
The help command can give you information about operators, but not the comma and semicolons that are used as command separators. To get help for those, you must type `help comma' or `help semicolon'. See also: doc, lookfor, which.
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Display the help text for NAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
type
# name: <cell-element>
# type: string
# elements: 1
# length: 411
-- Command: type options name ...
Display the definition of each NAME that refers to a function.
Normally also displays whether each NAME is user-defined or built-in; the `-q' option suppresses this behavior.
If an output argument is requested nothing is displayed. Instead, a cell array of strings is returned, where each element corresponds to the definition of each requested function.
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Display the definition of each NAME that refers to a function.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
which
# name: <cell-element>
# type: string
# elements: 1
# length: 180
-- Command: which name ...
Display the type of each NAME. If NAME is defined from a function file, the full name of the file is also displayed. See also: help, lookfor.
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Display the type of each NAME.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
print_usage
# name: <cell-element>
# type: string
# elements: 1
# length: 267
-- Function File: print_usage ()
-- Function File: print_usage (NAME)
Print the usage message for a function. When called with no input arguments the `print_usage' function displays the usage message of the currently executing function. See also: help.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Print the usage message for a function.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
doc
# name: <cell-element>
# type: string
# elements: 1
# length: 495
-- Command: doc FUNCTION_NAME
Display documentation for the function FUNCTION_NAME directly from an on-line version of the printed manual, using the GNU Info browser. If invoked without any arguments, the manual is shown from the beginning.
For example, the command `doc rand' starts the GNU Info browser at the `rand' node in the on-line version of the manual.
Once the GNU Info browser is running, help for using it is available using the command `C-h'. See also: help.
# name: <cell-element>
# type: string
# elements: 1
# length: 136
Display documentation for the function FUNCTION_NAME directly from an on-line version of the printed manual, using the GNU Info browser.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
savepath
# name: <cell-element>
# type: string
# elements: 1
# length: 306
-- Function File: savepath (FILE)
Save the portion of the current function search path, that is not set during Octave's initialization process, to FILE. If FILE is omitted, `~/.octaverc' is used. If successful, `savepath' returns 0. See also: path, addpath, rmpath, genpath, pathdef, pathsep.
# name: <cell-element>
# type: string
# elements: 1
# length: 118
Save the portion of the current function search path, that is not set during Octave's initialization process, to FILE.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
pathdef
# name: <cell-element>
# type: string
# elements: 1
# length: 393
-- Function File: VAL = pathdef ()
Return the default path for Octave. The path information is extracted from one of three sources. In order of preference, those are;
1. `~/.octaverc'
2. `<octave-home>/.../<version>/m/startup/octaverc'
3. Octave's path prior to changes by any octaverc.
See also: path, addpath, rmpath, genpath, savepath, pathsep.
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Return the default path for Octave.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
matlabroot
# name: <cell-element>
# type: string
# elements: 1
# length: 109
-- Function File: VAL = matlabroot ()
Return the location of Octave's home. See also: OCTAVE_HOME.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Return the location of Octave's home.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
ind2sub
# name: <cell-element>
# type: string
# elements: 1
# length: 414
-- Function File: [S1, S2, ..., SN] = ind2sub (DIMS, IND)
Convert a linear index into subscripts.
The following example shows how to convert the linear index `8' in a 3-by-3 matrix into a subscript. The matrix is linearly indexed moving from one column to next, filling up all rows in each column.
[r, c] = ind2sub ([3, 3], 8)
=> r = 2
c = 3
See also: sub2ind.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Convert a linear index into subscripts.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
celldisp
# name: <cell-element>
# type: string
# elements: 1
# length: 244
-- Function File: celldisp (C, NAME)
Recursively display the contents of a cell array. By default the values are displayed with the name of the variable C. However, this name can be replaced with the variable NAME. See also: disp.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Recursively display the contents of a cell array.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
sub2ind
# name: <cell-element>
# type: string
# elements: 1
# length: 460
-- Function File: IND = sub2ind (DIMS, I, J)
-- Function File: IND = sub2ind (DIMS, S1, S2, ..., SN)
Convert subscripts into a linear index.
The following example shows how to convert the two-dimensional index `(2,3)' of a 3-by-3 matrix to a linear index. The matrix is linearly indexed moving from one column to next, filling up all rows in each column.
linear_index = sub2ind ([3, 3], 2, 3)
=> 8
See also: ind2sub.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Convert subscripts into a linear index.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
pol2cart
# name: <cell-element>
# type: string
# elements: 1
# length: 365
-- Function File: [X, Y] = pol2cart (THETA, R)
-- Function File: [X, Y, Z] = pol2cart (THETA, R, Z)
Transform polar or cylindrical to Cartesian coordinates. THETA, R (and Z) must be the same shape, or scalar. THETA describes the angle relative to the positive x-axis. R is the distance to the z-axis (0, 0, z). See also: cart2pol, cart2sph, sph2cart.
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Transform polar or cylindrical to Cartesian coordinates.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
issymmetric
# name: <cell-element>
# type: string
# elements: 1
# length: 390
-- Function File: issymmetric (X, TOL)
If X is symmetric within the tolerance specified by TOL, then return the dimension of X. Otherwise, return 0. If TOL is omitted, use a tolerance equal to the machine precision. Matrix X is considered symmetric if `norm (X - X.', inf) / norm (X, inf) < TOL'. See also: size, rows, columns, length, ismatrix, isscalar, issquare, isvector.
# name: <cell-element>
# type: string
# elements: 1
# length: 88
If X is symmetric within the tolerance specified by TOL, then return the dimension of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
runlength
# name: <cell-element>
# type: string
# elements: 1
# length: 241
-- Function File: runlength (X)
Find the lengths of all sequences of common values. Return the vector of lengths and the value that was repeated.
runlength ([2, 2, 0, 4, 4, 4, 0, 1, 1, 1, 1])
=> [2, 1, 3, 1, 4]
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Find the lengths of all sequences of common values.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
circshift
# name: <cell-element>
# type: string
# elements: 1
# length: 766
-- Function File: Y = circshift (X, N)
Circularly shifts the values of the array X. N must be a vector of integers no longer than the number of dimensions in X. The values of N can be either positive or negative, which determines the direction in which the values or X are shifted. If an element of N is zero, then the corresponding dimension of X will not be shifted. For example
x = [1, 2, 3; 4, 5, 6; 7, 8, 9];
circshift (x, 1)
=> 7, 8, 9
1, 2, 3
4, 5, 6
circshift (x, -2)
=> 7, 8, 9
1, 2, 3
4, 5, 6
circshift (x, [0,1])
=> 3, 1, 2
6, 4, 5
9, 7, 8
See also: permute, ipermute, shiftdim.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Circularly shifts the values of the array X.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
common_size
# name: <cell-element>
# type: string
# elements: 1
# length: 626
-- Function File: [ERR, Y1, ...] = common_size (X1, ...)
Determine if all input arguments are either scalar or of common size. If so, ERR is zero, and YI is a matrix of the common size with all entries equal to XI if this is a scalar or XI otherwise. If the inputs cannot be brought to a common size, errorcode is 1, and YI is XI. For example,
[errorcode, a, b] = common_size ([1 2; 3 4], 5)
=> errorcode = 0
=> a = [ 1, 2; 3, 4 ]
=> b = [ 5, 5; 5, 5 ]
This is useful for implementing functions where arguments can either be scalars or of common size.
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Determine if all input arguments are either scalar or of common size.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
shift
# name: <cell-element>
# type: string
# elements: 1
# length: 283
-- Function File: shift (X, B)
-- Function File: shift (X, B, DIM)
If X is a vector, perform a circular shift of length B of the elements of X.
If X is a matrix, do the same for each column of X. If the optional DIM argument is given, operate along this dimension
# name: <cell-element>
# type: string
# elements: 1
# length: 76
If X is a vector, perform a circular shift of length B of the elements of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
cumtrapz
# name: <cell-element>
# type: string
# elements: 1
# length: 452
-- Function File: Z = cumtrapz (Y)
-- Function File: Z = cumtrapz (X, Y)
-- Function File: Z = cumtrapz (..., DIM)
Cumulative numerical integration using trapezoidal method. `cumtrapz (Y)' computes the cumulative integral of the Y along the first non-singleton dimension. If the argument X is omitted a equally spaced vector is assumed. `cumtrapz (X, Y)' evaluates the cumulative integral with respect to X.
See also: trapz,cumsum.
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Cumulative numerical integration using trapezoidal method.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
gradient
# name: <cell-element>
# type: string
# elements: 1
# length: 1783
-- Function File: DX = gradient (M)
-- Function File: [DX, DY, DZ, ...] = gradient (M)
-- Function File: [...] = gradient (M, S)
-- Function File: [...] = gradient (M, X, Y, Z, ...)
-- Function File: [...] = gradient (F, X0)
-- Function File: [...] = gradient (F, X0, S)
-- Function File: [...] = gradient (F, X0, X, Y, ...)
Calculate the gradient of sampled data or a function. If M is a vector, calculate the one-dimensional gradient of M. If M is a matrix the gradient is calculated for each dimension.
`[DX, DY] = gradient (M)' calculates the one dimensional gradient for X and Y direction if M is a matrix. Additional return arguments can be use for multi-dimensional matrices.
A constant spacing between two points can be provided by the S parameter. If S is a scalar, it is assumed to be the spacing for all dimensions. Otherwise, separate values of the spacing can be supplied by the X, ... arguments. Scalar values specify an equidistant spacing. Vector values for the X, ... arguments specify the coordinate for that dimension. The length must match their respective dimension of M.
At boundary points a linear extrapolation is applied. Interior points are calculated with the first approximation of the numerical gradient
y'(i) = 1/(x(i+1)-x(i-1)) * (y(i-1)-y(i+1)).
If the first argument F is a function handle, the gradient of the function at the points in X0 is approximated using central difference. For example, `gradient (@cos, 0)' approximates the gradient of the cosine function in the point x0 = 0. As with sampled data, the spacing values between the points from which the gradient is estimated can be set via the S or DX, DY, ... arguments. By default a spacing of 1 is used. See also: diff, del2.
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Calculate the gradient of sampled data or a function.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
triplequad
# name: <cell-element>
# type: string
# elements: 1
# length: 636
-- Function File: triplequad (F, XA, XB, YA, YB, ZA, ZB, TOL, QUADF, ...)
Numerically evaluate a triple integral. The function over which to integrate is defined by `F', and the interval for the integration is defined by `[XA, XB, YA, YB, ZA, ZB]'. The function F must accept a vector X and a scalar Y, and return a vector of the same length as X.
If defined, TOL defines the absolute tolerance to which to which to integrate each sub-integral.
Additional arguments, are passed directly to F. To use the default value for TOL one may pass an empty matrix. See also: dblquad, quad, quadv, quadl, quadgk, trapz.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Numerically evaluate a triple integral.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
prepad
# name: <cell-element>
# type: string
# elements: 1
# length: 517
-- Function File: prepad (X, L, C)
-- Function File: prepad (X, L, C, DIM)
Prepend (append) the scalar value C to the vector X until it is of length L. If the third argument is not supplied, a value of 0 is used.
If `length (X) > L', elements from the beginning (end) of X are removed until a vector of length L is obtained.
If X is a matrix, elements are prepended or removed from each row.
If the optional DIM argument is given, then operate along this dimension. See also: postpad.
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Prepend (append) the scalar value C to the vector X until it is of length L.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
cellidx
# name: <cell-element>
# type: string
# elements: 1
# length: 602
-- Function File: [IDXVEC, ERRMSG] = cellidx (LISTVAR, STRLIST)
Return indices of string entries in LISTVAR that match strings in STRLIST.
Both LISTVAR and STRLIST may be passed as strings or string matrices. If they are passed as string matrices, each entry is processed by `deblank' prior to searching for the entries.
The first output is the vector of indices in LISTVAR.
If STRLIST contains a string not in LISTVAR, then an error message is returned in ERRMSG. If only one output argument is requested, then CELLIDX prints ERRMSG to the screen and exits with an error.
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Return indices of string entries in LISTVAR that match strings in STRLIST.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
bitget
# name: <cell-element>
# type: string
# elements: 1
# length: 277
-- Function File: X = bitget (A,N)
Return the status of bit(s) N of unsigned integers in A the lowest significant bit is N = 1.
bitget (100, 8:-1:1)
=> 0 1 1 0 0 1 0 0
See also: bitand, bitor, bitxor, bitset, bitcmp, bitshift, bitmax.
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Return the status of bit(s) N of unsigned integers in A the lowest significant bit is N = 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
tril
# name: <cell-element>
# type: string
# elements: 1
# length: 988
-- Function File: tril (A, K)
-- Function File: triu (A, K)
Return a new matrix formed by extracting the lower (`tril') or upper (`triu') triangular part of the matrix A, and setting all other elements to zero. The second argument is optional, and specifies how many diagonals above or below the main diagonal should also be set to zero.
The default value of K is zero, so that `triu' and `tril' normally include the main diagonal as part of the result matrix.
If the value of K is negative, additional elements above (for `tril') or below (for `triu') the main diagonal are also selected.
The absolute value of K must not be greater than the number of sub- or super-diagonals.
For example,
tril (ones (3), -1)
=> 0 0 0
1 0 0
1 1 0
and
tril (ones (3), 1)
=> 1 1 0
1 1 1
1 1 1
See also: triu, diag.
# name: <cell-element>
# type: string
# elements: 1
# length: 150
Return a new matrix formed by extracting the lower (`tril') or upper (`triu') triangular part of the matrix A, and setting all other elements to zero.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
num2str
# name: <cell-element>
# type: string
# elements: 1
# length: 1331
-- Function File: num2str (X)
-- Function File: num2str (X, PRECISION)
-- Function File: num2str (X, FORMAT)
Convert a number (or array) to a string (or a character array). The optional second argument may either give the number of significant digits (PRECISION) to be used in the output or a format template string (FORMAT) as in `sprintf' (*note Formatted Output::). `num2str' can also handle complex numbers. For example:
num2str (123.456)
=> "123.46"
num2str (123.456, 4)
=> "123.5"
s = num2str ([1, 1.34; 3, 3.56], "%5.1f")
=> s =
1.0 1.3
3.0 3.6
whos s
=>
Attr Name Size Bytes Class
==== ==== ==== ===== =====
s 2x8 16 char
num2str (1.234 + 27.3i)
=> "1.234+27.3i"
The `num2str' function is not very flexible. For better control over the results, use `sprintf' (*note Formatted Output::). Note that for complex X, the format string may only contain one output conversion specification and nothing else. Otherwise, you will get unpredictable results. See also: sprintf, int2str, mat2str.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Convert a number (or array) to a string (or a character array).
