File: doc-cache

package info (click to toggle)
octave3.2 3.2.4-8
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 62,936 kB
  • ctags: 37,353
  • sloc: cpp: 219,497; fortran: 116,336; ansic: 10,264; sh: 5,508; makefile: 4,245; lex: 3,573; yacc: 3,062; objc: 2,042; lisp: 1,692; awk: 860; perl: 844
file content (35719 lines) | stat: -rw-r--r-- 1,214,007 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
30014
30015
30016
30017
30018
30019
30020
30021
30022
30023
30024
30025
30026
30027
30028
30029
30030
30031
30032
30033
30034
30035
30036
30037
30038
30039
30040
30041
30042
30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074
30075
30076
30077
30078
30079
30080
30081
30082
30083
30084
30085
30086
30087
30088
30089
30090
30091
30092
30093
30094
30095
30096
30097
30098
30099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249
30250
30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
30271
30272
30273
30274
30275
30276
30277
30278
30279
30280
30281
30282
30283
30284
30285
30286
30287
30288
30289
30290
30291
30292
30293
30294
30295
30296
30297
30298
30299
30300
30301
30302
30303
30304
30305
30306
30307
30308
30309
30310
30311
30312
30313
30314
30315
30316
30317
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
30332
30333
30334
30335
30336
30337
30338
30339
30340
30341
30342
30343
30344
30345
30346
30347
30348
30349
30350
30351
30352
30353
30354
30355
30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
30369
30370
30371
30372
30373
30374
30375
30376
30377
30378
30379
30380
30381
30382
30383
30384
30385
30386
30387
30388
30389
30390
30391
30392
30393
30394
30395
30396
30397
30398
30399
30400
30401
30402
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420
30421
30422
30423
30424
30425
30426
30427
30428
30429
30430
30431
30432
30433
30434
30435
30436
30437
30438
30439
30440
30441
30442
30443
30444
30445
30446
30447
30448
30449
30450
30451
30452
30453
30454
30455
30456
30457
30458
30459
30460
30461
30462
30463
30464
30465
30466
30467
30468
30469
30470
30471
30472
30473
30474
30475
30476
30477
30478
30479
30480
30481
30482
30483
30484
30485
30486
30487
30488
30489
30490
30491
30492
30493
30494
30495
30496
30497
30498
30499
30500
30501
30502
30503
30504
30505
30506
30507
30508
30509
30510
30511
30512
30513
30514
30515
30516
30517
30518
30519
30520
30521
30522
30523
30524
30525
30526
30527
30528
30529
30530
30531
30532
30533
30534
30535
30536
30537
30538
30539
30540
30541
30542
30543
30544
30545
30546
30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
30569
30570
30571
30572
30573
30574
30575
30576
30577
30578
30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
30596
30597
30598
30599
30600
30601
30602
30603
30604
30605
30606
30607
30608
30609
30610
30611
30612
30613
30614
30615
30616
30617
30618
30619
30620
30621
30622
30623
30624
30625
30626
30627
30628
30629
30630
30631
30632
30633
30634
30635
30636
30637
30638
30639
30640
30641
30642
30643
30644
30645
30646
30647
30648
30649
30650
30651
30652
30653
30654
30655
30656
30657
30658
30659
30660
30661
30662
30663
30664
30665
30666
30667
30668
30669
30670
30671
30672
30673
30674
30675
30676
30677
30678
30679
30680
30681
30682
30683
30684
30685
30686
30687
30688
30689
30690
30691
30692
30693
30694
30695
30696
30697
30698
30699
30700
30701
30702
30703
30704
30705
30706
30707
30708
30709
30710
30711
30712
30713
30714
30715
30716
30717
30718
30719
30720
30721
30722
30723
30724
30725
30726
30727
30728
30729
30730
30731
30732
30733
30734
30735
30736
30737
30738
30739
30740
30741
30742
30743
30744
30745
30746
30747
30748
30749
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
30762
30763
30764
30765
30766
30767
30768
30769
30770
30771
30772
30773
30774
30775
30776
30777
30778
30779
30780
30781
30782
30783
30784
30785
30786
30787
30788
30789
30790
30791
30792
30793
30794
30795
30796
30797
30798
30799
30800
30801
30802
30803
30804
30805
30806
30807
30808
30809
30810
30811
30812
30813
30814
30815
30816
30817
30818
30819
30820
30821
30822
30823
30824
30825
30826
30827
30828
30829
30830
30831
30832
30833
30834
30835
30836
30837
30838
30839
30840
30841
30842
30843
30844
30845
30846
30847
30848
30849
30850
30851
30852
30853
30854
30855
30856
30857
30858
30859
30860
30861
30862
30863
30864
30865
30866
30867
30868
30869
30870
30871
30872
30873
30874
30875
30876
30877
30878
30879
30880
30881
30882
30883
30884
30885
30886
30887
30888
30889
30890
30891
30892
30893
30894
30895
30896
30897
30898
30899
30900
30901
30902
30903
30904
30905
30906
30907
30908
30909
30910
30911
30912
30913
30914
30915
30916
30917
30918
30919
30920
30921
30922
30923
30924
30925
30926
30927
30928
30929
30930
30931
30932
30933
30934
30935
30936
30937
30938
30939
30940
30941
30942
30943
30944
30945
30946
30947
30948
30949
30950
30951
30952
30953
30954
30955
30956
30957
30958
30959
30960
30961
30962
30963
30964
30965
30966
30967
30968
30969
30970
30971
30972
30973
30974
30975
30976
30977
30978
30979
30980
30981
30982
30983
30984
30985
30986
30987
30988
30989
30990
30991
30992
30993
30994
30995
30996
30997
30998
30999
31000
31001
31002
31003
31004
31005
31006
31007
31008
31009
31010
31011
31012
31013
31014
31015
31016
31017
31018
31019
31020
31021
31022
31023
31024
31025
31026
31027
31028
31029
31030
31031
31032
31033
31034
31035
31036
31037
31038
31039
31040
31041
31042
31043
31044
31045
31046
31047
31048
31049
31050
31051
31052
31053
31054
31055
31056
31057
31058
31059
31060
31061
31062
31063
31064
31065
31066
31067
31068
31069
31070
31071
31072
31073
31074
31075
31076
31077
31078
31079
31080
31081
31082
31083
31084
31085
31086
31087
31088
31089
31090
31091
31092
31093
31094
31095
31096
31097
31098
31099
31100
31101
31102
31103
31104
31105
31106
31107
31108
31109
31110
31111
31112
31113
31114
31115
31116
31117
31118
31119
31120
31121
31122
31123
31124
31125
31126
31127
31128
31129
31130
31131
31132
31133
31134
31135
31136
31137
31138
31139
31140
31141
31142
31143
31144
31145
31146
31147
31148
31149
31150
31151
31152
31153
31154
31155
31156
31157
31158
31159
31160
31161
31162
31163
31164
31165
31166
31167
31168
31169
31170
31171
31172
31173
31174
31175
31176
31177
31178
31179
31180
31181
31182
31183
31184
31185
31186
31187
31188
31189
31190
31191
31192
31193
31194
31195
31196
31197
31198
31199
31200
31201
31202
31203
31204
31205
31206
31207
31208
31209
31210
31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
31243
31244
31245
31246
31247
31248
31249
31250
31251
31252
31253
31254
31255
31256
31257
31258
31259
31260
31261
31262
31263
31264
31265
31266
31267
31268
31269
31270
31271
31272
31273
31274
31275
31276
31277
31278
31279
31280
31281
31282
31283
31284
31285
31286
31287
31288
31289
31290
31291
31292
31293
31294
31295
31296
31297
31298
31299
31300
31301
31302
31303
31304
31305
31306
31307
31308
31309
31310
31311
31312
31313
31314
31315
31316
31317
31318
31319
31320
31321
31322
31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
31340
31341
31342
31343
31344
31345
31346
31347
31348
31349
31350
31351
31352
31353
31354
31355
31356
31357
31358
31359
31360
31361
31362
31363
31364
31365
31366
31367
31368
31369
31370
31371
31372
31373
31374
31375
31376
31377
31378
31379
31380
31381
31382
31383
31384
31385
31386
31387
31388
31389
31390
31391
31392
31393
31394
31395
31396
31397
31398
31399
31400
31401
31402
31403
31404
31405
31406
31407
31408
31409
31410
31411
31412
31413
31414
31415
31416
31417
31418
31419
31420
31421
31422
31423
31424
31425
31426
31427
31428
31429
31430
31431
31432
31433
31434
31435
31436
31437
31438
31439
31440
31441
31442
31443
31444
31445
31446
31447
31448
31449
31450
31451
31452
31453
31454
31455
31456
31457
31458
31459
31460
31461
31462
31463
31464
31465
31466
31467
31468
31469
31470
31471
31472
31473
31474
31475
31476
31477
31478
31479
31480
31481
31482
31483
31484
31485
31486
31487
31488
31489
31490
31491
31492
31493
31494
31495
31496
31497
31498
31499
31500
31501
31502
31503
31504
31505
31506
31507
31508
31509
31510
31511
31512
31513
31514
31515
31516
31517
31518
31519
31520
31521
31522
31523
31524
31525
31526
31527
31528
31529
31530
31531
31532
31533
31534
31535
31536
31537
31538
31539
31540
31541
31542
31543
31544
31545
31546
31547
31548
31549
31550
31551
31552
31553
31554
31555
31556
31557
31558
31559
31560
31561
31562
31563
31564
31565
31566
31567
31568
31569
31570
31571
31572
31573
31574
31575
31576
31577
31578
31579
31580
31581
31582
31583
31584
31585
31586
31587
31588
31589
31590
31591
31592
31593
31594
31595
31596
31597
31598
31599
31600
31601
31602
31603
31604
31605
31606
31607
31608
31609
31610
31611
31612
31613
31614
31615
31616
31617
31618
31619
31620
31621
31622
31623
31624
31625
31626
31627
31628
31629
31630
31631
31632
31633
31634
31635
31636
31637
31638
31639
31640
31641
31642
31643
31644
31645
31646
31647
31648
31649
31650
31651
31652
31653
31654
31655
31656
31657
31658
31659
31660
31661
31662
31663
31664
31665
31666
31667
31668
31669
31670
31671
31672
31673
31674
31675
31676
31677
31678
31679
31680
31681
31682
31683
31684
31685
31686
31687
31688
31689
31690
31691
31692
31693
31694
31695
31696
31697
31698
31699
31700
31701
31702
31703
31704
31705
31706
31707
31708
31709
31710
31711
31712
31713
31714
31715
31716
31717
31718
31719
31720
31721
31722
31723
31724
31725
31726
31727
31728
31729
31730
31731
31732
31733
31734
31735
31736
31737
31738
31739
31740
31741
31742
31743
31744
31745
31746
31747
31748
31749
31750
31751
31752
31753
31754
31755
31756
31757
31758
31759
31760
31761
31762
31763
31764
31765
31766
31767
31768
31769
31770
31771
31772
31773
31774
31775
31776
31777
31778
31779
31780
31781
31782
31783
31784
31785
31786
31787
31788
31789
31790
31791
31792
31793
31794
31795
31796
31797
31798
31799
31800
31801
31802
31803
31804
31805
31806
31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817
31818
31819
31820
31821
31822
31823
31824
31825
31826
31827
31828
31829
31830
31831
31832
31833
31834
31835
31836
31837
31838
31839
31840
31841
31842
31843
31844
31845
31846
31847
31848
31849
31850
31851
31852
31853
31854
31855
31856
31857
31858
31859
31860
31861
31862
31863
31864
31865
31866
31867
31868
31869
31870
31871
31872
31873
31874
31875
31876
31877
31878
31879
31880
31881
31882
31883
31884
31885
31886
31887
31888
31889
31890
31891
31892
31893
31894
31895
31896
31897
31898
31899
31900
31901
31902
31903
31904
31905
31906
31907
31908
31909
31910
31911
31912
31913
31914
31915
31916
31917
31918
31919
31920
31921
31922
31923
31924
31925
31926
31927
31928
31929
31930
31931
31932
31933
31934
31935
31936
31937
31938
31939
31940
31941
31942
31943
31944
31945
31946
31947
31948
31949
31950
31951
31952
31953
31954
31955
31956
31957
31958
31959
31960
31961
31962
31963
31964
31965
31966
31967
31968
31969
31970
31971
31972
31973
31974
31975
31976
31977
31978
31979
31980
31981
31982
31983
31984
31985
31986
31987
31988
31989
31990
31991
31992
31993
31994
31995
31996
31997
31998
31999
32000
32001
32002
32003
32004
32005
32006
32007
32008
32009
32010
32011
32012
32013
32014
32015
32016
32017
32018
32019
32020
32021
32022
32023
32024
32025
32026
32027
32028
32029
32030
32031
32032
32033
32034
32035
32036
32037
32038
32039
32040
32041
32042
32043
32044
32045
32046
32047
32048
32049
32050
32051
32052
32053
32054
32055
32056
32057
32058
32059
32060
32061
32062
32063
32064
32065
32066
32067
32068
32069
32070
32071
32072
32073
32074
32075
32076
32077
32078
32079
32080
32081
32082
32083
32084
32085
32086
32087
32088
32089
32090
32091
32092
32093
32094
32095
32096
32097
32098
32099
32100
32101
32102
32103
32104
32105
32106
32107
32108
32109
32110
32111
32112
32113
32114
32115
32116
32117
32118
32119
32120
32121
32122
32123
32124
32125
32126
32127
32128
32129
32130
32131
32132
32133
32134
32135
32136
32137
32138
32139
32140
32141
32142
32143
32144
32145
32146
32147
32148
32149
32150
32151
32152
32153
32154
32155
32156
32157
32158
32159
32160
32161
32162
32163
32164
32165
32166
32167
32168
32169
32170
32171
32172
32173
32174
32175
32176
32177
32178
32179
32180
32181
32182
32183
32184
32185
32186
32187
32188
32189
32190
32191
32192
32193
32194
32195
32196
32197
32198
32199
32200
32201
32202
32203
32204
32205
32206
32207
32208
32209
32210
32211
32212
32213
32214
32215
32216
32217
32218
32219
32220
32221
32222
32223
32224
32225
32226
32227
32228
32229
32230
32231
32232
32233
32234
32235
32236
32237
32238
32239
32240
32241
32242
32243
32244
32245
32246
32247
32248
32249
32250
32251
32252
32253
32254
32255
32256
32257
32258
32259
32260
32261
32262
32263
32264
32265
32266
32267
32268
32269
32270
32271
32272
32273
32274
32275
32276
32277
32278
32279
32280
32281
32282
32283
32284
32285
32286
32287
32288
32289
32290
32291
32292
32293
32294
32295
32296
32297
32298
32299
32300
32301
32302
32303
32304
32305
32306
32307
32308
32309
32310
32311
32312
32313
32314
32315
32316
32317
32318
32319
32320
32321
32322
32323
32324
32325
32326
32327
32328
32329
32330
32331
32332
32333
32334
32335
32336
32337
32338
32339
32340
32341
32342
32343
32344
32345
32346
32347
32348
32349
32350
32351
32352
32353
32354
32355
32356
32357
32358
32359
32360
32361
32362
32363
32364
32365
32366
32367
32368
32369
32370
32371
32372
32373
32374
32375
32376
32377
32378
32379
32380
32381
32382
32383
32384
32385
32386
32387
32388
32389
32390
32391
32392
32393
32394
32395
32396
32397
32398
32399
32400
32401
32402
32403
32404
32405
32406
32407
32408
32409
32410
32411
32412
32413
32414
32415
32416
32417
32418
32419
32420
32421
32422
32423
32424
32425
32426
32427
32428
32429
32430
32431
32432
32433
32434
32435
32436
32437
32438
32439
32440
32441
32442
32443
32444
32445
32446
32447
32448
32449
32450
32451
32452
32453
32454
32455
32456
32457
32458
32459
32460
32461
32462
32463
32464
32465
32466
32467
32468
32469
32470
32471
32472
32473
32474
32475
32476
32477
32478
32479
32480
32481
32482
32483
32484
32485
32486
32487
32488
32489
32490
32491
32492
32493
32494
32495
32496
32497
32498
32499
32500
32501
32502
32503
32504
32505
32506
32507
32508
32509
32510
32511
32512
32513
32514
32515
32516
32517
32518
32519
32520
32521
32522
32523
32524
32525
32526
32527
32528
32529
32530
32531
32532
32533
32534
32535
32536
32537
32538
32539
32540
32541
32542
32543
32544
32545
32546
32547
32548
32549
32550
32551
32552
32553
32554
32555
32556
32557
32558
32559
32560
32561
32562
32563
32564
32565
32566
32567
32568
32569
32570
32571
32572
32573
32574
32575
32576
32577
32578
32579
32580
32581
32582
32583
32584
32585
32586
32587
32588
32589
32590
32591
32592
32593
32594
32595
32596
32597
32598
32599
32600
32601
32602
32603
32604
32605
32606
32607
32608
32609
32610
32611
32612
32613
32614
32615
32616
32617
32618
32619
32620
32621
32622
32623
32624
32625
32626
32627
32628
32629
32630
32631
32632
32633
32634
32635
32636
32637
32638
32639
32640
32641
32642
32643
32644
32645
32646
32647
32648
32649
32650
32651
32652
32653
32654
32655
32656
32657
32658
32659
32660
32661
32662
32663
32664
32665
32666
32667
32668
32669
32670
32671
32672
32673
32674
32675
32676
32677
32678
32679
32680
32681
32682
32683
32684
32685
32686
32687
32688
32689
32690
32691
32692
32693
32694
32695
32696
32697
32698
32699
32700
32701
32702
32703
32704
32705
32706
32707
32708
32709
32710
32711
32712
32713
32714
32715
32716
32717
32718
32719
32720
32721
32722
32723
32724
32725
32726
32727
32728
32729
32730
32731
32732
32733
32734
32735
32736
32737
32738
32739
32740
32741
32742
32743
32744
32745
32746
32747
32748
32749
32750
32751
32752
32753
32754
32755
32756
32757
32758
32759
32760
32761
32762
32763
32764
32765
32766
32767
32768
32769
32770
32771
32772
32773
32774
32775
32776
32777
32778
32779
32780
32781
32782
32783
32784
32785
32786
32787
32788
32789
32790
32791
32792
32793
32794
32795
32796
32797
32798
32799
32800
32801
32802
32803
32804
32805
32806
32807
32808
32809
32810
32811
32812
32813
32814
32815
32816
32817
32818
32819
32820
32821
32822
32823
32824
32825
32826
32827
32828
32829
32830
32831
32832
32833
32834
32835
32836
32837
32838
32839
32840
32841
32842
32843
32844
32845
32846
32847
32848
32849
32850
32851
32852
32853
32854
32855
32856
32857
32858
32859
32860
32861
32862
32863
32864
32865
32866
32867
32868
32869
32870
32871
32872
32873
32874
32875
32876
32877
32878
32879
32880
32881
32882
32883
32884
32885
32886
32887
32888
32889
32890
32891
32892
32893
32894
32895
32896
32897
32898
32899
32900
32901
32902
32903
32904
32905
32906
32907
32908
32909
32910
32911
32912
32913
32914
32915
32916
32917
32918
32919
32920
32921
32922
32923
32924
32925
32926
32927
32928
32929
32930
32931
32932
32933
32934
32935
32936
32937
32938
32939
32940
32941
32942
32943
32944
32945
32946
32947
32948
32949
32950
32951
32952
32953
32954
32955
32956
32957
32958
32959
32960
32961
32962
32963
32964
32965
32966
32967
32968
32969
32970
32971
32972
32973
32974
32975
32976
32977
32978
32979
32980
32981
32982
32983
32984
32985
32986
32987
32988
32989
32990
32991
32992
32993
32994
32995
32996
32997
32998
32999
33000
33001
33002
33003
33004
33005
33006
33007
33008
33009
33010
33011
33012
33013
33014
33015
33016
33017
33018
33019
33020
33021
33022
33023
33024
33025
33026
33027
33028
33029
33030
33031
33032
33033
33034
33035
33036
33037
33038
33039
33040
33041
33042
33043
33044
33045
33046
33047
33048
33049
33050
33051
33052
33053
33054
33055
33056
33057
33058
33059
33060
33061
33062
33063
33064
33065
33066
33067
33068
33069
33070
33071
33072
33073
33074
33075
33076
33077
33078
33079
33080
33081
33082
33083
33084
33085
33086
33087
33088
33089
33090
33091
33092
33093
33094
33095
33096
33097
33098
33099
33100
33101
33102
33103
33104
33105
33106
33107
33108
33109
33110
33111
33112
33113
33114
33115
33116
33117
33118
33119
33120
33121
33122
33123
33124
33125
33126
33127
33128
33129
33130
33131
33132
33133
33134
33135
33136
33137
33138
33139
33140
33141
33142
33143
33144
33145
33146
33147
33148
33149
33150
33151
33152
33153
33154
33155
33156
33157
33158
33159
33160
33161
33162
33163
33164
33165
33166
33167
33168
33169
33170
33171
33172
33173
33174
33175
33176
33177
33178
33179
33180
33181
33182
33183
33184
33185
33186
33187
33188
33189
33190
33191
33192
33193
33194
33195
33196
33197
33198
33199
33200
33201
33202
33203
33204
33205
33206
33207
33208
33209
33210
33211
33212
33213
33214
33215
33216
33217
33218
33219
33220
33221
33222
33223
33224
33225
33226
33227
33228
33229
33230
33231
33232
33233
33234
33235
33236
33237
33238
33239
33240
33241
33242
33243
33244
33245
33246
33247
33248
33249
33250
33251
33252
33253
33254
33255
33256
33257
33258
33259
33260
33261
33262
33263
33264
33265
33266
33267
33268
33269
33270
33271
33272
33273
33274
33275
33276
33277
33278
33279
33280
33281
33282
33283
33284
33285
33286
33287
33288
33289
33290
33291
33292
33293
33294
33295
33296
33297
33298
33299
33300
33301
33302
33303
33304
33305
33306
33307
33308
33309
33310
33311
33312
33313
33314
33315
33316
33317
33318
33319
33320
33321
33322
33323
33324
33325
33326
33327
33328
33329
33330
33331
33332
33333
33334
33335
33336
33337
33338
33339
33340
33341
33342
33343
33344
33345
33346
33347
33348
33349
33350
33351
33352
33353
33354
33355
33356
33357
33358
33359
33360
33361
33362
33363
33364
33365
33366
33367
33368
33369
33370
33371
33372
33373
33374
33375
33376
33377
33378
33379
33380
33381
33382
33383
33384
33385
33386
33387
33388
33389
33390
33391
33392
33393
33394
33395
33396
33397
33398
33399
33400
33401
33402
33403
33404
33405
33406
33407
33408
33409
33410
33411
33412
33413
33414
33415
33416
33417
33418
33419
33420
33421
33422
33423
33424
33425
33426
33427
33428
33429
33430
33431
33432
33433
33434
33435
33436
33437
33438
33439
33440
33441
33442
33443
33444
33445
33446
33447
33448
33449
33450
33451
33452
33453
33454
33455
33456
33457
33458
33459
33460
33461
33462
33463
33464
33465
33466
33467
33468
33469
33470
33471
33472
33473
33474
33475
33476
33477
33478
33479
33480
33481
33482
33483
33484
33485
33486
33487
33488
33489
33490
33491
33492
33493
33494
33495
33496
33497
33498
33499
33500
33501
33502
33503
33504
33505
33506
33507
33508
33509
33510
33511
33512
33513
33514
33515
33516
33517
33518
33519
33520
33521
33522
33523
33524
33525
33526
33527
33528
33529
33530
33531
33532
33533
33534
33535
33536
33537
33538
33539
33540
33541
33542
33543
33544
33545
33546
33547
33548
33549
33550
33551
33552
33553
33554
33555
33556
33557
33558
33559
33560
33561
33562
33563
33564
33565
33566
33567
33568
33569
33570
33571
33572
33573
33574
33575
33576
33577
33578
33579
33580
33581
33582
33583
33584
33585
33586
33587
33588
33589
33590
33591
33592
33593
33594
33595
33596
33597
33598
33599
33600
33601
33602
33603
33604
33605
33606
33607
33608
33609
33610
33611
33612
33613
33614
33615
33616
33617
33618
33619
33620
33621
33622
33623
33624
33625
33626
33627
33628
33629
33630
33631
33632
33633
33634
33635
33636
33637
33638
33639
33640
33641
33642
33643
33644
33645
33646
33647
33648
33649
33650
33651
33652
33653
33654
33655
33656
33657
33658
33659
33660
33661
33662
33663
33664
33665
33666
33667
33668
33669
33670
33671
33672
33673
33674
33675
33676
33677
33678
33679
33680
33681
33682
33683
33684
33685
33686
33687
33688
33689
33690
33691
33692
33693
33694
33695
33696
33697
33698
33699
33700
33701
33702
33703
33704
33705
33706
33707
33708
33709
33710
33711
33712
33713
33714
33715
33716
33717
33718
33719
33720
33721
33722
33723
33724
33725
33726
33727
33728
33729
33730
33731
33732
33733
33734
33735
33736
33737
33738
33739
33740
33741
33742
33743
33744
33745
33746
33747
33748
33749
33750
33751
33752
33753
33754
33755
33756
33757
33758
33759
33760
33761
33762
33763
33764
33765
33766
33767
33768
33769
33770
33771
33772
33773
33774
33775
33776
33777
33778
33779
33780
33781
33782
33783
33784
33785
33786
33787
33788
33789
33790
33791
33792
33793
33794
33795
33796
33797
33798
33799
33800
33801
33802
33803
33804
33805
33806
33807
33808
33809
33810
33811
33812
33813
33814
33815
33816
33817
33818
33819
33820
33821
33822
33823
33824
33825
33826
33827
33828
33829
33830
33831
33832
33833
33834
33835
33836
33837
33838
33839
33840
33841
33842
33843
33844
33845
33846
33847
33848
33849
33850
33851
33852
33853
33854
33855
33856
33857
33858
33859
33860
33861
33862
33863
33864
33865
33866
33867
33868
33869
33870
33871
33872
33873
33874
33875
33876
33877
33878
33879
33880
33881
33882
33883
33884
33885
33886
33887
33888
33889
33890
33891
33892
33893
33894
33895
33896
33897
33898
33899
33900
33901
33902
33903
33904
33905
33906
33907
33908
33909
33910
33911
33912
33913
33914
33915
33916
33917
33918
33919
33920
33921
33922
33923
33924
33925
33926
33927
33928
33929
33930
33931
33932
33933
33934
33935
33936
33937
33938
33939
33940
33941
33942
33943
33944
33945
33946
33947
33948
33949
33950
33951
33952
33953
33954
33955
33956
33957
33958
33959
33960
33961
33962
33963
33964
33965
33966
33967
33968
33969
33970
33971
33972
33973
33974
33975
33976
33977
33978
33979
33980
33981
33982
33983
33984
33985
33986
33987
33988
33989
33990
33991
33992
33993
33994
33995
33996
33997
33998
33999
34000
34001
34002
34003
34004
34005
34006
34007
34008
34009
34010
34011
34012
34013
34014
34015
34016
34017
34018
34019
34020
34021
34022
34023
34024
34025
34026
34027
34028
34029
34030
34031
34032
34033
34034
34035
34036
34037
34038
34039
34040
34041
34042
34043
34044
34045
34046
34047
34048
34049
34050
34051
34052
34053
34054
34055
34056
34057
34058
34059
34060
34061
34062
34063
34064
34065
34066
34067
34068
34069
34070
34071
34072
34073
34074
34075
34076
34077
34078
34079
34080
34081
34082
34083
34084
34085
34086
34087
34088
34089
34090
34091
34092
34093
34094
34095
34096
34097
34098
34099
34100
34101
34102
34103
34104
34105
34106
34107
34108
34109
34110
34111
34112
34113
34114
34115
34116
34117
34118
34119
34120
34121
34122
34123
34124
34125
34126
34127
34128
34129
34130
34131
34132
34133
34134
34135
34136
34137
34138
34139
34140
34141
34142
34143
34144
34145
34146
34147
34148
34149
34150
34151
34152
34153
34154
34155
34156
34157
34158
34159
34160
34161
34162
34163
34164
34165
34166
34167
34168
34169
34170
34171
34172
34173
34174
34175
34176
34177
34178
34179
34180
34181
34182
34183
34184
34185
34186
34187
34188
34189
34190
34191
34192
34193
34194
34195
34196
34197
34198
34199
34200
34201
34202
34203
34204
34205
34206
34207
34208
34209
34210
34211
34212
34213
34214
34215
34216
34217
34218
34219
34220
34221
34222
34223
34224
34225
34226
34227
34228
34229
34230
34231
34232
34233
34234
34235
34236
34237
34238
34239
34240
34241
34242
34243
34244
34245
34246
34247
34248
34249
34250
34251
34252
34253
34254
34255
34256
34257
34258
34259
34260
34261
34262
34263
34264
34265
34266
34267
34268
34269
34270
34271
34272
34273
34274
34275
34276
34277
34278
34279
34280
34281
34282
34283
34284
34285
34286
34287
34288
34289
34290
34291
34292
34293
34294
34295
34296
34297
34298
34299
34300
34301
34302
34303
34304
34305
34306
34307
34308
34309
34310
34311
34312
34313
34314
34315
34316
34317
34318
34319
34320
34321
34322
34323
34324
34325
34326
34327
34328
34329
34330
34331
34332
34333
34334
34335
34336
34337
34338
34339
34340
34341
34342
34343
34344
34345
34346
34347
34348
34349
34350
34351
34352
34353
34354
34355
34356
34357
34358
34359
34360
34361
34362
34363
34364
34365
34366
34367
34368
34369
34370
34371
34372
34373
34374
34375
34376
34377
34378
34379
34380
34381
34382
34383
34384
34385
34386
34387
34388
34389
34390
34391
34392
34393
34394
34395
34396
34397
34398
34399
34400
34401
34402
34403
34404
34405
34406
34407
34408
34409
34410
34411
34412
34413
34414
34415
34416
34417
34418
34419
34420
34421
34422
34423
34424
34425
34426
34427
34428
34429
34430
34431
34432
34433
34434
34435
34436
34437
34438
34439
34440
34441
34442
34443
34444
34445
34446
34447
34448
34449
34450
34451
34452
34453
34454
34455
34456
34457
34458
34459
34460
34461
34462
34463
34464
34465
34466
34467
34468
34469
34470
34471
34472
34473
34474
34475
34476
34477
34478
34479
34480
34481
34482
34483
34484
34485
34486
34487
34488
34489
34490
34491
34492
34493
34494
34495
34496
34497
34498
34499
34500
34501
34502
34503
34504
34505
34506
34507
34508
34509
34510
34511
34512
34513
34514
34515
34516
34517
34518
34519
34520
34521
34522
34523
34524
34525
34526
34527
34528
34529
34530
34531
34532
34533
34534
34535
34536
34537
34538
34539
34540
34541
34542
34543
34544
34545
34546
34547
34548
34549
34550
34551
34552
34553
34554
34555
34556
34557
34558
34559
34560
34561
34562
34563
34564
34565
34566
34567
34568
34569
34570
34571
34572
34573
34574
34575
34576
34577
34578
34579
34580
34581
34582
34583
34584
34585
34586
34587
34588
34589
34590
34591
34592
34593
34594
34595
34596
34597
34598
34599
34600
34601
34602
34603
34604
34605
34606
34607
34608
34609
34610
34611
34612
34613
34614
34615
34616
34617
34618
34619
34620
34621
34622
34623
34624
34625
34626
34627
34628
34629
34630
34631
34632
34633
34634
34635
34636
34637
34638
34639
34640
34641
34642
34643
34644
34645
34646
34647
34648
34649
34650
34651
34652
34653
34654
34655
34656
34657
34658
34659
34660
34661
34662
34663
34664
34665
34666
34667
34668
34669
34670
34671
34672
34673
34674
34675
34676
34677
34678
34679
34680
34681
34682
34683
34684
34685
34686
34687
34688
34689
34690
34691
34692
34693
34694
34695
34696
34697
34698
34699
34700
34701
34702
34703
34704
34705
34706
34707
34708
34709
34710
34711
34712
34713
34714
34715
34716
34717
34718
34719
34720
34721
34722
34723
34724
34725
34726
34727
34728
34729
34730
34731
34732
34733
34734
34735
34736
34737
34738
34739
34740
34741
34742
34743
34744
34745
34746
34747
34748
34749
34750
34751
34752
34753
34754
34755
34756
34757
34758
34759
34760
34761
34762
34763
34764
34765
34766
34767
34768
34769
34770
34771
34772
34773
34774
34775
34776
34777
34778
34779
34780
34781
34782
34783
34784
34785
34786
34787
34788
34789
34790
34791
34792
34793
34794
34795
34796
34797
34798
34799
34800
34801
34802
34803
34804
34805
34806
34807
34808
34809
34810
34811
34812
34813
34814
34815
34816
34817
34818
34819
34820
34821
34822
34823
34824
34825
34826
34827
34828
34829
34830
34831
34832
34833
34834
34835
34836
34837
34838
34839
34840
34841
34842
34843
34844
34845
34846
34847
34848
34849
34850
34851
34852
34853
34854
34855
34856
34857
34858
34859
34860
34861
34862
34863
34864
34865
34866
34867
34868
34869
34870
34871
34872
34873
34874
34875
34876
34877
34878
34879
34880
34881
34882
34883
34884
34885
34886
34887
34888
34889
34890
34891
34892
34893
34894
34895
34896
34897
34898
34899
34900
34901
34902
34903
34904
34905
34906
34907
34908
34909
34910
34911
34912
34913
34914
34915
34916
34917
34918
34919
34920
34921
34922
34923
34924
34925
34926
34927
34928
34929
34930
34931
34932
34933
34934
34935
34936
34937
34938
34939
34940
34941
34942
34943
34944
34945
34946
34947
34948
34949
34950
34951
34952
34953
34954
34955
34956
34957
34958
34959
34960
34961
34962
34963
34964
34965
34966
34967
34968
34969
34970
34971
34972
34973
34974
34975
34976
34977
34978
34979
34980
34981
34982
34983
34984
34985
34986
34987
34988
34989
34990
34991
34992
34993
34994
34995
34996
34997
34998
34999
35000
35001
35002
35003
35004
35005
35006
35007
35008
35009
35010
35011
35012
35013
35014
35015
35016
35017
35018
35019
35020
35021
35022
35023
35024
35025
35026
35027
35028
35029
35030
35031
35032
35033
35034
35035
35036
35037
35038
35039
35040
35041
35042
35043
35044
35045
35046
35047
35048
35049
35050
35051
35052
35053
35054
35055
35056
35057
35058
35059
35060
35061
35062
35063
35064
35065
35066
35067
35068
35069
35070
35071
35072
35073
35074
35075
35076
35077
35078
35079
35080
35081
35082
35083
35084
35085
35086
35087
35088
35089
35090
35091
35092
35093
35094
35095
35096
35097
35098
35099
35100
35101
35102
35103
35104
35105
35106
35107
35108
35109
35110
35111
35112
35113
35114
35115
35116
35117
35118
35119
35120
35121
35122
35123
35124
35125
35126
35127
35128
35129
35130
35131
35132
35133
35134
35135
35136
35137
35138
35139
35140
35141
35142
35143
35144
35145
35146
35147
35148
35149
35150
35151
35152
35153
35154
35155
35156
35157
35158
35159
35160
35161
35162
35163
35164
35165
35166
35167
35168
35169
35170
35171
35172
35173
35174
35175
35176
35177
35178
35179
35180
35181
35182
35183
35184
35185
35186
35187
35188
35189
35190
35191
35192
35193
35194
35195
35196
35197
35198
35199
35200
35201
35202
35203
35204
35205
35206
35207
35208
35209
35210
35211
35212
35213
35214
35215
35216
35217
35218
35219
35220
35221
35222
35223
35224
35225
35226
35227
35228
35229
35230
35231
35232
35233
35234
35235
35236
35237
35238
35239
35240
35241
35242
35243
35244
35245
35246
35247
35248
35249
35250
35251
35252
35253
35254
35255
35256
35257
35258
35259
35260
35261
35262
35263
35264
35265
35266
35267
35268
35269
35270
35271
35272
35273
35274
35275
35276
35277
35278
35279
35280
35281
35282
35283
35284
35285
35286
35287
35288
35289
35290
35291
35292
35293
35294
35295
35296
35297
35298
35299
35300
35301
35302
35303
35304
35305
35306
35307
35308
35309
35310
35311
35312
35313
35314
35315
35316
35317
35318
35319
35320
35321
35322
35323
35324
35325
35326
35327
35328
35329
35330
35331
35332
35333
35334
35335
35336
35337
35338
35339
35340
35341
35342
35343
35344
35345
35346
35347
35348
35349
35350
35351
35352
35353
35354
35355
35356
35357
35358
35359
35360
35361
35362
35363
35364
35365
35366
35367
35368
35369
35370
35371
35372
35373
35374
35375
35376
35377
35378
35379
35380
35381
35382
35383
35384
35385
35386
35387
35388
35389
35390
35391
35392
35393
35394
35395
35396
35397
35398
35399
35400
35401
35402
35403
35404
35405
35406
35407
35408
35409
35410
35411
35412
35413
35414
35415
35416
35417
35418
35419
35420
35421
35422
35423
35424
35425
35426
35427
35428
35429
35430
35431
35432
35433
35434
35435
35436
35437
35438
35439
35440
35441
35442
35443
35444
35445
35446
35447
35448
35449
35450
35451
35452
35453
35454
35455
35456
35457
35458
35459
35460
35461
35462
35463
35464
35465
35466
35467
35468
35469
35470
35471
35472
35473
35474
35475
35476
35477
35478
35479
35480
35481
35482
35483
35484
35485
35486
35487
35488
35489
35490
35491
35492
35493
35494
35495
35496
35497
35498
35499
35500
35501
35502
35503
35504
35505
35506
35507
35508
35509
35510
35511
35512
35513
35514
35515
35516
35517
35518
35519
35520
35521
35522
35523
35524
35525
35526
35527
35528
35529
35530
35531
35532
35533
35534
35535
35536
35537
35538
35539
35540
35541
35542
35543
35544
35545
35546
35547
35548
35549
35550
35551
35552
35553
35554
35555
35556
35557
35558
35559
35560
35561
35562
35563
35564
35565
35566
35567
35568
35569
35570
35571
35572
35573
35574
35575
35576
35577
35578
35579
35580
35581
35582
35583
35584
35585
35586
35587
35588
35589
35590
35591
35592
35593
35594
35595
35596
35597
35598
35599
35600
35601
35602
35603
35604
35605
35606
35607
35608
35609
35610
35611
35612
35613
35614
35615
35616
35617
35618
35619
35620
35621
35622
35623
35624
35625
35626
35627
35628
35629
35630
35631
35632
35633
35634
35635
35636
35637
35638
35639
35640
35641
35642
35643
35644
35645
35646
35647
35648
35649
35650
35651
35652
35653
35654
35655
35656
35657
35658
35659
35660
35661
35662
35663
35664
35665
35666
35667
35668
35669
35670
35671
35672
35673
35674
35675
35676
35677
35678
35679
35680
35681
35682
35683
35684
35685
35686
35687
35688
35689
35690
35691
35692
35693
35694
35695
35696
35697
35698
35699
35700
35701
35702
35703
35704
35705
35706
35707
35708
35709
35710
35711
35712
35713
35714
35715
35716
35717
35718
35719
# Created by Octave 3.2.4, Fri Jan 22 10:34:21 2010 CET <hajek@hajek>
# name: cache
# type: cell
# rows: 3
# columns: 1422
# name: <cell-element>
# type: string
# elements: 1
# length: 3
amd
# name: <cell-element>
# type: string
# elements: 1
# length: 1170
 -- Loadable Function: P = amd (S)
 -- Loadable Function: P = amd (S, OPTS)
     Returns the approximate minimum degree permutation of a matrix.  This permutation such that the Cholesky factorization of `S (P, P)' tends to be sparser than the Cholesky factorization of S itself.  `amd' is typically faster than `symamd' but serves a similar purpose.

     The optional parameter OPTS is a structure that controls the behavior of `amd'.  The fields of these structure are

    opts.dense
          Determines what `amd' considers to be a dense row or column of the input matrix.  Rows or columns with more than `max(16, (dense * sqrt (N)' entries, where N is the order of the matrix S, are ignored by `amd' during the calculation of the permutation The value of dense must be a positive scalar and its default value is 10.0

    opts.aggressive
          If this value is a non zero scalar, then `amd' performs aggressive absorption.  The default is not to perform aggressive absorption.

     The author of the code itself is Timothy A. Davis (davis@cise.ufl.edu), University of Florida (see `http://www.cise.ufl.edu/research/sparse/amd').  See also: symamd, colamd.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Returns the approximate minimum degree permutation of a matrix.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
balance
# name: <cell-element>
# type: string
# elements: 1
# length: 1424
 -- Loadable Function: AA = balance (A, OPT)
 -- Loadable Function: [DD, AA] = balance (A, OPT)
 -- Loadable Function: [D, P, AA] = balance (A, OPT)
 -- Loadable Function: [CC, DD, AA, BB] = balance (A, B, OPT)
     Compute `aa = dd \ a * dd' in which `aa' is a matrix whose row and column norms are roughly equal in magnitude, and `dd' = `p * d', in which `p' is a permutation matrix and `d' is a diagonal matrix of powers of two.  This allows the equilibration to be computed without roundoff.  Results of eigenvalue calculation are typically improved by balancing first.

     If two output values are requested, `balance' returns the diagonal `d' and the permutation `p' separately as vectors.  In this case, `dd = eye(n)(:,p) * diag (d)', where `n' is the matrix size.

     If four output values are requested, compute `aa = cc*a*dd' and `bb = cc*b*dd)', in which `aa' and `bb' have non-zero elements of approximately the same magnitude and `cc' and `dd' are permuted diagonal matrices as in `dd' for the algebraic eigenvalue problem.

     The eigenvalue balancing option `opt' may be one of:

    `"noperm"', `"S"'
          Scale only; do not permute.

    `"noscal"', `"P"'
          Permute only; do not scale.

     Algebraic eigenvalue balancing uses standard LAPACK routines.

     Generalized eigenvalue problem balancing uses Ward's algorithm (SIAM Journal on Scientific and Statistical Computing, 1981).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 215
Compute `aa = dd \ a * dd' in which `aa' is a matrix whose row and column norms are roughly equal in magnitude, and `dd' = `p * d', in which `p' is a permutation matrix and `d' is a diagonal matrix of powers of two.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
besselj
# name: <cell-element>
# type: string
# elements: 1
# length: 2013
 -- Loadable Function: [J, IERR] = besselj (ALPHA, X, OPT)
 -- Loadable Function: [Y, IERR] = bessely (ALPHA, X, OPT)
 -- Loadable Function: [I, IERR] = besseli (ALPHA, X, OPT)
 -- Loadable Function: [K, IERR] = besselk (ALPHA, X, OPT)
 -- Loadable Function: [H, IERR] = besselh (ALPHA, K, X, OPT)
     Compute Bessel or Hankel functions of various kinds:

    `besselj'
          Bessel functions of the first kind.  If the argument OPT is supplied, the result is multiplied by `exp(-abs(imag(x)))'.

    `bessely'
          Bessel functions of the second kind.  If the argument OPT is supplied, the result is multiplied by `exp(-abs(imag(x)))'.

    `besseli'
          Modified Bessel functions of the first kind.  If the argument OPT is supplied, the result is multiplied by `exp(-abs(real(x)))'.

    `besselk'
          Modified Bessel functions of the second kind.  If the argument OPT is supplied, the result is multiplied by `exp(x)'.

    `besselh'
          Compute Hankel functions of the first (K = 1) or second (K = 2) kind.  If the argument OPT is supplied, the result is multiplied by `exp (-I*X)' for K = 1 or `exp (I*X)' for K = 2.

     If ALPHA is a scalar, the result is the same size as X.  If X is a scalar, the result is the same size as ALPHA.  If ALPHA is a row vector and X is a column vector, the result is a matrix with `length (X)' rows and `length (ALPHA)' columns.  Otherwise, ALPHA and X must conform and the result will be the same size.

     The value of ALPHA must be real.  The value of X may be complex.

     If requested, IERR contains the following status information and is the same size as the result.

       0. Normal return.

       1. Input error, return `NaN'.

       2. Overflow, return `Inf'.

       3. Loss of significance by argument reduction results in less than half of machine accuracy.

       4. Complete loss of significance by argument reduction, return `NaN'.

       5. Error--no computation, algorithm termination condition not met, return `NaN'.

# name: <cell-element>
# type: string
# elements: 1
# length: 53
Compute Bessel or Hankel functions of various kinds: 

# name: <cell-element>
# type: string
# elements: 1
# length: 7
bessely
# name: <cell-element>
# type: string
# elements: 1
# length: 80
 -- Loadable Function: [Y, IERR] = bessely (ALPHA, X, OPT)
     See besselj.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 12
See besselj.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
besseli
# name: <cell-element>
# type: string
# elements: 1
# length: 80
 -- Loadable Function: [I, IERR] = besseli (ALPHA, X, OPT)
     See besselj.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 12
See besselj.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
besselk
# name: <cell-element>
# type: string
# elements: 1
# length: 80
 -- Loadable Function: [K, IERR] = besselk (ALPHA, X, OPT)
     See besselj.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 12
See besselj.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
besselh
# name: <cell-element>
# type: string
# elements: 1
# length: 83
 -- Loadable Function: [H, IERR] = besselh (ALPHA, K, X, OPT)
     See besselj.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 12
See besselj.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
airy
# name: <cell-element>
# type: string
# elements: 1
# length: 1078
 -- Loadable Function: [A, IERR] = airy (K, Z, OPT)
     Compute Airy functions of the first and second kind, and their derivatives.

           K   Function   Scale factor (if 'opt' is supplied)
          ---  --------   ---------------------------------------
           0   Ai (Z)     exp ((2/3) * Z * sqrt (Z))
           1   dAi(Z)/dZ  exp ((2/3) * Z * sqrt (Z))
           2   Bi (Z)     exp (-abs (real ((2/3) * Z *sqrt (Z))))
           3   dBi(Z)/dZ  exp (-abs (real ((2/3) * Z *sqrt (Z))))

     The function call `airy (Z)' is equivalent to `airy (0, Z)'.

     The result is the same size as Z.

     If requested, IERR contains the following status information and is the same size as the result.

       0. Normal return.

       1. Input error, return `NaN'.

       2. Overflow, return `Inf'.

       3. Loss of significance by argument reduction results in less than half  of machine accuracy.

       4. Complete loss of significance by argument reduction, return `NaN'.

       5. Error--no computation, algorithm termination condition not met, return `NaN'.

# name: <cell-element>
# type: string
# elements: 1
# length: 75
Compute Airy functions of the first and second kind, and their derivatives.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
betainc
# name: <cell-element>
# type: string
# elements: 1
# length: 487
 -- Mapping Function:  betainc (X, A, B)
     Return the incomplete Beta function,

                                                x
                                               /
          betainc (x, a, b) = beta (a, b)^(-1) | t^(a-1) (1-t)^(b-1) dt.
                                               /
                                            t=0

     If x has more than one component, both A and B must be scalars.  If X is a scalar, A and B must be of compatible dimensions.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Return the incomplete Beta function, 

# name: <cell-element>
# type: string
# elements: 1
# length: 6
bitand
# name: <cell-element>
# type: string
# elements: 1
# length: 200
 -- Built-in Function:  bitand (X, Y)
     Return the bitwise AND of non-negative integers.  X, Y must be in the range [0,bitmax] See also: bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return the bitwise AND of non-negative integers.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
bitor
# name: <cell-element>
# type: string
# elements: 1
# length: 198
 -- Built-in Function:  bitor (X, Y)
     Return the bitwise OR of non-negative integers.  X, Y must be in the range [0,bitmax] See also: bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Return the bitwise OR of non-negative integers.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
bitxor
# name: <cell-element>
# type: string
# elements: 1
# length: 200
 -- Built-in Function:  bitxor (X, Y)
     Return the bitwise XOR of non-negative integers.  X, Y must be in the range [0,bitmax] See also: bitand, bitor, bitset, bitget, bitcmp, bitshift, bitmax.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return the bitwise XOR of non-negative integers.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
bitshift
# name: <cell-element>
# type: string
# elements: 1
# length: 565
 -- Built-in Function:  bitshift (A, K)
 -- Built-in Function:  bitshift (A, K, N)
     Return a K bit shift of N-digit unsigned integers in A.  A positive K leads to a left shift.  A negative value to a right shift.  If N is omitted it defaults to log2(bitmax)+1.  N must be in the range [1,log2(bitmax)+1] usually [1,33]

          bitshift (eye (3), 1)
          =>
          2 0 0
          0 2 0
          0 0 2

          bitshift (10, [-2, -1, 0, 1, 2])
          => 2   5  10  20  40
     See also: bitand, bitor, bitxor, bitset, bitget, bitcmp, bitmax.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Return a K bit shift of N-digit unsigned integers in A.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
bitmax
# name: <cell-element>
# type: string
# elements: 1
# length: 177
 -- Built-in Function:  bitmax ()
     Return the largest integer that can be represented as a floating point value.  On IEEE-754 compatible systems, `bitmax' is `2^53 - 1'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Return the largest integer that can be represented as a floating point value.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
intmax
# name: <cell-element>
# type: string
# elements: 1
# length: 586
 -- Built-in Function:  intmax (TYPE)
     Return the largest integer that can be represented in an integer type.  The variable TYPE can be

    `int8'
          signed 8-bit integer.

    `int16'
          signed 16-bit integer.

    `int32'
          signed 32-bit integer.

    `int64'
          signed 64-bit integer.

    `uint8'
          unsigned 8-bit integer.

    `uint16'
          unsigned 16-bit integer.

    `uint32'
          unsigned 32-bit integer.

    `uint64'
          unsigned 64-bit integer.

     The default for TYPE is `uint32'.  See also: intmin, bitmax.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 70
Return the largest integer that can be represented in an integer type.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
intmin
# name: <cell-element>
# type: string
# elements: 1
# length: 587
 -- Built-in Function:  intmin (TYPE)
     Return the smallest integer that can be represented in an integer type.  The variable TYPE can be

    `int8'
          signed 8-bit integer.

    `int16'
          signed 16-bit integer.

    `int32'
          signed 32-bit integer.

    `int64'
          signed 64-bit integer.

    `uint8'
          unsigned 8-bit integer.

    `uint16'
          unsigned 16-bit integer.

    `uint32'
          unsigned 32-bit integer.

    `uint64'
          unsigned 64-bit integer.

     The default for TYPE is `uint32'.  See also: intmax, bitmax.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Return the smallest integer that can be represented in an integer type.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
bsxfun
# name: <cell-element>
# type: string
# elements: 1
# length: 459
 -- Loadable Function:  bsxfun (F, A, B)
     Applies a binary function F element-wise to two matrix arguments A and B.  The function F must be capable of accepting two column vector arguments of equal length, or one column vector argument and a scalar.

     The dimensions of A and B must be equal or singleton.  The singleton dimensions of the matrices will be expanded to the same dimensionality as the other matrix.

     See also: arrayfun, cellfun.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 73
Applies a binary function F element-wise to two matrix arguments A and B.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
ccolamd
# name: <cell-element>
# type: string
# elements: 1
# length: 3636
 -- Loadable Function: P = ccolamd (S)
 -- Loadable Function: P = ccolamd (S, KNOBS)
 -- Loadable Function: P = ccolamd (S, KNOBS, CMEMBER)
 -- Loadable Function: [P, STATS] = ccolamd (...)
     Constrained column approximate minimum degree permutation.  `P = ccolamd (S)' returns the column approximate minimum degree permutation vector for the sparse matrix S.  For a non-symmetric matrix S, `S (:, P)' tends to have sparser LU factors than S.  `chol (S (:, P)' * S (:, P))' also tends to be sparser than `chol (S' * S)'.  `P = ccolamd (S, 1)' optimizes the ordering for `lu (S (:, P))'.  The ordering is followed by a column elimination tree post-ordering.

     KNOBS is an optional one- to five-element input vector, with a default value of `[0 10 10 1 0]' if not present or empty.  Entries not present are set to their defaults.

    `KNOBS(1)'
          if nonzero, the ordering is optimized for `lu (S (:, p))'.  It will be a poor ordering for `chol (S (:, P)' * S (:, P))'.  This is the most important knob for ccolamd.

    `KNOB(2)'
          if S is m-by-n, rows with more than `max (16, KNOBS (2) * sqrt (n))' entries are ignored.

    `KNOB(3)'
          columns with more than `max (16, KNOBS (3) * sqrt (min (M, N)))' entries are ignored and ordered last in the output permutation (subject to the cmember constraints).

    `KNOB(4)'
          if nonzero, aggressive absorption is performed.

    `KNOB(5)'
          if nonzero, statistics and knobs are printed.


     CMEMBER is an optional vector of length n.  It defines the constraints on the column ordering.  If `CMEMBER (j) = C', then column J is in constraint set C (C must be in the range 1 to N).  In the output permutation P, all columns in set 1 appear first, followed by all columns in set 2, and so on.  `CMEMBER = ones(1,n)' if not present or empty.  `ccolamd (S, [], 1 : N)' returns `1 : N'

     `P = ccolamd (S)' is about the same as `P = colamd (S)'.  KNOBS and its default values differ.  `colamd' always does aggressive absorption, and it finds an ordering suitable for both `lu (S (:, P))' and `chol (S (:, P)' * S (:, P))'; it cannot optimize its ordering for `lu (S (:, P))' to the extent that `ccolamd (S, 1)' can.

     STATS is an optional 20-element output vector that provides data about the ordering and the validity of the input matrix S.  Ordering statistics are in `STATS (1 : 3)'.  `STATS (1)' and `STATS (2)' are the number of dense or empty rows and columns ignored by CCOLAMD and `STATS (3)' is the number of garbage collections performed on the internal data structure used by CCOLAMD (roughly of size `2.2 * nnz (S) + 4 * M + 7 * N' integers).

     `STATS (4 : 7)' provide information if CCOLAMD was able to continue.  The matrix is OK if `STATS (4)' is zero, or 1 if invalid.  `STATS (5)' is the rightmost column index that is unsorted or contains duplicate entries, or zero if no such column exists.  `STATS (6)' is the last seen duplicate or out-of-order row index in the column index given by `STATS (5)', or zero if no such row index exists.  `STATS (7)' is the number of duplicate or out-of-order row indices.  `STATS (8 : 20)' is always zero in the current version of CCOLAMD (reserved for future use).