# name: <cell-element>
# type: string
# elements: 1
# length: 6
bitcmp
# name: <cell-element>
# type: string
# elements: 1
# length: 352
-- Function File: bitcmp (A, K)
Return the K-bit complement of integers in A. If K is omitted `k = log2 (bitmax) + 1' is assumed.
bitcmp(7,4)
=> 8
dec2bin(11)
=> 1011
dec2bin(bitcmp(11, 6))
=> 110100
See also: bitand, bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Return the K-bit complement of integers in A.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
rem
# name: <cell-element>
# type: string
# elements: 1
# length: 298
-- Mapping Function: rem (X, Y)
Return the remainder of the division `X / Y', computed using the expression
x - y .* fix (x ./ y)
An error message is printed if the dimensions of the arguments do not agree, or if either of the arguments is complex. See also: mod, fmod.
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Return the remainder of the division `X / Y', computed using the expression
# name: <cell-element>
# type: string
# elements: 1
# length: 8
interp1q
# name: <cell-element>
# type: string
# elements: 1
# length: 714
-- Function File: YI = interp1q (X, Y, XI)
One-dimensional linear interpolation without error checking. Interpolates Y, defined at the points X, at the points XI. The sample points X must be a strictly monotonically increasing column vector. If Y is an array, treat the columns of Y separately. If Y is a vector, it must be a column vector of the same length as X.
Values of XI beyond the endpoints of the interpolation result in NA being returned.
Note that the error checking is only a significant portion of the execution time of this `interp1' if the size of the input arguments is relatively small. Therefore, the benefit of using `interp1q' is relatively small. See also: interp1.
# name: <cell-element>
# type: string
# elements: 1
# length: 60
One-dimensional linear interpolation without error checking.
# name: <cell-element>
# type: string
# elements: 1
# length: 18
is_duplicate_entry
# name: <cell-element>
# type: string
# elements: 1
# length: 118
-- Function File: is_duplicate_entry (X)
Return non-zero if any entries in X are duplicates of one another.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Return non-zero if any entries in X are duplicates of one another.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
polyarea
# name: <cell-element>
# type: string
# elements: 1
# length: 475
-- Function File: polyarea (X, Y)
-- Function File: polyarea (X, Y, DIM)
Determines area of a polygon by triangle method. The variables X and Y define the vertex pairs, and must therefore have the same shape. They can be either vectors or arrays. If they are arrays then the columns of X and Y are treated separately and an area returned for each.
If the optional DIM argument is given, then `polyarea' works along this dimension of the arrays X and Y.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Determines area of a polygon by triangle method.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
structfun
# name: <cell-element>
# type: string
# elements: 1
# length: 1710
-- Function File: structfun (FUNC, S)
-- Function File: [A, B] = structfun (...)
-- Function File: structfun (..., "ErrorHandler", ERRFUNC)
-- Function File: structfun (..., "UniformOutput", VAL)
Evaluate the function named NAME on the fields of the structure S. The fields of S are passed to the function FUNC individually.
`structfun' accepts an arbitrary function FUNC in the form of an inline function, function handle, or the name of a function (in a character string). In the case of a character string argument, the function must accept a single argument named X, and it must return a string value. If the function returns more than one argument, they are returned as separate output variables.
If the parameter "UniformOutput" is set to true (the default), then the function must return a single element which will be concatenated into the return value. If "UniformOutput" is false, the outputs placed in a structure with the same fieldnames as the input structure.
s.name1 = "John Smith";
s.name2 = "Jill Jones";
structfun (@(x) regexp (x, '(\w+)$', "matches"){1}, s,
"UniformOutput", false)
Given the parameter "ErrorHandler", then ERRFUNC defines a function to call in case FUNC generates an error. The form of the function is
function [...] = errfunc (SE, ...)
where there is an additional input argument to ERRFUNC relative to FUNC, given by SE. This is a structure with the elements "identifier", "message" and "index", giving respectively the error identifier, the error message, and the index into the input arguments of the element that caused the error. See also: cellfun, arrayfun.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Evaluate the function named NAME on the fields of the structure S.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
isa
# name: <cell-element>
# type: string
# elements: 1
# length: 93
-- Function File: isa (X, CLASS)
Return true if X is a value from the class CLASS.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Return true if X is a value from the class CLASS.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
del2
# name: <cell-element>
# type: string
# elements: 1
# length: 1132
-- Function File: D = del2 (M)
-- Function File: D = del2 (M, H)
-- Function File: D = del2 (M, DX, DY, ...)
Calculate the discrete Laplace operator. For a 2-dimensional matrix M this is defined as
1 / d^2 d^2 \
D = --- * | --- M(x,y) + --- M(x,y) |
4 \ dx^2 dy^2 /
For N-dimensional arrays the sum in parentheses is expanded to include second derivatives over the additional higher dimensions.
The spacing between evaluation points may be defined by H, which is a scalar defining the equidistant spacing in all dimensions. Alternatively, the spacing in each dimension may be defined separately by DX, DY, etc. A scalar spacing argument defines equidistant spacing, whereas a vector argument can be used to specify variable spacing. The length of the spacing vectors must match the respective dimension of M. The default spacing value is 1.
At least 3 data points are needed for each dimension. Boundary points are calculated from the linear extrapolation of interior points.
See also: gradient, diff.
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Calculate the discrete Laplace operator.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
logspace
# name: <cell-element>
# type: string
# elements: 1
# length: 431
-- Function File: logspace (BASE, LIMIT, N)
Similar to `linspace' except that the values are logarithmically spaced from 10^base to 10^limit.
If LIMIT is equal to pi, the points are between 10^base and pi, _not_ 10^base and 10^pi, in order to be compatible with the corresponding MATLAB function.
Also for compatibility, return the second argument if fewer than two values are requested. See also: linspace.
# name: <cell-element>
# type: string
# elements: 1
# length: 97
Similar to `linspace' except that the values are logarithmically spaced from 10^base to 10^limit.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
bicubic
# name: <cell-element>
# type: string
# elements: 1
# length: 335
-- Function File: ZI = bicubic (X, Y, Z, XI, YI, EXTRAPVAL)
Return a matrix ZI corresponding to the bicubic interpolations at XI and YI of the data supplied as X, Y and Z. Points outside the grid are set to EXTRAPVAL.
See `http://wiki.woodpecker.org.cn/moin/Octave/Bicubic' for further information. See also: interp2.
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Return a matrix ZI corresponding to the bicubic interpolations at XI and YI of the data supplied as X, Y and Z.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
sortrows
# name: <cell-element>
# type: string
# elements: 1
# length: 313
-- Function File: sortrows (A, C)
Sort the rows of the matrix A according to the order of the columns specified in C. If C is omitted, a lexicographical sort is used. By default ascending order is used however if elements of C are negative then the corresponding column is sorted in descending order.
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Sort the rows of the matrix A according to the order of the columns specified in C.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
subsindex
# name: <cell-element>
# type: string
# elements: 1
# length: 824
-- Function File: IDX = subsindex (A)
Convert an object to an index vector. When A is a class object defined with a class constructor, then `subsindex' is the overloading method that allows the conversion of this class object to a valid indexing vector. It is important to note that `subsindex' must return a zero-based real integer vector of the class "double". For example, if the class constructor
function b = myclass (a)
b = myclass (struct ("a", a), "myclass");
endfunction
then the `subsindex' function
function idx = subsindex (a)
idx = double (a.a) - 1.0;
endfunction
can then be used as follows
a = myclass (1:4);
b = 1:10;
b(a)
=> 1 2 3 4
See also: class, subsref, subsasgn.
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Convert an object to an index vector.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
interp2
# name: <cell-element>
# type: string
# elements: 1
# length: 1759
-- Function File: ZI = interp2 (X, Y, Z, XI, YI)
-- Function File: ZI = interp2 (Z, XI, YI)
-- Function File: ZI = interp2 (Z, N)
-- Function File: ZI = interp2 (..., METHOD)
-- Function File: ZI = interp2 (..., METHOD, EXTRAPVAL)
Two-dimensional interpolation. X, Y and Z describe a surface function. If X and Y are vectors their length must correspondent to the size of Z. X and Y must be monotonic. If they are matrices they must have the `meshgrid' format.
`interp2 (X, Y, Z, XI, YI, ...)'
Returns a matrix corresponding to the points described by the matrices XI, YI.
If the last argument is a string, the interpolation method can be specified. The method can be 'linear', 'nearest' or 'cubic'. If it is omitted 'linear' interpolation is assumed.
`interp2 (Z, XI, YI)'
Assumes `X = 1:rows (Z)' and `Y = 1:columns (Z)'
`interp2 (Z, N)'
Interleaves the matrix Z n-times. If N is omitted a value of `N = 1' is assumed.
The variable METHOD defines the method to use for the interpolation. It can take one of the following values
'nearest'
Return the nearest neighbor.
'linear'
Linear interpolation from nearest neighbors.
'pchip'
Piece-wise cubic hermite interpolating polynomial (not implemented yet).
'cubic'
Cubic interpolation from four nearest neighbors.
'spline'
Cubic spline interpolation-smooth first and second derivatives throughout the curve.
If a scalar value EXTRAPVAL is defined as the final value, then values outside the mesh as set to this value. Note that in this case METHOD must be defined as well. If EXTRAPVAL is not defined then NA is assumed.
See also: interp1.
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Two-dimensional interpolation.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
repmat
# name: <cell-element>
# type: string
# elements: 1
# length: 257
-- Function File: repmat (A, M, N)
-- Function File: repmat (A, [M N])
-- Function File: repmat (A, [M N P ...])
Form a block matrix of size M by N, with a copy of matrix A as each element. If N is not specified, form an M by M block matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Form a block matrix of size M by N, with a copy of matrix A as each element.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
isequal
# name: <cell-element>
# type: string
# elements: 1
# length: 128
-- Function File: isequal (X1, X2, ...)
Return true if all of X1, X2, ... are equal. See also: isequalwithequalnans.
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Return true if all of X1, X2, .
# name: <cell-element>
# type: string
# elements: 1
# length: 4
deal
# name: <cell-element>
# type: string
# elements: 1
# length: 494
-- Function File: [R1, R2, ..., RN] = deal (A)
-- Function File: [R1, R2, ..., RN] = deal (A1, A2, ..., AN)
Copy the input parameters into the corresponding output parameters. If only one input parameter is supplied, its value is copied to each of the outputs.
For example,
[a, b, c] = deal (x, y, z);
is equivalent to
a = x;
b = y;
c = z;
and
[a, b, c] = deal (x);
is equivalent to
a = b = c = x;
# name: <cell-element>
# type: string
# elements: 1
# length: 67
Copy the input parameters into the corresponding output parameters.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
quadv
# name: <cell-element>
# type: string
# elements: 1
# length: 1075
-- Function File: Q = quadv (F, A, B)
-- Function File: Q = quadl (F, A, B, TOL)
-- Function File: Q = quadl (F, A, B, TOL, TRACE)
-- Function File: Q = quadl (F, A, B, TOL, TRACE, P1, P2, ...)
-- Function File: [Q, FCNT] = quadl (...)
Numerically evaluate integral using adaptive Simpson's rule. `quadv (F, A, B)' approximates the integral of `F(X)' to the default absolute tolerance of `1e-6'. F is either a function handle, inline function or string containing the name of the function to evaluate. The function F must accept a string, and can return a vector representing the approximation to N different sub-functions.
If defined, TOL defines the absolute tolerance to which to which to integrate each sub-interval of `F(X)'. While if TRACE is defined, displays the left end point of the current interval, the interval length, and the partial integral.
Additional arguments P1, etc., are passed directly to F. To use default values for TOL and TRACE, one may pass empty matrices. See also: triplequad, dblquad, quad, quadl, quadgk, trapz.
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Numerically evaluate integral using adaptive Simpson's rule.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
randperm
# name: <cell-element>
# type: string
# elements: 1
# length: 122
-- Function File: randperm (N)
Return a row vector containing a random permutation of the integers from 1 to N.
# name: <cell-element>
# type: string
# elements: 1
# length: 80
Return a row vector containing a random permutation of the integers from 1 to N.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
interpn
# name: <cell-element>
# type: string
# elements: 1
# length: 1600
-- Function File: VI = interpn (X1, X2, ..., V, Y1, Y2, ...)
-- Function File: VI = interpn (V, Y1, Y2, ...)
-- Function File: VI = interpn (V, M)
-- Function File: VI = interpn (V)
-- Function File: VI = interpn (..., METHOD)
-- Function File: VI = interpn (..., METHOD, EXTRAPVAL)
Perform N-dimensional interpolation, where N is at least two. Each element of the N-dimensional array V represents a value at a location given by the parameters X1, X2, ..., XN. The parameters X1, X2, ..., XN are either N-dimensional arrays of the same size as the array V in the 'ndgrid' format or vectors. The parameters Y1, etc. respect a similar format to X1, etc., and they represent the points at which the array VI is interpolated.
If X1, ..., XN are omitted, they are assumed to be `x1 = 1 : size (V, 1)', etc. If M is specified, then the interpolation adds a point half way between each of the interpolation points. This process is performed M times. If only V is specified, then M is assumed to be `1'.
Method is one of:
'nearest'
Return the nearest neighbor.
'linear'
Linear interpolation from nearest neighbors.
'cubic'
Cubic interpolation from four nearest neighbors (not implemented yet).
'spline'
Cubic spline interpolation-smooth first and second derivatives throughout the curve.
The default method is 'linear'.
If EXTRAPVAL is the scalar value, use it to replace the values beyond the endpoints with that number. If EXTRAPVAL is missing, assume NA. See also: interp1, interp2, spline, ndgrid.
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Perform N-dimensional interpolation, where N is at least two.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
fliplr
# name: <cell-element>
# type: string
# elements: 1
# length: 331
-- Function File: fliplr (X)
Return a copy of X with the order of the columns reversed. For example,
fliplr ([1, 2; 3, 4])
=> 2 1
4 3
Note that `fliplr' only work with 2-D arrays. To flip N-d arrays use `flipdim' instead. See also: flipud, flipdim, rot90, rotdim.