     The authors of the code itself are S. Larimore, T. Davis (Uni of Florida) and S. Rajamanickam in collaboration with J. Bilbert and E. Ng.  Supported by the National Science Foundation (DMS-9504974, DMS-9803599, CCR-0203270), and a grant from Sandia National Lab.  See `http://www.cise.ufl.edu/research/sparse' for ccolamd, csymamd, amd, colamd, symamd, and other related orderings.  See also: colamd, csymamd.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Constrained column approximate minimum degree permutation.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
csymamd
# name: <cell-element>
# type: string
# elements: 1
# length: 2582
 -- Loadable Function: P = csymamd (S)
 -- Loadable Function: P = csymamd (S, KNOBS)
 -- Loadable Function: P = csymamd (S, KNOBS, CMEMBER)
 -- Loadable Function: [P, STATS] = csymamd (...)
     For a symmetric positive definite matrix S, returns the permutation vector P such that `S(P,P)' tends to have a sparser Cholesky factor than S.  Sometimes `csymamd' works well for symmetric indefinite matrices too.  The matrix S is assumed to be symmetric; only the strictly lower triangular part is referenced.  S must be square.  The ordering is followed by an elimination tree post-ordering.

     KNOBS is an optional one- to three-element input vector, with a default value of `[10 1 0]' if present or empty.  Entries not present are set to their defaults.

    `KNOBS(1)'
          If S is n-by-n, then rows and columns with more than `max(16,KNOBS(1)*sqrt(n))' entries are ignored, and ordered last in the output permutation (subject to the cmember constraints).

    `KNOBS(2)'
          If nonzero, aggressive absorption is performed.

    `KNOBS(3)'
          If nonzero, statistics and knobs are printed.


     CMEMBER is an optional vector of length n. It defines the constraints on the ordering.  If `CMEMBER(j) = S', then row/column j is in constraint set C (C must be in the range 1 to n).  In the output permutation P, rows/columns in set 1 appear first, followed by all rows/columns in set 2, and so on.  `CMEMBER = ones(1,n)' if not present or empty.  `csymamd(S,[],1:n)' returns `1:n'.

     `P = csymamd(S)' is about the same as `P = symamd(S)'.  KNOBS and its default values differ.

     `STATS (4:7)' provide information if CCOLAMD was able to continue.  The matrix is OK if `STATS (4)' is zero, or 1 if invalid.  `STATS (5)' is the rightmost column index that is unsorted or contains duplicate entries, or zero if no such column exists.  `STATS (6)' is the last seen duplicate or out-of-order row index in the column index given by `STATS (5)', or zero if no such row index exists.  `STATS (7)' is the number of duplicate or out-of-order row indices.  `STATS (8:20)' is always zero in the current version of CCOLAMD (reserved for future use).

     The authors of the code itself are S. Larimore, T. Davis (Uni of Florida) and S. Rajamanickam in collaboration with J. Bilbert and E. Ng.  Supported by the National Science Foundation (DMS-9504974, DMS-9803599, CCR-0203270), and a grant from Sandia National Lab.  See `http://www.cise.ufl.edu/research/sparse' for ccolamd, csymamd, amd, colamd, symamd, and other related orderings.  See also: symamd, ccolamd.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 143
For a symmetric positive definite matrix S, returns the permutation vector P such that `S(P,P)' tends to have a sparser Cholesky factor than S.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
cellfun
# name: <cell-element>
# type: string
# elements: 1
# length: 2862
 -- Loadable Function:  cellfun (NAME, C)
 -- Loadable Function:  cellfun ("size", C, K)
 -- Loadable Function:  cellfun ("isclass", C, CLASS)
 -- Loadable Function:  cellfun (FUNC, C)
 -- Loadable Function:  cellfun (FUNC, C, D)
 -- Loadable Function: [A, B] = cellfun (...)
 -- Loadable Function:  cellfun (..., 'ErrorHandler', ERRFUNC)
 -- Loadable Function:  cellfun (..., 'UniformOutput', VAL)
     Evaluate the function named NAME on the elements of the cell array C.  Elements in C are passed on to the named function individually.  The function NAME can be one of the functions

    `isempty'
          Return 1 for empty elements.

    `islogical'
          Return 1 for logical elements.

    `isreal'
          Return 1 for real elements.

    `length'
          Return a vector of the lengths of cell elements.

    `ndims'
          Return the number of dimensions of each element.

    `prodofsize'
          Return the product of dimensions of each element.

    `size'
          Return the size along the K-th dimension.

    `isclass'
          Return 1 for elements of CLASS.

     Additionally, `cellfun' accepts an arbitrary function FUNC in the form of an inline function, function handle, or the name of a function (in a character string).  In the case of a character string argument, the function must accept a single argument named X, and it must return a string value.  The function can take one or more arguments, with the inputs args given by C, D, etc.  Equally the function can return one or more output arguments.  For example

          cellfun (@atan2, {1, 0}, {0, 1})
          =>ans = [1.57080   0.00000]

     Note that the default output argument is an array of the same size as the input arguments.

     If the parameter 'UniformOutput' is set to true (the default), then the function must return a single element which will be concatenated into the return value.  If 'UniformOutput' is false, the outputs are concatenated in a cell array.  For example

          cellfun ("tolower(x)", {"Foo", "Bar", "FooBar"},
                   "UniformOutput",false)
          => ans = {"foo", "bar", "foobar"}

     Given the parameter 'ErrorHandler', then ERRFUNC defines a function to call in case FUNC generates an error.  The form of the function is

          function [...] = errfunc (S, ...)

     where there is an additional input argument to ERRFUNC relative to FUNC, given by S.  This is a structure with the elements 'identifier', 'message' and 'index', giving respectively the error identifier, the error message, and the index into the input arguments of the element that caused the error.  For example

          function y = foo (s, x), y = NaN; endfunction
          cellfun (@factorial, {-1,2},'ErrorHandler',@foo)
          => ans = [NaN 2]

     See also: isempty, islogical, isreal, length, ndims, numel, size.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Evaluate the function named NAME on the elements of the cell array C.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
num2cell
# name: <cell-element>
# type: string
# elements: 1
# length: 269
 -- Loadable Function: C = num2cell (M)
 -- Loadable Function: C = num2cell (M, DIM)
     Convert the matrix M to a cell array.  If DIM is defined, the value C is of dimension 1 in this dimension and the elements of M are placed in slices in C.  See also: mat2cell.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Convert the matrix M to a cell array.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
mat2cell
# name: <cell-element>
# type: string
# elements: 1
# length: 956
 -- Loadable Function: B = mat2cell (A, M, N)
 -- Loadable Function: B = mat2cell (A, D1, D2, ...)
 -- Loadable Function: B = mat2cell (A, R)
     Convert the matrix A to a cell array.  If A is 2-D, then it is required that `sum (M) == size (A, 1)' and `sum (N) == size (A, 2)'.  Similarly, if A is a multi-dimensional and the number of dimensional arguments is equal to the dimensions of A, then it is required that `sum (DI) == size (A, i)'.

     Given a single dimensional argument R, the other dimensional arguments are assumed to equal `size (A,I)'.

     An example of the use of mat2cell is

          mat2cell (reshape(1:16,4,4),[3,1],[3,1])
          => {
            [1,1] =

               1   5   9
               2   6  10
               3   7  11

            [2,1] =

               4   8  12

            [1,2] =

              13
              14
              15

            [2,2] = 16
          }
     See also: num2cell, cell2mat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Convert the matrix A to a cell array.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
cellslices
# name: <cell-element>
# type: string
# elements: 1
# length: 516
 -- Loadable Function: SL = cellslices (X, LB, UB)
     Given a vector X, this function produces a cell array of slices from the vector determined by the index vectors LB, UB, for lower and upper bounds, respectively.  In other words, it is equivalent to the following code:

          n = length (lb);
          sl = cell (1, n);
          for i = 1:length (lb)
            sl{i} = x(lb(i):ub(i));
          endfor

     If X is a matrix or array, indexing is done along the last dimension.  See also: mat2cell.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 161
Given a vector X, this function produces a cell array of slices from the vector determined by the index vectors LB, UB, for lower and upper bounds, respectively.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
chol
# name: <cell-element>
# type: string
# elements: 1
# length: 1362
 -- Loadable Function: R = chol (A)
 -- Loadable Function: [R, P] = chol (A)
 -- Loadable Function: [R, P, Q] = chol (S)
 -- Loadable Function: [R, P, Q] = chol (S, 'vector')
 -- Loadable Function: [L, ...] = chol (..., 'lower')
     Compute the Cholesky factor, R, of the symmetric positive definite matrix A, where

          R' * R = A.

     Called with one output argument `chol' fails if A or S is not positive definite.  With two or more output arguments P flags whether the matrix was positive definite and `chol' does not fail.  A zero value indicated that the matrix was positive definite and the R gives the factorization, and P will have a positive value otherwise.

     If called with 3 outputs then a sparsity preserving row/column permutation is applied to A prior to the factorization.  That is R is the factorization of `A(Q,Q)' such that

          R' * R = Q' * A * Q.

     The sparsity preserving permutation is generally returned as a matrix.  However, given the flag 'vector', Q will be returned as a vector such that

          R' * R = a (Q, Q).

     Called with either a sparse or full matrix and using the 'lower' flag, `chol' returns the lower triangular factorization such that

          L * L' = A.

     In general the lower triangular factorization is significantly faster for sparse matrices.  See also: cholinv, chol2inv.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Compute the Cholesky factor, R, of the symmetric positive definite matrix A, where 

# name: <cell-element>
# type: string
# elements: 1
# length: 7
cholinv
# name: <cell-element>
# type: string
# elements: 1
# length: 170
 -- Loadable Function:  cholinv (A)
     Use the Cholesky factorization to compute the inverse of the symmetric positive definite matrix A.  See also: chol, chol2inv.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Use the Cholesky factorization to compute the inverse of the symmetric positive definite matrix A.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
chol2inv
# name: <cell-element>
# type: string
# elements: 1
# length: 320
 -- Loadable Function:  chol2inv (U)
     Invert a symmetric, positive definite square matrix from its Cholesky decomposition, U.  Note that U should be an upper-triangular matrix with positive diagonal elements.  `chol2inv (U)' provides `inv (U'*U)' but it is much faster than using `inv'.  See also: chol, cholinv.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 87
Invert a symmetric, positive definite square matrix from its Cholesky decomposition, U.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
cholupdate
# name: <cell-element>
# type: string
# elements: 1
# length: 592
 -- Loadable Function: [R1, INFO] = cholupdate (R, U, OP)
     Update or downdate a Cholesky factorization.  Given an upper triangular matrix R and a column vector U, attempt to determine another upper triangular matrix R1 such that
        * R1'*R1 = R'*R + U*U' if OP is "+"

        * R1'*R1 = R'*R - U*U' if OP is "-"

     If OP is "-", INFO is set to
        * 0 if the downdate was successful,

        * 1 if R'*R - U*U' is not positive definite,

        * 2 if R is singular.

     If INFO is not present, an error message is printed in cases 1 and 2.  See also: chol, qrupdate.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Update or downdate a Cholesky factorization.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
cholinsert
# name: <cell-element>
# type: string
# elements: 1
# length: 591
 -- Loadable Function: [R1, INFO] = cholinsert (R, J, U)
     Given a Cholesky factorization of a real symmetric or complex hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A1, where A1(p,p) = A, A1(:,j) = A1(j,:)' = u and p = [1:j-1,j+1:n+1].  u(j) should be positive.  On return, INFO is set to
        * 0 if the insertion was successful,

        * 1 if A1 is not positive definite,

        * 2 if R is singular.

     If INFO is not present, an error message is printed in cases 1 and 2.  See also: chol, cholupdate, choldelete.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 234
Given a Cholesky factorization of a real symmetric or complex hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A1, where A1(p,p) = A, A1(:,j) = A1(j,:)' = u and p = [1:j-1,j+1:n+1].

# name: <cell-element>
# type: string
# elements: 1
# length: 10
choldelete
# name: <cell-element>
# type: string
# elements: 1
# length: 294
 -- Loadable Function: R1 = choldelete (R, J)
     Given a Cholesky factorization of a real symmetric or complex hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A(p,p), where p = [1:j-1,j+1:n+1].  See also: chol, cholupdate, cholinsert.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 198
Given a Cholesky factorization of a real symmetric or complex hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A(p,p), where p = [1:j-1,j+1:n+1].

# name: <cell-element>
# type: string
# elements: 1
# length: 9
cholshift
# name: <cell-element>
# type: string
# elements: 1
# length: 409
 -- Loadable Function: R1 = cholshift (R, I, J)
     Given a Cholesky factorization of a real symmetric or complex hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A(p,p), where p is the permutation
     `p = [1:i-1, shift(i:j, 1), j+1:n]' if I < J
     or
     `p = [1:j-1, shift(j:i,-1), i+1:n]' if J < I.
     See also: chol, cholinsert, choldelete.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 295
Given a Cholesky factorization of a real symmetric or complex hermitian positive definite matrix A = R'*R, R upper triangular, return the Cholesky factorization of A(p,p), where p is the permutation  `p = [1:i-1, shift(i:j, 1), j+1:n]' if I < J  or  `p = [1:j-1, shift(j:i,-1), i+1:n]' if J < I.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
colamd
# name: <cell-element>
# type: string
# elements: 1
# length: 3341
 -- Loadable Function: P = colamd (S)
 -- Loadable Function: P = colamd (S, KNOBS)
 -- Loadable Function: [P, STATS] = colamd (S)
 -- Loadable Function: [P, STATS] = colamd (S, KNOBS)
     Column approximate minimum degree permutation.  `P = colamd (S)' returns the column approximate minimum degree permutation vector for the sparse matrix S.  For a non-symmetric matrix S, `S (:,P)' tends to have sparser LU factors than S.  The Cholesky factorization of `S (:,P)' * S (:,P)' also tends to be sparser than that of `S' * S'.

     KNOBS is an optional one- to three-element input vector.  If S is m-by-n, then rows with more than `max(16,KNOBS(1)*sqrt(n))' entries are ignored.  Columns with more than `max(16,knobs(2)*sqrt(min(m,n)))' entries are removed prior to ordering, and ordered last in the output permutation P.  Only completely dense rows or columns are removed if `KNOBS (1)' and `KNOBS (2)' are < 0, respectively.  If `KNOBS (3)' is nonzero, STATS and KNOBS are printed.  The default is `KNOBS = [10 10 0]'.  Note that KNOBS differs from earlier versions of colamd

     STATS is an optional 20-element output vector that provides data about the ordering and the validity of the input matrix S.  Ordering statistics are in `STATS (1:3)'.  `STATS (1)' and `STATS (2)' are the number of dense or empty rows and columns ignored by COLAMD and `STATS (3)' is the number of garbage collections performed on the internal data structure used by COLAMD (roughly of size `2.2 * nnz(S) + 4 * M + 7 * N' integers).

     Octave built-in functions are intended to generate valid sparse matrices, with no duplicate entries, with ascending row indices of the nonzeros in each column, with a non-negative number of entries in each column (!)  and so on.  If a matrix is invalid, then COLAMD may or may not be able to continue.  If there are duplicate entries (a row index appears two or more times in the same column) or if the row indices in a column are out of order, then COLAMD can correct these errors by ignoring the duplicate entries and sorting each column of its internal copy of the matrix S (the input matrix S is not repaired, however).  If a matrix is invalid in other ways then COLAMD cannot continue, an error message is printed, and no output arguments (P or STATS) are returned.  COLAMD is thus a simple way to check a sparse matrix to see if it's valid.

     `STATS (4:7)' provide information if COLAMD was able to continue.  The matrix is OK if `STATS (4)' is zero, or 1 if invalid.  `STATS (5)' is the rightmost column index that is unsorted or contains duplicate entries, or zero if no such column exists.  `STATS (6)' is the last seen duplicate or out-of-order row index in the column index given by `STATS (5)', or zero if no such row index exists.  `STATS (7)' is the number of duplicate or out-of-order row indices.  `STATS (8:20)' is always zero in the current version of COLAMD (reserved for future use).

     The ordering is followed by a column elimination tree post-ordering.

     The authors of the code itself are Stefan I. Larimore and Timothy A.  Davis (davis@cise.ufl.edu), University of Florida.  The algorithm was developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory.  (see `http://www.cise.ufl.edu/research/sparse/colamd') See also: colperm, symamd.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Column approximate minimum degree permutation.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
symamd
# name: <cell-element>
# type: string
# elements: 1
# length: 3207
 -- Loadable Function: P = symamd (S)
 -- Loadable Function: P = symamd (S, KNOBS)
 -- Loadable Function: [P, STATS] = symamd (S)
 -- Loadable Function: [P, STATS] = symamd (S, KNOBS)
     For a symmetric positive definite matrix S, returns the permutation vector p such that `S (P, P)' tends to have a sparser Cholesky factor than S.  Sometimes SYMAMD works well for symmetric indefinite matrices too.  The matrix S is assumed to be symmetric; only the strictly lower triangular part is referenced.  S must be square.

     KNOBS is an optional one- to two-element input vector.  If S is n-by-n, then rows and columns with more than `max(16,KNOBS(1)*sqrt(n))' entries are removed prior to ordering, and ordered last in the output permutation P.  No rows/columns are removed if `KNOBS(1) < 0'.  If `KNOBS (2)' is nonzero, `stats' and KNOBS are printed.  The default is `KNOBS = [10 0]'.  Note that KNOBS differs from earlier versions of symamd.

     STATS is an optional 20-element output vector that provides data about the ordering and the validity of the input matrix S.  Ordering statistics are in `STATS (1:3)'.  `STATS (1) = STATS (2)' is the number of dense or empty rows and columns ignored by SYMAMD and `STATS (3)' is the number of garbage collections performed on the internal data structure used by SYMAMD (roughly of size `8.4 * nnz (tril (S, -1)) + 9 * N' integers).

     Octave built-in functions are intended to generate valid sparse matrices, with no duplicate entries, with ascending row indices of the nonzeros in each column, with a non-negative number of entries in each column (!)  and so on.  If a matrix is invalid, then SYMAMD may or may not be able to continue.  If there are duplicate entries (a row index appears two or more times in the same column) or if the row indices in a column are out of order, then SYMAMD can correct these errors by ignoring the duplicate entries and sorting each column of its internal copy of the matrix S (the input matrix S is not repaired, however).  If a matrix is invalid in other ways then SYMAMD cannot continue, an error message is printed, and no output arguments (P or STATS) are returned.  SYMAMD is thus a simple way to check a sparse matrix to see if it's valid.

     `STATS (4:7)' provide information if SYMAMD was able to continue.  The matrix is OK if `STATS (4)' is zero, or 1 if invalid.  `STATS (5)' is the rightmost column index that is unsorted or contains duplicate entries, or zero if no such column exists.  `STATS (6)' is the last seen duplicate or out-of-order row index in the column index given by `STATS (5)', or zero if no such row index exists.  `STATS (7)' is the number of duplicate or out-of-order row indices.  `STATS (8:20)' is always zero in the current version of SYMAMD (reserved for future use).

     The ordering is followed by a column elimination tree post-ordering.

     The authors of the code itself are Stefan I. Larimore and Timothy A.  Davis (davis@cise.ufl.edu), University of Florida.  The algorithm was developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory.  (see `http://www.cise.ufl.edu/research/sparse/colamd') See also: colperm, colamd.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 145
For a symmetric positive definite matrix S, returns the permutation vector p such that `S (P, P)' tends to have a sparser Cholesky factor than S.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
etree
# name: <cell-element>
# type: string
# elements: 1
# length: 550
 -- Loadable Function: P = etree (S)
 -- Loadable Function: P = etree (S, TYP)
 -- Loadable Function: [P, Q] = etree (S, TYP)
     Returns the elimination tree for the matrix S.  By default S is assumed to be symmetric and the symmetric elimination tree is returned.  The argument TYP controls whether a symmetric or column elimination tree is returned.  Valid values of TYP are 'sym' or 'col', for symmetric or column elimination tree respectively

     Called with a second argument, "etree" also returns the postorder permutations on the tree.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Returns the elimination tree for the matrix S.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
colloc
# name: <cell-element>
# type: string
# elements: 1
# length: 292
 -- Loadable Function: [R, AMAT, BMAT, Q] = colloc (N, "left", "right")
     Compute derivative and integral weight matrices for orthogonal collocation using the subroutines given in J. Villadsen and M. L. Michelsen, `Solution of Differential Equation Models by Polynomial Approximation'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 108
Compute derivative and integral weight matrices for orthogonal collocation using the subroutines given in J.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
conv2
# name: <cell-element>
# type: string
# elements: 1
# length: 576
 -- Loadable Function: y = conv2 (A, B, SHAPE)
 -- Loadable Function: y = conv2 (V1, V2, M, SHAPE)
     Returns 2D convolution of A and B where the size of C is given by

    SHAPE= 'full'
          returns full 2-D convolution

    SHAPE= 'same'
          same size as a. 'central' part of convolution

    SHAPE= 'valid'
          only parts which do not include zero-padded edges

     By default SHAPE is 'full'.  When the third argument is a matrix returns the convolution of the matrix M by the vector V1 in the column direction and by vector V2 in the row direction
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Returns 2D convolution of A and B where the size of C is given by 

# name: <cell-element>
# type: string
# elements: 1
# length: 9
convhulln
# name: <cell-element>
# type: string
# elements: 1
# length: 640
 -- Loadable Function: H = convhulln (P)
 -- Loadable Function: H = convhulln (P, OPT)
 -- Loadable Function: [H, V] = convhulln (...)
     Return an index vector to the points of the enclosing convex hull.  The input matrix of size [n, dim] contains n points of dimension dim.

     If a second optional argument is given, it must be a string or cell array of strings containing options for the underlying qhull command.  (See the Qhull documentation for the available options.)  The default options are "s Qci Tcv".  If the second output V is requested the volume of the convex hull is calculated.

     See also: convhull, delaunayn.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Return an index vector to the points of the enclosing convex hull.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
daspk_options
# name: <cell-element>
# type: string
# elements: 1
# length: 5703
 -- Loadable Function:  daspk_options (OPT, VAL)
     When called with two arguments, this function allows you set options parameters for the function `daspk'.  Given one argument, `daspk_options' returns the value of the corresponding option.  If no arguments are supplied, the names of all the available options and their current values are displayed.

     Options include

    `"absolute tolerance"'
          Absolute tolerance.  May be either vector or scalar.  If a vector, it must match the dimension of the state vector, and the relative tolerance must also be a vector of the same length.

    `"relative tolerance"'
          Relative tolerance.  May be either vector or scalar.  If a vector, it must match the dimension of the state vector, and the absolute tolerance must also be a vector of the same length.

          The local error test applied at each integration step is

                 abs (local error in x(i))
                      <= rtol(i) * abs (Y(i)) + atol(i)

    `"compute consistent initial condition"'
          Denoting the differential variables in the state vector by `Y_d' and the algebraic variables by `Y_a', `ddaspk' can solve one of two initialization problems:

            1. Given Y_d, calculate Y_a and Y'_d

            2. Given Y', calculate Y.

          In either case, initial values for the given components are input, and initial guesses for the unknown components must also be provided as input.  Set this option to 1 to solve the first problem, or 2 to solve the second (the default is 0, so you must provide a set of initial conditions that are consistent).

          If this option is set to a nonzero value, you must also set the `"algebraic variables"' option to declare which variables in the problem are algebraic.

    `"use initial condition heuristics"'
          Set to a nonzero value to use the initial condition heuristics options described below.

    `"initial condition heuristics"'
          A vector of the following parameters that can be used to control the initial condition calculation.

         `MXNIT'
               Maximum number of Newton iterations (default is 5).

         `MXNJ'
               Maximum number of Jacobian evaluations (default is 6).

         `MXNH'
               Maximum number of values of the artificial stepsize parameter to be tried if the `"compute consistent initial condition"' option has been set to 1 (default is 5).

               Note that the maximum total number of Newton iterations allowed is `MXNIT*MXNJ*MXNH' if the `"compute consistent initial condition"' option has been set to 1 and `MXNIT*MXNJ' if it is set to 2.

         `LSOFF'
               Set to a nonzero value to disable the linesearch algorithm (default is 0).

         `STPTOL'
               Minimum scaled step in linesearch algorithm (default is eps^(2/3)).

         `EPINIT'
               Swing factor in the Newton iteration convergence test.  The test is applied to the residual vector, premultiplied by the approximate Jacobian.  For convergence, the weighted RMS norm of this vector (scaled by the error weights) must be less than `EPINIT*EPCON', where `EPCON' = 0.33 is the analogous test constant used in the time steps.  The default is `EPINIT' = 0.01.

    `"print initial condition info"'
          Set this option to a nonzero value to display detailed information about the initial condition calculation (default is 0).

    `"exclude algebraic variables from error test"'
          Set to a nonzero value to exclude algebraic variables from the error test.  You must also set the `"algebraic variables"' option to declare which variables in the problem are algebraic (default is 0).

    `"algebraic variables"'
          A vector of the same length as the state vector.  A nonzero element indicates that the corresponding element of the state vector is an algebraic variable (i.e., its derivative does not appear explicitly in the equation set.

          This option is required by the `compute consistent initial condition"' and `"exclude algebraic variables from error test"' options.

    `"enforce inequality constraints"'
          Set to one of the following values to enforce the inequality constraints specified by the `"inequality constraint types"' option (default is 0).

            1. To have constraint checking only in the initial condition calculation.

            2. To enforce constraint checking during the integration.

            3. To enforce both options 1 and 2.

    `"inequality constraint types"'
          A vector of the same length as the state specifying the type of inequality constraint.  Each element of the vector corresponds to an element of the state and should be assigned one of the following codes

         -2
               Less than zero.

         -1
               Less than or equal to zero.

         0
               Not constrained.

         1
               Greater than or equal to zero.

         2
               Greater than zero.

          This option only has an effect if the `"enforce inequality constraints"' option is nonzero.

    `"initial step size"'
          Differential-algebraic problems may occasionally suffer from severe scaling difficulties on the first step.  If you know a great deal about the scaling of your problem, you can help to alleviate this problem by specifying an initial stepsize (default is computed automatically).

    `"maximum order"'
          Restrict the maximum order of the solution method.  This option must be between 1 and 5, inclusive (default is 5).

    `"maximum step size"'
          Setting the maximum stepsize will avoid passing over very large regions (default is not specified).

# name: <cell-element>
# type: string
# elements: 1
# length: 105
When called with two arguments, this function allows you set options parameters for the function `daspk'.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
daspk
# name: <cell-element>
# type: string
# elements: 1
# length: 2443
 -- Loadable Function: [X, XDOT, ISTATE, MSG] = daspk (FCN, X_0, XDOT_0, T, T_CRIT)
     Solve the set of differential-algebraic equations

          0 = f (x, xdot, t)

     with

          x(t_0) = x_0, xdot(t_0) = xdot_0

     The solution is returned in the matrices X and XDOT, with each row in the result matrices corresponding to one of the elements in the vector T.  The first element of T should be t_0 and correspond to the initial state of the system X_0 and its derivative XDOT_0, so that the first row of the output X is X_0 and the first row of the output XDOT is XDOT_0.

     The first argument, FCN, is a string, inline, or function handle that names the function f to call to compute the vector of residuals for the set of equations.  It must have the form

          RES = f (X, XDOT, T)

     in which X, XDOT, and RES are vectors, and T is a scalar.

     If FCN is a two-element string array or a two-element cell array of strings, inline functions, or function handles, the first element names the function f described above, and the second element names a function to compute the modified Jacobian

                df       df
          jac = -- + c ------
                dx     d xdot

     The modified Jacobian function must have the form


          JAC = j (X, XDOT, T, C)

     The second and third arguments to `daspk' specify the initial condition of the states and their derivatives, and the fourth argument specifies a vector of output times at which the solution is desired, including the time corresponding to the initial condition.

     The set of initial states and derivatives are not strictly required to be consistent.  If they are not consistent, you must use the `daspk_options' function to provide additional information so that `daspk' can compute a consistent starting point.

     The fifth argument is optional, and may be used to specify a set of times that the DAE solver should not integrate past.  It is useful for avoiding difficulties with singularities and points where there is a discontinuity in the derivative.

     After a successful computation, the value of ISTATE will be greater than zero (consistent with the Fortran version of DASPK).

     If the computation is not successful, the value of ISTATE will be less than zero and MSG will contain additional information.

     You can use the function `daspk_options' to set optional parameters for `daspk'.  See also: dassl.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Solve the set of differential-algebraic equations 

# name: <cell-element>
# type: string
# elements: 1
# length: 13
dasrt_options
# name: <cell-element>
# type: string
# elements: 1
# length: 1641
 -- Loadable Function:  dasrt_options (OPT, VAL)
     When called with two arguments, this function allows you set options parameters for the function `dasrt'.  Given one argument, `dasrt_options' returns the value of the corresponding option.  If no arguments are supplied, the names of all the available options and their current values are displayed.

     Options include

    `"absolute tolerance"'
          Absolute tolerance.  May be either vector or scalar.  If a vector, it must match the dimension of the state vector, and the relative tolerance must also be a vector of the same length.

    `"relative tolerance"'
          Relative tolerance.  May be either vector or scalar.  If a vector, it must match the dimension of the state vector, and the absolute tolerance must also be a vector of the same length.

          The local error test applied at each integration step is
                 abs (local error in x(i)) <= ...
                     rtol(i) * abs (Y(i)) + atol(i)

    `"initial step size"'
          Differential-algebraic problems may occasionally suffer from severe scaling difficulties on the first step.  If you know a great deal about the scaling of your problem, you can help to alleviate this problem by specifying an initial stepsize.

    `"maximum order"'
          Restrict the maximum order of the solution method.  This option must be between 1 and 5, inclusive.

    `"maximum step size"'
          Setting the maximum stepsize will avoid passing over very large regions.

    `"step limit"'
          Maximum number of integration steps to attempt on a single call to the underlying Fortran code.

# name: <cell-element>
# type: string
# elements: 1
# length: 105
When called with two arguments, this function allows you set options parameters for the function `dasrt'.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
dasrt
# name: <cell-element>
# type: string
# elements: 1
# length: 3942
 -- Loadable Function: [X, XDOT, T_OUT, ISTAT, MSG] = dasrt (FCN [, G], X_0, XDOT_0, T [, T_CRIT])
     Solve the set of differential-algebraic equations

          0 = f (x, xdot, t)

     with

          x(t_0) = x_0, xdot(t_0) = xdot_0

     with functional stopping criteria (root solving).

     The solution is returned in the matrices X and XDOT, with each row in the result matrices corresponding to one of the elements in the vector T_OUT.  The first element of T should be t_0 and correspond to the initial state of the system X_0 and its derivative XDOT_0, so that the first row of the output X is X_0 and the first row of the output XDOT is XDOT_0.

     The vector T provides an upper limit on the length of the integration.  If the stopping condition is met, the vector T_OUT will be shorter than T, and the final element of T_OUT will be the point at which the stopping condition was met, and may not correspond to any element of the vector T.

     The first argument, FCN, is a string, inline, or function handle that names the function f to call to compute the vector of residuals for the set of equations.  It must have the form

          RES = f (X, XDOT, T)

     in which X, XDOT, and RES are vectors, and T is a scalar.

     If FCN is a two-element string array or a two-element cell array of strings, inline functions, or function handles, the first element names the function f described above, and the second element names a function to compute the modified Jacobian

                df       df
          jac = -- + c ------
                dx     d xdot

     The modified Jacobian function must have the form


          JAC = j (X, XDOT, T, C)

     The optional second argument names a function that defines the constraint functions whose roots are desired during the integration.  This function must have the form

          G_OUT = g (X, T)

     and return a vector of the constraint function values.  If the value of any of the constraint functions changes sign, DASRT will attempt to stop the integration at the point of the sign change.

     If the name of the constraint function is omitted, `dasrt' solves the same problem as `daspk' or `dassl'.

     Note that because of numerical errors in the constraint functions due to roundoff and integration error, DASRT may return false roots, or return the same root at two or more nearly equal values of T.  If such false roots are suspected, the user should consider smaller error tolerances or higher precision in the evaluation of the constraint functions.

     If a root of some constraint function defines the end of the problem, the input to DASRT should nevertheless allow integration to a point slightly past that root, so that DASRT can locate the root by interpolation.

     The third and fourth arguments to `dasrt' specify the initial condition of the states and their derivatives, and the fourth argument specifies a vector of output times at which the solution is desired, including the time corresponding to the initial condition.

     The set of initial states and derivatives are not strictly required to be consistent.  In practice, however, DASSL is not very good at determining a consistent set for you, so it is best if you ensure that the initial values result in the function evaluating to zero.

     The sixth argument is optional, and may be used to specify a set of times that the DAE solver should not integrate past.  It is useful for avoiding difficulties with singularities and points where there is a discontinuity in the derivative.

     After a successful computation, the value of ISTATE will be greater than zero (consistent with the Fortran version of DASSL).

     If the computation is not successful, the value of ISTATE will be less than zero and MSG will contain additional information.

     You can use the function `dasrt_options' to set optional parameters for `dasrt'.  See also: daspk, dasrt, lsode.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Solve the set of differential-algebraic equations 

# name: <cell-element>
# type: string
# elements: 1
# length: 13
dassl_options
# name: <cell-element>
# type: string
# elements: 1
# length: 2248
 -- Loadable Function:  dassl_options (OPT, VAL)
     When called with two arguments, this function allows you set options parameters for the function `dassl'.  Given one argument, `dassl_options' returns the value of the corresponding option.  If no arguments are supplied, the names of all the available options and their current values are displayed.

     Options include

    `"absolute tolerance"'
          Absolute tolerance.  May be either vector or scalar.  If a vector, it must match the dimension of the state vector, and the relative tolerance must also be a vector of the same length.

    `"relative tolerance"'
          Relative tolerance.  May be either vector or scalar.  If a vector, it must match the dimension of the state vector, and the absolute tolerance must also be a vector of the same length.

          The local error test applied at each integration step is

                 abs (local error in x(i))
                      <= rtol(i) * abs (Y(i)) + atol(i)

    `"compute consistent initial condition"'
          If nonzero, `dassl' will attempt to compute a consistent set of initial conditions.  This is generally not reliable, so it is best to provide a consistent set and leave this option set to zero.

    `"enforce nonnegativity constraints"'
          If you know that the solutions to your equations will always be nonnegative, it may help to set this parameter to a nonzero value.  However, it is probably best to try leaving this option set to zero first, and only setting it to a nonzero value if that doesn't work very well.

    `"initial step size"'
          Differential-algebraic problems may occasionally suffer from severe scaling difficulties on the first step.  If you know a great deal about the scaling of your problem, you can help to alleviate this problem by specifying an initial stepsize.

    `"maximum order"'
          Restrict the maximum order of the solution method.  This option must be between 1 and 5, inclusive.

    `"maximum step size"'
          Setting the maximum stepsize will avoid passing over very large regions  (default is not specified).

    `"step limit"'
          Maximum number of integration steps to attempt on a single call to the underlying Fortran code.

# name: <cell-element>
# type: string
# elements: 1
# length: 105
When called with two arguments, this function allows you set options parameters for the function `dassl'.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
dassl
# name: <cell-element>
# type: string
# elements: 1
# length: 2477
 -- Loadable Function: [X, XDOT, ISTATE, MSG] = dassl (FCN, X_0, XDOT_0, T, T_CRIT)
     Solve the set of differential-algebraic equations

          0 = f (x, xdot, t)

     with

          x(t_0) = x_0, xdot(t_0) = xdot_0

     The solution is returned in the matrices X and XDOT, with each row in the result matrices corresponding to one of the elements in the vector T.  The first element of T should be t_0 and correspond to the initial state of the system X_0 and its derivative XDOT_0, so that the first row of the output X is X_0 and the first row of the output XDOT is XDOT_0.

     The first argument, FCN, is a string, inline, or function handle that names the function f to call to compute the vector of residuals for the set of equations.  It must have the form

          RES = f (X, XDOT, T)

     in which X, XDOT, and RES are vectors, and T is a scalar.

     If FCN is a two-element string array or a two-element cell array of strings, inline functions, or function handles, the first element names the function f described above, and the second element names a function to compute the modified Jacobian

                df       df
          jac = -- + c ------
                dx     d xdot

     The modified Jacobian function must have the form


          JAC = j (X, XDOT, T, C)

     The second and third arguments to `dassl' specify the initial condition of the states and their derivatives, and the fourth argument specifies a vector of output times at which the solution is desired, including the time corresponding to the initial condition.

     The set of initial states and derivatives are not strictly required to be consistent.  In practice, however, DASSL is not very good at determining a consistent set for you, so it is best if you ensure that the initial values result in the function evaluating to zero.

     The fifth argument is optional, and may be used to specify a set of times that the DAE solver should not integrate past.  It is useful for avoiding difficulties with singularities and points where there is a discontinuity in the derivative.

     After a successful computation, the value of ISTATE will be greater than zero (consistent with the Fortran version of DASSL).

     If the computation is not successful, the value of ISTATE will be less than zero and MSG will contain additional information.

     You can use the function `dassl_options' to set optional parameters for `dassl'.  See also: daspk, dasrt, lsode.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Solve the set of differential-algebraic equations 

# name: <cell-element>
# type: string
# elements: 1
# length: 3
all
# name: <cell-element>
# type: string
# elements: 1
# length: 229
 -- Built-in Function:  all (X, DIM)
     The function `all' behaves like the function `any', except that it returns true only if all the elements of a vector, or all the elements along dimension DIM of a matrix, are nonzero.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 183
The function `all' behaves like the function `any', except that it returns true only if all the elements of a vector, or all the elements along dimension DIM of a matrix, are nonzero.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
any
# name: <cell-element>
# type: string
# elements: 1
# length: 515
 -- Built-in Function:  any (X, DIM)
     For a vector argument, return 1 if any element of the vector is nonzero.

     For a matrix argument, return a row vector of ones and zeros with each element indicating whether any of the elements of the corresponding column of the matrix are nonzero.  For example,

          any (eye (2, 4))
               => [ 1, 1, 0, 0 ]

     If the optional argument DIM is supplied, work along dimension DIM.  For example,

          any (eye (2, 4), 2)
               => [ 1; 1 ]

# name: <cell-element>
# type: string
# elements: 1
# length: 72
For a vector argument, return 1 if any element of the vector is nonzero.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
atan2
# name: <cell-element>
# type: string
# elements: 1
# length: 170
 -- Mapping Function:  atan2 (Y, X)
     Compute atan (Y / X) for corresponding elements of Y and X.  Signal an error if Y and X do not match in size and orientation.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Compute atan (Y / X) for corresponding elements of Y and X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
hypot
# name: <cell-element>
# type: string
# elements: 1
# length: 248
 -- Built-in Function:  hypot (X, Y)
     Compute the element-by-element square root of the sum of the squares of X and Y.  This is equivalent to `sqrt (X.^2 + Y.^2)', but calculated in a manner that avoids overflows for large values of X or Y.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 80
Compute the element-by-element square root of the sum of the squares of X and Y.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
log2
# name: <cell-element>
# type: string
# elements: 1
# length: 325
 -- Mapping Function:  log2 (X)
 -- Mapping Function: [F, E] = log2 (X)
     Compute the base-2 logarithm of each element of X.

     If called with two output arguments, split X into binary mantissa and exponent so that `1/2 <= abs(f) < 1' and E is an integer.  If `x = 0', `f = e = 0'.  See also: pow2, log, log10, exp.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Compute the base-2 logarithm of each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
fmod
# name: <cell-element>
# type: string
# elements: 1
# length: 248
 -- Mapping Function:  fmod (X, Y)
     Compute the floating point remainder of dividing X by Y using the C library function `fmod'.  The result has the same sign as X.  If Y is zero, the result is implementation-dependent.  See also: mod, rem.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Compute the floating point remainder of dividing X by Y using the C library function `fmod'.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
cumprod
# name: <cell-element>
# type: string
# elements: 1
# length: 386
 -- Built-in Function:  cumprod (X)
 -- Built-in Function:  cumprod (X, DIM)
     Cumulative product of elements along dimension DIM.  If DIM is omitted, it defaults to 1 (column-wise cumulative products).

     As a special case, if X is a vector and DIM is omitted, return the cumulative product of the elements as a vector with the same orientation as X.  See also: prod, cumsum.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Cumulative product of elements along dimension DIM.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
cumsum
# name: <cell-element>
# type: string
# elements: 1
# length: 573
 -- Built-in Function:  cumsum (X)
 -- Built-in Function:  cumsum (X, DIM)
 -- Built-in Function:  cumsum (..., 'native')
     Cumulative sum of elements along dimension DIM.  If DIM is omitted, it defaults to 1 (column-wise cumulative sums).

     As a special case, if X is a vector and DIM is omitted, return the cumulative sum of the elements as a vector with the same orientation as X.

     The "native" argument implies the summation is performed in native type.   See `sum' for a complete description and example of the use of "native".  See also: sum, cumprod.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Cumulative sum of elements along dimension DIM.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
diag
# name: <cell-element>
# type: string
# elements: 1
# length: 604
 -- Built-in Function:  diag (V, K)
     Return a diagonal matrix with vector V on diagonal K.  The second argument is optional.  If it is positive, the vector is placed on the K-th super-diagonal.  If it is negative, it is placed on the -K-th sub-diagonal.  The default value of K is 0, and the vector is placed on the main diagonal.  For example,

          diag ([1, 2, 3], 1)
               =>  0  1  0  0
                   0  0  2  0
                   0  0  0  3
                   0  0  0  0

     Given a matrix argument, instead of a vector, `diag' extracts the K-th diagonal of the matrix.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Return a diagonal matrix with vector V on diagonal K.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
prod
# name: <cell-element>
# type: string
# elements: 1
# length: 304
 -- Built-in Function:  prod (X)
 -- Built-in Function:  prod (X, DIM)
     Product of elements along dimension DIM.  If DIM is omitted, it defaults to 1 (column-wise products).

     As a special case, if X is a vector and DIM is omitted, return the product of the elements.  See also: cumprod, sum.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Product of elements along dimension DIM.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
horzcat
# name: <cell-element>
# type: string
# elements: 1
# length: 200
 -- Built-in Function:  horzcat (ARRAY1, ARRAY2, ..., ARRAYN)
     Return the horizontal concatenation of N-d array objects, ARRAY1, ARRAY2, ..., ARRAYN along dimension 2.  See also: cat, vertcat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Return the horizontal concatenation of N-d array objects, ARRAY1, ARRAY2, .

# name: <cell-element>
# type: string
# elements: 1
# length: 7
vertcat
# name: <cell-element>
# type: string
# elements: 1
# length: 198
 -- Built-in Function:  vertcat (ARRAY1, ARRAY2, ..., ARRAYN)
     Return the vertical concatenation of N-d array objects, ARRAY1, ARRAY2, ..., ARRAYN along dimension 1.  See also: cat, horzcat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 73
Return the vertical concatenation of N-d array objects, ARRAY1, ARRAY2, .

# name: <cell-element>
# type: string
# elements: 1
# length: 3
cat
# name: <cell-element>
# type: string
# elements: 1
# length: 803
 -- Built-in Function:  cat (DIM, ARRAY1, ARRAY2, ..., ARRAYN)
     Return the concatenation of N-d array objects, ARRAY1, ARRAY2, ..., ARRAYN along dimension DIM.

          A = ones (2, 2);
          B = zeros (2, 2);
          cat (2, A, B)
          => ans =

               1 1 0 0
               1 1 0 0

     Alternatively, we can concatenate A and B along the second dimension the following way:

          [A, B].

     DIM can be larger than the dimensions of the N-d array objects and the result will thus have DIM dimensions as the following example shows:
          cat (4, ones(2, 2), zeros (2, 2))
          => ans =

             ans(:,:,1,1) =

               1 1
               1 1

             ans(:,:,1,2) =
               0 0
               0 0
     See also: horzcat, vertcat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return the concatenation of N-d array objects, ARRAY1, ARRAY2, .

# name: <cell-element>
# type: string
# elements: 1
# length: 7
permute
# name: <cell-element>
# type: string
# elements: 1
# length: 255
 -- Built-in Function:  permute (A, PERM)
     Return the generalized transpose for an N-d array object A.  The permutation vector PERM must contain the elements `1:ndims(a)' (in any order, but each element must appear just once).  See also: ipermute.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Return the generalized transpose for an N-d array object A.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
ipermute
# name: <cell-element>
# type: string
# elements: 1
# length: 208
 -- Built-in Function:  ipermute (A, IPERM)
     The inverse of the `permute' function.  The expression

          ipermute (permute (a, perm), perm)
     returns the original array A.  See also: permute.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 38
The inverse of the `permute' function.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
length
# name: <cell-element>
# type: string
# elements: 1
# length: 228
 -- Built-in Function:  length (A)
     Return the `length' of the object A.  For matrix objects, the length is the number of rows or columns, whichever is greater (this odd definition is used for compatibility with MATLAB).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Return the `length' of the object A.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
ndims
# name: <cell-element>
# type: string
# elements: 1
# length: 204
 -- Built-in Function:  ndims (A)
     Returns the number of dimensions of array A.  For any array, the result will always be larger than or equal to 2.  Trailing singleton dimensions are not counted.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Returns the number of dimensions of array A.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
numel
# name: <cell-element>
# type: string
# elements: 1
# length: 107
 -- Built-in Function:  numel (A)
     Returns the number of elements in the object A.  See also: size.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Returns the number of elements in the object A.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
size
# name: <cell-element>
# type: string
# elements: 1
# length: 730
 -- Built-in Function:  size (A, N)
     Return the number rows and columns of A.

     With one input argument and one output argument, the result is returned in a row vector.  If there are multiple output arguments, the number of rows is assigned to the first, and the number of columns to the second, etc.  For example,

          size ([1, 2; 3, 4; 5, 6])
               => [ 3, 2 ]

          [nr, nc] = size ([1, 2; 3, 4; 5, 6])
               => nr = 3
               => nc = 2

     If given a second argument, `size' will return the size of the corresponding dimension.  For example

          size ([1, 2; 3, 4; 5, 6], 2)
               => 2

     returns the number of columns in the given matrix.  See also: numel.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Return the number rows and columns of A.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
size_equal
# name: <cell-element>
# type: string
# elements: 1
# length: 234
 -- Built-in Function:  size_equal (A, B, ...)
     Return true if the dimensions of all arguments agree.  Trailing singleton dimensions are ignored.  Called with a single argument, size_equal returns true.  See also: size, numel.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Return true if the dimensions of all arguments agree.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
nnz
# name: <cell-element>
# type: string
# elements: 1
# length: 113
 -- Built-in Function: SCALAR = nnz (A)
     Returns the number of non zero elements in A.  See also: sparse.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Returns the number of non zero elements in A.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
nzmax
# name: <cell-element>
# type: string
# elements: 1
# length: 401
 -- Built-in Function: SCALAR = nzmax (SM)
     Return the amount of storage allocated to the sparse matrix SM.  Note that Octave tends to crop unused memory at the first opportunity for sparse objects.  There are some cases of user created sparse objects where the value returned by "nzmax" will not be the same as "nnz", but in general they will give the same result.  See also: sparse, spalloc.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return the amount of storage allocated to the sparse matrix SM.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
rows
# name: <cell-element>
# type: string
# elements: 1
# length: 144
 -- Built-in Function:  rows (A)
     Return the number of rows of A.  See also: size, numel, columns, length, isscalar, isvector, ismatrix.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Return the number of rows of A.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
columns
# name: <cell-element>
# type: string
# elements: 1
# length: 147
 -- Built-in Function:  columns (A)
     Return the number of columns of A.  See also: size, numel, rows, length, isscalar, isvector, ismatrix.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Return the number of columns of A.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
sum
# name: <cell-element>
# type: string
# elements: 1
# length: 622
 -- Built-in Function:  sum (X)
 -- Built-in Function:  sum (X, DIM)
 -- Built-in Function:  sum (..., 'native')
     Sum of elements along dimension DIM.  If DIM is omitted, it defaults to 1 (column-wise sum).

     As a special case, if X is a vector and DIM is omitted, return the sum of the elements.

     If the optional argument 'native' is given, then the sum is performed in the same type as the original argument, rather than in the default double type.  For example

          sum ([true, true])
            => 2
          sum ([true, true], 'native')
            => true
     See also: cumsum, sumsq, prod.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Sum of elements along dimension DIM.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
sumsq
# name: <cell-element>
# type: string
# elements: 1
# length: 481
 -- Built-in Function:  sumsq (X)
 -- Built-in Function:  sumsq (X, DIM)
     Sum of squares of elements along dimension DIM.  If DIM is omitted, it defaults to 1 (column-wise sum of squares).

     As a special case, if X is a vector and DIM is omitted, return the sum of squares of the elements.

     This function is conceptually equivalent to computing
          sum (x .* conj (x), dim)
     but it uses less memory and avoids calling `conj' if X is real.  See also: sum.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Sum of squares of elements along dimension DIM.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
islogical
# name: <cell-element>
# type: string
# elements: 1
# length: 84
 -- Built-in Function:  islogical (X)
     Return true if X is a logical object.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Return true if X is a logical object.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
isinteger
# name: <cell-element>
# type: string
# elements: 1
# length: 271
 -- Built-in Function:  isinteger (X)
     Return true if X is an integer object (int8, uint8, int16, etc.).  Note that `isinteger (14)' is false because numeric constants in Octave are double precision floating point values.  See also: isreal, isnumeric, class, isa.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return true if X is an integer object (int8, uint8, int16, etc.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
iscomplex
# name: <cell-element>
# type: string
# elements: 1
# length: 99
 -- Built-in Function:  iscomplex (X)
     Return true if X is a complex-valued numeric object.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return true if X is a complex-valued numeric object.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
isfloat
# name: <cell-element>
# type: string
# elements: 1
# length: 97
 -- Built-in Function:  isfloat (X)
     Return true if X is a floating-point numeric object.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return true if X is a floating-point numeric object.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
complex
# name: <cell-element>
# type: string
# elements: 1
# length: 458
 -- Built-in Function:  complex (X)
 -- Built-in Function:  complex (RE, IM)
     Return a complex result from real arguments.  With 1 real argument X, return the complex result `X + 0i'.  With 2 real arguments, return the complex result `RE + IM'.  `complex' can often be more convenient than expressions such as `a + i*b'.  For example:

          complex ([1, 2], [3, 4])
          =>
             1 + 3i   2 + 4i
     See also: real, imag, iscomplex.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Return a complex result from real arguments.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
isreal
# name: <cell-element>
# type: string
# elements: 1
# length: 93
 -- Built-in Function:  isreal (X)
     Return true if X is a real-valued numeric object.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Return true if X is a real-valued numeric object.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
isempty
# name: <cell-element>
# type: string
# elements: 1
# length: 172
 -- Built-in Function:  isempty (A)
     Return 1 if A is an empty matrix (either the number of rows, or the number of columns, or both are zero).  Otherwise, return 0.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 105
Return 1 if A is an empty matrix (either the number of rows, or the number of columns, or both are zero).

# name: <cell-element>
# type: string
# elements: 1
# length: 9
isnumeric
# name: <cell-element>
# type: string
# elements: 1
# length: 87
 -- Built-in Function:  isnumeric (X)
     Return nonzero if X is a numeric object.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Return nonzero if X is a numeric object.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
islist
# name: <cell-element>
# type: string
# elements: 1
# length: 74
 -- Built-in Function:  islist (X)
     Return nonzero if X is a list.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Return nonzero if X is a list.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
ismatrix
# name: <cell-element>
# type: string
# elements: 1
# length: 94
 -- Built-in Function:  ismatrix (A)
     Return 1 if A is a matrix.  Otherwise, return 0.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Return 1 if A is a matrix.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
ones
# name: <cell-element>
# type: string
# elements: 1
# length: 573
 -- Built-in Function:  ones (X)
 -- Built-in Function:  ones (N, M)
 -- Built-in Function:  ones (N, M, K, ...)
 -- Built-in Function:  ones (..., CLASS)
     Return a matrix or N-dimensional array whose elements are all 1.  The arguments are handled the same as the arguments for `eye'.

     If you need to create a matrix whose values are all the same, you should use an expression like

          val_matrix = val * ones (n, m)

     The optional argument CLASS, allows `ones' to return an array of the specified type, for example

          val = ones (n,m, "uint8")

# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return a matrix or N-dimensional array whose elements are all 1.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
zeros
# name: <cell-element>
# type: string
# elements: 1
# length: 435
 -- Built-in Function:  zeros (X)
 -- Built-in Function:  zeros (N, M)
 -- Built-in Function:  zeros (N, M, K, ...)
 -- Built-in Function:  zeros (..., CLASS)
     Return a matrix or N-dimensional array whose elements are all 0.  The arguments are handled the same as the arguments for `eye'.

     The optional argument CLASS, allows `zeros' to return an array of the specified type, for example

          val = zeros (n,m, "uint8")

# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return a matrix or N-dimensional array whose elements are all 0.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
Inf
# name: <cell-element>
# type: string
# elements: 1
# length: 1031
 -- Built-in Function:  Inf
 -- Built-in Function:  Inf (N)
 -- Built-in Function:  Inf (N, M)
 -- Built-in Function:  Inf (N, M, K, ...)
 -- Built-in Function:  Inf (..., CLASS)
     Return a scalar, matrix or N-dimensional array whose elements are all equal to the IEEE representation for positive infinity.

     Infinity is produced when results are too large to be represented using the the IEEE floating point format for numbers.  Two common examples which produce infinity are division by zero and overflow.
          [1/0 e^800]
          =>
          Inf   Inf

     When called with no arguments, return a scalar with the value `Inf'.  When called with a single argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The optional argument CLASS specifies the return type and may be either "double" or "single".  See also: isinf.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 125
Return a scalar, matrix or N-dimensional array whose elements are all equal to the IEEE representation for positive infinity.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
NaN
# name: <cell-element>
# type: string
# elements: 1
# length: 1208
 -- Built-in Function:  NaN
 -- Built-in Function:  NaN (N)
 -- Built-in Function:  NaN (N, M)
 -- Built-in Function:  NaN (N, M, K, ...)
 -- Built-in Function:  NaN (..., CLASS)
     Return a scalar, matrix, or N-dimensional array whose elements are all equal to the IEEE symbol NaN (Not a Number).  NaN is the result of operations which do not produce a well defined numerical result.  Common operations which produce a NaN are arithmetic with infinity (Inf - Inf), zero divided by zero (0/0), and any operation involving another NaN value (5 + NaN).

     Note that NaN always compares not equal to NaN (NaN != NaN).  This behavior is specified by the IEEE standard for floating point arithmetic.  To find NaN values, use the `isnan' function.

     When called with no arguments, return a scalar with the value `NaN'.  When called with a single argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The optional argument CLASS specifies the return type and may be either "double" or "single".  See also: isnan.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 115
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the IEEE symbol NaN (Not a Number).

# name: <cell-element>
# type: string
# elements: 1
# length: 1
e
# name: <cell-element>
# type: string
# elements: 1
# length: 781
 -- Built-in Function:  e
 -- Built-in Function:  e (N)
 -- Built-in Function:  e (N, M)
 -- Built-in Function:  e (N, M, K, ...)
 -- Built-in Function:  e (..., CLASS)
     Return a scalar, matrix, or N-dimensional array whose elements are all equal to the base of natural logarithms.  The constant `e' satisfies the equation `log' (e) = 1.