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Return a copy of X with the order of the columns reversed.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
blkdiag
# name: <cell-element>
# type: string
# elements: 1
# length: 215
-- Function File: blkdiag (A, B, C, ...)
Build a block diagonal matrix from A, B, C, .... All the arguments must be numeric and are two-dimensional matrices or scalars. See also: diag, horzcat, vertcat.
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Build a block diagonal matrix from A, B, C, .
# name: <cell-element>
# type: string
# elements: 1
# length: 8
cell2mat
# name: <cell-element>
# type: string
# elements: 1
# length: 274
-- Function File: M = cell2mat (C)
Convert the cell array C into a matrix by concatenating all elements of C into a hyperrectangle. Elements of C must be numeric, logical or char, and `cat' must be able to concatenate them together. See also: mat2cell, num2cell.
# name: <cell-element>
# type: string
# elements: 1
# length: 96
Convert the cell array C into a matrix by concatenating all elements of C into a hyperrectangle.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
interpft
# name: <cell-element>
# type: string
# elements: 1
# length: 510
-- Function File: interpft (X, N)
-- Function File: interpft (X, N, DIM)
Fourier interpolation. If X is a vector, then X is resampled with N points. The data in X is assumed to be equispaced. If X is an array, then operate along each column of the array separately. If DIM is specified, then interpolate along the dimension DIM.
`interpft' assumes that the interpolated function is periodic, and so assumptions are made about the end points of the interpolation.
See also: interp1.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Fourier interpolation.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
triu
# name: <cell-element>
# type: string
# elements: 1
# length: 50
-- Function File: triu (A, K)
See tril.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
See tril.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
strerror
# name: <cell-element>
# type: string
# elements: 1
# length: 264
-- Function File: strerror (NAME, NUM)
Return the text of an error message for function NAME corresponding to the error number NUM. This function is intended to be used to print useful error messages for those functions that return numeric error codes.
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Return the text of an error message for function NAME corresponding to the error number NUM.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
nargoutchk
# name: <cell-element>
# type: string
# elements: 1
# length: 506
-- Function File: MSGSTR = nargoutchk (MINARGS, MAXARGS, NARGS)
-- Function File: MSGSTR = nargoutchk (MINARGS, MAXARGS, NARGS, "string")
-- Function File: MSGSTRUCT = nargoutchk (MINARGS, MAXARGS, NARGS, "struct")
Return an appropriate error message string (or structure) if the number of outputs requested is invalid.
This is useful for checking to see that the number of output arguments supplied to a function is within an acceptable range. See also: nargchk, error, nargout, nargin.
# name: <cell-element>
# type: string
# elements: 1
# length: 104
Return an appropriate error message string (or structure) if the number of outputs requested is invalid.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
trapz
# name: <cell-element>
# type: string
# elements: 1
# length: 400
-- Function File: Z = trapz (Y)
-- Function File: Z = trapz (X, Y)
-- Function File: Z = trapz (..., DIM)
Numerical integration using trapezoidal method. `trapz (Y)' computes the integral of the Y along the first non-singleton dimension. If the argument X is omitted a equally spaced vector is assumed. `trapz (X, Y)' evaluates the integral with respect to X.
See also: cumtrapz.
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Numerical integration using trapezoidal method.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
dblquad
# name: <cell-element>
# type: string
# elements: 1
# length: 619
-- Function File: dblquad (F, XA, XB, YA, YB, TOL, QUADF, ...)
Numerically evaluate a double integral. The function over with to integrate is defined by `F', and the interval for the integration is defined by `[XA, XB, YA, YB]'. The function F must accept a vector X and a scalar Y, and return a vector of the same length as X.
If defined, TOL defines the absolute tolerance to which to which to integrate each sub-integral.
Additional arguments, are passed directly to F. To use the default value for TOL one may pass an empty matrix. See also: triplequad, quad, quadv, quadl, quadgk, trapz.
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Numerically evaluate a double integral.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
isdir
# name: <cell-element>
# type: string
# elements: 1
# length: 71
-- Function File: isdir (F)
Return true if F is a directory.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Return true if F is a directory.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
isvector
# name: <cell-element>
# type: string
# elements: 1
# length: 150
-- Function File: isvector (A)
Return 1 if A is a vector. Otherwise, return 0. See also: size, rows, columns, length, isscalar, ismatrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Return 1 if A is a vector.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
cart2pol
# name: <cell-element>
# type: string
# elements: 1
# length: 361
-- Function File: [THETA, R] = cart2pol (X, Y)
-- Function File: [THETA, R, Z] = cart2pol (X, Y, Z)
Transform Cartesian to polar or cylindrical coordinates. X, Y (and Z) must be the same shape, or scalar. THETA describes the angle relative to the positive x-axis. R is the distance to the z-axis (0, 0, z). See also: pol2cart, cart2sph, sph2cart.
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Transform Cartesian to polar or cylindrical coordinates.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
idivide
# name: <cell-element>
# type: string
# elements: 1
# length: 1283
-- Function File: idivide (X, Y, OP)
Integer division with different round rules. The standard behavior of the an integer division such as `A ./ B' is to round the result to the nearest integer. This is not always the desired behavior and `idivide' permits integer element-by-element division to be performed with different treatment for the fractional part of the division as determined by the OP flag. OP is a string with one of the values:
"fix"
Calculate `A ./ B' with the fractional part rounded towards zero.
"round"
Calculate `A ./ B' with the fractional part rounded towards the nearest integer.
"floor"
Calculate `A ./ B' with the fractional part rounded downwards.
"ceil"
Calculate `A ./ B' with the fractional part rounded upwards.
If OP is not given it is assumed that it is `"fix"'. An example demonstrating these rounding rules is
idivide (int8 ([-3, 3]), int8 (4), "fix")
=> int8 ([0, 0])
idivide (int8 ([-3, 3]), int8 (4), "round")
=> int8 ([-1, 1])
idivide (int8 ([-3, 3]), int8 (4), "ceil")
=> int8 ([0, 1])
idivide (int8 ([-3, 3]), int8 (4), "floor")
=> int8 ([-1, 0])
See also: ldivide, rdivide.
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Integer division with different round rules.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
diff
# name: <cell-element>
# type: string
# elements: 1
# length: 852
-- Function File: diff (X, K, DIM)
If X is a vector of length N, `diff (X)' is the vector of first differences X(2) - X(1), ..., X(n) - X(n-1).
If X is a matrix, `diff (X)' is the matrix of column differences along the first non-singleton dimension.
The second argument is optional. If supplied, `diff (X, K)', where K is a non-negative integer, returns the K-th differences. It is possible that K is larger than then first non-singleton dimension of the matrix. In this case, `diff' continues to take the differences along the next non-singleton dimension.
The dimension along which to take the difference can be explicitly stated with the optional variable DIM. In this case the K-th order differences are calculated along this dimension. In the case where K exceeds `size (X, DIM)' then an empty matrix is returned.
# name: <cell-element>
# type: string
# elements: 1
# length: 90
If X is a vector of length N, `diff (X)' is the vector of first differences X(2) - X(1), .
# name: <cell-element>
# type: string
# elements: 1
# length: 7
loadobj
# name: <cell-element>
# type: string
# elements: 1
# length: 479
-- Function File: B = loadobj (A)
Method of a class to manipulate an object after loading it from a file. The function `loadobj' is called when the object A is loaded using the `load' function. An example of the use of `saveobj' might be to add fields to an object that don't make sense to be saved. For example
function b = loadobj (a)
b = a;
b.addmissingfield = addfield (b);
endfunction
See also: saveobj, class.
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Method of a class to manipulate an object after loading it from a file.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
sph2cart
# name: <cell-element>
# type: string
# elements: 1
# length: 346
-- Function File: [X, Y, Z] = sph2cart (THETA, PHI, R)
Transform spherical to Cartesian coordinates. X, Y and Z must be the same shape, or scalar. THETA describes the angle relative to the positive x-axis. PHI is the angle relative to the xy-plane. R is the distance to the origin (0, 0, 0). See also: pol2cart, cart2pol, cart2sph.
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Transform spherical to Cartesian coordinates.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
cart2sph
# name: <cell-element>
# type: string
# elements: 1
# length: 346
-- Function File: [THETA, PHI, R] = cart2sph (X, Y, Z)
Transform Cartesian to spherical coordinates. X, Y and Z must be the same shape, or scalar. THETA describes the angle relative to the positive x-axis. PHI is the angle relative to the xy-plane. R is the distance to the origin (0, 0, 0). See also: pol2cart, cart2pol, sph2cart.
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Transform Cartesian to spherical coordinates.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
flipdim
# name: <cell-element>
# type: string
# elements: 1
# length: 241
-- Function File: flipdim (X, DIM)
Return a copy of X flipped about the dimension DIM. For example
flipdim ([1, 2; 3, 4], 2)
=> 2 1
4 3
See also: fliplr, flipud, rot90, rotdim.
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Return a copy of X flipped about the dimension DIM.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
quadgk
# name: <cell-element>
# type: string
# elements: 1
# length: 3565
-- Function File: quadgk (F, A, B, ABSTOL, TRACE)
-- Function File: quadgk (F, A, B, PROP, VAL, ...)
-- Function File: [Q, ERR] = quadgk (...)
Numerically evaluate integral using adaptive Gauss-Konrod quadrature. The formulation is based on a proposal by L.F. Shampine, `"Vectorized adaptive quadrature in MATLAB", Journal of Computational and Applied Mathematics, pp131-140, Vol 211, Issue 2, Feb 2008' where all function evaluations at an iteration are calculated with a single call to F. Therefore the function F must be of the form `F (X)' and accept vector values of X and return a vector of the same length representing the function evaluations at the given values of X. The function F can be defined in terms of a function handle, inline function or string.
The bounds of the quadrature `[A, B]' can be finite or infinite and contain weak end singularities. Variable transformation will be used to treat infinite intervals and weaken the singularities. For example
quadgk(@(x) 1 ./ (sqrt (x) .* (x + 1)), 0, Inf)
Note that the formulation of the integrand uses the element-by-element operator `./' and all user functions to `quadgk' should do the same.
The absolute tolerance can be passed as a fourth argument in a manner compatible with `quadv'. Equally the user can request that information on the convergence can be printed is the fifth argument is logically true.
Alternatively, certain properties of `quadgk' can be passed as pairs `PROP, VAL'. Valid properties are
`AbsTol'
Defines the absolute error tolerance for the quadrature. The default absolute tolerance is 1e-10.
`RelTol'
Defines the relative error tolerance for the quadrature. The default relative tolerance is 1e-5.
`MaxIntervalCount'
`quadgk' initially subdivides the interval on which to perform the quadrature into 10 intervals. Sub-intervals that have an unacceptable error are sub-divided and re-evaluated. If the number of sub-intervals exceeds at any point 650 sub-intervals then a poor convergence is signaled and the current estimate of the integral is returned. The property 'MaxIntervalCount' can be used to alter the number of sub-intervals that can exist before exiting.
`WayPoints'
If there exists discontinuities in the first derivative of the function to integrate, then these can be flagged with the `"WayPoints"' property. This forces the ends of a sub-interval to fall on the breakpoints of the function and can result in significantly improved estimation of the error in the integral, faster computation or both. For example,
quadgk (@(x) abs (1 - x .^ 2), 0, 2, 'Waypoints', 1)
signals the breakpoint in the integrand at `X = 1'.
`Trace'
If logically true, then `quadgk' prints information on the convergence of the quadrature at each iteration.
If any of A, B or WAYPOINTS is complex, then the quadrature is treated as a contour integral along a piecewise continuous path defined by the above. In this case the integral is assumed to have no edge singularities. For example
quadgk (@(z) log (z), 1+1i, 1+1i, "WayPoints",
[1-1i, -1,-1i, -1+1i])
integrates `log (z)' along the square defined by `[1+1i, 1-1i, -1-1i, -1+1i]'
If two output arguments are requested, then ERR returns the approximate bounds on the error in the integral `abs (Q - I)', where I is the exact value of the integral.
See also: triplequad, dblquad, quad, quadl, quadv, trapz.
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Numerically evaluate integral using adaptive Gauss-Konrod quadrature.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
perror
# name: <cell-element>
# type: string
# elements: 1
# length: 271
-- Function File: perror (NAME, NUM)
Print the error message for function NAME corresponding to the error number NUM. This function is intended to be used to print useful error messages for those functions that return numeric error codes. See also: strerror.
# name: <cell-element>
# type: string
# elements: 1
# length: 80
Print the error message for function NAME corresponding to the error number NUM.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
saveobj
# name: <cell-element>
# type: string
# elements: 1
# length: 635
-- Function File: B = saveobj (A)
Method of a class to manipulate an object prior to saving it to a file. The function `saveobj' is called when the object A is saved using the `save' function. An example of the use of `saveobj' might be to remove fields of the object that don't make sense to be saved or it might be used to ensure that certain fields of the object are initialized before the object is saved. For example
function b = saveobj (a)
b = a;
if (isempty (b.field))
b.field = initfield(b);
endif
endfunction
See also: loadobj, class.
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Method of a class to manipulate an object prior to saving it to a file.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
interp3
# name: <cell-element>
# type: string
# elements: 1
# length: 1656
-- Function File: VI = interp3 (X, Y,Z, V, XI, YI, ZI)
-- Function File: VI = interp3 (V, XI, YI, ZI)
-- Function File: VI = interp3 (V, M)
-- Function File: VI = interp3 (V)
-- Function File: VI = interp3 (..., METHOD)
-- Function File: VI = interp3 (..., METHOD, EXTRAPVAL)
Perform 3-dimensional interpolation. Each element of the 3-dimensional array V represents a value at a location given by the parameters X, Y, and Z. The parameters X, X, and Z are either 3-dimensional arrays of the same size as the array V in the 'meshgrid' format or vectors. The parameters XI, etc. respect a similar format to X, etc., and they represent the points at which the array VI is interpolated.
If X, Y, Z are omitted, they are assumed to be `x = 1 : size (V, 2)', `y = 1 : size (V, 1)' and `z = 1 : size (V, 3)'. If M is specified, then the interpolation adds a point half way between each of the interpolation points. This process is performed M times. If only V is specified, then M is assumed to be `1'.
Method is one of:
'nearest'
Return the nearest neighbor.
'linear'
Linear interpolation from nearest neighbors.