     When called with no arguments, return a scalar with the value e.  When called with a single argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The optional argument CLASS specifies the return type and may be either "double" or "single".
   
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the base of natural logarithms.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
eps
# name: <cell-element>
# type: string
# elements: 1
# length: 1033
 -- Built-in Function:  eps
 -- Built-in Function:  eps (X)
 -- Built-in Function:  eps (N, M)
 -- Built-in Function:  eps (N, M, K, ...)
 -- Built-in Function:  eps (..., CLASS)
     Return a scalar, matrix or N-dimensional array whose elements are all eps, the machine precision.  More precisely, `eps' is the relative spacing between any two adjacent numbers in the machine's floating point system.  This number is obviously system dependent.  On machines that support IEEE floating point arithmetic, `eps' is approximately 2.2204e-16 for double precision and 1.1921e-07 for single precision.

     When called with no arguments, return a scalar with the value `eps(1.0)'.  Given a single argument X, return the distance between X and the next largest value.  When called with more than one argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The optional argument CLASS specifies the return type and may be either "double" or "single".
   
# name: <cell-element>
# type: string
# elements: 1
# length: 97
Return a scalar, matrix or N-dimensional array whose elements are all eps, the machine precision.

# name: <cell-element>
# type: string
# elements: 1
# length: 2
pi
# name: <cell-element>
# type: string
# elements: 1
# length: 815
 -- Built-in Function:  pi
 -- Built-in Function:  pi (N)
 -- Built-in Function:  pi (N, M)
 -- Built-in Function:  pi (N, M, K, ...)
 -- Built-in Function:  pi (..., CLASS)
     Return a scalar, matrix, or N-dimensional array whose elements are all equal to the ratio of the circumference of a circle to its diameter.  Internally, `pi' is computed as `4.0 * atan (1.0)'.

     When called with no arguments, return a scalar with the value of pi.  When called with a single argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The optional argument CLASS specifies the return type and may be either "double" or "single".
   
# name: <cell-element>
# type: string
# elements: 1
# length: 139
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the ratio of the circumference of a circle to its diameter.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
realmax
# name: <cell-element>
# type: string
# elements: 1
# length: 1027
 -- Built-in Function:  realmax
 -- Built-in Function:  realmax (N)
 -- Built-in Function:  realmax (N, M)
 -- Built-in Function:  realmax (N, M, K, ...)
 -- Built-in Function:  realmax (..., CLASS)
     Return a scalar, matrix or N-dimensional array whose elements are all equal to the largest floating point number that is representable.  The actual value is system dependent.  On machines that support IEEE floating point arithmetic, `realmax' is approximately 1.7977e+308 for double precision and 3.4028e+38 for single precision.

     When called with no arguments, return a scalar with the value `realmax("double")'.  When called with a single argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The optional argument CLASS specifies the return type and may be either "double" or "single".  See also: realmin, intmax, bitmax.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 135
Return a scalar, matrix or N-dimensional array whose elements are all equal to the largest floating point number that is representable.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
realmin
# name: <cell-element>
# type: string
# elements: 1
# length: 1031
 -- Built-in Function:  realmin
 -- Built-in Function:  realmin (N)
 -- Built-in Function:  realmin (N, M)
 -- Built-in Function:  realmin (N, M, K, ...)
 -- Built-in Function:  realmin (..., CLASS)
     Return a scalar, matrix or N-dimensional array whose elements are all equal to the smallest normalized floating point number that is representable.  The actual value is system dependent.  On machines that support IEEE floating point arithmetic, `realmin' is approximately 2.2251e-308 for double precision and 1.1755e-38 for single precision.

     When called with no arguments, return a scalar with the value `realmin("double")'.  When called with a single argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The optional argument CLASS specifies the return type and may be either "double" or "single".  See also: realmax, intmin.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 147
Return a scalar, matrix or N-dimensional array whose elements are all equal to the smallest normalized floating point number that is representable.

# name: <cell-element>
# type: string
# elements: 1
# length: 1
I
# name: <cell-element>
# type: string
# elements: 1
# length: 883
 -- Built-in Function:  I
 -- Built-in Function:  I (N)
 -- Built-in Function:  I (N, M)
 -- Built-in Function:  I (N, M, K, ...)
 -- Built-in Function:  I (..., CLASS)
     Return a scalar, matrix, or N-dimensional array whose elements are all equal to the pure imaginary unit, defined as `sqrt (-1)'.   I, and its equivalents i, J, and j, are functions so any of the names may be reused for other purposes (such as i for a counter variable).

     When called with no arguments, return a scalar with the value i.  When called with a single argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The optional argument CLASS specifies the return type and may be either "double" or "single".
   
# name: <cell-element>
# type: string
# elements: 1
# length: 128
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the pure imaginary unit, defined as `sqrt (-1)'.

# name: <cell-element>
# type: string
# elements: 1
# length: 2
NA
# name: <cell-element>
# type: string
# elements: 1
# length: 881
 -- Built-in Function:  NA
 -- Built-in Function:  NA (N)
 -- Built-in Function:  NA (N, M)
 -- Built-in Function:  NA (N, M, K, ...)
 -- Built-in Function:  NA (..., CLASS)
     Return a scalar, matrix, or N-dimensional array whose elements are all equal to the special constant used to designate missing values.

     Note that NA always compares not equal to NA (NA != NA).  To find NA values, use the `isna' function.

     When called with no arguments, return a scalar with the value `NA'.  When called with a single argument, return a square matrix with the dimension specified.  When called with more than one scalar argument the first two arguments are taken as the number of rows and columns and any further arguments specify additional matrix dimensions.  The optional argument CLASS specifies the return type and may be either "double" or "single".  See also: isna.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 134
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the special constant used to designate missing values.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
false
# name: <cell-element>
# type: string
# elements: 1
# length: 261
 -- Built-in Function:  false (X)
 -- Built-in Function:  false (N, M)
 -- Built-in Function:  false (N, M, K, ...)
     Return a matrix or N-dimensional array whose elements are all logical 0.  The arguments are handled the same as the arguments for `eye'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 72
Return a matrix or N-dimensional array whose elements are all logical 0.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
true
# name: <cell-element>
# type: string
# elements: 1
# length: 258
 -- Built-in Function:  true (X)
 -- Built-in Function:  true (N, M)
 -- Built-in Function:  true (N, M, K, ...)
     Return a matrix or N-dimensional array whose elements are all logical 1.  The arguments are handled the same as the arguments for `eye'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 72
Return a matrix or N-dimensional array whose elements are all logical 1.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
eye
# name: <cell-element>
# type: string
# elements: 1
# length: 1016
 -- Built-in Function:  eye (X)
 -- Built-in Function:  eye (N, M)
 -- Built-in Function:  eye (..., CLASS)
     Return an identity matrix.  If invoked with a single scalar argument, `eye' returns a square matrix with the dimension specified.  If you supply two scalar arguments, `eye' takes them to be the number of rows and columns.  If given a vector with two elements, `eye' uses the values of the elements as the number of rows and columns, respectively.  For example,

          eye (3)
               =>  1  0  0
                   0  1  0
                   0  0  1

     The following expressions all produce the same result:

          eye (2)
          ==
          eye (2, 2)
          ==
          eye (size ([1, 2; 3, 4])

     The optional argument CLASS, allows `eye' to return an array of the specified type, like

          val = zeros (n,m, "uint8")

     Calling `eye' with no arguments is equivalent to calling it with an argument of 1.  This odd definition is for compatibility with MATLAB.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Return an identity matrix.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
linspace
# name: <cell-element>
# type: string
# elements: 1
# length: 547
 -- Built-in Function:  linspace (BASE, LIMIT, N)
     Return a row vector with N linearly spaced elements between BASE and LIMIT.  If the number of elements is greater than one, then the BASE and LIMIT are always included in the range.  If BASE is greater than LIMIT, the elements are stored in decreasing order.  If the number of points is not specified, a value of 100 is used.

     The `linspace' function always returns a row vector.

     For compatibility with MATLAB, return the second argument if fewer than two values are requested.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Return a row vector with N linearly spaced elements between BASE and LIMIT.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
resize
# name: <cell-element>
# type: string
# elements: 1
# length: 1131
 -- Built-in Function:  resize (X, M)
 -- Built-in Function:  resize (X, M, N)
 -- Built-in Function:  resize (X, M, N, ...)
     Resize X cutting off elements as necessary.

     In the result, element with certain indices is equal to the corresponding element of X if the indices are within the bounds of X; otherwise, the element is set to zero.

     In other words, the statement

            y = resize (x, dv);

     is equivalent to the following code:

            y = zeros (dv, class (x));
            sz = min (dv, size (x));
            for i = 1:length (sz), idx{i} = 1:sz(i); endfor
            y(idx{:}) = x(idx{:});

     but is performed more efficiently.

     If only M is supplied and it is a scalar, the dimension of the result is M-by-M.  If M is a vector, then the dimensions of the result are given by the elements of M.  If both M and N are scalars, then the dimensions of the result are M-by-N.

     An object can be resized to more dimensions than it has; in such case the missing dimensions are assumed to be 1.  Resizing an object to fewer dimensions is not possible.  See also: reshape, postpad.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Resize X cutting off elements as necessary.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
reshape
# name: <cell-element>
# type: string
# elements: 1
# length: 612
 -- Built-in Function:  reshape (A, M, N, ...)
 -- Built-in Function:  reshape (A, SIZE)
     Return a matrix with the given dimensions whose elements are taken from the matrix A.  The elements of the matrix are accessed in column-major order (like Fortran arrays are stored).

     For example,

          reshape ([1, 2, 3, 4], 2, 2)
               =>  1  3
                   2  4

     Note that the total number of elements in the original matrix must match the total number of elements in the new matrix.

     A single dimension of the return matrix can be unknown and is flagged by an empty argument.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 85
Return a matrix with the given dimensions whose elements are taken from the matrix A.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
squeeze
# name: <cell-element>
# type: string
# elements: 1
# length: 225
 -- Built-in Function:  squeeze (X)
     Remove singleton dimensions from X and return the result.  Note that for compatibility with MATLAB, all objects have a minimum of two dimensions and row vectors are left unchanged.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Remove singleton dimensions from X and return the result.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
full
# name: <cell-element>
# type: string
# elements: 1
# length: 151
 -- Loadable Function: FM = full (SM)
     returns a full storage matrix from a sparse, diagonal, permutation matrix or a range.  See also: sparse.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 85
returns a full storage matrix from a sparse, diagonal, permutation matrix or a range.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
norm
# name: <cell-element>
# type: string
# elements: 1
# length: 1203
 -- Built-in Function:  norm (A, P, OPT)
     Compute the p-norm of the matrix A.  If the second argument is missing, `p = 2' is assumed.

     If A is a matrix (or sparse matrix):

    P = `1'
          1-norm, the largest column sum of the absolute values of A.

    P = `2'
          Largest singular value of A.

    P = `Inf' or `"inf"'
          Infinity norm, the largest row sum of the absolute values of A.

    P = `"fro"'
          Frobenius norm of A, `sqrt (sum (diag (A' * A)))'.

    other P, `P > 1'
          maximum `norm (A*x, p)' such that `norm (x, p) == 1'

     If A is a vector or a scalar:

    P = `Inf' or `"inf"'
          `max (abs (A))'.

    P = `-Inf'
          `min (abs (A))'.

    P = `"fro"'
          Frobenius norm of A, `sqrt (sumsq (abs (a)))'.

    P = 0
          Hamming norm - the number of nonzero elements.

    other P, `P > 1'
          p-norm of A, `(sum (abs (A) .^ P)) ^ (1/P)'.

    other P `P < 1'
          the p-pseudonorm defined as above.

     If `"rows"' is given as OPT, the norms of all rows of the matrix A are returned as a column vector.  Similarly, if `"columns"' or `"cols"' is passed column norms are computed.  See also: cond, svd.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Compute the p-norm of the matrix A.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
not
# name: <cell-element>
# type: string
# elements: 1
# length: 78
 -- Built-in Function:  not (X)
     This function is equivalent to `! x'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
This function is equivalent to `! x'.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
uplus
# name: <cell-element>
# type: string
# elements: 1
# length: 80
 -- Built-in Function:  uplus (X)
     This function is equivalent to `+ x'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
This function is equivalent to `+ x'.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
uminus
# name: <cell-element>
# type: string
# elements: 1
# length: 81
 -- Built-in Function:  uminus (X)
     This function is equivalent to `- x'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
This function is equivalent to `- x'.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
transpose
# name: <cell-element>
# type: string
# elements: 1
# length: 84
 -- Built-in Function:  transpose (X)
     This function is equivalent to `x.''.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function is equivalent to `x.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
ctranspose
# name: <cell-element>
# type: string
# elements: 1
# length: 84
 -- Built-in Function:  ctranspose (X)
     This function is equivalent to `x''.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 36
This function is equivalent to `x''.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
plus
# name: <cell-element>
# type: string
# elements: 1
# length: 84
 -- Built-in Function:  plus (X, Y)
     This function is equivalent to `x + y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x + y'.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
minus
# name: <cell-element>
# type: string
# elements: 1
# length: 85
 -- Built-in Function:  minus (X, Y)
     This function is equivalent to `x - y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x - y'.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
mtimes
# name: <cell-element>
# type: string
# elements: 1
# length: 86
 -- Built-in Function:  mtimes (X, Y)
     This function is equivalent to `x * y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x * y'.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
mrdivide
# name: <cell-element>
# type: string
# elements: 1
# length: 88
 -- Built-in Function:  mrdivide (X, Y)
     This function is equivalent to `x / y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x / y'.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
mpower
# name: <cell-element>
# type: string
# elements: 1
# length: 86
 -- Built-in Function:  mpower (X, Y)
     This function is equivalent to `x ^ y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x ^ y'.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
mldivide
# name: <cell-element>
# type: string
# elements: 1
# length: 88
 -- Built-in Function:  mldivide (X, Y)
     This function is equivalent to `x \ y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x \ y'.

# name: <cell-element>
# type: string
# elements: 1
# length: 2
lt
# name: <cell-element>
# type: string
# elements: 1
# length: 82
 -- Built-in Function:  lt (X, Y)
     This function is equivalent to `x < y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x < y'.

# name: <cell-element>
# type: string
# elements: 1
# length: 2
le
# name: <cell-element>
# type: string
# elements: 1
# length: 83
 -- Built-in Function:  le (X, Y)
     This function is equivalent to `x <= y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
This function is equivalent to `x <= y'.

# name: <cell-element>
# type: string
# elements: 1
# length: 2
eq
# name: <cell-element>
# type: string
# elements: 1
# length: 83
 -- Built-in Function:  eq (X, Y)
     This function is equivalent to `x == y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
This function is equivalent to `x == y'.

# name: <cell-element>
# type: string
# elements: 1
# length: 2
ge
# name: <cell-element>
# type: string
# elements: 1
# length: 83
 -- Built-in Function:  ge (X, Y)
     This function is equivalent to `x >= y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
This function is equivalent to `x >= y'.

# name: <cell-element>
# type: string
# elements: 1
# length: 2
gt
# name: <cell-element>
# type: string
# elements: 1
# length: 82
 -- Built-in Function:  gt (X, Y)
     This function is equivalent to `x > y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x > y'.

# name: <cell-element>
# type: string
# elements: 1
# length: 2
ne
# name: <cell-element>
# type: string
# elements: 1
# length: 83
 -- Built-in Function:  ne (X, Y)
     This function is equivalent to `x != y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
This function is equivalent to `x != y'.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
times
# name: <cell-element>
# type: string
# elements: 1
# length: 86
 -- Built-in Function:  times (X, Y)
     This function is equivalent to `x .* y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 35
This function is equivalent to `x .

# name: <cell-element>
# type: string
# elements: 1
# length: 7
rdivide
# name: <cell-element>
# type: string
# elements: 1
# length: 88
 -- Built-in Function:  rdivide (X, Y)
     This function is equivalent to `x ./ y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 35
This function is equivalent to `x .

# name: <cell-element>
# type: string
# elements: 1
# length: 5
power
# name: <cell-element>
# type: string
# elements: 1
# length: 86
 -- Built-in Function:  power (X, Y)
     This function is equivalent to `x .^ y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 35
This function is equivalent to `x .

# name: <cell-element>
# type: string
# elements: 1
# length: 7
ldivide
# name: <cell-element>
# type: string
# elements: 1
# length: 88
 -- Built-in Function:  ldivide (X, Y)
     This function is equivalent to `x .\ y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 35
This function is equivalent to `x .

# name: <cell-element>
# type: string
# elements: 1
# length: 3
and
# name: <cell-element>
# type: string
# elements: 1
# length: 83
 -- Built-in Function:  and (X, Y)
     This function is equivalent to `x & y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x & y'.

# name: <cell-element>
# type: string
# elements: 1
# length: 2
or
# name: <cell-element>
# type: string
# elements: 1
# length: 82
 -- Built-in Function:  or (X, Y)
     This function is equivalent to `x | y'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is equivalent to `x | y'.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
tic
# name: <cell-element>
# type: string
# elements: 1
# length: 1367
 -- Built-in Function:  tic ()
 -- Built-in Function:  toc ()
     Set or check a wall-clock timer.  Calling `tic' without an output argument sets the timer.  Subsequent calls to `toc' return the number of seconds since the timer was set.  For example,

          tic ();
          # many computations later...
          elapsed_time = toc ();

     will set the variable `elapsed_time' to the number of seconds since the most recent call to the function `tic'.

     If called with one output argument then this function returns a scalar of type `uint64' and the wall-clock timer is not started.

          t = tic; sleep (5); (double (tic ()) - double (t)) * 1e-6
               => 5

     Nested timing with `tic' and `toc' is not supported.  Therefore `toc' will always return the elapsed time from the most recent call to `tic'.

     If you are more interested in the CPU time that your process used, you should use the `cputime' function instead.  The `tic' and `toc' functions report the actual wall clock time that elapsed between the calls.  This may include time spent processing other jobs or doing nothing at all.  For example,

          tic (); sleep (5); toc ()
               => 5
          t = cputime (); sleep (5); cputime () - t
               => 0

     (This example also illustrates that the CPU timer may have a fairly coarse resolution.)
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Set or check a wall-clock timer.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
toc
# name: <cell-element>
# type: string
# elements: 1
# length: 48
 -- Built-in Function:  toc ()
     See tic.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 8
See tic.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
cputime
# name: <cell-element>
# type: string
# elements: 1
# length: 653
 -- Built-in Function: [TOTAL, USER, SYSTEM] = cputime ();
     Return the CPU time used by your Octave session.  The first output is the total time spent executing your process and is equal to the sum of second and third outputs, which are the number of CPU seconds spent executing in user mode and the number of CPU seconds spent executing in system mode, respectively.  If your system does not have a way to report CPU time usage, `cputime' returns 0 for each of its output values.  Note that because Octave used some CPU time to start, it is reasonable to check to see if `cputime' works by checking to see if the total CPU time used is nonzero.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return the CPU time used by your Octave session.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
sort
# name: <cell-element>
# type: string
# elements: 1
# length: 1417
 -- Loadable Function: [S, I] = sort (X)
 -- Loadable Function: [S, I] = sort (X, DIM)
 -- Loadable Function: [S, I] = sort (X, MODE)
 -- Loadable Function: [S, I] = sort (X, DIM, MODE)
     Return a copy of X with the elements arranged in increasing order.  For matrices, `sort' orders the elements in each column.

     For example,

          sort ([1, 2; 2, 3; 3, 1])
               =>  1  1
                   2  2
                   3  3

     The `sort' function may also be used to produce a matrix containing the original row indices of the elements in the sorted matrix.  For example,

          [s, i] = sort ([1, 2; 2, 3; 3, 1])
               => s = 1  1
                      2  2
                      3  3
               => i = 1  3
                      2  1
                      3  2

     If the optional argument DIM is given, then the matrix is sorted along the dimension defined by DIM.  The optional argument `mode' defines the order in which the values will be sorted.  Valid values of `mode' are `ascend' or `descend'.

     For equal elements, the indices are such that the equal elements are listed in the order that appeared in the original list.

     The `sort' function may also be used to sort strings and cell arrays of strings, in which case the dictionary order of the strings is used.

     The algorithm used in `sort' is optimized for the sorting of partially ordered lists.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Return a copy of X with the elements arranged in increasing order.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
issorted
# name: <cell-element>
# type: string
# elements: 1
# length: 367
 -- Built-in Function:  issorted (A, ROWS)
     Returns true if the array is sorted, ascending or descending.  NaNs are treated as by `sort'.  If ROWS is supplied and has the value "rows", checks whether the array is sorted by rows as if output by `sortrows' (with no options).

     This function does not yet support sparse matrices.  See also: sortrows, sort.

   
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Returns true if the array is sorted, ascending or descending.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
dbstop
# name: <cell-element>
# type: string
# elements: 1
# length: 501
 -- Loadable Function: RLINE = dbstop (FUNC, LINE, ...)
     Set a breakpoint in a function
    `func'
          String representing the function name.  When already in debug mode this should be left out and only the line should be given.

    `line'
          Line number you would like the breakpoint to be set on.  Multiple lines might be given as separate arguments or as a vector.

     The rline returned is the real line that the breakpoint was set at.  See also: dbclear, dbstatus, dbstep.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 78
Set a breakpoint in a function  `func'  String representing the function name.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
dbclear
# name: <cell-element>
# type: string
# elements: 1
# length: 565
 -- Loadable Function:  dbclear (FUNC, LINE, ...)
     Delete a breakpoint in a function
    `func'
          String representing the function name.  When already in debug mode this should be left out and only the line should be given.

    `line'
          Line number where you would like to remove the breakpoint.  Multiple lines might be given as separate arguments or as a vector.
     No checking is done to make sure that the line you requested is really a breakpoint.  If you get the wrong line nothing will happen.  See also: dbstop, dbstatus, dbwhere.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 81
Delete a breakpoint in a function  `func'  String representing the function name.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
dbstatus
# name: <cell-element>
# type: string
# elements: 1
# length: 277
 -- Loadable Function: lst = dbstatus (FUNC)
     Return a vector containing the lines on which a function has breakpoints set.
    `func'
          String representing the function name.  When already in debug mode this should be left out.
     See also: dbclear, dbwhere.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Return a vector containing the lines on which a function has breakpoints set.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
dbwhere
# name: <cell-element>
# type: string
# elements: 1
# length: 110
 -- Loadable Function:  dbwhere ()
     Show where we are in the code See also: dbclear, dbstatus, dbstop.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Show where we are in the code See also: dbclear, dbstatus, dbstop.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
dbtype
# name: <cell-element>
# type: string
# elements: 1
# length: 116
 -- Loadable Function:  dbtype ()
     List script file with line numbers.  See also: dbclear, dbstatus, dbstop.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 35
List script file with line numbers.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
dbstack
# name: <cell-element>
# type: string
# elements: 1
# length: 199
 -- Loadable Function: [STACK, IDX] dbstack (N)
     Print or return current stack information.  With optional argument N, omit the N innermost stack frames.  See also: dbclear, dbstatus, dbstop.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Print or return current stack information.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
dbup
# name: <cell-element>
# type: string
# elements: 1
# length: 155
 -- Loadable Function:  dbup (N)
     In debugging mode, move up the execution stack N frames.  If N is omitted, move up one frame.  See also: dbstack.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 56
In debugging mode, move up the execution stack N frames.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
dbdown
# name: <cell-element>
# type: string
# elements: 1
# length: 161
 -- Loadable Function:  dbdown (N)
     In debugging mode, move down the execution stack N frames.  If N is omitted, move down one frame.  See also: dbstack.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
In debugging mode, move down the execution stack N frames.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
dbstep
# name: <cell-element>
# type: string
# elements: 1
# length: 509
 -- Command:  dbstep N
 -- Command:  dbstep in
 -- Command:  dbstep out
     In debugging mode, execute the next N lines of code.  If N is omitted execute the next line of code.  If the next line of code is itself defined in terms of an m-file remain in the existing function.

     Using `dbstep in' will cause execution of the next line to step into any m-files defined on the next line.  Using `dbstep out' with cause execution to continue until the current function returns.  See also: dbcont, dbquit.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
In debugging mode, execute the next N lines of code.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
dbcont
# name: <cell-element>
# type: string
# elements: 1
# length: 122
 -- Command:  dbcont ()
     In debugging mode, quit debugging mode and continue execution.  See also: dbstep, dbstep.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 62
In debugging mode, quit debugging mode and continue execution.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
dbquit
# name: <cell-element>
# type: string
# elements: 1
# length: 127
 -- Command:  dbquit ()
     In debugging mode, quit debugging mode and return to the top level.  See also: dbstep, dbcont.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 67
In debugging mode, quit debugging mode and return to the top level.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
isdebugmode
# name: <cell-element>
# type: string
# elements: 1
# length: 134
 -- Command:  isdebugmode ()
     Return true if debug mode is on, otherwise false.  See also: dbstack, dbclear, dbstop, dbstatus.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Return true if debug mode is on, otherwise false.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
EDITOR
# name: <cell-element>
# type: string
# elements: 1
# length: 394
 -- Built-in Function: VAL = EDITOR ()
 -- Built-in Function: OLD_VAL = EDITOR (NEW_VAL)
     Query or set the internal variable that specifies the editor to use with the `edit_history' command.  The default value is taken from the environment variable `EDITOR' when Octave starts.  If the environment variable is not initialized, `EDITOR' will be set to `"emacs"'.  See also: edit_history.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 100
Query or set the internal variable that specifies the editor to use with the `edit_history' command.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
EXEC_PATH
# name: <cell-element>
# type: string
# elements: 1
# length: 690
 -- Built-in Function: VAL = EXEC_PATH ()
 -- Built-in Function: OLD_VAL = EXEC_PATH (NEW_VAL)
     Query or set the internal variable that specifies a colon separated list of directories to search when executing external programs.  Its initial value is taken from the environment variable `OCTAVE_EXEC_PATH' (if it exists) or `PATH', but that value can be overridden by the command line argument `--exec-path PATH'.  At startup, an additional set of directories (including the shell PATH) is appended to the path specified in the environment or on the command line.  If you use the `EXEC_PATH' function to modify the path, you should take care to preserve these additional directories.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 131
Query or set the internal variable that specifies a colon separated list of directories to search when executing external programs.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
IMAGE_PATH
# name: <cell-element>
# type: string
# elements: 1
# length: 229
 -- Built-in Function: VAL = IMAGE_PATH ()
 -- Built-in Function: OLD_VAL = IMAGE_PATH (NEW_VAL)
     Query or set the internal variable that specifies a colon separated list of directories in which to search for image files.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 123
Query or set the internal variable that specifies a colon separated list of directories in which to search for image files.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
OCTAVE_HOME
# name: <cell-element>
# type: string
# elements: 1
# length: 111
 -- Built-in Function:  OCTAVE_HOME ()
     Return the name of the top-level Octave installation directory.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return the name of the top-level Octave installation directory.

# name: <cell-element>
# type: string
# elements: 1
# length: 14
OCTAVE_VERSION
# name: <cell-element>
# type: string
# elements: 1
# length: 100
 -- Built-in Function:  OCTAVE_VERSION ()
     Return the version number of Octave, as a string.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Return the version number of Octave, as a string.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
det
# name: <cell-element>
# type: string
# elements: 1
# length: 205
 -- Loadable Function: [D, RCOND] = det (A)
     Compute the determinant of A using LAPACK for full and UMFPACK for sparse matrices.  Return an estimate of the reciprocal condition number if requested.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Compute the determinant of A using LAPACK for full and UMFPACK for sparse matrices.

# name: <cell-element>
# type: string
# elements: 1
# length: 2
cd
# name: <cell-element>
# type: string
# elements: 1
# length: 409
 -- Command: cd dir
 -- Command: chdir dir
     Change the current working directory to DIR.  If DIR is omitted, the current directory is changed to the user's home directory.  For example,

          cd ~/octave

     Changes the current working directory to `~/octave'.  If the directory does not exist, an error message is printed and the working directory is not changed.  See also: mkdir, rmdir, dir.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Change the current working directory to DIR.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
pwd
# name: <cell-element>
# type: string
# elements: 1
# length: 97
 -- Built-in Function:  pwd ()
     Return the current working directory.  See also: dir, ls.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Return the current working directory.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
readdir
# name: <cell-element>
# type: string
# elements: 1
# length: 356
 -- Built-in Function: [FILES, ERR, MSG] = readdir (DIR)
     Return names of the files in the directory DIR as a cell array of strings.  If an error occurs, return an empty cell array in FILES.

     If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.  See also: dir, glob.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Return names of the files in the directory DIR as a cell array of strings.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
mkdir
# name: <cell-element>
# type: string
# elements: 1
# length: 402
 -- Built-in Function: [STATUS, MSG, MSGID] = mkdir (DIR)
 -- Built-in Function: [STATUS, MSG, MSGID] = mkdir (PARENT, DIR)
     Create a directory named DIR in the directory PARENT.

     If successful, STATUS is 1, with MSG and MSGID empty character strings.  Otherwise, STATUS is 0, MSG contains a system-dependent error message, and MSGID contains a unique message identifier.  See also: rmdir.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Create a directory named DIR in the directory PARENT.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
rmdir
# name: <cell-element>
# type: string
# elements: 1
# length: 520
 -- Built-in Function: [STATUS, MSG, MSGID] = rmdir (DIR)
 -- Built-in Function: [STATUS, MSG, MSGID] = rmdir (DIR, `"s"')
     Remove the directory named DIR.

     If successful, STATUS is 1, with MSG and MSGID empty character strings.  Otherwise, STATUS is 0, MSG contains a system-dependent error message, and MSGID contains a unique message identifier.

     If the optional second parameter is supplied with value `"s"', recursively remove all subdirectories as well.  See also: mkdir, confirm_recursive_rmdir.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Remove the directory named DIR.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
link
# name: <cell-element>
# type: string
# elements: 1
# length: 283
 -- Built-in Function: [ERR, MSG] = link (OLD, NEW)
     Create a new link (also known as a hard link) to an existing file.

     If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.  See also: symlink.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Create a new link (also known as a hard link) to an existing file.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
symlink
# name: <cell-element>
# type: string
# elements: 1
# length: 284
 -- Built-in Function: [ERR, MSG] = symlink (OLD, NEW)
     Create a symbolic link NEW which contains the string OLD.

     If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.  See also: link, readlink.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Create a symbolic link NEW which contains the string OLD.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
readlink
# name: <cell-element>
# type: string
# elements: 1
# length: 337
 -- Built-in Function: [RESULT, ERR, MSG] = readlink (SYMLINK)
     Read the value of the symbolic link SYMLINK.

     If successful, RESULT contains the contents of the symbolic link SYMLINK, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.  See also: link, symlink.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Read the value of the symbolic link SYMLINK.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
rename
# name: <cell-element>
# type: string
# elements: 1
# length: 254
 -- Built-in Function: [ERR, MSG] = rename (OLD, NEW)
     Change the name of file OLD to NEW.

     If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.  See also: ls, dir.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Change the name of file OLD to NEW.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
glob
# name: <cell-element>
# type: string
# elements: 1
# length: 423
 -- Built-in Function:  glob (PATTERN)
     Given an array of strings (as a char array or a cell array) in PATTERN, return a cell array of file names that match any of them, or an empty cell array if no patterns match.  Tilde expansion is performed on each of the patterns before looking for matching file names.  For example,

          glob ("/vm*")
               => "/vmlinuz"
     See also: dir, ls, stat, readdir.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 174
Given an array of strings (as a char array or a cell array) in PATTERN, return a cell array of file names that match any of them, or an empty cell array if no patterns match.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
fnmatch
# name: <cell-element>
# type: string
# elements: 1
# length: 304
 -- Built-in Function:  fnmatch (PATTERN, STRING)
     Return 1 or zero for each element of STRING that matches any of the elements of the string array PATTERN, using the rules of filename pattern matching.  For example,

          fnmatch ("a*b", {"ab"; "axyzb"; "xyzab"})
               => [ 1; 1; 0 ]

# name: <cell-element>
# type: string
# elements: 1
# length: 151
Return 1 or zero for each element of STRING that matches any of the elements of the string array PATTERN, using the rules of filename pattern matching.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
filesep
# name: <cell-element>
# type: string
# elements: 1
# length: 433
 -- Built-in Function:  filesep ()
 -- Built-in Function:  filesep ('all')
     Return the system-dependent character used to separate directory names.

     If 'all' is given, the function return all valid file separators in the form of a string.  The list of file separators is system-dependent.  It is / (forward slash) under UNIX or Mac OS X, / and \ (forward and backward slashes) under Windows.  See also: pathsep, dir, ls.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Return the system-dependent character used to separate directory names.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
pathsep
# name: <cell-element>
# type: string
# elements: 1
# length: 195
 -- Built-in Function: VAL = pathsep ()
 -- Built-in Function: OLD_VAL = pathsep (NEW_VAL)
     Query or set the character used to separate directories in a path.  See also: filesep, dir, ls.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Query or set the character used to separate directories in a path.

# name: <cell-element>
# type: string
# elements: 1
# length: 23
confirm_recursive_rmdir
# name: <cell-element>
# type: string
# elements: 1
# length: 267
 -- Built-in Function: VAL = confirm_recursive_rmdir ()
 -- Built-in Function: OLD_VAL = confirm_recursive_rmdir (NEW_VAL)
     Query or set the internal variable that controls whether Octave will ask for confirmation before recursively removing a directory tree.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 135
Query or set the internal variable that controls whether Octave will ask for confirmation before recursively removing a directory tree.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
builtin
# name: <cell-element>
# type: string
# elements: 1
# length: 177
 -- Loadable Function: [...] builtin (F, ...)
     Call the base function F even if F is overloaded to some other function for the given type signature.  See also: dispatch.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 101
Call the base function F even if F is overloaded to some other function for the given type signature.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
dispatch
# name: <cell-element>
# type: string
# elements: 1
# length: 463
 -- Loadable Function:  dispatch (F, R, TYPE)
     Replace the function F with a dispatch so that function R is called when F is called with the first argument of the named TYPE.  If the type is ANY then call R if no other type matches.  The original function F is accessible using `builtin (F, ...)'.

     If R is omitted, clear dispatch function associated with TYPE.

     If both R and TYPE are omitted, list dispatch functions for F.  See also: builtin.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 127
Replace the function F with a dispatch so that function R is called when F is called with the first argument of the named TYPE.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
dlmread
# name: <cell-element>
# type: string
# elements: 1
# length: 795
 -- Loadable Function: DATA = dlmread (FILE)
 -- Loadable Function: DATA = dlmread (FILE, SEP)
 -- Loadable Function: DATA = dlmread (FILE, SEP, R0, C0)
 -- Loadable Function: DATA = dlmread (FILE, SEP, RANGE)
     Read the matrix DATA from a text file.  If not defined the separator between fields is determined from the file itself.  Otherwise the separation character is defined by SEP.

     Given two scalar arguments R0 and C0, these define the starting row and column of the data to be read.  These values are indexed from zero, such that the first row corresponds to an index of zero.

     The RANGE parameter must be a 4 element vector containing the upper left and lower right corner `[R0,C0,R1,C1]' or a spreadsheet style range such as 'A2..Q15'.  The lowest index value is zero.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 38
Read the matrix DATA from a text file.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
dmperm
# name: <cell-element>
# type: string
# elements: 1
# length: 714
 -- Loadable Function: P = dmperm (S)
 -- Loadable Function: [P, Q, R, S] = dmperm (S)
     Perform a Dulmage-Mendelsohn permutation on the sparse matrix S.  With a single output argument "dmperm" performs the row permutations P such that `S (P,:)' has no zero elements on the diagonal.

     Called with two or more output arguments, returns the row and column permutations, such that `S (P, Q)' is in block triangular form.  The values of R and S define the boundaries of the blocks.  If S is square then `R == S'.

     The method used is described in: A. Pothen & C.-J. Fan. Computing the block triangular form of a sparse matrix. ACM Trans. Math. Software, 16(4):303-324, 1990.  See also: colamd, ccolamd.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Perform a Dulmage-Mendelsohn permutation on the sparse matrix S.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
sprank
# name: <cell-element>
# type: string
# elements: 1
# length: 400
 -- Loadable Function: P = sprank (S)
     Calculates the structural rank of a sparse matrix S.  Note that only the structure of the matrix is used in this calculation based on a Dulmage-Mendelsohn permutation to block triangular form.  As such the numerical rank of the matrix S is bounded by `sprank (S) >= rank (S)'.  Ignoring floating point errors `sprank (S) == rank (S)'.  See also: dmperm.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Calculates the structural rank of a sparse matrix S.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
eig
# name: <cell-element>
# type: string
# elements: 1
# length: 565
 -- Loadable Function: LAMBDA = eig (A)
 -- Loadable Function: LAMBDA = eig (A, B)
 -- Loadable Function: [V, LAMBDA] = eig (A)
 -- Loadable Function: [V, LAMBDA] = eig (A, B)
     The eigenvalues (and eigenvectors) of a matrix are computed in a several step process which begins with a Hessenberg decomposition, followed by a Schur decomposition, from which the eigenvalues are apparent.  The eigenvectors, when desired, are computed by further manipulations of the Schur decomposition.

     The eigenvalues returned by `eig' are not ordered.  See also: eigs.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 207
The eigenvalues (and eigenvectors) of a matrix are computed in a several step process which begins with a Hessenberg decomposition, followed by a Schur decomposition, from which the eigenvalues are apparent.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
eigs
# name: <cell-element>
# type: string
# elements: 1
# length: 5508
 -- Loadable Function: D = eigs (A)
 -- Loadable Function: D = eigs (A, K)
 -- Loadable Function: D = eigs (A, K, SIGMA)
 -- Loadable Function: D = eigs (A, K, SIGMA,OPTS)
 -- Loadable Function: D = eigs (A, B)
 -- Loadable Function: D = eigs (A, B, K)
 -- Loadable Function: D = eigs (A, B, K, SIGMA)
 -- Loadable Function: D = eigs (A, B, K, SIGMA, OPTS)
 -- Loadable Function: D = eigs (AF, N)
 -- Loadable Function: D = eigs (AF, N, B)
 -- Loadable Function: D = eigs (AF, N, K)
 -- Loadable Function: D = eigs (AF, N, B, K)
 -- Loadable Function: D = eigs (AF, N, K, SIGMA)
 -- Loadable Function: D = eigs (AF, N, B, K, SIGMA)
 -- Loadable Function: D = eigs (AF, N, K, SIGMA, OPTS)
 -- Loadable Function: D = eigs (AF, N, B, K, SIGMA, OPTS)
 -- Loadable Function: [V, D] = eigs (A, ...)
 -- Loadable Function: [V, D] = eigs (AF, N, ...)
 -- Loadable Function: [V, D, FLAG] = eigs (A, ...)
 -- Loadable Function: [V, D, FLAG] = eigs (AF, N, ...)
     Calculate a limited number of eigenvalues and eigenvectors of A, based on a selection criteria.  The number eigenvalues and eigenvectors to calculate is given by K whose default value is 6.

     By default `eigs' solve the equation `A * v = lambda * v' , where `lambda' is a scalar representing one of the eigenvalues, and `v' is the corresponding eigenvector.  If given the positive definite matrix B then `eigs' solves the general eigenvalue equation `A * v = lambda * B * v' .

     The argument SIGMA determines which eigenvalues are returned.  SIGMA can be either a scalar or a string.  When SIGMA is a scalar, the K eigenvalues closest to SIGMA are returned.  If SIGMA is a string, it must have one of the values

    'lm'
          Largest magnitude (default).

    'sm'
          Smallest magnitude.

    'la'
          Largest Algebraic (valid only for real symmetric problems).

    'sa'
          Smallest Algebraic (valid only for real symmetric problems).

    'be'
          Both ends, with one more from the high-end if K is odd (valid only for real symmetric problems).

    'lr'
          Largest real part (valid only for complex or unsymmetric problems).

    'sr'
          Smallest real part (valid only for complex or unsymmetric problems).

    'li'
          Largest imaginary part (valid only for complex or unsymmetric problems).

    'si'
          Smallest imaginary part (valid only for complex or unsymmetric problems).

     If OPTS is given, it is a structure defining some of the options that `eigs' should use.  The fields of the structure OPTS are

    `issym'
          If AF is given, then flags whether the function AF defines a symmetric problem.  It is ignored if A is given.  The default is false.

    `isreal'
          If AF is given, then flags whether the function AF defines a real problem.  It is ignored if A is given.  The default is true.

    `tol'
          Defines the required convergence tolerance, given as `tol * norm (A)'.  The default is `eps'.

    `maxit'
          The maximum number of iterations.  The default is 300.

    `p'
          The number of Lanzcos basis vectors to use.  More vectors will result in faster convergence, but a larger amount of memory.  The optimal value of 'p' is problem dependent and should be in the range K to N.  The default value is `2 * K'.

    `v0'
          The starting vector for the computation.  The default is to have ARPACK randomly generate a starting vector.

    `disp'
          The level of diagnostic printout.  If `disp' is 0 then there is no printout.  The default value is 1.

    `cholB'
          Flag if `chol (B)' is passed rather than B.  The default is false.

    `permB'
          The permutation vector of the Cholesky factorization of B if `cholB' is true.  That is `chol ( B (permB, permB))'.  The default is `1:N'.


     It is also possible to represent A by a function denoted AF.  AF must be followed by a scalar argument N defining the length of the vector argument accepted by AF.  AF can be passed either as an inline function, function handle or as a string.  In the case where AF is passed as a string, the name of the string defines the function to use.

     AF is a function of the form `function y = af (x), y = ...; endfunction', where the required return value of AF is determined by the value of SIGMA, and are

    `A * x'
          If SIGMA is not given or is a string other than 'sm'.

    `A \ x'
          If SIGMA is 'sm'.

    `(A - sigma * I) \ x'
          for standard eigenvalue problem, where `I' is the identity matrix of the same size as `A'.  If SIGMA is zero, this reduces the `A \ x'.

    `(A - sigma * B) \ x'
          for the general eigenvalue problem.

     The return arguments of `eigs' depends on the number of return arguments.  With a single return argument, a vector D of length K is returned, represent the K eigenvalues that have been found.  With two return arguments, V is a N-by-K matrix whose columns are the K eigenvectors corresponding to the returned eigenvalues.  The eigenvalues themselves are then returned in D in the form of a N-by-K matrix, where the elements on the diagonal are the eigenvalues.

     Given a third return argument FLAG, `eigs' also returns the status of the convergence.  If FLAG is 0, then all eigenvalues have converged, otherwise not.

     This function is based on the ARPACK package, written by R Lehoucq, K Maschhoff, D Sorensen and C Yang.  For more information see `http://www.caam.rice.edu/software/ARPACK/'.

   See also: eig, svds.  
# name: <cell-element>
# type: string
# elements: 1
# length: 95
Calculate a limited number of eigenvalues and eigenvectors of A, based on a selection criteria.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
rethrow
# name: <cell-element>
# type: string
# elements: 1
# length: 359
 -- Built-in Function:  rethrow (ERR)
     Reissues a previous error as defined by ERR.  ERR is a structure that must contain at least the 'message' and 'identifier' fields.  ERR can also contain a field 'stack' that gives information on the assumed location of the error.  Typically ERR is returned from `lasterror'.  See also: lasterror, lasterr, error.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Reissues a previous error as defined by ERR.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
error
# name: <cell-element>
# type: string
# elements: 1
# length: 1719
 -- Built-in Function:  error (TEMPLATE, ...)
 -- Built-in Function:  error (ID, TEMPLATE, ...)
     Format the optional arguments under the control of the template string TEMPLATE using the same rules as the `printf' family of functions (*note Formatted Output::) and print the resulting message on the `stderr' stream.  The message is prefixed by the character string `error: '.

     Calling `error' also sets Octave's internal error state such that control will return to the top level without evaluating any more commands.  This is useful for aborting from functions or scripts.

     If the error message does not end with a new line character, Octave will print a traceback of all the function calls leading to the error.  For example, given the following function definitions:

          function f () g (); end
          function g () h (); end
          function h () nargin == 1 || error ("nargin != 1"); end

     calling the function `f' will result in a list of messages that can help you to quickly locate the exact location of the error:

          f ()
          error: nargin != 1
          error: called from:
          error:   error at line -1, column -1
          error:   h at line 1, column 27
          error:   g at line 1, column 15
          error:   f at line 1, column 15

     If the error message ends in a new line character, Octave will print the message but will not display any traceback messages as it returns control to the top level.  For example, modifying the error message in the previous example to end in a new line causes Octave to only print a single message:

          function h () nargin == 1 || error ("nargin != 1\n"); end
          f ()
          error: nargin != 1

# name: <cell-element>
# type: string
# elements: 1
# length: 219
Format the optional arguments under the control of the template string TEMPLATE using the same rules as the `printf' family of functions (*note Formatted Output::) and print the resulting message on the `stderr' stream.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
warning
# name: <cell-element>
# type: string
# elements: 1
# length: 1166
 -- Built-in Function:  warning (TEMPLATE, ...)
 -- Built-in Function:  warning (ID, TEMPLATE, ...)
     Format the optional arguments under the control of the template string TEMPLATE using the same rules as the `printf' family of functions (*note Formatted Output::) and print the resulting message on the `stderr' stream.  The message is prefixed by the character string `warning: '.  You should use this function when you want to notify the user of an unusual condition, but only when it makes sense for your program to go on.

     The optional message identifier allows users to enable or disable warnings tagged by ID.  The special identifier `"all"' may be used to set the state of all warnings.

 -- Built-in Function:  warning ("on", ID)
 -- Built-in Function:  warning ("off", ID)
 -- Built-in Function:  warning ("error", ID)
 -- Built-in Function:  warning ("query", ID)
     Set or query the state of a particular warning using the identifier ID.  If the identifier is omitted, a value of `"all"' is assumed.  If you set the state of a warning to `"error"', the warning named by ID is handled as if it were an error instead.  See also: warning_ids.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Set or query the state of a particular warning using the identifier ID.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
lasterror
# name: <cell-element>
# type: string
# elements: 1
# length: 1405
 -- Built-in Function: ERR = lasterror (ERR)
 -- Built-in Function:  lasterror ('reset')
     Returns or sets the last error message.  Called without any arguments returns a structure containing the last error message, as well as other information related to this error.  The elements of this structure are:

    'message'
          The text of the last error message

    'identifier'
          The message identifier of this error message

    'stack'
          A structure containing information on where the message occurred.  This might be an empty structure if this in the case where this information cannot be obtained.  The fields of this structure are:

         'file'
               The name of the file where the error occurred

         'name'
               The name of function in which the error occurred

         'line'
               The line number at which the error occurred

         'column'
               An optional field with the column number at which the error occurred

     The ERR structure may also be passed to `lasterror' to set the information about the last error.  The only constraint on ERR in that case is that it is a scalar structure.  Any fields of ERR that match the above are set to the value passed in ERR, while other fields are set to their default values.

     If `lasterror' is called with the argument 'reset', all values take their default values.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Returns or sets the last error message.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
lasterr
# name: <cell-element>
# type: string
# elements: 1
# length: 235
 -- Built-in Function: [MSG, MSGID] = lasterr (MSG, MSGID)
     Without any arguments, return the last error message.  With one argument, set the last error message to MSG.  With two arguments, also set the last message identifier.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Without any arguments, return the last error message.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
lastwarn
# name: <cell-element>
# type: string
# elements: 1
# length: 240
 -- Built-in Function: [MSG, MSGID] = lastwarn (MSG, MSGID)
     Without any arguments, return the last warning message.  With one argument, set the last warning message to MSG.  With two arguments, also set the last message identifier.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Without any arguments, return the last warning message.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
usage
# name: <cell-element>
# type: string
# elements: 1
# length: 814
 -- Built-in Function:  usage (MSG)
     Print the message MSG, prefixed by the string `usage: ', and set Octave's internal error state such that control will return to the top level without evaluating any more commands.  This is useful for aborting from functions.

     After `usage' is evaluated, Octave will print a traceback of all the function calls leading to the usage message.

     You should use this function for reporting problems errors that result from an improper call to a function, such as calling a function with an incorrect number of arguments, or with arguments of the wrong type.  For example, most functions distributed with Octave begin with code like this

          if (nargin != 2)
            usage ("foo (a, b)");
          endif

     to check for the proper number of arguments.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 179
Print the message MSG, prefixed by the string `usage: ', and set Octave's internal error state such that control will return to the top level without evaluating any more commands.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
beep_on_error
# name: <cell-element>
# type: string
# elements: 1
# length: 244
 -- Built-in Function: VAL = beep_on_error ()
 -- Built-in Function: OLD_VAL = beep_on_error (NEW_VAL)
     Query or set the internal variable that controls whether Octave will try to ring the terminal bell before printing an error message.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 132
Query or set the internal variable that controls whether Octave will try to ring the terminal bell before printing an error message.

# name: <cell-element>
# type: string
# elements: 1
# length: 14
debug_on_error
# name: <cell-element>
# type: string
# elements: 1
# length: 352
 -- Built-in Function: VAL = debug_on_error ()
 -- Built-in Function: OLD_VAL = debug_on_error (NEW_VAL)
     Query or set the internal variable that controls whether Octave will try to enter the debugger when an error is encountered.  This will also inhibit printing of the normal traceback message (you will only see the top-level error message).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 124
Query or set the internal variable that controls whether Octave will try to enter the debugger when an error is encountered.

# name: <cell-element>
# type: string
# elements: 1
# length: 16
debug_on_warning
# name: <cell-element>
# type: string
# elements: 1
# length: 243
 -- Built-in Function: VAL = debug_on_warning ()
 -- Built-in Function: OLD_VAL = debug_on_warning (NEW_VAL)
     Query or set the internal variable that controls whether Octave will try to enter the debugger when a warning is encountered.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 125
Query or set the internal variable that controls whether Octave will try to enter the debugger when a warning is encountered.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
fft
# name: <cell-element>
# type: string
# elements: 1
# length: 802
 -- Loadable Function:  fft (A, N, DIM)
     Compute the FFT of A using subroutines from FFTW.  The FFT is calculated along the first non-singleton dimension of the array.  Thus if A is a matrix, `fft (A)' computes the FFT for each column of A.

     If called with two arguments, N is expected to be an integer specifying the number of elements of A to use, or an empty matrix to specify that its value should be ignored.  If N is larger than the dimension along which the FFT is calculated, then A is resized and padded with zeros.  Otherwise, if N is smaller than the dimension along which the FFT is calculated, then A is truncated.

     If called with three arguments, DIM is an integer specifying the dimension of the matrix along which the FFT is performed See also: ifft, fft2, fftn, fftw.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Compute the FFT of A using subroutines from FFTW.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
ifft
# name: <cell-element>
# type: string
# elements: 1
# length: 851
 -- Loadable Function:  ifft (A, N, DIM)
     Compute the inverse FFT of A using subroutines from FFTW.  The inverse FFT is calculated along the first non-singleton dimension of the array.  Thus if A is a matrix, `fft (A)' computes the inverse FFT for each column of A.

     If called with two arguments, N is expected to be an integer specifying the number of elements of A to use, or an empty matrix to specify that its value should be ignored.  If N is larger than the dimension along which the inverse FFT is calculated, then A is resized and padded with zeros.  Otherwise, ifN is smaller than the dimension along which the inverse FFT is calculated, then A is truncated.

     If called with three arguments, DIM is an integer specifying the dimension of the matrix along which the inverse FFT is performed See also: fft, ifft2, ifftn, fftw.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Compute the inverse FFT of A using subroutines from FFTW.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
fft2
# name: <cell-element>
# type: string
# elements: 1
# length: 430
 -- Loadable Function:  fft2 (A, N, M)
     Compute the two-dimensional FFT of A using subroutines from FFTW.  The optional arguments N and M may be used specify the number of rows and columns of A to use.  If either of these is larger than the size of A, A is resized and padded with zeros.

     If A is a multi-dimensional matrix, each two-dimensional sub-matrix of A is treated separately See also: ifft2, fft, fftn, fftw.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 65
Compute the two-dimensional FFT of A using subroutines from FFTW.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
ifft2
# name: <cell-element>
# type: string
# elements: 1
# length: 439
 -- Loadable Function:  fft2 (A, N, M)
     Compute the inverse two-dimensional FFT of A using subroutines from FFTW.  The optional arguments N and M may be used specify the number of rows and columns of A to use.  If either of these is larger than the size of A, A is resized and padded with zeros.

     If A is a multi-dimensional matrix, each two-dimensional sub-matrix of A is treated separately See also: fft2, ifft, ifftn, fftw.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 73
Compute the inverse two-dimensional FFT of A using subroutines from FFTW.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
fftn
# name: <cell-element>
# type: string
# elements: 1
# length: 482
 -- Loadable Function:  fftn (A, SIZE)
     Compute the N-dimensional FFT of A using subroutines from FFTW.  The optional vector argument SIZE may be used specify the dimensions of the array to be used.  If an element of SIZE is smaller than the corresponding dimension, then the dimension is truncated prior to performing the FFT.  Otherwise if an element of SIZE is larger than the corresponding dimension A is resized and padded with zeros.  See also: ifftn, fft, fft2, fftw.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Compute the N-dimensional FFT of A using subroutines from FFTW.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
ifftn
# name: <cell-element>
# type: string
# elements: 1
# length: 500
 -- Loadable Function:  ifftn (A, SIZE)
     Compute the inverse N-dimensional FFT of A using subroutines from FFTW.  The optional vector argument SIZE may be used specify the dimensions of the array to be used.  If an element of SIZE is smaller than the corresponding dimension, then the dimension is truncated prior to performing the inverse FFT.  Otherwise if an element of SIZE is larger than the corresponding dimension A is resized and padded with zeros.  See also: fftn, ifft, ifft2, fftw.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Compute the inverse N-dimensional FFT of A using subroutines from FFTW.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
fftw
# name: <cell-element>
# type: string
# elements: 1
# length: 2792
 -- Loadable Function: METHOD = fftw ('planner')
 -- Loadable Function:  fftw ('planner', METHOD)
 -- Loadable Function: WISDOM = fftw ('dwisdom')
 -- Loadable Function: WISDOM = fftw ('dwisdom', WISDOM)
     Manage FFTW wisdom data.  Wisdom data can be used to significantly accelerate the calculation of the FFTs but implies an initial cost in its calculation.  When the FFTW libraries are initialized, they read a system wide wisdom file (typically in `/etc/fftw/wisdom'), allowing wisdom to be shared between applications other than Octave.  Alternatively, the `fftw' function can be used to import wisdom.  For example

          WISDOM = fftw ('dwisdom')

     will save the existing wisdom used by Octave to the string WISDOM.  This string can then be saved to a file and restored using the `save' and `load' commands respectively.  This existing wisdom can be reimported as follows

          fftw ('dwisdom', WISDOM)

     If WISDOM is an empty matrix, then the wisdom used is cleared.