'cubic'
Cubic interpolation from four nearest neighbors (not implemented yet).
'spline'
Cubic spline interpolation-smooth first and second derivatives throughout the curve.
The default method is 'linear'.
If EXTRAP is the string 'extrap', then extrapolate values beyond the endpoints. If EXTRAP is a number, replace values beyond the endpoints with that number. If EXTRAP is missing, assume NA. See also: interp1, interp2, spline, meshgrid.
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Perform 3-dimensional interpolation.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
isscalar
# name: <cell-element>
# type: string
# elements: 1
# length: 150
-- Function File: isscalar (A)
Return 1 if A is a scalar. Otherwise, return 0. See also: size, rows, columns, length, isscalar, ismatrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Return 1 if A is a scalar.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
shiftdim
# name: <cell-element>
# type: string
# elements: 1
# length: 890
-- Function File: Y = shiftdim (X, N)
-- Function File: [Y, NS] = shiftdim (X)
Shifts the dimension of X by N, where N must be an integer scalar. When N is positive, the dimensions of X are shifted to the left, with the leading dimensions circulated to the end. If N is negative, then the dimensions of X are shifted to the right, with N leading singleton dimensions added.
Called with a single argument, `shiftdim', removes the leading singleton dimensions, returning the number of dimensions removed in the second output argument NS.
For example
x = ones (1, 2, 3);
size (shiftdim (x, -1))
=> [1, 1, 2, 3]
size (shiftdim (x, 1))
=> [2, 3]
[b, ns] = shiftdim (x);
=> b = [1, 1, 1; 1, 1, 1]
=> ns = 1
See also: reshape, permute, ipermute, circshift, squeeze.
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Shifts the dimension of X by N, where N must be an integer scalar.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
rat
# name: <cell-element>
# type: string
# elements: 1
# length: 463
-- Function File: S = rat (X, TOL)
-- Function File: [N, D] = rat (X, TOL)
Find a rational approximation to X within the tolerance defined by TOL using a continued fraction expansion. For example,
rat(pi) = 3 + 1/(7 + 1/16) = 355/113
rat(e) = 3 + 1/(-4 + 1/(2 + 1/(5 + 1/(-2 + 1/(-7)))))
= 1457/536
Called with two arguments returns the numerator and denominator separately as two matrices.
See also: rats.
# name: <cell-element>
# type: string
# elements: 1
# length: 108
Find a rational approximation to X within the tolerance defined by TOL using a continued fraction expansion.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
isdefinite
# name: <cell-element>
# type: string
# elements: 1
# length: 302
-- Function File: isdefinite (X, TOL)
Return 1 if X is symmetric positive definite within the tolerance specified by TOL or 0 if X is symmetric positive semidefinite. Otherwise, return -1. If TOL is omitted, use a tolerance equal to 100 times the machine precision. See also: issymmetric.
# name: <cell-element>
# type: string
# elements: 1
# length: 128
Return 1 if X is symmetric positive definite within the tolerance specified by TOL or 0 if X is symmetric positive semidefinite.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
nthroot
# name: <cell-element>
# type: string
# elements: 1
# length: 234
-- Function File: nthroot (X, N)
Compute the n-th root of X, returning real results for real components of X. For example
nthroot (-1, 3)
=> -1
(-1) ^ (1 / 3)
=> 0.50000 - 0.86603i
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Compute the n-th root of X, returning real results for real components of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
flipud
# name: <cell-element>
# type: string
# elements: 1
# length: 394
-- Function File: flipud (X)
Return a copy of X with the order of the rows reversed. For example,
flipud ([1, 2; 3, 4])
=> 3 4
1 2
Due to the difficulty of defining which axis about which to flip the matrix `flipud' only work with 2-d arrays. To flip N-d arrays use `flipdim' instead. See also: fliplr, flipdim, rot90, rotdim.
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Return a copy of X with the order of the rows reversed.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
postpad
# name: <cell-element>
# type: string
# elements: 1
# length: 115
-- Function File: postpad (X, L, C)
-- Function File: postpad (X, L, C, DIM)
See also: prepad, resize.
# name: <cell-element>
# type: string
# elements: 1
# length: 25
See also: prepad, resize.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
nextpow2
# name: <cell-element>
# type: string
# elements: 1
# length: 191
-- Function File: nextpow2 (X)
If X is a scalar, return the first integer N such that 2^n >= abs (x).
If X is a vector, return `nextpow2 (length (X))'. See also: pow2, log2.
# name: <cell-element>
# type: string
# elements: 1
# length: 70
If X is a scalar, return the first integer N such that 2^n >= abs (x).
# name: <cell-element>
# type: string
# elements: 1
# length: 10
accumarray
# name: <cell-element>
# type: string
# elements: 1
# length: 1419
-- Function File: accumarray (SUBS, VALS, SZ, FUNC, FILLVAL, ISSPARSE)
-- Function File: accumarray (CSUBS, VALS, ...)
Create an array by accumulating the elements of a vector into the positions defined by their subscripts. The subscripts are defined by the rows of the matrix SUBS and the values by VALS. Each row of SUBS corresponds to one of the values in VALS.
The size of the matrix will be determined by the subscripts themselves. However, if SZ is defined it determines the matrix size. The length of SZ must correspond to the number of columns in SUBS.
The default action of `accumarray' is to sum the elements with the same subscripts. This behavior can be modified by defining the FUNC function. This should be a function or function handle that accepts a column vector and returns a scalar. The result of the function should not depend on the order of the subscripts.
The elements of the returned array that have no subscripts associated with them are set to zero. Defining FILLVAL to some other value allows these values to be defined.
By default `accumarray' returns a full matrix. If ISSPARSE is logically true, then a sparse matrix is returned instead.
An example of the use of `accumarray' is:
accumarray ([1,1,1;2,1,2;2,3,2;2,1,2;2,3,2], 101:105)
=> ans(:,:,1) = [101, 0, 0; 0, 0, 0]
ans(:,:,2) = [0, 0, 0; 206, 0, 208]
# name: <cell-element>
# type: string
# elements: 1
# length: 104
Create an array by accumulating the elements of a vector into the positions defined by their subscripts.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
colon
# name: <cell-element>
# type: string
# elements: 1
# length: 278
-- Function File: R = colon (A, B)
-- Function File: R = colon (A, B, C)
Method of a class to construct a range with the `:' operator. For example.
a = myclass (...)
b = myclass (...)
c = a : b
See also: class, subsref, subsasgn.
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Method of a class to construct a range with the `:' operator.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
display
# name: <cell-element>
# type: string
# elements: 1
# length: 317
-- Function File: display (A)
Display the contents of an object. If A is an object of the class "myclass", then `display' is called in a case like
myclass (...)
where Octave is required to display the contents of a variable of the type "myclass".
See also: class, subsref, subsasgn.
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Display the contents of an object.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
rotdim
# name: <cell-element>
# type: string
# elements: 1
# length: 964
-- Function File: rotdim (X, N, PLANE)
Return a copy of X with the elements rotated counterclockwise in 90-degree increments. The second argument is optional, and specifies how many 90-degree rotations are to be applied (the default value is 1). The third argument is also optional and defines the plane of the rotation. As such PLANE is a two element vector containing two different valid dimensions of the matrix. If PLANE is not given Then the first two non-singleton dimensions are used.
Negative values of N rotate the matrix in a clockwise direction. For example,
rotdim ([1, 2; 3, 4], -1, [1, 2])
=> 3 1
4 2
rotates the given matrix clockwise by 90 degrees. The following are all equivalent statements:
rotdim ([1, 2; 3, 4], -1, [1, 2])
rotdim ([1, 2; 3, 4], 3, [1, 2])
rotdim ([1, 2; 3, 4], 7, [1, 2])
See also: rot90, flipud, fliplr, flipdim.
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Return a copy of X with the elements rotated counterclockwise in 90-degree increments.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
issquare
# name: <cell-element>
# type: string
# elements: 1
# length: 190
-- Function File: issquare (X)
If X is a square matrix, then return the dimension of X. Otherwise, return 0. See also: size, rows, columns, length, ismatrix, isscalar, isvector.
# name: <cell-element>
# type: string
# elements: 1
# length: 56
If X is a square matrix, then return the dimension of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
logical
# name: <cell-element>
# type: string
# elements: 1
# length: 167
-- Function File: logical (ARG)
Convert ARG to a logical value. For example,
logical ([-1, 0, 1])
is equivalent to
[-1, 0, 1] != 0
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Convert ARG to a logical value.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
bitset
# name: <cell-element>
# type: string
# elements: 1
# length: 337
-- Function File: X = bitset (A, N)
-- Function File: X = bitset (A, N, V)
Set or reset bit(s) N of unsigned integers in A. V = 0 resets and V = 1 sets the bits. The lowest significant bit is: N = 1
dec2bin (bitset (10, 1))
=> 1011
See also: bitand, bitor, bitxor, bitget, bitcmp, bitshift, bitmax.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Set or reset bit(s) N of unsigned integers in A.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
arrayfun
# name: <cell-element>
# type: string
# elements: 1
# length: 3319
-- Function File: arrayfun (FUNC, A)
-- Function File: X = arrayfun (FUNC, A)
-- Function File: X = arrayfun (FUNC, A, B, ...)
-- Function File: [X, Y, ...] = arrayfun (FUNC, A, ...)
-- Function File: arrayfun (..., "UniformOutput", VAL)
-- Function File: arrayfun (..., "ErrorHandler", ERRFUNC)
Execute a function on each element of an array. This is useful for functions that do not accept array arguments. If the function does accept array arguments it is better to call the function directly.
The first input argument FUNC can be a string, a function handle, an inline function or an anonymous function. The input argument A can be a logic array, a numeric array, a string array, a structure array or a cell array. By a call of the function `arrayfun' all elements of A are passed on to the named function FUNC individually.
The named function can also take more than two input arguments, with the input arguments given as third input argument B, fourth input argument C, ... If given more than one array input argument then all input arguments must have the same sizes, for example
arrayfun (@atan2, [1, 0], [0, 1])
=> ans = [1.5708 0.0000]
If the parameter VAL after a further string input argument "UniformOutput" is set `true' (the default), then the named function FUNC must return a single element which then will be concatenated into the return value and is of type matrix. Otherwise, if that parameter is set to `false', then the outputs are concatenated in a cell array. For example
arrayfun (@(x,y) x:y, "abc", "def", "UniformOutput", false)
=> ans =
{
[1,1] = abcd
[1,2] = bcde
[1,3] = cdef
}
If more than one output arguments are given then the named function must return the number of return values that also are expected, for example
[A, B, C] = arrayfun (@find, [10; 0], "UniformOutput", false)
=>
A =
{
[1,1] = 1
[2,1] = [](0x0)
}
B =
{
[1,1] = 1
[2,1] = [](0x0)
}
C =
{
[1,1] = 10
[2,1] = [](0x0)
}
If the parameter ERRFUNC after a further string input argument "ErrorHandler" is another string, a function handle, an inline function or an anonymous function, then ERRFUNC defines a function to call in the case that FUNC generates an error. The definition of the function must be of the form
function [...] = errfunc (S, ...)
where there is an additional input argument to ERRFUNC relative to FUNC, given by S. This is a structure with the elements "identifier", "message" and "index", giving respectively the error identifier, the error message and the index of the array elements that caused the error. The size of the output argument of ERRFUNC must have the same size as the output argument of FUNC, otherwise a real error is thrown. For example
function y = ferr (s, x), y = "MyString"; endfunction
arrayfun (@str2num, [1234], \
"UniformOutput", false, "ErrorHandler", @ferr)
=> ans =
{
[1,1] = MyString
}
See also: cellfun, spfun, structfun.
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Execute a function on each element of an array.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
nargchk
# name: <cell-element>
# type: string
# elements: 1
# length: 498
-- Function File: MSGSTR = nargchk (MINARGS, MAXARGS, NARGS)
-- Function File: MSGSTR = nargchk (MINARGS, MAXARGS, NARGS, "string")
-- Function File: MSGSTRUCT = nargchk (MINARGS, MAXARGS, NARGS, "struct")
Return an appropriate error message string (or structure) if the number of inputs requested is invalid.
This is useful for checking to see that the number of input arguments supplied to a function is within an acceptable range. See also: nargoutchk, error, nargin, nargout.
# name: <cell-element>
# type: string
# elements: 1
# length: 103
Return an appropriate error message string (or structure) if the number of inputs requested is invalid.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
int2str
# name: <cell-element>
# type: string
# elements: 1
# length: 698
-- Function File: int2str (N)
Convert an integer (or array of integers) to a string (or a character array).
int2str (123)
=> "123"
s = int2str ([1, 2, 3; 4, 5, 6])
=> s =
1 2 3
4 5 6
whos s
=> s =
Attr Name Size Bytes Class
==== ==== ==== ===== =====
s 2x7 14 char
This function is not very flexible. For better control over the results, use `sprintf' (*note Formatted Output::). See also: sprintf, num2str, mat2str.
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Convert an integer (or array of integers) to a string (or a character array).
# name: <cell-element>
# type: string
# elements: 1
# length: 3
mod
# name: <cell-element>
# type: string
# elements: 1
# length: 496
-- Mapping Function: mod (X, Y)
Compute the modulo of X and Y. Conceptually this is given by
x - y .* floor (x ./ y)
and is written such that the correct modulus is returned for integer types. This function handles negative values correctly. That is, `mod (-1, 3)' is 2, not -1, as `rem (-1, 3)' returns. `mod (X, 0)' returns X.
An error results if the dimensions of the arguments do not agree, or if either of the arguments is complex. See also: rem, fmod.
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Compute the modulo of X and Y.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
rot90
# name: <cell-element>
# type: string
# elements: 1
# length: 823
-- Function File: rot90 (X, N)
Return a copy of X with the elements rotated counterclockwise in 90-degree increments. The second argument is optional, and specifies how many 90-degree rotations are to be applied (the default value is 1). Negative values of N rotate the matrix in a clockwise direction. For example,
rot90 ([1, 2; 3, 4], -1)
=> 3 1
4 2
rotates the given matrix clockwise by 90 degrees. The following are all equivalent statements:
rot90 ([1, 2; 3, 4], -1)
rot90 ([1, 2; 3, 4], 3)
rot90 ([1, 2; 3, 4], 7)
Due to the difficulty of defining an axis about which to rotate the matrix `rot90' only work with 2-D arrays. To rotate N-d arrays use `rotdim' instead. See also: rotdim, flipud, fliplr, flipdim.