     During the calculation of Fourier transforms further wisdom is generated.  The fashion in which this wisdom is generated is equally controlled by the `fftw' function.  There are five different manners in which the wisdom can be treated, these being

    'estimate'
          This specifies that no run-time measurement of the optimal means of calculating a particular is performed, and a simple heuristic is used to pick a (probably sub-optimal) plan.  The advantage of this method is that there is little or no overhead in the generation of the plan, which is appropriate for a Fourier transform that will be calculated once.

    'measure'
          In this case a range of algorithms to perform the transform is considered and the best is selected based on their execution time.

    'patient'
          This is like 'measure', but a wider range of algorithms is considered.

    'exhaustive'
          This is like 'measure', but all possible algorithms that may be used to treat the transform are considered.

    'hybrid'
          As run-time measurement of the algorithm can be expensive, this is a compromise where 'measure' is used for transforms up to the size of 8192 and beyond that the 'estimate' method is used.

     The default method is 'estimate', and the method currently being used can be probed with

          METHOD = fftw ('planner')

     and the method used can be set using

          fftw ('planner', METHOD)

     Note that calculated wisdom will be lost when restarting Octave.  However, the wisdom data can be reloaded if it is saved to a file as described above.  Saved wisdom files should not be used on different platforms since they will not be efficient and the point of calculating the wisdom is lost.  See also: fft, ifft, fft2, ifft2, fftn, ifftn.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 24
Manage FFTW wisdom data.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
fclose
# name: <cell-element>
# type: string
# elements: 1
# length: 166
 -- Built-in Function:  fclose (FID)
     Closes the specified file.  If successful, `fclose' returns 0, otherwise, it returns -1.  See also: fopen, fseek, ftell.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Closes the specified file.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
fclear
# name: <cell-element>
# type: string
# elements: 1
# length: 92
 -- Built-in Function:  fclear (FID)
     Clear the stream state for the specified file.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Clear the stream state for the specified file.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
fflush
# name: <cell-element>
# type: string
# elements: 1
# length: 390
 -- Built-in Function:  fflush (FID)
     Flush output to FID.  This is useful for ensuring that all pending output makes it to the screen before some other event occurs.  For example, it is always a good idea to flush the standard output stream before calling `input'.

     `fflush' returns 0 on success and an OS dependent error value (-1 on unix) on error.  See also: fopen, fclose.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 20
Flush output to FID.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
fgetl
# name: <cell-element>
# type: string
# elements: 1
# length: 401
 -- Built-in Function:  fgetl (FID, LEN)
     Read characters from a file, stopping after a newline, or EOF, or LEN characters have been read.  The characters read, excluding the possible trailing newline, are returned as a string.

     If LEN is omitted, `fgetl' reads until the next newline character.

     If there are no more characters to read, `fgetl' returns -1.  See also: fread, fscanf.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 96
Read characters from a file, stopping after a newline, or EOF, or LEN characters have been read.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
fgets
# name: <cell-element>
# type: string
# elements: 1
# length: 415
 -- Built-in Function:  fgets (FID, LEN)
     Read characters from a file, stopping after a newline, or EOF, or LEN characters have been read.  The characters read, including the possible trailing newline, are returned as a string.

     If LEN is omitted, `fgets' reads until the next newline character.

     If there are no more characters to read, `fgets' returns -1.  See also: fputs, fopen, fread, fscanf.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 96
Read characters from a file, stopping after a newline, or EOF, or LEN characters have been read.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
fopen
# name: <cell-element>
# type: string
# elements: 1
# length: 3128
 -- Built-in Function: [FID, MSG] = fopen (NAME, MODE, ARCH)
 -- Built-in Function: FID_LIST = fopen ("all")
 -- Built-in Function: [FILE, MODE, ARCH] = fopen (FID)
     The first form of the `fopen' function opens the named file with the specified mode (read-write, read-only, etc.) and architecture interpretation (IEEE big endian, IEEE little endian, etc.), and returns an integer value that may be used to refer to the file later.  If an error occurs, FID is set to -1 and MSG contains the corresponding system error message.  The MODE is a one or two character string that specifies whether the file is to be opened for reading, writing, or both.

     The second form of the `fopen' function returns a vector of file ids corresponding to all the currently open files, excluding the `stdin', `stdout', and `stderr' streams.

     The third form of the `fopen' function returns information about the open file given its file id.

     For example,

          myfile = fopen ("splat.dat", "r", "ieee-le");

     opens the file `splat.dat' for reading.  If necessary, binary numeric values will be read assuming they are stored in IEEE format with the least significant bit first, and then converted to the native representation.

     Opening a file that is already open simply opens it again and returns a separate file id.  It is not an error to open a file several times, though writing to the same file through several different file ids may produce unexpected results.

     The possible values `mode' may have are

    `r'
          Open a file for reading.

    `w'
          Open a file for writing.  The previous contents are discarded.

    `a'
          Open or create a file for writing at the end of the file.

    `r+'
          Open an existing file for reading and writing.

    `w+'
          Open a file for reading or writing.  The previous contents are discarded.

    `a+'
          Open or create a file for reading or writing at the end of the file.

     Append a "t" to the mode string to open the file in text mode or a "b" to open in binary mode.  On Windows and Macintosh systems, text mode reading and writing automatically converts linefeeds to the appropriate line end character for the system (carriage-return linefeed on Windows, carriage-return on Macintosh).  The default if no mode is specified is binary mode.

     Additionally, you may append a "z" to the mode string to open a gzipped file for reading or writing.  For this to be successful, you must also open the file in binary mode.

     The parameter ARCH is a string specifying the default data format for the file.  Valid values for ARCH are:

          `native' The format of the current machine (this is the default).

          `ieee-be' IEEE big endian format.

          `ieee-le' IEEE little endian format.

          `vaxd' VAX D floating format.

          `vaxg' VAX G floating format.

          `cray' Cray floating format.

     however, conversions are currently only supported for `native' `ieee-be', and `ieee-le' formats.  See also: fclose, fgets, fputs, fread, fseek, ferror, fprintf, fscanf, ftell, fwrite.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 112
The first form of the `fopen' function opens the named file with the specified mode (read-write, read-only, etc.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
freport
# name: <cell-element>
# type: string
# elements: 1
# length: 395
 -- Built-in Function:  freport ()
     Print a list of which files have been opened, and whether they are open for reading, writing, or both.  For example,

          freport ()

               -|  number  mode  name
               -|
               -|       0     r  stdin
               -|       1     w  stdout
               -|       2     w  stderr
               -|       3     r  myfile

# name: <cell-element>
# type: string
# elements: 1
# length: 102
Print a list of which files have been opened, and whether they are open for reading, writing, or both.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
frewind
# name: <cell-element>
# type: string
# elements: 1
# length: 212
 -- Built-in Function:  frewind (FID)
     Move the file pointer to the beginning of the file FID, returning 0 for success, and -1 if an error was encountered.  It is equivalent to `fseek (FID, 0, SEEK_SET)'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 116
Move the file pointer to the beginning of the file FID, returning 0 for success, and -1 if an error was encountered.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
fseek
# name: <cell-element>
# type: string
# elements: 1
# length: 569
 -- Built-in Function:  fseek (FID, OFFSET, ORIGIN)
     Set the file pointer to any location within the file FID.

     The pointer is positioned OFFSET characters from the ORIGIN, which may be one of the predefined variables `SEEK_CUR' (current position), `SEEK_SET' (beginning), or `SEEK_END' (end of file) or strings "cof", "bof" or "eof".  If ORIGIN is omitted, `SEEK_SET' is assumed.  The offset must be zero, or a value returned by `ftell' (in which case ORIGIN must be `SEEK_SET').

     Return 0 on success and -1 on error.  See also: ftell, fopen, fclose.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Set the file pointer to any location within the file FID.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
ftell
# name: <cell-element>
# type: string
# elements: 1
# length: 181
 -- Built-in Function:  ftell (FID)
     Return the position of the file pointer as the number of characters from the beginning of the file FID.  See also: fseek, fopen, fclose.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 103
Return the position of the file pointer as the number of characters from the beginning of the file FID.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
fprintf
# name: <cell-element>
# type: string
# elements: 1
# length: 284
 -- Built-in Function:  fprintf (FID, TEMPLATE, ...)
     This function is just like `printf', except that the output is written to the stream FID instead of `stdout'.  If FID is omitted, the output is written to `stdout'.  See also: printf, sprintf, fread, fscanf, fopen, fclose.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 109
This function is just like `printf', except that the output is written to the stream FID instead of `stdout'.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
printf
# name: <cell-element>
# type: string
# elements: 1
# length: 363
 -- Built-in Function:  printf (TEMPLATE, ...)
     Print optional arguments under the control of the template string TEMPLATE to the stream `stdout' and return the number of characters printed.

     See the Formatted Output section of the GNU Octave manual for a complete description of the syntax of the template string.  See also: fprintf, sprintf, scanf.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 142
Print optional arguments under the control of the template string TEMPLATE to the stream `stdout' and return the number of characters printed.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
fputs
# name: <cell-element>
# type: string
# elements: 1
# length: 218
 -- Built-in Function:  fputs (FID, STRING)
     Write a string to a file with no formatting.

     Return a non-negative number on success and EOF on error.  See also: scanf, sscanf, fread, fprintf, fgets, fscanf.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Write a string to a file with no formatting.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
puts
# name: <cell-element>
# type: string
# elements: 1
# length: 168
 -- Built-in Function:  puts (STRING)
     Write a string to the standard output with no formatting.

     Return a non-negative number on success and EOF on error.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Write a string to the standard output with no formatting.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
sprintf
# name: <cell-element>
# type: string
# elements: 1
# length: 369
 -- Built-in Function:  sprintf (TEMPLATE, ...)
     This is like `printf', except that the output is returned as a string.  Unlike the C library function, which requires you to provide a suitably sized string as an argument, Octave's `sprintf' function returns the string, automatically sized to hold all of the items converted.  See also: printf, fprintf, sscanf.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 70
This is like `printf', except that the output is returned as a string.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
fscanf
# name: <cell-element>
# type: string
# elements: 1
# length: 1535
 -- Built-in Function: [VAL, COUNT] = fscanf (FID, TEMPLATE, SIZE)
 -- Built-in Function: [V1, V2, ..., COUNT] = fscanf (FID, TEMPLATE, "C")
     In the first form, read from FID according to TEMPLATE, returning the result in the matrix VAL.

     The optional argument SIZE specifies the amount of data to read and may be one of

    `Inf'
          Read as much as possible, returning a column vector.

    `NR'
          Read up to NR elements, returning a column vector.

    `[NR, Inf]'
          Read as much as possible, returning a matrix with NR rows.  If the number of elements read is not an exact multiple of NR, the last column is padded with zeros.

    `[NR, NC]'
          Read up to `NR * NC' elements, returning a matrix with NR rows.  If the number of elements read is not an exact multiple of NR, the last column is padded with zeros.

     If SIZE is omitted, a value of `Inf' is assumed.

     A string is returned if TEMPLATE specifies only character conversions.

     The number of items successfully read is returned in COUNT.

     In the second form, read from FID according to TEMPLATE, with each conversion specifier in TEMPLATE corresponding to a single scalar return value.  This form is more `C-like', and also compatible with previous versions of Octave.  The number of successful conversions is returned in COUNT

     See the Formatted Input section of the GNU Octave manual for a complete description of the syntax of the template string.  See also: scanf, sscanf, fread, fprintf, fgets, fputs.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 95
In the first form, read from FID according to TEMPLATE, returning the result in the matrix VAL.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
sscanf
# name: <cell-element>
# type: string
# elements: 1
# length: 371
 -- Built-in Function: [VAL, COUNT] = sscanf (STRING, TEMPLATE, SIZE)
 -- Built-in Function: [V1, V2, ..., COUNT] = sscanf (STRING, TEMPLATE, "C")
     This is like `fscanf', except that the characters are taken from the string STRING instead of from a stream.  Reaching the end of the string is treated as an end-of-file condition.  See also: fscanf, scanf, sprintf.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 108
This is like `fscanf', except that the characters are taken from the string STRING instead of from a stream.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
scanf
# name: <cell-element>
# type: string
# elements: 1
# length: 306
 -- Built-in Function: [VAL, COUNT] = scanf (TEMPLATE, SIZE)
 -- Built-in Function: [V1, V2, ..., COUNT]] = scanf (TEMPLATE, "C")
     This is equivalent to calling `fscanf' with FID = `stdin'.

     It is currently not useful to call `scanf' in interactive programs.  See also: fscanf, sscanf, printf.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
This is equivalent to calling `fscanf' with FID = `stdin'.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
fread
# name: <cell-element>
# type: string
# elements: 1
# length: 4231
 -- Built-in Function: [VAL, COUNT] = fread (FID, SIZE, PRECISION, SKIP, ARCH)
     Read binary data of type PRECISION from the specified file ID FID.

     The optional argument SIZE specifies the amount of data to read and may be one of

    `Inf'
          Read as much as possible, returning a column vector.

    `NR'
          Read up to NR elements, returning a column vector.

    `[NR, Inf]'
          Read as much as possible, returning a matrix with NR rows.  If the number of elements read is not an exact multiple of NR, the last column is padded with zeros.

    `[NR, NC]'
          Read up to `NR * NC' elements, returning a matrix with NR rows.  If the number of elements read is not an exact multiple of NR, the last column is padded with zeros.

     If SIZE is omitted, a value of `Inf' is assumed.

     The optional argument PRECISION is a string specifying the type of data to read and may be one of

    `"schar"'
    `"signed char"'
          Signed character.

    `"uchar"'
    `"unsigned char"'
          Unsigned character.

    `"int8"'
    `"integer*1"'
          8-bit signed integer.

    `"int16"'
    `"integer*2"'
          16-bit signed integer.

    `"int32"'
    `"integer*4"'
          32-bit signed integer.

    `"int64"'
    `"integer*8"'
          64-bit signed integer.

    `"uint8"'
          8-bit unsigned integer.

    `"uint16"'
          16-bit unsigned integer.

    `"uint32"'
          32-bit unsigned integer.

    `"uint64"'
          64-bit unsigned integer.

    `"single"'
    `"float32"'
    `"real*4"'
          32-bit floating point number.

    `"double"'
    `"float64"'
    `"real*8"'
          64-bit floating point number.

    `"char"'
    `"char*1"'
          Single character.

    `"short"'
          Short integer (size is platform dependent).

    `"int"'
          Integer (size is platform dependent).

    `"long"'
          Long integer (size is platform dependent).

    `"ushort"'
    `"unsigned short"'
          Unsigned short integer (size is platform dependent).

    `"uint"'
    `"unsigned int"'
          Unsigned integer (size is platform dependent).

    `"ulong"'
    `"unsigned long"'
          Unsigned long integer (size is platform dependent).

    `"float"'
          Single precision floating point number (size is platform dependent).

     The default precision is `"uchar"'.

     The PRECISION argument may also specify an optional repeat count.  For example, `32*single' causes `fread' to read a block of 32 single precision floating point numbers.  Reading in blocks is useful in combination with the SKIP argument.

     The PRECISION argument may also specify a type conversion.  For example, `int16=>int32' causes `fread' to read 16-bit integer values and return an array of 32-bit integer values.  By default, `fread' returns a double precision array.  The special form `*TYPE' is shorthand for `TYPE=>TYPE'.

     The conversion and repeat counts may be combined.  For example, the specification `32*single=>single' causes `fread' to read blocks of single precision floating point values and return an array of single precision values instead of the default array of double precision values.

     The optional argument SKIP specifies the number of bytes to skip after each element (or block of elements) is read.  If it is not specified, a value of 0 is assumed.  If the final block read is not complete, the final skip is omitted.  For example,

          fread (f, 10, "3*single=>single", 8)

     will omit the final 8-byte skip because the last read will not be a complete block of 3 values.

     The optional argument ARCH is a string specifying the data format for the file.  Valid values are

    `"native"'
          The format of the current machine.

    `"ieee-be"'
          IEEE big endian.

    `"ieee-le"'
          IEEE little endian.

    `"vaxd"'
          VAX D floating format.

    `"vaxg"'
          VAX G floating format.

    `"cray"'
          Cray floating format.

     Conversions are currently only supported for `"ieee-be"' and `"ieee-le"' formats.

     The data read from the file is returned in VAL, and the number of values read is returned in `count' See also: fwrite, fopen, fclose.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Read binary data of type PRECISION from the specified file ID FID.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
fwrite
# name: <cell-element>
# type: string
# elements: 1
# length: 615
 -- Built-in Function: COUNT = fwrite (FID, DATA, PRECISION, SKIP, ARCH)
     Write data in binary form of type PRECISION to the specified file ID FID, returning the number of values successfully written to the file.

     The argument DATA is a matrix of values that are to be written to the file.  The values are extracted in column-major order.

     The remaining arguments PRECISION, SKIP, and ARCH are optional, and are interpreted as described for `fread'.

     The behavior of `fwrite' is undefined if the values in DATA are too large to fit in the specified precision.  See also: fread, fopen, fclose.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 138
Write data in binary form of type PRECISION to the specified file ID FID, returning the number of values successfully written to the file.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
feof
# name: <cell-element>
# type: string
# elements: 1
# length: 326
 -- Built-in Function:  feof (FID)
     Return 1 if an end-of-file condition has been encountered for a given file and 0 otherwise.  Note that it will only return 1 if the end of the file has already been encountered, not if the next read operation will result in an end-of-file condition.  See also: fread, fopen, fclose.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 91
Return 1 if an end-of-file condition has been encountered for a given file and 0 otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
ferror
# name: <cell-element>
# type: string
# elements: 1
# length: 267
 -- Built-in Function:  ferror (FID)
     Return 1 if an error condition has been encountered for a given file and 0 otherwise.  Note that it will only return 1 if an error has already been encountered, not if the next operation will result in an error condition.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 85
Return 1 if an error condition has been encountered for a given file and 0 otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
popen
# name: <cell-element>
# type: string
# elements: 1
# length: 853
 -- Built-in Function: FID = popen (COMMAND, MODE)
     Start a process and create a pipe.  The name of the command to run is given by COMMAND.  The file identifier corresponding to the input or output stream of the process is returned in FID.  The argument MODE may be

    `"r"'
          The pipe will be connected to the standard output of the process, and open for reading.

    `"w"'
          The pipe will be connected to the standard input of the process, and open for writing.

     For example,

          fid = popen ("ls -ltr / | tail -3", "r");
          while (ischar (s = fgets (fid)))
            fputs (stdout, s);
          endwhile
               -| drwxr-xr-x  33 root  root  3072 Feb 15 13:28 etc
               -| drwxr-xr-x   3 root  root  1024 Feb 15 13:28 lib
               -| drwxrwxrwt  15 root  root  2048 Feb 17 14:53 tmp

# name: <cell-element>
# type: string
# elements: 1
# length: 34
Start a process and create a pipe.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
pclose
# name: <cell-element>
# type: string
# elements: 1
# length: 146
 -- Built-in Function:  pclose (FID)
     Close a file identifier that was opened by `popen'.  You may also use `fclose' for the same purpose.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Close a file identifier that was opened by `popen'.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
tmpnam
# name: <cell-element>
# type: string
# elements: 1
# length: 541
 -- Built-in Function:  tmpnam (DIR, PREFIX)
     Return a unique temporary file name as a string.

     If PREFIX is omitted, a value of `"oct-"' is used.  If DIR is also omitted, the default directory for temporary files is used.  If DIR is provided, it must exist, otherwise the default directory for temporary files is used.  Since the named file is not opened, by `tmpnam', it is possible (though relatively unlikely) that it will not be available by the time your program attempts to open it.  See also: tmpfile, mkstemp, P_tmpdir.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return a unique temporary file name as a string.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
tmpfile
# name: <cell-element>
# type: string
# elements: 1
# length: 452
 -- Built-in Function: [FID, MSG] = tmpfile ()
     Return the file ID corresponding to a new temporary file with a unique name.  The file is opened in binary read/write (`"w+b"') mode.  The file will be deleted automatically when it is closed or when Octave exits.

     If successful, FID is a valid file ID and MSG is an empty string.  Otherwise, FID is -1 and MSG contains a system-dependent error message.  See also: tmpnam, mkstemp, P_tmpdir.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Return the file ID corresponding to a new temporary file with a unique name.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
mkstemp
# name: <cell-element>
# type: string
# elements: 1
# length: 925
 -- Built-in Function: [FID, NAME, MSG] = mkstemp (TEMPLATE, DELETE)
     Return the file ID corresponding to a new temporary file with a unique name created from TEMPLATE.  The last six characters of TEMPLATE must be `XXXXXX' and these are replaced with a string that makes the filename unique.  The file is then created with mode read/write and permissions that are system dependent (on GNU/Linux systems, the permissions will be 0600 for versions of glibc 2.0.7 and later).  The file is opened with the `O_EXCL' flag.

     If the optional argument DELETE is supplied and is true, the file will be deleted automatically when Octave exits, or when the function `purge_tmp_files' is called.

     If successful, FID is a valid file ID, NAME is the name of the file, and MSG is an empty string.  Otherwise, FID is -1, NAME is empty, and MSG contains a system-dependent error message.  See also: tmpfile, tmpnam, P_tmpdir.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Return the file ID corresponding to a new temporary file with a unique name created from TEMPLATE.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
umask
# name: <cell-element>
# type: string
# elements: 1
# length: 303
 -- Built-in Function:  umask (MASK)
     Set the permission mask for file creation.  The parameter MASK is an integer, interpreted as an octal number.  If successful, returns the previous value of the mask (as an integer to be interpreted as an octal number); otherwise an error message is printed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Set the permission mask for file creation.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
P_tmpdir
# name: <cell-element>
# type: string
# elements: 1
# length: 170
 -- Built-in Function:  P_tmpdir ()
     Return the default name of the directory for temporary files on this system.  The name of this directory is system dependent.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Return the default name of the directory for temporary files on this system.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
SEEK_SET
# name: <cell-element>
# type: string
# elements: 1
# length: 402
 -- Built-in Function:  SEEK_SET ()
 -- Built-in Function:  SEEK_CUR ()
 -- Built-in Function:  SEEK_END ()
     Return the value required to request that `fseek' perform one of the following actions:
    `SEEK_SET'
          Position file relative to the beginning.

    `SEEK_CUR'
          Position file relative to the current position.

    `SEEK_END'
          Position file relative to the end.

# name: <cell-element>
# type: string
# elements: 1
# length: 141
Return the value required to request that `fseek' perform one of the following actions:  `SEEK_SET'  Position file relative to the beginning.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
SEEK_CUR
# name: <cell-element>
# type: string
# elements: 1
# length: 58
 -- Built-in Function:  SEEK_CUR ()
     See SEEK_SET.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 13
See SEEK_SET.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
SEEK_END
# name: <cell-element>
# type: string
# elements: 1
# length: 58
 -- Built-in Function:  SEEK_END ()
     See SEEK_SET.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 13
See SEEK_SET.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
stdin
# name: <cell-element>
# type: string
# elements: 1
# length: 234
 -- Built-in Function:  stdin ()
     Return the numeric value corresponding to the standard input stream.  When Octave is used interactively, this is filtered through the command line editing functions.  See also: stdout, stderr.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Return the numeric value corresponding to the standard input stream.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
stdout
# name: <cell-element>
# type: string
# elements: 1
# length: 215
 -- Built-in Function:  stdout ()
     Return the numeric value corresponding to the standard output stream.  Data written to the standard output is normally filtered through the pager.  See also: stdin, stderr.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Return the numeric value corresponding to the standard output stream.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
stderr
# name: <cell-element>
# type: string
# elements: 1
# length: 258
 -- Built-in Function:  stderr ()
     Return the numeric value corresponding to the standard error stream.  Even if paging is turned on, the standard error is not sent to the pager.  It is useful for error messages and prompts.  See also: stdin, stdout.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Return the numeric value corresponding to the standard error stream.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
filter
# name: <cell-element>
# type: string
# elements: 1
# length: 1530
 -- Loadable Function: y = filter (B, A, X)
 -- Loadable Function: [Y, SF] = filter (B, A, X, SI)
 -- Loadable Function: [Y, SF] = filter (B, A, X, [], DIM)
 -- Loadable Function: [Y, SF] = filter (B, A, X, SI, DIM)
     Return the solution to the following linear, time-invariant difference equation:

             N                   M
            SUM a(k+1) y(n-k) = SUM b(k+1) x(n-k)      for 1<=n<=length(x)
            k=0                 k=0

     where  N=length(a)-1 and M=length(b)-1.  over the first non-singleton dimension of X or over DIM if supplied.  An equivalent form of this equation is:

                      N                   M
            y(n) = - SUM c(k+1) y(n-k) + SUM d(k+1) x(n-k)  for 1<=n<=length(x)
                     k=1                 k=0

     where  c = a/a(1) and d = b/a(1).

     If the fourth argument SI is provided, it is taken as the initial state of the system and the final state is returned as SF.  The state vector is a column vector whose length is equal to the length of the longest coefficient vector minus one.  If SI is not supplied, the initial state vector is set to all zeros.

     In terms of the z-transform, y is the result of passing the discrete- time signal x through a system characterized by the following rational system function:

                       M
                      SUM d(k+1) z^(-k)
                      k=0
            H(z) = ----------------------
                         N
                    1 + SUM c(k+1) z^(-k)
                        k=1

# name: <cell-element>
# type: string
# elements: 1
# length: 81
Return the solution to the following linear, time-invariant difference equation: 

# name: <cell-element>
# type: string
# elements: 1
# length: 4
find
# name: <cell-element>
# type: string
# elements: 1
# length: 1566
 -- Loadable Function:  find (X)
 -- Loadable Function:  find (X, N)
 -- Loadable Function:  find (X, N, DIRECTION)
     Return a vector of indices of nonzero elements of a matrix, as a row if X is a row or as a column otherwise.  To obtain a single index for each matrix element, Octave pretends that the columns of a matrix form one long vector (like Fortran arrays are stored).  For example,

          find (eye (2))
               => [ 1; 4 ]

     If two outputs are requested, `find' returns the row and column indices of nonzero elements of a matrix.  For example,

          [i, j] = find (2 * eye (2))
               => i = [ 1; 2 ]
               => j = [ 1; 2 ]

     If three outputs are requested, `find' also returns a vector containing the nonzero values.  For example,

          [i, j, v] = find (3 * eye (2))
               => i = [ 1; 2 ]
               => j = [ 1; 2 ]
               => v = [ 3; 3 ]

     If two inputs are given, N indicates the maximum number of elements to find from the beginning of the matrix or vector.

     If three inputs are given, DIRECTION should be one of "first" or "last", requesting only the first or last N indices, respectively.  However, the indices are always returned in ascending order.

     Note that this function is particularly useful for sparse matrices, as it extracts the non-zero elements as vectors, which can then be used to create the original matrix.  For example,

          sz = size(a);
          [i, j, v] = find (a);
          b = sparse(i, j, v, sz(1), sz(2));
     See also: sparse.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 108
Return a vector of indices of nonzero elements of a matrix, as a row if X is a row or as a column otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
gammainc
# name: <cell-element>
# type: string
# elements: 1
# length: 699
 -- Mapping Function:  gammainc (X, A)
     Compute the normalized incomplete gamma function,

                                          x
                                1        /
          gammainc (x, a) = ---------    | exp (-t) t^(a-1) dt
                            gamma (a)    /
                                      t=0

     with the limiting value of 1 as X approaches infinity.  The standard notation is P(a,x), e.g., Abramowitz and Stegun (6.5.1).

     If A is scalar, then `gammainc (X, A)' is returned for each element of X and vice versa.