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Return a copy of X with the elements rotated counterclockwise in 90-degree increments.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
quadl
# name: <cell-element>
# type: string
# elements: 1
# length: 1059
-- Function File: Q = quadl (F, A, B)
-- Function File: Q = quadl (F, A, B, TOL)
-- Function File: Q = quadl (F, A, B, TOL, TRACE)
-- Function File: Q = quadl (F, A, B, TOL, TRACE, P1, P2, ...)
Numerically evaluate integral using adaptive Lobatto rule. `quadl (F, A, B)' approximates the integral of `F(X)' to machine precision. F is either a function handle, inline function or string containing the name of the function to evaluate. The function F must return a vector of output values if given a vector of input values.
If defined, TOL defines the relative tolerance to which to which to integrate `F(X)'. While if TRACE is defined, displays the left end point of the current interval, the interval length, and the partial integral.
Additional arguments P1, etc., are passed directly to F. To use default values for TOL and TRACE, one may pass empty matrices.
Reference: W. Gander and W. Gautschi, 'Adaptive Quadrature - Revisited', BIT Vol. 40, No. 1, March 2000, pp. 84-101. `http://www.inf.ethz.ch/personal/gander/'
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Numerically evaluate integral using adaptive Lobatto rule.
# name: <cell-element>
# type: string
# elements: 1
# length: 20
isequalwithequalnans
# name: <cell-element>
# type: string
# elements: 1
# length: 150
-- Function File: isequalwithequalnans (X1, X2, ...)
Assuming NaN == NaN, return true if all of X1, X2, ... are equal. See also: isequal.
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Assuming NaN == NaN, return true if all of X1, X2, .
# name: <cell-element>
# type: string
# elements: 1
# length: 7
interp1
# name: <cell-element>
# type: string
# elements: 1
# length: 2078
-- Function File: YI = interp1 (X, Y, XI)
-- Function File: YI = interp1 (..., METHOD)
-- Function File: YI = interp1 (..., EXTRAP)
-- Function File: PP = interp1 (..., 'pp')
One-dimensional interpolation. Interpolate Y, defined at the points X, at the points XI. The sample points X must be strictly monotonic. If Y is an array, treat the columns of Y separately.
Method is one of:
'nearest'
Return the nearest neighbor.
'linear'
Linear interpolation from nearest neighbors
'pchip'
Piece-wise cubic hermite interpolating polynomial
'cubic'
Cubic interpolation from four nearest neighbors
'spline'
Cubic spline interpolation-smooth first and second derivatives throughout the curve
Appending '*' to the start of the above method forces `interp1' to assume that X is uniformly spaced, and only `X (1)' and `X (2)' are referenced. This is usually faster, and is never slower. The default method is 'linear'.
If EXTRAP is the string 'extrap', then extrapolate values beyond the endpoints. If EXTRAP is a number, replace values beyond the endpoints with that number. If EXTRAP is missing, assume NA.
If the string argument 'pp' is specified, then XI should not be supplied and `interp1' returns the piece-wise polynomial that can later be used with `ppval' to evaluate the interpolation. There is an equivalence, such that `ppval (interp1 (X, Y, METHOD, 'pp'), XI) == interp1 (X, Y, XI, METHOD, 'extrap')'.
An example of the use of `interp1' is
xf = [0:0.05:10];
yf = sin (2*pi*xf/5);
xp = [0:10];
yp = sin (2*pi*xp/5);
lin = interp1 (xp, yp, xf);
spl = interp1 (xp, yp, xf, "spline");
cub = interp1 (xp, yp, xf, "cubic");
near = interp1 (xp, yp, xf, "nearest");
plot (xf, yf, "r", xf, lin, "g", xf, spl, "b",
xf, cub, "c", xf, near, "m", xp, yp, "r*");
legend ("original", "linear", "spline", "cubic", "nearest")
See also: interpft.
# name: <cell-element>
# type: string
# elements: 1
# length: 30
One-dimensional interpolation.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
cplxpair
# name: <cell-element>
# type: string
# elements: 1
# length: 920
-- Function File: cplxpair (Z)
-- Function File: cplxpair (Z, TOL)
-- Function File: cplxpair (Z, TOL, DIM)
Sort the numbers Z into complex conjugate pairs ordered by increasing real part. Place the negative imaginary complex number first within each pair. Place all the real numbers (those with `abs (imag (Z) / Z) < TOL)') after the complex pairs.
If TOL is unspecified the default value is 100*`eps'.
By default the complex pairs are sorted along the first non-singleton dimension of Z. If DIM is specified, then the complex pairs are sorted along this dimension.
Signal an error if some complex numbers could not be paired. Signal an error if all complex numbers are not exact conjugates (to within TOL). Note that there is no defined order for pairs with identical real parts but differing imaginary parts.
cplxpair (exp(2i*pi*[0:4]'/5)) == exp(2i*pi*[3; 2; 4; 1; 0]/5)
# name: <cell-element>
# type: string
# elements: 1
# length: 80
Sort the numbers Z into complex conjugate pairs ordered by increasing real part.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
genvarname
# name: <cell-element>
# type: string
# elements: 1
# length: 2030
-- Function File: VARNAME = genvarname (STR)
-- Function File: VARNAME = genvarname (STR, EXCLUSIONS)
Create unique variable(s) from STR. If EXCLUSIONS is given, then the variable(s) will be unique to each other and to EXCLUSIONS (EXCLUSIONS may be either a string or a cellstr).
If STR is a cellstr, then a unique variable is created for each cell in STR.
x = 3.141;
genvarname ("x", who ())
=> x1
If WANTED is a cell array, genvarname will make sure the returned strings are distinct:
genvarname ({"foo", "foo"})
=>
{
[1,1] = foo
[1,2] = foo1
}
Note that the result is a char array/cell array of strings, not the variables themselves. To define a variable, `eval()' can be used. The following trivial example sets `x' to `42'.
name = genvarname ("x");
eval([name " = 42"]);
=> x = 42
Also, this can be useful for creating unique struct field names.
x = struct ();
for i = 1:3
x.(genvarname ("a", fieldnames (x))) = i;
endfor
=>
x =
{
a = 1
a1 = 2
a2 = 3
}
Since variable names may only contain letters, digits and underscores, genvarname replaces any sequence of disallowed characters with an underscore. Also, variables may not begin with a digit; in this case an underscore is added before the variable name.
Variable names beginning and ending with two underscores "__" are valid but they are used internally by octave and should generally be avoided, therefore genvarname will not generate such names.
genvarname will also make sure that returned names do not clash with keywords such as "for" and "if". A number will be appended if necessary. Note, however, that this does *not* include function names, such as "sin". Such names should be included in AVOID if necessary. See also: isvarname, exist, tmpnam, eval.
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Create unique variable(s) from STR.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
fractdiff
# name: <cell-element>
# type: string
# elements: 1
# length: 149
-- Function File: fractdiff (X, D)
Compute the fractional differences (1-L)^d x where L denotes the lag-operator and d is greater than -1.
# name: <cell-element>
# type: string
# elements: 1
# length: 103
Compute the fractional differences (1-L)^d x where L denotes the lag-operator and d is greater than -1.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
hanning
# name: <cell-element>
# type: string
# elements: 1
# length: 226
-- Function File: hanning (M)
Return the filter coefficients of a Hanning window of length M.
For a definition of this window type, see e.g., A. V. Oppenheim & R. W. Schafer, `Discrete-Time Signal Processing'.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return the filter coefficients of a Hanning window of length M.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
fftshift
# name: <cell-element>
# type: string
# elements: 1
# length: 640
-- Function File: fftshift (V)
-- Function File: fftshift (V, DIM)
Perform a shift of the vector V, for use with the `fft' and `ifft' functions, in order the move the frequency 0 to the center of the vector or matrix.
If V is a vector of N elements corresponding to N time samples spaced of Dt each, then `fftshift (fft (V))' corresponds to frequencies
f = ((1:N) - ceil(N/2)) / N / Dt
If V is a matrix, the same holds for rows and columns. If V is an array, then the same holds along each dimension.
The optional DIM argument can be used to limit the dimension along which the permutation occurs.
# name: <cell-element>
# type: string
# elements: 1
# length: 150
Perform a shift of the vector V, for use with the `fft' and `ifft' functions, in order the move the frequency 0 to the center of the vector or matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
freqz_plot
# name: <cell-element>
# type: string
# elements: 1
# length: 101
-- Function File: freqz_plot (W, H)
Plot the pass band, stop band and phase response of H.
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Plot the pass band, stop band and phase response of H.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
sinewave
# name: <cell-element>
# type: string
# elements: 1
# length: 200
-- Function File: sinewave (M, N, D)
Return an M-element vector with I-th element given by `sin (2 * pi * (I+D-1) / N)'.
The default value for D is 0 and the default value for N is M.
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Return an M-element vector with I-th element given by `sin (2 * pi * (I+D-1) / N)'.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
autocov
# name: <cell-element>
# type: string
# elements: 1
# length: 219
-- Function File: autocov (X, H)
Return the autocovariances from lag 0 to H of vector X. If H is omitted, all autocovariances are computed. If X is a matrix, the autocovariances of each column are computed.
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Return the autocovariances from lag 0 to H of vector X.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
freqz
# name: <cell-element>
# type: string
# elements: 1
# length: 1191
-- Function File: [H, W] = freqz (B, A, N, "whole")
Return the complex frequency response H of the rational IIR filter whose numerator and denominator coefficients are B and A, respectively. The response is evaluated at N angular frequencies between 0 and 2*pi.
The output value W is a vector of the frequencies.
If the fourth argument is omitted, the response is evaluated at frequencies between 0 and pi.
If N is omitted, a value of 512 is assumed.
If A is omitted, the denominator is assumed to be 1 (this corresponds to a simple FIR filter).
For fastest computation, N should factor into a small number of small primes.
-- Function File: H = freqz (B, A, W)
Evaluate the response at the specific frequencies in the vector W. The values for W are measured in radians.
-- Function File: [...] = freqz (..., FS)
Return frequencies in Hz instead of radians assuming a sampling rate FS. If you are evaluating the response at specific frequencies W, those frequencies should be requested in Hz rather than radians.
-- Function File: freqz (...)
Plot the pass band, stop band and phase response of H rather than returning them.
# name: <cell-element>
# type: string
# elements: 1
# length: 81
Plot the pass band, stop band and phase response of H rather than returning them.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
periodogram
# name: <cell-element>
# type: string
# elements: 1
# length: 113
-- Function File: periodogram (X)
For a data matrix X from a sample of size N, return the periodogram.
# name: <cell-element>
# type: string
# elements: 1
# length: 68
For a data matrix X from a sample of size N, return the periodogram.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
arch_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 373
-- Function File: arch_rnd (A, B, T)
Simulate an ARCH sequence of length T with AR coefficients B and CH coefficients A. I.e., the result y(t) follows the model
y(t) = b(1) + b(2) * y(t-1) + ... + b(lb) * y(t-lb+1) + e(t),
where e(t), given Y up to time t-1, is N(0, h(t)), with
h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(la) * e(t-la+1)^2
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Simulate an ARCH sequence of length T with AR coefficients B and CH coefficients A.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
sinetone
# name: <cell-element>
# type: string
# elements: 1
# length: 286
-- Function File: sinetone (FREQ, RATE, SEC, AMPL)
Return a sinetone of frequency FREQ with length of SEC seconds at sampling rate RATE and with amplitude AMPL. The arguments FREQ and AMPL may be vectors of common size.
Defaults are RATE = 8000, SEC = 1 and AMPL = 64.
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Return a sinetone of frequency FREQ with length of SEC seconds at sampling rate RATE and with amplitude AMPL.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
triangle_sw
# name: <cell-element>
# type: string
# elements: 1
# length: 126
-- Function File: triangle_sw (N, B)
Triangular spectral window. Subfunction used for spectral density estimation.
# name: <cell-element>
# type: string
# elements: 1
# length: 27
Triangular spectral window.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
hamming
# name: <cell-element>
# type: string
# elements: 1
# length: 228
-- Function File: hamming (M)
Return the filter coefficients of a Hamming window of length M.
For a definition of the Hamming window, see e.g., A. V. Oppenheim & R. W. Schafer, `Discrete-Time Signal Processing'.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return the filter coefficients of a Hamming window of length M.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
diffpara
# name: <cell-element>
# type: string
# elements: 1
# length: 703
-- Function File: [D, DD] = diffpara (X, A, B)
Return the estimator D for the differencing parameter of an integrated time series.
The frequencies from [2*pi*a/t, 2*pi*b/T] are used for the estimation. If B is omitted, the interval [2*pi/T, 2*pi*a/T] is used. If both B and A are omitted then a = 0.5 * sqrt (T) and b = 1.5 * sqrt (T) is used, where T is the sample size. If X is a matrix, the differencing parameter of each column is estimated.
The estimators for all frequencies in the intervals described above is returned in DD. The value of D is simply the mean of DD.
Reference: Brockwell, Peter J. & Davis, Richard A. Time Series: Theory and Methods Springer 1987.
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Return the estimator D for the differencing parameter of an integrated time series.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
rectangle_lw
# name: <cell-element>
# type: string
# elements: 1
# length: 123
-- Function File: rectangle_lw (N, B)
Rectangular lag window. Subfunction used for spectral density estimation.
# name: <cell-element>
# type: string
# elements: 1
# length: 23
Rectangular lag window.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
blackman
# name: <cell-element>
# type: string
# elements: 1
# length: 231
-- Function File: blackman (M)
Return the filter coefficients of a Blackman window of length M.
For a definition of the Blackman window, see e.g., A. V. Oppenheim & R. W. Schafer, `Discrete-Time Signal Processing'.
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return the filter coefficients of a Blackman window of length M.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
detrend
# name: <cell-element>
# type: string
# elements: 1
# length: 355
-- Function File: detrend (X, P)
If X is a vector, `detrend (X, P)' removes the best fit of a polynomial of order P from the data X.
If X is a matrix, `detrend (X, P)' does the same for each column in X.
The second argument is optional. If it is not specified, a value of 1 is assumed. This corresponds to removing a linear trend.
# name: <cell-element>
# type: string
# elements: 1
# length: 99
If X is a vector, `detrend (X, P)' removes the best fit of a polynomial of order P from the data X.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
stft
# name: <cell-element>
# type: string
# elements: 1
# length: 954
-- Function File: [Y, C] = stft (X, WIN_SIZE, INC, NUM_COEF, W_TYPE)
Compute the short-time Fourier transform of the vector X with NUM_COEF coefficients by applying a window of WIN_SIZE data points and an increment of INC points.
Before computing the Fourier transform, one of the following windows is applied:
hanning
w_type = 1
hamming
w_type = 2
rectangle
w_type = 3
The window names can be passed as strings or by the W_TYPE number.
If not all arguments are specified, the following defaults are used: WIN_SIZE = 80, INC = 24, NUM_COEF = 64, and W_TYPE = 1.
`Y = stft (X, ...)' returns the absolute values of the Fourier coefficients according to the NUM_COEF positive frequencies.
`[Y, C] = stft (`x', ...)' returns the entire STFT-matrix Y and a 3-element vector C containing the window size, increment, and window type, which is needed by the synthesis function.
# name: <cell-element>
# type: string
# elements: 1
# length: 160
Compute the short-time Fourier transform of the vector X with NUM_COEF coefficients by applying a window of WIN_SIZE data points and an increment of INC points.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
spectral_adf
# name: <cell-element>
# type: string
# elements: 1
# length: 377
-- Function File: spectral_adf (C, WIN, B)
Return the spectral density estimator given a vector of autocovariances C, window name WIN, and bandwidth, B.
The window name, e.g., `"triangle"' or `"rectangle"' is used to search for a function called `WIN_sw'.
If WIN is omitted, the triangle window is used. If B is omitted, `1 / sqrt (length (X))' is used.
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Return the spectral density estimator given a vector of autocovariances C, window name WIN, and bandwidth, B.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
filter2
# name: <cell-element>
# type: string
# elements: 1
# length: 539
-- Function File: Y = filter2 (B, X)
-- Function File: Y = filter2 (B, X, SHAPE)
Apply the 2-D FIR filter B to X. If the argument SHAPE is specified, return an array of the desired shape. Possible values are:
'full'
pad X with zeros on all sides before filtering.
'same'
unpadded X (default)
'valid'
trim X after filtering so edge effects are no included.
Note this is just a variation on convolution, with the parameters reversed and B rotated 180 degrees. See also: conv2.
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Apply the 2-D FIR filter B to X.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
fftfilt
# name: <cell-element>
# type: string
# elements: 1
# length: 304
-- Function File: fftfilt (B, X, N)
With two arguments, `fftfilt' filters X with the FIR filter B using the FFT.
Given the optional third argument, N, `fftfilt' uses the overlap-add method to filter X with B using an N-point FFT.
If X is a matrix, filter each column of the matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 76
With two arguments, `fftfilt' filters X with the FIR filter B using the FFT.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
fftconv
# name: <cell-element>
# type: string
# elements: 1
# length: 429
-- Function File: fftconv (A, B, N)
Return the convolution of the vectors A and B, as a vector with length equal to the `length (a) + length (b) - 1'. If A and B are the coefficient vectors of two polynomials, the returned value is the coefficient vector of the product polynomial.
The computation uses the FFT by calling the function `fftfilt'. If the optional argument N is specified, an N-point FFT is used.
# name: <cell-element>
# type: string
# elements: 1
# length: 114
Return the convolution of the vectors A and B, as a vector with length equal to the `length (a) + length (b) - 1'.
# name: <cell-element>
# type: string
# elements: 1
# length: 11
triangle_lw
# name: <cell-element>
# type: string
# elements: 1
# length: 121
-- Function File: triangle_lw (N, B)
Triangular lag window. Subfunction used for spectral density estimation.
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Triangular lag window.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
ifftshift
# name: <cell-element>
# type: string
# elements: 1
# length: 209
-- Function File: ifftshift (V)
-- Function File: ifftshift (V, DIM)
Undo the action of the `fftshift' function. For even length V, `fftshift' is its own inverse, but odd lengths differ slightly.
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Undo the action of the `fftshift' function.
# name: <cell-element>
# type: string
# elements: 1
# length: 14
durbinlevinson
# name: <cell-element>
# type: string
# elements: 1
# length: 390
-- Function File: durbinlevinson (C, OLDPHI, OLDV)
Perform one step of the Durbin-Levinson algorithm.
The vector C specifies the autocovariances `[gamma_0, ..., gamma_t]' from lag 0 to T, OLDPHI specifies the coefficients based on C(T-1) and OLDV specifies the corresponding error.
If OLDPHI and OLDV are omitted, all steps from 1 to T of the algorithm are performed.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Perform one step of the Durbin-Levinson algorithm.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
unwrap
# name: <cell-element>
# type: string
# elements: 1
# length: 347
-- Function File: B = unwrap (A, TOL, DIM)
Unwrap radian phases by adding multiples of 2*pi as appropriate to remove jumps greater than TOL. TOL defaults to pi.
Unwrap will unwrap along the first non-singleton dimension of A, unless the optional argument DIM is given, in which case the data will be unwrapped along this dimension
# name: <cell-element>
# type: string
# elements: 1
# length: 97
Unwrap radian phases by adding multiples of 2*pi as appropriate to remove jumps greater than TOL.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
arch_fit
# name: <cell-element>
# type: string
# elements: 1
# length: 859
-- Function File: [A, B] = arch_fit (Y, X, P, ITER, GAMMA, A0, B0)
Fit an ARCH regression model to the time series Y using the scoring algorithm in Engle's original ARCH paper. The model is
y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t),
h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(p+1) * e(t-p)^2
in which e(t) is N(0, h(t)), given a time-series vector Y up to time t-1 and a matrix of (ordinary) regressors X up to t. The order of the regression of the residual variance is specified by P.
If invoked as `arch_fit (Y, K, P)' with a positive integer K, fit an ARCH(K, P) process, i.e., do the above with the t-th row of X given by
[1, y(t-1), ..., y(t-k)]
Optionally, one can specify the number of iterations ITER, the updating factor GAMMA, and initial values a0 and b0 for the scoring algorithm.
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Fit an ARCH regression model to the time series Y using the scoring algorithm in Engle's original ARCH paper.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
spectral_xdf
# name: <cell-element>
# type: string
# elements: 1
# length: 363
-- Function File: spectral_xdf (X, WIN, B)
Return the spectral density estimator given a data vector X, window name WIN, and bandwidth, B.
The window name, e.g., `"triangle"' or `"rectangle"' is used to search for a function called `WIN_sw'.
If WIN is omitted, the triangle window is used. If B is omitted, `1 / sqrt (length (X))' is used.
# name: <cell-element>
# type: string
# elements: 1
# length: 95
Return the spectral density estimator given a data vector X, window name WIN, and bandwidth, B.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
synthesis
# name: <cell-element>
# type: string
# elements: 1
# length: 254
-- Function File: synthesis (Y, C)
Compute a signal from its short-time Fourier transform Y and a 3-element vector C specifying window size, increment, and window type.
The values Y and C can be derived by
[Y, C] = stft (X , ...)
# name: <cell-element>
# type: string
# elements: 1
# length: 133
Compute a signal from its short-time Fourier transform Y and a 3-element vector C specifying window size, increment, and window type.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
rectangle_sw
# name: <cell-element>
# type: string
# elements: 1
# length: 128
-- Function File: rectangle_sw (N, B)
Rectangular spectral window. Subfunction used for spectral density estimation.
# name: <cell-element>
# type: string
# elements: 1
# length: 28
Rectangular spectral window.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
yulewalker
# name: <cell-element>
# type: string
# elements: 1
# length: 235
-- Function File: [A, V] = yulewalker (C)
Fit an AR (p)-model with Yule-Walker estimates given a vector C of autocovariances `[gamma_0, ..., gamma_p]'.
Returns the AR coefficients, A, and the variance of white noise, V.
# name: <cell-element>
# type: string
# elements: 1
# length: 95
Fit an AR (p)-model with Yule-Walker estimates given a vector C of autocovariances `[gamma_0, .
# name: <cell-element>
# type: string
# elements: 1
# length: 9
arch_test
# name: <cell-element>
# type: string
# elements: 1
# length: 949
-- Function File: [PVAL, LM] = arch_test (Y, X, P)
For a linear regression model
y = x * b + e
perform a Lagrange Multiplier (LM) test of the null hypothesis of no conditional heteroscedascity against the alternative of CH(P).
I.e., the model is
y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t),
given Y up to t-1 and X up to t, e(t) is N(0, h(t)) with
h(t) = v + a(1) * e(t-1)^2 + ... + a(p) * e(t-p)^2,
and the null is a(1) == ... == a(p) == 0.
If the second argument is a scalar integer, k, perform the same test in a linear autoregression model of order k, i.e., with
[1, y(t-1), ..., y(t-K)]
as the t-th row of X.
Under the null, LM approximately has a chisquare distribution with P degrees of freedom and PVAL is the p-value (1 minus the CDF of this distribution at LM) of the test.
If no output argument is given, the p-value is displayed.
# name: <cell-element>
# type: string
# elements: 1
# length: 30
For a linear regression model
# name: <cell-element>
# type: string
# elements: 1
# length: 8
arma_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 562
-- Function File: arma_rnd (A, B, V, T, N)
Return a simulation of the ARMA model
x(n) = a(1) * x(n-1) + ... + a(k) * x(n-k)
+ e(n) + b(1) * e(n-1) + ... + b(l) * e(n-l)
in which K is the length of vector A, L is the length of vector B and E is Gaussian white noise with variance V. The function returns a vector of length T.
The optional parameter N gives the number of dummy X(I) used for initialization, i.e., a sequence of length T+N is generated and X(N+1:T+N) is returned. If N is omitted, N = 100 is used.
# name: <cell-element>
# type: string
# elements: 1
# length: 38
Return a simulation of the ARMA model
# name: <cell-element>
# type: string
# elements: 1
# length: 4
sinc
# name: <cell-element>
# type: string
# elements: 1
# length: 63
-- Function File: sinc (X)
Return sin(pi*x)/(pi*x).
# name: <cell-element>
# type: string
# elements: 1
# length: 24
Return sin(pi*x)/(pi*x).
# name: <cell-element>
# type: string
# elements: 1
# length: 14
autoreg_matrix
# name: <cell-element>
# type: string
# elements: 1
# length: 337
-- Function File: autoreg_matrix (Y, K)
Given a time series (vector) Y, return a matrix with ones in the first column and the first K lagged values of Y in the other columns. I.e., for T > K, `[1, Y(T-1), ..., Y(T-K)]' is the t-th row of the result. The resulting matrix may be used as a regressor matrix in autoregressions.
# name: <cell-element>
# type: string
# elements: 1
# length: 134
Given a time series (vector) Y, return a matrix with ones in the first column and the first K lagged values of Y in the other columns.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
autocor
# name: <cell-element>
# type: string
# elements: 1
# length: 222
-- Function File: autocor (X, H)
Return the autocorrelations from lag 0 to H of vector X. If H is omitted, all autocorrelations are computed. If X is a matrix, the autocorrelations of each column are computed.
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Return the autocorrelations from lag 0 to H of vector X.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
bartlett
# name: <cell-element>
# type: string
# elements: 1
# length: 244
-- Function File: bartlett (M)
Return the filter coefficients of a Bartlett (triangular) window of length M.
For a definition of the Bartlett window, see e.g., A. V. Oppenheim & R. W. Schafer, `Discrete-Time Signal Processing'.
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Return the filter coefficients of a Bartlett (triangular) window of length M.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
hurst
# name: <cell-element>
# type: string
# elements: 1
# length: 184
-- Function File: hurst (X)
Estimate the Hurst parameter of sample X via the rescaled range statistic. If X is a matrix, the parameter is estimated for every single column.
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Estimate the Hurst parameter of sample X via the rescaled range statistic.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
spencer
# name: <cell-element>
# type: string
# elements: 1
# length: 110
-- Function File: spencer (X)
Return Spencer's 15 point moving average of every single column of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Return Spencer's 15 point moving average of every single column of X.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
conv
# name: <cell-element>
# type: string
# elements: 1
# length: 332
-- Function File: conv (A, B)
Convolve two vectors.
`y = conv (a, b)' returns a vector of length equal to `length (a) + length (b) - 1'. If A and B are polynomial coefficient vectors, `conv' returns the coefficients of the product polynomial. See also: deconv, poly, roots, residue, polyval, polyderiv, polyinteg.
# name: <cell-element>
# type: string
# elements: 1
# length: 21
Convolve two vectors.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
roots
# name: <cell-element>
# type: string
# elements: 1
# length: 451
-- Function File: roots (V)
For a vector V with N components, return the roots of the polynomial
v(1) * z^(N-1) + ... + v(N-1) * z + v(N)
As an example, the following code finds the roots of the quadratic polynomial
p(x) = x^2 - 5.
c = [1, 0, -5];
roots(c)
=> 2.2361
=> -2.2361
Note that the true result is +/- sqrt(5) which is roughly +/- 2.2361. See also: compan.
# name: <cell-element>
# type: string
# elements: 1
# length: 69
For a vector V with N components, return the roots of the polynomial
# name: <cell-element>
# type: string
# elements: 1
# length: 5
pchip
# name: <cell-element>
# type: string
# elements: 1
# length: 1061
-- Function File: PP = pchip (X, Y)
-- Function File: YI = pchip (X, Y, XI)
Piecewise Cubic Hermite interpolating polynomial. Called with two arguments, the piece-wise polynomial PP is returned, that may later be used with `ppval' to evaluate the polynomial at specific points.
The variable X must be a strictly monotonic vector (either increasing or decreasing). While Y can be either a vector or array. In the case where Y is a vector, it must have a length of N. If Y is an array, then the size of Y must have the form `[S1, S2, ..., SK, N]' The array is then reshaped internally to a matrix where the leading dimension is given by `S1 * S2 * ... * SK' and each row in this matrix is then treated separately. Note that this is exactly the opposite treatment than `interp1' and is done for compatibility.
Called with a third input argument, `pchip' evaluates the piece-wise polynomial at the points XI. There is an equivalence between `ppval (pchip (X, Y), XI)' and `pchip (X, Y, XI)'.
See also: spline, ppval, mkpp, unmkpp.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Piecewise Cubic Hermite interpolating polynomial.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
polyreduce
# name: <cell-element>
# type: string
# elements: 1
# length: 244
-- Function File: polyreduce (C)
Reduces a polynomial coefficient vector to a minimum number of terms by stripping off any leading zeros. See also: poly, roots, conv, deconv, residue, filter, polyval, polyvalm, polyderiv, polyinteg.
# name: <cell-element>
# type: string
# elements: 1
# length: 104
Reduces a polynomial coefficient vector to a minimum number of terms by stripping off any leading zeros.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
compan
# name: <cell-element>
# type: string
# elements: 1
# length: 914
-- Function File: compan (C)
Compute the companion matrix corresponding to polynomial coefficient vector C.
The companion matrix is
_ _
| -c(2)/c(1) -c(3)/c(1) ... -c(N)/c(1) -c(N+1)/c(1) |
| 1 0 ... 0 0 |
| 0 1 ... 0 0 |
A = | . . . . . |
| . . . . . |
| . . . . . |
|_ 0 0 ... 1 0 _|
The eigenvalues of the companion matrix are equal to the roots of the polynomial. See also: poly, roots, residue, conv, deconv, polyval, polyderiv, polyinteg.
# name: <cell-element>
# type: string
# elements: 1
# length: 78
Compute the companion matrix corresponding to polynomial coefficient vector C.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
residue
# name: <cell-element>
# type: string
# elements: 1
# length: 2331
-- Function File: [R, P, K, E] = residue (B, A)
Compute the partial fraction expansion for the quotient of the polynomials, B and A.
B(s) M r(m) N
---- = SUM ------------- + SUM k(i)*s^(N-i)
A(s) m=1 (s-p(m))^e(m) i=1
where M is the number of poles (the length of the R, P, and E), the K vector is a polynomial of order N-1 representing the direct contribution, and the E vector specifies the multiplicity of the m-th residue's pole.
For example,
b = [1, 1, 1];
a = [1, -5, 8, -4];
[r, p, k, e] = residue (b, a);
=> r = [-2; 7; 3]
=> p = [2; 2; 1]
=> k = [](0x0)
=> e = [1; 2; 1]
which represents the following partial fraction expansion
s^2 + s + 1 -2 7 3
------------------- = ----- + ------- + -----
s^3 - 5s^2 + 8s - 4 (s-2) (s-2)^2 (s-1)
-- Function File: [B, A] = residue (R, P, K)
-- Function File: [B, A] = residue (R, P, K, E)
Compute the reconstituted quotient of polynomials, B(s)/A(s), from the partial fraction expansion; represented by the residues, poles, and a direct polynomial specified by R, P and K, and the pole multiplicity E.
If the multiplicity, E, is not explicitly specified the multiplicity is determined by the script mpoles.m.
For example,
r = [-2; 7; 3];
p = [2; 2; 1];
k = [1, 0];
[b, a] = residue (r, p, k);
=> b = [1, -5, 9, -3, 1]
=> a = [1, -5, 8, -4]
where mpoles.m is used to determine e = [1; 2; 1]
Alternatively the multiplicity may be defined explicitly, for example,
r = [7; 3; -2];
p = [2; 1; 2];
k = [1, 0];
e = [2; 1; 1];
[b, a] = residue (r, p, k, e);
=> b = [1, -5, 9, -3, 1]
=> a = [1, -5, 8, -4]
which represents the following partial fraction expansion
-2 7 3 s^4 - 5s^3 + 9s^2 - 3s + 1
----- + ------- + ----- + s = --------------------------
(s-2) (s-2)^2 (s-1) s^3 - 5s^2 + 8s - 4
See also: poly, roots, conv, deconv, mpoles, polyval, polyderiv, polyinteg.
# name: <cell-element>
# type: string
# elements: 1
# length: 212
Compute the reconstituted quotient of polynomials, B(s)/A(s), from the partial fraction expansion; represented by the residues, poles, and a direct polynomial specified by R, P and K, and the pole multiplicity E.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
polyint
# name: <cell-element>
# type: string
# elements: 1
# length: 331
-- Function File: polyint (C, K)
Return the coefficients of the integral of the polynomial whose coefficients are represented by the vector C. The variable K is the constant of integration, which by default is set to zero. See also: poly, polyderiv, polyreduce, roots, conv, deconv, residue, filter, polyval, polyvalm.
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Return the coefficients of the integral of the polynomial whose coefficients are represented by the vector C.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
ppval
# name: <cell-element>
# type: string
# elements: 1
# length: 269
-- Function File: YI = ppval (PP, XI)
Evaluate piece-wise polynomial PP at the points XI. If `PP.d' is a scalar greater than 1, or an array, then the returned value YI will be an array that is `d1, d1, ..., dk, length (XI)]'. See also: mkpp, unmkpp, spline.
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Evaluate piece-wise polynomial PP at the points XI.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
spline
# name: <cell-element>
# type: string
# elements: 1
# length: 1285
-- Function File: PP = spline (X, Y)
-- Function File: YI = spline (X, Y, XI)
Return the cubic spline interpolant of Y at points X. If called with two arguments, `spline' returns the piece-wise polynomial PP that may later be used with `ppval' to evaluate the polynomial at specific points. If called with a third input argument, `spline' evaluates the spline at the points XI. There is an equivalence between `ppval (spline (X, Y), XI)' and `spline (X, Y, XI)'.
The variable X must be a vector of length N, and Y can be either a vector or array. In the case where Y is a vector, it can have a length of either N or `N + 2'. If the length of Y is N, then the 'not-a-knot' end condition is used. If the length of Y is `N + 2', then the first and last values of the vector Y are the values of the first derivative of the cubic spline at the end-points.
If Y is an array, then the size of Y must have the form `[S1, S2, ..., SK, N]' or `[S1, S2, ..., SK, N + 2]'. The array is then reshaped internally to a matrix where the leading dimension is given by `S1 * S2 * ... * SK' and each row of this matrix is then treated separately. Note that this is exactly the opposite treatment than `interp1' and is done for compatibility. See also: ppval, mkpp, unmkpp.
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Return the cubic spline interpolant of Y at points X.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
polyfit
# name: <cell-element>
# type: string
# elements: 1
# length: 1013
-- Function File: [P, S, MU] = polyfit (X, Y, N)
Return the coefficients of a polynomial P(X) of degree N that minimizes the least-squares-error of the fit.
The polynomial coefficients are returned in a row vector.
The second output is a structure containing the following fields:
`R'
Triangular factor R from the QR decomposition.
`X'
The Vandermonde matrix used to compute the polynomial coefficients.
`df'
The degrees of freedom.
`normr'
The norm of the residuals.
`yf'
The values of the polynomial for each value of X.
The second output may be used by `polyval' to calculate the statistical error limits of the predicted values.
When the third output, MU, is present the coefficients, P, are associated with a polynomial in XHAT = (X-MU(1))/MU(2). Where MU(1) = mean (X), and MU(2) = std (X). This linear transformation of X improves the numerical stability of the fit. See also: polyval, residue.
# name: <cell-element>
# type: string
# elements: 1
# length: 107
Return the coefficients of a polynomial P(X) of degree N that minimizes the least-squares-error of the fit.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
polyder
# name: <cell-element>
# type: string
# elements: 1
# length: 138
-- Function File: polyder (C)
-- Function File: [Q] = polyder (B, A)
-- Function File: [Q, R] = polyder (B, A)
See polyderiv.
# name: <cell-element>
# type: string
# elements: 1
# length: 14
See polyderiv.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
polygcd
# name: <cell-element>
# type: string
# elements: 1
# length: 717
-- Function File: Q = polygcd (B, A, TOL)
Find greatest common divisor of two polynomials. This is equivalent to the polynomial found by multiplying together all the common roots. Together with deconv, you can reduce a ratio of two polynomials. Tolerance defaults to
sqrt(eps).
Note that this is an unstable algorithm, so don't try it on large polynomials.
Example
polygcd (poly(1:8), poly(3:12)) - poly(3:8)
=> [ 0, 0, 0, 0, 0, 0, 0 ]
deconv (poly(1:8), polygcd (poly(1:8), poly(3:12))) ...
- poly(1:2)
=> [ 0, 0, 0 ]
See also: poly, polyinteg, polyderiv, polyreduce, roots, conv, deconv, residue, filter, polyval, polyvalm.
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Find greatest common divisor of two polynomials.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
polyderiv
# name: <cell-element>
# type: string
# elements: 1
# length: 495
-- Function File: polyderiv (C)
-- Function File: [Q] = polyderiv (B, A)
-- Function File: [Q, R] = polyderiv (B, A)
Return the coefficients of the derivative of the polynomial whose coefficients are given by vector C. If a pair of polynomials is given B and A, the derivative of the product is returned in Q, or the quotient numerator in Q and the quotient denominator in R. See also: poly, polyinteg, polyreduce, roots, conv, deconv, residue, filter, polygcd, polyval, polyvalm.
# name: <cell-element>
# type: string
# elements: 1
# length: 101
Return the coefficients of the derivative of the polynomial whose coefficients are given by vector C.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
deconv
# name: <cell-element>
# type: string
# elements: 1
# length: 385
-- Function File: deconv (Y, A)
Deconvolve two vectors.
`[b, r] = deconv (y, a)' solves for B and R such that `y = conv (a, b) + r'.
If Y and A are polynomial coefficient vectors, B will contain the coefficients of the polynomial quotient and R will be a remainder polynomial of lowest order. See also: conv, poly, roots, residue, polyval, polyderiv, polyinteg.
# name: <cell-element>
# type: string
# elements: 1
# length: 23
Deconvolve two vectors.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
mkpp
# name: <cell-element>
# type: string
# elements: 1
# length: 771
-- Function File: PP = mkpp (X, P)
-- Function File: PP = mkpp (X, P, D)
Construct a piece-wise polynomial structure from sample points X and coefficients P. The i-th row of P, `P (I,:)', contains the coefficients for the polynomial over the I-th interval, ordered from highest to lowest. There must be one row for each interval in X, so `rows (P) == length (X) - 1'.
You can concatenate multiple polynomials of the same order over the same set of intervals using `P = [ P1; P2; ...; PD ]'. In this case, `rows (P) == D * (length (X) - 1)'.
D specifies the shape of the matrix P for all except the last dimension. If D is not specified it will be computed as `round (rows (P) / (length (X) - 1))' instead.
See also: unmkpp, ppval, spline.
# name: <cell-element>
# type: string
# elements: 1
# length: 84
Construct a piece-wise polynomial structure from sample points X and coefficients P.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
mpoles
# name: <cell-element>
# type: string
# elements: 1
# length: 873
-- Function File: [MULTP, INDX] = mpoles (P)
-- Function File: [MULTP, INDX] = mpoles (P, TOL)
-- Function File: [MULTP, INDX] = mpoles (P, TOL, REORDER)
Identify unique poles in P and associates their multiplicity, ordering them from largest to smallest.
If the relative difference of the poles is less than TOL, then they are considered to be multiples. The default value for TOL is 0.001.
If the optional parameter REORDER is zero, poles are not sorted.
The value MULTP is a vector specifying the multiplicity of the poles. MULTP(:) refers to multiplicity of P(INDX(:)).
For example,
p = [2 3 1 1 2];
[m, n] = mpoles(p);
=> m = [1; 1; 2; 1; 2]
=> n = [2; 5; 1; 4; 3]
=> p(n) = [3, 2, 2, 1, 1]
See also: poly, roots, conv, deconv, polyval, polyderiv, polyinteg, residue.
# name: <cell-element>
# type: string
# elements: 1
# length: 101
Identify unique poles in P and associates their multiplicity, ordering them from largest to smallest.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
polyval
# name: <cell-element>
# type: string
# elements: 1
# length: 775
-- Function File: Y = polyval (P, X)
-- Function File: Y = polyval (P, X, [], MU)
Evaluate the polynomial at of the specified values for X. When MU is present evaluate the polynomial for (X-MU(1))/MU(2). If X is a vector or matrix, the polynomial is evaluated for each of the elements of X.
-- Function File: [Y, DY] = polyval (P, X, S)
-- Function File: [Y, DY] = polyval (P, X, S, MU)
In addition to evaluating the polynomial, the second output represents the prediction interval, Y +/- DY, which contains at least 50% of the future predictions. To calculate the prediction interval, the structured variable S, originating form `polyfit', must be present. See also: polyfit, polyvalm, poly, roots, conv, deconv, residue, filter, polyderiv, polyinteg.
# name: <cell-element>
# type: string
# elements: 1
# length: 160
In addition to evaluating the polynomial, the second output represents the prediction interval, Y +/- DY, which contains at least 50% of the future predictions.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
convn
# name: <cell-element>
# type: string
# elements: 1
# length: 651
-- Function File: C = convn (A, B, SHAPE)
N-dimensional convolution of matrices A and B.
The size of the output is determined by the SHAPE argument. This can be any of the following character strings:
"full"
The full convolution result is returned. The size out of the output is `size (A) + size (B)-1'. This is the default behavior.
"same"
The central part of the convolution result is returned. The size out of the output is the same as A.
"valid"
The valid part of the convolution is returned. The size of the result is `max (size (A) - size (B)+1, 0)'.
See also: conv, conv2.
# name: <cell-element>
# type: string
# elements: 1
# length: 46
N-dimensional convolution of matrices A and B.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
polyvalm
# name: <cell-element>
# type: string
# elements: 1
# length: 397
-- Function File: polyvalm (C, X)
Evaluate a polynomial in the matrix sense.
`polyvalm (C, X)' will evaluate the polynomial in the matrix sense, i.e., matrix multiplication is used instead of element by element multiplication as is used in polyval.
The argument X must be a square matrix. See also: polyval, poly, roots, conv, deconv, residue, filter, polyderiv, polyinteg.
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Evaluate a polynomial in the matrix sense.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
polyout
# name: <cell-element>
# type: string
# elements: 1
# length: 334
-- Function File: polyout (C, X)
Write formatted polynomial
c(x) = c(1) * x^n + ... + c(n) x + c(n+1)
and return it as a string or write it to the screen (if NARGOUT is zero). X defaults to the string `"s"'. See also: polyval, polyvalm, poly, roots, conv, deconv, residue, filter, polyderiv, polyinteg.
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Write formatted polynomial c(x) = c(1) * x^n + .
# name: <cell-element>
# type: string
# elements: 1
# length: 6
unmkpp
# name: <cell-element>
# type: string
# elements: 1
# length: 821
-- Function File: [X, P, N, K, D] = unmkpp (PP)
Extract the components of a piece-wise polynomial structure PP. These are as follows:
X
Sample points.
P
Polynomial coefficients for points in sample interval. `P (I, :)' contains the coefficients for the polynomial over interval I ordered from highest to lowest. If `D > 1', `P (R, I, :)' contains the coefficients for the r-th polynomial defined on interval I. However, this is stored as a 2-D array such that `C = reshape (P (:, J), N, D)' gives `C (I, R)' is the j-th coefficient of the r-th polynomial over the i-th interval.
N
Number of polynomial pieces.
K
Order of the polynomial plus 1.
D
Number of polynomials defined for each interval.
See also: mkpp, ppval, spline.
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Extract the components of a piece-wise polynomial structure PP.
# name: <cell-element>
# type: string
# elements: 1
# length: 10
polyaffine
# name: <cell-element>
# type: string
# elements: 1
# length: 330
-- Function File: polyaffine (F, MU)
Return the coefficients of the polynomial whose coefficients are given by vector F after an affine tranformation. If F is the vector representing the polynomial f(x), then G = polytrans (F, MU) is the vector representing
g(x) = f((x-MU(1))/MU(2)).
See also: polyval.
# name: <cell-element>
# type: string
# elements: 1
# length: 113
Return the coefficients of the polynomial whose coefficients are given by vector F after an affine tranformation.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
poly
# name: <cell-element>
# type: string
# elements: 1
# length: 811
-- Function File: poly (A)
If A is a square N-by-N matrix, `poly (A)' is the row vector of the coefficients of `det (z * eye (N) - a)', the characteristic polynomial of A. As an example we can use this to find the eigenvalues of A as the roots of `poly (A)'.
roots(poly(eye(3)))
=> 1.00000 + 0.00000i
=> 1.00000 - 0.00000i
=> 1.00000 + 0.00000i
In real-life examples you should, however, use the `eig' function for computing eigenvalues.
If X is a vector, `poly (X)' is a vector of coefficients of the polynomial whose roots are the elements of X. That is, of C is a polynomial, then the elements of `D = roots (poly (C))' are contained in C. The vectors C and D are, however, not equal due to sorting and numerical errors. See also: eig, roots.
# name: <cell-element>
# type: string
# elements: 1
# length: 144
If A is a square N-by-N matrix, `poly (A)' is the row vector of the coefficients of `det (z * eye (N) - a)', the characteristic polynomial of A.
# name: <cell-element>
# type: string
# elements: 1
# length: 8
datetick
# name: <cell-element>
# type: string
# elements: 1
# length: 609
-- Function File: datetick (FORM)
-- Function File: datetick (AXIS, FORM)
-- Function File: datetick (..., "keeplimits")
-- Function File: datetick (..., "keepticks")
-- Function File: datetick (...ax, ...)
Adds date formatted tick labels to an axis. The axis the apply the ticks to is determined by AXIS that can take the values "x", "y" or "z". The default value is "x". The formatting of the labels is determined by the variable FORM, that can either be a string in the format needed by `dateform', or a positive integer that can be accepted by `datestr'. See also: datenum, datestr.
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Adds date formatted tick labels to an axis.
# name: <cell-element>
# type: string
# elements: 1
# length: 12
is_leap_year
# name: <cell-element>
# type: string
# elements: 1
# length: 242
-- Function File: is_leap_year (YEAR)
Return 1 if the given year is a leap year and 0 otherwise. If no arguments are provided, `is_leap_year' will use the current year. For example,
is_leap_year (2000)
=> 1
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Return 1 if the given year is a leap year and 0 otherwise.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
datenum
# name: <cell-element>
# type: string
# elements: 1
# length: 1408
-- Function File: datenum (YEAR, MONTH, DAY)
-- Function File: datenum (YEAR, MONTH, DAY, HOUR)
-- Function File: datenum (YEAR, MONTH, DAY, HOUR, MINUTE)
-- Function File: datenum (YEAR, MONTH, DAY, HOUR, MINUTE, SECOND)
-- Function File: datenum (`"date"')
-- Function File: datenum (`"date"', P)
Returns the specified local time as a day number, with Jan 1, 0000 being day 1. By this reckoning, Jan 1, 1970 is day number 719529. The fractional portion, P, corresponds to the portion of the specified day.
Notes:
* Years can be negative and/or fractional.
* Months below 1 are considered to be January.
* Days of the month start at 1.
* Days beyond the end of the month go into subsequent months.
* Days before the beginning of the month go to the previous month.
* Days can be fractional.
*Warning:* this function does not attempt to handle Julian calendars so dates before Octave 15, 1582 are wrong by as much as eleven days. Also be aware that only Roman Catholic countries adopted the calendar in 1582. It took until 1924 for it to be adopted everywhere. See the Wikipedia entry on the Gregorian calendar for more details.
*Warning:* leap seconds are ignored. A table of leap seconds is available on the Wikipedia entry for leap seconds. See also: date, clock, now, datestr, datevec, calendar, weekday.
# name: <cell-element>
# type: string
# elements: 1
# length: 79
Returns the specified local time as a day number, with Jan 1, 0000 being day 1.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
weekday
# name: <cell-element>
# type: string
# elements: 1
# length: 449
-- Function File: [N, S] = weekday (D, [FORM])
Return the day of week as a number in N and a string in S, for example `[1, "Sun"]', `[2, "Mon"]', ..., or `[7, "Sat"]'.
D is a serial date number or a date string.
If the string FORM is given and is `"long"', S will contain the full name of the weekday; otherwise (or if FORM is `"short"'), S will contain the abbreviated name of the weekday. See also: datenum, datevec, eomday.
# name: <cell-element>
# type: string
# elements: 1
# length: 100
Return the day of week as a number in N and a string in S, for example `[1, "Sun"]', `[2, "Mon"]', .
# name: <cell-element>
# type: string
# elements: 1
# length: 8
calendar
# name: <cell-element>
# type: string
# elements: 1
# length: 573
-- Function File: calendar (...)
-- Function File: C = calendar ()
-- Function File: C = calendar (D)
-- Function File: C = calendar (Y, M)
If called with no arguments, return the current monthly calendar in a 6x7 matrix.
If D is specified, return the calendar for the month containing the day D, which must be a serial date number or a date string.
If Y and M are specified, return the calendar for year Y and month M.
If no output arguments are specified, print the calendar on the screen instead of returning a matrix. See also: datenum.
# name: <cell-element>
# type: string
# elements: 1
# length: 81
If called with no arguments, return the current monthly calendar in a 6x7 matrix.
# name: <cell-element>
# type: string
# elements: 1
# length: 4
date
# name: <cell-element>
# type: string
# elements: 1
# length: 157
-- Function File: date ()
Return the date as a character string in the form DD-MMM-YY. For example,
date ()
=> "20-Aug-93"
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Return the date as a character string in the form DD-MMM-YY.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
asctime
# name: <cell-element>
# type: string
# elements: 1
# length: 299
-- Function File: asctime (TM_STRUCT)
Convert a time structure to a string using the following five-field format: Thu Mar 28 08:40:14 1996. For example,
asctime (localtime (time ()))
=> "Mon Feb 17 01:15:06 1997\n"
This is equivalent to `ctime (time ())'.
# name: <cell-element>
# type: string
# elements: 1
# length: 101
Convert a time structure to a string using the following five-field format: Thu Mar 28 08:40:14 1996.
# name: <cell-element>
# type: string
# elements: 1
# length: 9
addtodate
# name: <cell-element>
# type: string
# elements: 1
# length: 213
-- Function File: D = addtodate (D, Q, F)
Add Q amount of time (with units F) to the datenum, D.
F must be one of "year", "month", "day", "hour", "minute", or "second". See also: datenum, datevec.
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Add Q amount of time (with units F) to the datenum, D.
# name: <cell-element>
# type: string
# elements: 1
# length: 6
eomday
# name: <cell-element>
# type: string
# elements: 1
# length: 134
-- Function File: E = eomday (Y, M)
Return the last day of the month M for the year Y. See also: datenum, datevec, weekday.
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Return the last day of the month M for the year Y.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
datevec
# name: <cell-element>
# type: string
# elements: 1
# length: 736
-- Function File: V = datevec (DATE)
-- Function File: V = datevec (DATE, F)
-- Function File: V = datevec (DATE, P)
-- Function File: V = datevec (DATE, F, P)
-- Function File: [Y, M, D, H, MI, S] = datevec (...)
Convert a serial date number (see `datenum') or date string (see `datestr') into a date vector.
A date vector is a row vector with six members, representing the year, month, day, hour, minute, and seconds respectively.
F is the format string used to interpret date strings (see `datestr').
P is the year at the start of the century in which two-digit years are to be interpreted in. If not specified, it defaults to the current year minus 50. See also: datenum, datestr, date, clock, now.
# name: <cell-element>
# type: string
# elements: 1
# length: 95
Convert a serial date number (see `datenum') or date string (see `datestr') into a date vector.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
clock
# name: <cell-element>
# type: string
# elements: 1
# length: 324
-- Function File: clock ()
Return a vector containing the current year, month (1-12), day (1-31), hour (0-23), minute (0-59) and second (0-61). For example,
clock ()
=> [ 1993, 8, 20, 4, 56, 1 ]
The function clock is more accurate on systems that have the `gettimeofday' function.
# name: <cell-element>
# type: string
# elements: 1
# length: 116
Return a vector containing the current year, month (1-12), day (1-31), hour (0-23), minute (0-59) and second (0-61).
# name: <cell-element>
# type: string
# elements: 1
# length: 5
etime
# name: <cell-element>
# type: string
# elements: 1
# length: 388
-- Function File: etime (T1, T2)
Return the difference (in seconds) between two time values returned from `clock'. For example:
t0 = clock ();
many computations later...
elapsed_time = etime (clock (), t0);
will set the variable `elapsed_time' to the number of seconds since the variable `t0' was set. See also: tic, toc, clock, cputime.
# name: <cell-element>
# type: string
# elements: 1
# length: 81
Return the difference (in seconds) between two time values returned from `clock'.
# name: <cell-element>
# type: string
# elements: 1
# length: 5
ctime
# name: <cell-element>
# type: string
# elements: 1
# length: 342
-- Function File: ctime (T)
Convert a value returned from `time' (or any other non-negative integer), to the local time and return a string of the same form as `asctime'. The function `ctime (time)' is equivalent to `asctime (localtime (time))'. For example,
ctime (time ())
=> "Mon Feb 17 01:15:06 1997\n"
# name: <cell-element>
# type: string
# elements: 1
# length: 142
Convert a value returned from `time' (or any other non-negative integer), to the local time and return a string of the same form as `asctime'.
# name: <cell-element>
# type: string
# elements: 1
# length: 7
datestr
# name: <cell-element>
# type: string
# elements: 1
# length: 35322
-- Function File: STR = datestr (DATE, [F, [P]])
Format the given date/time according to the format `f' and return the result in STR. DATE is a serial date number (see `datenum') or a date vector (see `datevec'). The value of DATE may also be a string or cell array of strings.
F can be an integer which corresponds to one of the codes in the table below, or a date format string.
P is the year at the start of the century in which two-digit years are to be interpreted in. If not specified, it defaults to the current year minus 50.
For example, the date 730736.65149 (2000-09-07 15:38:09.0934) would be formatted as follows:
Code Format Example
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
0 dd-mmm-yyyy HH:MM:SS 07-Sep-2000 15:38:09
1 dd-mmm-yyyy 07-Sep-2000
2 mm/dd/yy 09/07/00
3 mmm Sep
4 m S
5 mm 09
6 mm/dd 09/07
7 dd 07
8 ddd Thu
9 d T
10 yyyy 2000
11 yy 00
12 mmmyy Sep00
13 HH:MM:SS 15:38:09
14 HH:MM:SS PM 03:38:09 PM
15 HH:MM 15:38
16 HH:MM PM 03:38 PM
17 QQ-YY Q3-00
18 QQ Q3
19 dd/mm 13/03
20 dd/mm/yy 13/03/95
21 mmm.dd.yyyy HH:MM:SS Mar.03.1962 13:53:06
22 mmm.dd.yyyy Mar.03.1962
23 mm/dd/yyyy 03/13/1962
24 dd/mm/yyyy 12/03/1962
25 yy/mm/dd 95/03/13
26 yyyy/mm/dd 1995/03/13
27 QQ-YYYY Q4-2132
28 mmmyyyy Mar2047
29 yyyymmdd 20470313
30 yyyymmddTHHMMSS 20470313T132603
31 yyyy-mm-dd HH:MM:SS 1047-03-13 13:26:03
If F is a format string, the following symbols are recognized:
Symbol Meaning Example
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
yyyy Full year 2005
yy Two-digit year 2005
mmmm Full month name December
mmm Abbreviated month name Dec
mm Numeric month number (padded with zeros) 01, 08, 12
m First letter of month name (capitalized) D
dddd Full weekday name Sunday
ddd Abbreviated weekday name Sun
dd Numeric day of month (padded with zeros) 11
d First letter of weekday name (capitalized) S
HH Hour of day, padded with zeros if PM is set 09:00
and not padded with zeros otherwise 9:00 AM
MM Minute of hour (padded with zeros) 10:05
SS Second of minute (padded with zeros) 10:05:03
PM Use 12-hour time format 11:30 PM
If F is not specified or is `-1', then use 0, 1 or 16, depending on whether the date portion or the time portion of DATE is empty.
If P is nor specified, it defaults to the current year minus 50.
If a matrix or cell array of dates is given, a vector of date strings is returned.
See also: datenum, datevec, date, clock, now, datetick.
# name: <cell-element>
# type: string
# elements: 1
# length: 84
Format the given date/time according to the format `f' and return the result in STR.
# name: <cell-element>
# type: string
# elements: 1
# length: 3
now
# name: <cell-element>
# type: string
# elements: 1
# length: 437
-- Function File: t = now ()
Returns the current local time as the number of days since Jan 1, 0000. By this reckoning, Jan 1, 1970 is day number 719529.
The integral part, `floor (now)' corresponds to 00:00:00 today.
The fractional part, `rem (now, 1)' corresponds to the current time on Jan 1, 0000.
The returned value is also called a "serial date number" (see `datenum'). See also: clock, date, datenum.
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Returns the current local time as the number of days since Jan 1, 0000.
|