     If neither X nor A is scalar, the sizes of X and A must agree, and GAMMAINC is applied element-by-element.  See also: gamma, lgamma.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Compute the normalized incomplete gamma function, 

# name: <cell-element>
# type: string
# elements: 1
# length: 3
gcd
# name: <cell-element>
# type: string
# elements: 1
# length: 864
 -- Loadable Function: G = gcd (A)
 -- Loadable Function: G = gcd (A1, A2, ...)
 -- Loadable Function: [G, V1, ...] = gcd (A1, A2, ...)
     Compute the greatest common divisor of the elements of A.  If more than one argument is given all arguments must be the same size or scalar.    In this case the greatest common divisor is calculated for each element individually.  All elements must be integers.  For example,

          gcd ([15, 20])
              =>  5

     and

          gcd ([15, 9], [20, 18])
              =>  5  9

     Optional return arguments V1, etc., contain integer vectors such that,

          G = V1 .* A1 + V2 .* A2 + ...

     For backward compatibility with previous versions of this function, when all arguments are scalar, a single return argument V1 containing all of the values of V1, ... is acceptable.  See also: lcm, factor.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Compute the greatest common divisor of the elements of A.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
getgrent
# name: <cell-element>
# type: string
# elements: 1
# length: 188
 -- Loadable Function: GRP_STRUCT = getgrent ()
     Return an entry from the group database, opening it if necessary.  Once the end of the data has been reached, `getgrent' returns 0.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 65
Return an entry from the group database, opening it if necessary.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
getgrgid
# name: <cell-element>
# type: string
# elements: 1
# length: 201
 -- Loadable Function: GRP_STRUCT = getgrgid (GID).
     Return the first entry from the group database with the group ID GID.  If the group ID does not exist in the database, `getgrgid' returns 0.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Return the first entry from the group database with the group ID GID.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
getgrnam
# name: <cell-element>
# type: string
# elements: 1
# length: 206
 -- Loadable Function: GRP_STRUCT = getgrnam (NAME)
     Return the first entry from the group database with the group name NAME.  If the group name does not exist in the database, `getgrnam' returns 0.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 72
Return the first entry from the group database with the group name NAME.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
setgrent
# name: <cell-element>
# type: string
# elements: 1
# length: 112
 -- Loadable Function:  setgrent ()
     Return the internal pointer to the beginning of the group database.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 67
Return the internal pointer to the beginning of the group database.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
endgrent
# name: <cell-element>
# type: string
# elements: 1
# length: 70
 -- Loadable Function:  endgrent ()
     Close the group database.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 25
Close the group database.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
getpwent
# name: <cell-element>
# type: string
# elements: 1
# length: 213
 -- Loadable Function: PW_STRUCT = getpwent ()
     Return a structure containing an entry from the password database, opening it if necessary.  Once the end of the data has been reached, `getpwent' returns 0.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 91
Return a structure containing an entry from the password database, opening it if necessary.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
getpwuid
# name: <cell-element>
# type: string
# elements: 1
# length: 224
 -- Loadable Function: PW_STRUCT = getpwuid (UID).
     Return a structure containing the first entry from the password database with the user ID UID.  If the user ID does not exist in the database, `getpwuid' returns 0.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 94
Return a structure containing the first entry from the password database with the user ID UID.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
getpwnam
# name: <cell-element>
# type: string
# elements: 1
# length: 230
 -- Loadable Function: PW_STRUCT = getpwnam (NAME)
     Return a structure containing the first entry from the password database with the user name NAME.  If the user name does not exist in the database, `getpwname' returns 0.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 97
Return a structure containing the first entry from the password database with the user name NAME.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
setpwent
# name: <cell-element>
# type: string
# elements: 1
# length: 115
 -- Loadable Function:  setpwent ()
     Return the internal pointer to the beginning of the password database.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 70
Return the internal pointer to the beginning of the password database.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
endpwent
# name: <cell-element>
# type: string
# elements: 1
# length: 73
 -- Loadable Function:  endpwent ()
     Close the password database.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 28
Close the password database.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
getrusage
# name: <cell-element>
# type: string
# elements: 1
# length: 1411
 -- Loadable Function:  getrusage ()
     Return a structure containing a number of statistics about the current Octave process.  Not all fields are available on all systems.  If it is not possible to get CPU time statistics, the CPU time slots are set to zero.  Other missing data are replaced by NaN.  Here is a list of all the possible fields that can be present in the structure returned by `getrusage':

    `idrss'
          Unshared data size.

    `inblock'
          Number of block input operations.

    `isrss'
          Unshared stack size.

    `ixrss'
          Shared memory size.

    `majflt'
          Number of major page faults.

    `maxrss'
          Maximum data size.

    `minflt'
          Number of minor page faults.

    `msgrcv'
          Number of messages received.

    `msgsnd'
          Number of messages sent.

    `nivcsw'
          Number of involuntary context switches.

    `nsignals'
          Number of signals received.

    `nswap'
          Number of swaps.

    `nvcsw'
          Number of voluntary context switches.

    `oublock'
          Number of block output operations.

    `stime'
          A structure containing the system CPU time used.  The structure has the elements `sec' (seconds) `usec' (microseconds).

    `utime'
          A structure containing the user CPU time used.  The structure has the elements `sec' (seconds) `usec' (microseconds).

# name: <cell-element>
# type: string
# elements: 1
# length: 86
Return a structure containing a number of statistics about the current Octave process.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
givens
# name: <cell-element>
# type: string
# elements: 1
# length: 317
 -- Loadable Function: G = givens (X, Y)
 -- Loadable Function: [C, S] = givens (X, Y)
     Return a 2 by 2 orthogonal matrix `G = [C S; -S' C]' such that `G [X; Y] = [*; 0]' with X and Y scalars.

     For example,

          givens (1, 1)
               =>   0.70711   0.70711
                   -0.70711   0.70711

# name: <cell-element>
# type: string
# elements: 1
# length: 104
Return a 2 by 2 orthogonal matrix `G = [C S; -S' C]' such that `G [X; Y] = [*; 0]' with X and Y scalars.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
ishandle
# name: <cell-element>
# type: string
# elements: 1
# length: 104
 -- Built-in Function:  ishandle (H)
     Return true if H is a graphics handle and false otherwise.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Return true if H is a graphics handle and false otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
set
# name: <cell-element>
# type: string
# elements: 1
# length: 134
 -- Built-in Function:  set (H, P, V, ...)
     Set the named property value or vector P to the value V for the graphics handle H.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 82
Set the named property value or vector P to the value V for the graphics handle H.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
get
# name: <cell-element>
# type: string
# elements: 1
# length: 250
 -- Built-in Function:  get (H, P)
     Return the named property P from the graphics handle H.  If P is omitted, return the complete property list for H.  If H is a vector, return a cell array including the property values or lists respectively.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Return the named property P from the graphics handle H.

# name: <cell-element>
# type: string
# elements: 1
# length: 18
available_backends
# name: <cell-element>
# type: string
# elements: 1
# length: 107
 -- Built-in Function:  available_backends ()
     Return a cell array of registered graphics backends.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return a cell array of registered graphics backends.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
drawnow
# name: <cell-element>
# type: string
# elements: 1
# length: 457
 -- Built-in Function:  drawnow ()
 -- Built-in Function:  drawnow ("expose")
 -- Built-in Function:  drawnow (TERM, FILE, MONO, DEBUG_FILE)
     Update figure windows and their children.  The event queue is flushed and any callbacks generated are executed.  With the optional argument `"expose"', only graphic objects are updated and no other events or callbacks are processed.  The third calling form of `drawnow' is for debugging and is undocumented.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Update figure windows and their children.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
addlistener
# name: <cell-element>
# type: string
# elements: 1
# length: 1093
 -- Built-in Function:  addlistener (H, PROP, FCN)
     Register FCN as listener for the property PROP of the graphics object H.  Property listeners are executed (in order of registration) when the property is set.  The new value is already available when the listeners are executed.

     PROP must be a string naming a valid property in H.

     FCN can be a function handle, a string or a cell array whose first element is a function handle.  If FCN is a function handle, the corresponding function should accept at least 2 arguments, that will be set to the object handle and the empty matrix respectively.  If FCN is a string, it must be any valid octave expression.  If FCN is a cell array, the first element must be a function handle with the same signature as described above.  The next elements of the cell array are passed as additional arguments to the function.

     Example:

          function my_listener (h, dummy, p1)
            fprintf ("my_listener called with p1=%s\n", p1);
          endfunction

          addlistener (gcf, "position", {@my_listener, "my string"})

   
# name: <cell-element>
# type: string
# elements: 1
# length: 72
Register FCN as listener for the property PROP of the graphics object H.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
dellistener
# name: <cell-element>
# type: string
# elements: 1
# length: 631
 -- Built-in Function:  dellistener (H, PROP, FCN)
     Remove the registration of FCN as a listener for the property PROP of the graphics object H.  The function FCN must be the same variable (not just the same value), as was passed to the original call to `addlistener'.

     If FCN is not defined then all listener functions of PROP are removed.

     Example:

          function my_listener (h, dummy, p1)
            fprintf ("my_listener called with p1=%s\n", p1);
          endfunction

          c = {@my_listener, "my string"};
          addlistener (gcf, "position", c);
          dellistener (gcf, "position", c);

   
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Remove the registration of FCN as a listener for the property PROP of the graphics object H.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
addproperty
# name: <cell-element>
# type: string
# elements: 1
# length: 2346
 -- Built-in Function:  addproperty (NAME, H, TYPE, [ARG, ...])
     Create a new property named NAME in graphics object H.  TYPE determines the type of the property to create.  ARGS usually contains the default value of the property, but additional arguments might be given, depending on the type of the property.

     The supported property types are:

    `string'
          A string property.  ARG contains the default string value.

    `any'
          An un-typed property.  This kind of property can hold any octave value.  ARGS contains the default value.

    `radio'
          A string property with a limited set of accepted values.  The first argument must be a string with all accepted values separated by a vertical bar ('|').  The default value can be marked by enclosing it with a '{' '}' pair.  The default value may also be given as an optional second string argument.

    `boolean'
          A boolean property.  This property type is equivalent to a radio property with "on|off" as accepted values.  ARG contains the default property value.

    `double'
          A scalar double property.  ARG contains the default value.

    `handle'
          A handle property.  This kind of property holds the handle of a graphics object.  ARG contains the default handle value.  When no default value is given, the property is initialized to the empty matrix.

    `data'
          A data (matrix) property.  ARG contains the default data value.  When no default value is given, the data is initialized to the empty matrix.

    `color'
          A color property.  ARG contains the default color value.  When no default color is given, the property is set to black.  An optional second string argument may be given to specify an additional set of accepted string values (like a radio property).

     TYPE may also be the concatenation of a core object type and a valid property name for that object type.  The property created then has the same characteristics as the referenced property (type, possible values, hidden state...).  This allows to clone an existing property into the graphics object H.

     Examples:

          addproperty ("my_property", gcf, "string", "a string value");
          addproperty ("my_radio", gcf, "radio", "val_1|val_2|{val_3}");
          addproperty ("my_style", gcf, "linelinestyle", "--");

   
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Create a new property named NAME in graphics object H.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
get_help_text
# name: <cell-element>
# type: string
# elements: 1
# length: 419
 -- Loadable Function: [TEXT, FORMAT] = get_help_text (NAME)
     Returns the help text of a given function.

     This function returns the raw help text TEXT and an indication of its format for the function NAME.  The format indication FORMAT is a string that can be either "texinfo", "html", or "plain text".

     To convert the help text to other formats, use the `makeinfo' function.

     See also: makeinfo.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Returns the help text of a given function.

# name: <cell-element>
# type: string
# elements: 1
# length: 14
doc_cache_file
# name: <cell-element>
# type: string
# elements: 1
# length: 683
 -- Built-in Function: VAL = doc_cache_file ()
 -- Built-in Function: OLD_VAL = doc_cache_file (NEW_VAL)
     Query or set the internal variable that specifies the name of the Octave documentation cache file.  A cache file significantly improves the performance of the `lookfor' command.  The default value is `OCTAVE-HOME/share/octave/VERSION/etc/doc-cache', in which OCTAVE-HOME is the root directory of the Octave installation, and VERSION is the Octave version number.  The default value may be overridden by the environment variable `OCTAVE_DOC_CACHE_FILE', or the command line argument `--doc-cache-file NAME'.  See also: lookfor, info_program, doc, help, makeinfo_program.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Query or set the internal variable that specifies the name of the Octave documentation cache file.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
info_file
# name: <cell-element>
# type: string
# elements: 1
# length: 500
 -- Built-in Function: VAL = info_file ()
 -- Built-in Function: OLD_VAL = info_file (NEW_VAL)
     Query or set the internal variable that specifies the name of the Octave info file.  The default value is `OCTAVE-HOME/info/octave.info', in which OCTAVE-HOME is the root directory of the Octave installation.  The default value may be overridden by the environment variable `OCTAVE_INFO_FILE', or the command line argument `--info-file NAME'.  See also: info_program, doc, help, makeinfo_program.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Query or set the internal variable that specifies the name of the Octave info file.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
info_program
# name: <cell-element>
# type: string
# elements: 1
# length: 634
 -- Built-in Function: VAL = info_program ()
 -- Built-in Function: OLD_VAL = info_program (NEW_VAL)
     Query or set the internal variable that specifies the name of the info program to run.  The default value is `OCTAVE-HOME/libexec/octave/VERSION/exec/ARCH/info' in which OCTAVE-HOME is the root directory of the Octave installation, VERSION is the Octave version number, and ARCH is the system type (for example, `i686-pc-linux-gnu').  The default value may be overridden by the environment variable `OCTAVE_INFO_PROGRAM', or the command line argument `--info-program NAME'.  See also: info_file, doc, help, makeinfo_program.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Query or set the internal variable that specifies the name of the info program to run.

# name: <cell-element>
# type: string
# elements: 1
# length: 16
makeinfo_program
# name: <cell-element>
# type: string
# elements: 1
# length: 345
 -- Built-in Function: VAL = makeinfo_program ()
 -- Built-in Function: OLD_VAL = makeinfo_program (NEW_VAL)
     Query or set the internal variable that specifies the name of the program that Octave runs to format help text containing Texinfo markup commands.  The default value is `makeinfo'.  See also: info_file, info_program, doc, help.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 146
Query or set the internal variable that specifies the name of the program that Octave runs to format help text containing Texinfo markup commands.

# name: <cell-element>
# type: string
# elements: 1
# length: 29
suppress_verbose_help_message
# name: <cell-element>
# type: string
# elements: 1
# length: 335
 -- Built-in Function: VAL = suppress_verbose_help_message ()
 -- Built-in Function: OLD_VAL = suppress_verbose_help_message (NEW_VAL)
     Query or set the internal variable that controls whether Octave will add additional help information to the end of the output from the `help' command and usage messages for built-in commands.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 191
Query or set the internal variable that controls whether Octave will add additional help information to the end of the output from the `help' command and usage messages for built-in commands.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
hess
# name: <cell-element>
# type: string
# elements: 1
# length: 551
 -- Loadable Function: H = hess (A)
 -- Loadable Function: [P, H] = hess (A)
     Compute the Hessenberg decomposition of the matrix A.

     The Hessenberg decomposition is usually used as the first step in an eigenvalue computation, but has other applications as well (see Golub, Nash, and Van Loan, IEEE Transactions on Automatic Control, 1979).  The Hessenberg decomposition is `p * h * p' = a' where `p' is a square unitary matrix (`p' * p = I', using complex-conjugate transposition) and `h' is upper Hessenberg (`i >= j+1 => h (i, j) = 0').
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Compute the Hessenberg decomposition of the matrix A.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
hex2num
# name: <cell-element>
# type: string
# elements: 1
# length: 441
 -- Loadable Function: N = hex2num (S)
     Typecast the 16 character hexadecimal character matrix to an IEEE 754 double precision number.  If fewer than 16 characters are given the strings are right padded with '0' characters.

     Given a string matrix, `hex2num' treats each row as a separate number.

          hex2num (["4005bf0a8b145769";"4024000000000000"])
          => [2.7183; 10.000]
     See also: num2hex, hex2dec, dec2hex.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 94
Typecast the 16 character hexadecimal character matrix to an IEEE 754 double precision number.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
num2hex
# name: <cell-element>
# type: string
# elements: 1
# length: 464
 -- Loadable Function: S = num2hex (N)
     Typecast a double precision number or vector to a 16 character hexadecimal string of the IEEE 754 representation of the number.  For example

          num2hex ([-1, 1, e, Inf, NaN, NA]);
          => "bff0000000000000
              3ff0000000000000
              4005bf0a8b145769
              7ff0000000000000
              fff8000000000000
              7ff00000000007a2"
     See also: hex2num, hex2dec, dec2hex.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 127
Typecast a double precision number or vector to a 16 character hexadecimal string of the IEEE 754 representation of the number.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
input
# name: <cell-element>
# type: string
# elements: 1
# length: 1082
 -- Built-in Function:  input (PROMPT)
 -- Built-in Function:  input (PROMPT, "s")
     Print a prompt and wait for user input.  For example,

          input ("Pick a number, any number! ")

     prints the prompt

          Pick a number, any number!

     and waits for the user to enter a value.  The string entered by the user is evaluated as an expression, so it may be a literal constant, a variable name, or any other valid expression.

     Currently, `input' only returns one value, regardless of the number of values produced by the evaluation of the expression.

     If you are only interested in getting a literal string value, you can call `input' with the character string `"s"' as the second argument.  This tells Octave to return the string entered by the user directly, without evaluating it first.

     Because there may be output waiting to be displayed by the pager, it is a good idea to always call `fflush (stdout)' before calling `input'.  This will ensure that all pending output is written to the screen before your prompt.  *Note Input and Output::.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Print a prompt and wait for user input.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
yes_or_no
# name: <cell-element>
# type: string
# elements: 1
# length: 347
 -- Built-in Function:  yes_or_no (PROMPT)
     Ask the user a yes-or-no question.  Return 1 if the answer is yes.  Takes one argument, which is the string to display to ask the question.  It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.  The user must confirm the answer with RET and can edit it until it has been confirmed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Ask the user a yes-or-no question.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
keyboard
# name: <cell-element>
# type: string
# elements: 1
# length: 667
 -- Built-in Function:  keyboard ()
 -- Built-in Function:  keyboard (PROMPT)
     This function is normally used for simple debugging.  When the `keyboard' function is executed, Octave prints a prompt and waits for user input.  The input strings are then evaluated and the results are printed.  This makes it possible to examine the values of variables within a function, and to assign new values if necessary.  To leave the prompt and return to normal execution type `return' or `dbcont'.  The `keyboard' function does not return an exit status.

     If `keyboard' is invoked without arguments, a default prompt of `debug> ' is used.  See also: dbcont, dbquit.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
This function is normally used for simple debugging.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
echo
# name: <cell-element>
# type: string
# elements: 1
# length: 559
 -- Command: echo options
     Control whether commands are displayed as they are executed.  Valid options are:

    `on'
          Enable echoing of commands as they are executed in script files.

    `off'
          Disable echoing of commands as they are executed in script files.

    `on all'
          Enable echoing of commands as they are executed in script files and functions.

    `off all'
          Disable echoing of commands as they are executed in script files and functions.

     With no arguments, `echo' toggles the current echo state.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Control whether commands are displayed as they are executed.

# name: <cell-element>
# type: string
# elements: 1
# length: 18
completion_matches
# name: <cell-element>
# type: string
# elements: 1
# length: 338
 -- Built-in Function:  completion_matches (HINT)
     Generate possible completions given HINT.

     This function is provided for the benefit of programs like Emacs which might be controlling Octave and handling user input.  The current command number is not incremented when this function is called.  This is a feature, not a bug.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Generate possible completions given HINT.

# name: <cell-element>
# type: string
# elements: 1
# length: 23
read_readline_init_file
# name: <cell-element>
# type: string
# elements: 1
# length: 273
 -- Built-in Function:  read_readline_init_file (FILE)
     Read the readline library initialization file FILE.  If FILE is omitted, read the default initialization file (normally `~/.inputrc').

     *Note Readline Init File: (readline)Readline Init File, for details.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Read the readline library initialization file FILE.

# name: <cell-element>
# type: string
# elements: 1
# length: 26
re_read_readline_init_file
# name: <cell-element>
# type: string
# elements: 1
# length: 201
 -- Built-in Function:  re_read_readline_init_file ()
     Re-read the last readline library initialization file that was read.  *Note Readline Init File: (readline)Readline Init File, for details.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Re-read the last readline library initialization file that was read.

# name: <cell-element>
# type: string
# elements: 1
# length: 20
add_input_event_hook
# name: <cell-element>
# type: string
# elements: 1
# length: 339
 -- Built-in Function:  add_input_event_hook (FCN, DATA)
     Add the named function FCN to the list of functions to call periodically when Octave is waiting for input.  The function should have the form
          FCN (DATA)

     If DATA is omitted, Octave calls the function without any arguments.  See also: remove_input_event_hook.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 106
Add the named function FCN to the list of functions to call periodically when Octave is waiting for input.

# name: <cell-element>
# type: string
# elements: 1
# length: 23
remove_input_event_hook
# name: <cell-element>
# type: string
# elements: 1
# length: 205
 -- Built-in Function:  remove_input_event_hook (FCN)
     Remove the named function FCN to the list of functions to call periodically when Octave is waiting for input.  See also: add_input_event_hook.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Remove the named function FCN to the list of functions to call periodically when Octave is waiting for input.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
PS1
# name: <cell-element>
# type: string
# elements: 1
# length: 632
 -- Built-in Function: VAL = PS1 ()
 -- Built-in Function: OLD_VAL = PS1 (NEW_VAL)
     Query or set the primary prompt string.  When executing interactively, Octave displays the primary prompt when it is ready to read a command.

     The default value of the primary prompt string is `"\s:\#> "'.  To change it, use a command like

          octave:13> PS1 ("\\u@\\H> ")

     which will result in the prompt `boris@kremvax> ' for the user `boris' logged in on the host `kremvax.kgb.su'.  Note that two backslashes are required to enter a backslash into a double-quoted character string.  *Note Strings::.  See also: PS2, PS4.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Query or set the primary prompt string.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
PS2
# name: <cell-element>
# type: string
# elements: 1
# length: 470
 -- Built-in Function: VAL = PS2 ()
 -- Built-in Function: OLD_VAL = PS2 (NEW_VAL)
     Query or set the secondary prompt string.  The secondary prompt is printed when Octave is expecting additional input to complete a command.  For example, if you are typing a `for' loop that spans several lines, Octave will print the secondary prompt at the beginning of each line after the first.  The default value of the secondary prompt string is `"> "'.  See also: PS1, PS4.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Query or set the secondary prompt string.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
PS4
# name: <cell-element>
# type: string
# elements: 1
# length: 345
 -- Built-in Function: VAL = PS4 ()
 -- Built-in Function: OLD_VAL = PS4 (NEW_VAL)
     Query or set the character string used to prefix output produced when echoing commands is enabled.  The default value is `"+ "'.  *Note Diary and Echo Commands::, for a description of echoing commands.  See also: echo, echo_executing_commands, PS1, PS2.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Query or set the character string used to prefix output produced when echoing commands is enabled.

# name: <cell-element>
# type: string
# elements: 1
# length: 22
completion_append_char
# name: <cell-element>
# type: string
# elements: 1
# length: 285
 -- Built-in Function: VAL = completion_append_char ()
 -- Built-in Function: OLD_VAL = completion_append_char (NEW_VAL)
     Query or set the internal character variable that is appended to successful command-line completion attempts.  The default value is `" "' (a single space).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Query or set the internal character variable that is appended to successful command-line completion attempts.

# name: <cell-element>
# type: string
# elements: 1
# length: 23
echo_executing_commands
# name: <cell-element>
# type: string
# elements: 1
# length: 641
 -- Built-in Function: VAL = echo_executing_commands ()
 -- Built-in Function: OLD_VAL = echo_executing_commands (NEW_VAL)
     Query or set the internal variable that controls the echo state.  It may be the sum of the following values:

    1
          Echo commands read from script files.

    2
          Echo commands from functions.

    4
          Echo commands read from command line.

     More than one state can be active at once.  For example, a value of 3 is equivalent to the command `echo on all'.

     The value of `echo_executing_commands' may be set by the `echo' command or the command line option `--echo-commands'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Query or set the internal variable that controls the echo state.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
filemarker
# name: <cell-element>
# type: string
# elements: 1
# length: 655
 -- Built-in Function:  filemarker ()
     Returns or sets the character used to separate filename from the the subfunction names contained within the file.  This can be used in a generic manner to interact with subfunctions.  For example

          help (["myfunc", filemarker, "mysubfunc"])

     returns the help string associated with the sub-function `mysubfunc' of the function `myfunc'.  Another use of `filemarker' is when debugging it allows easier placement of breakpoints within sub-functions.  For example

          dbstop (["myfunc", filemarker, "mysubfunc"])

     will set a breakpoint at the first line of the subfunction `mysubfunc'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 113
Returns or sets the character used to separate filename from the the subfunction names contained within the file.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
inv
# name: <cell-element>
# type: string
# elements: 1
# length: 554
 -- Loadable Function: [X, RCOND] = inv (A)
 -- Loadable Function: [X, RCOND] = inverse (A)
     Compute the inverse of the square matrix A.  Return an estimate of the reciprocal condition number if requested, otherwise warn of an ill-conditioned matrix if the reciprocal condition number is small.

     If called with a sparse matrix, then in general X will be a full matrix, and so if possible forming the inverse of a sparse matrix should be avoided.  It is significantly more accurate and faster to do `Y = A \ B', rather than `Y = inv (A) * B'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Compute the inverse of the square matrix A.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
inverse
# name: <cell-element>
# type: string
# elements: 1
# length: 53
 -- Loadable Function:  inverse (A)
     See inv.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 8
See inv.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
kron
# name: <cell-element>
# type: string
# elements: 1
# length: 285
 -- Loadable Function:  kron (A, B)
     Form the kronecker product of two matrices, defined block by block as

          x = [a(i, j) b]

     For example,

          kron (1:4, ones (3, 1))
                =>  1  2  3  4
                    1  2  3  4
                    1  2  3  4

# name: <cell-element>
# type: string
# elements: 1
# length: 70
Form the kronecker product of two matrices, defined block by block as 

# name: <cell-element>
# type: string
# elements: 1
# length: 9
iskeyword
# name: <cell-element>
# type: string
# elements: 1
# length: 139
 -- Built-in Function:  iskeyword (NAME)
     Return true if NAME is an Octave keyword.  If NAME is omitted, return a list of keywords.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Return true if NAME is an Octave keyword.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
genpath
# name: <cell-element>
# type: string
# elements: 1
# length: 109
 -- Built-in Function:  genpath (DIR)
     Return a path constructed from DIR and all its subdirectories.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Return a path constructed from DIR and all its subdirectories.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
rehash
# name: <cell-element>
# type: string
# elements: 1
# length: 91
 -- Built-in Function:  rehash ()
     Reinitialize Octave's load path directory cache.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Reinitialize Octave's load path directory cache.

# name: <cell-element>
# type: string
# elements: 1
# length: 17
command_line_path
# name: <cell-element>
# type: string
# elements: 1
# length: 171
 -- Built-in Function:  command_line_path (...)
     Return the command line path variable.

     See also: path, addpath, rmpath, genpath, pathdef, savepath, pathsep.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 38
Return the command line path variable.

# name: <cell-element>
# type: string
# elements: 1
# length: 18
restoredefaultpath
# name: <cell-element>
# type: string
# elements: 1
# length: 189
 -- Built-in Function:  restoredefaultpath (...)
     Restore Octave's path to it's initial state at startup.

     See also: path, addpath, rmpath, genpath, pathdef, savepath, pathsep.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Restore Octave's path to it's initial state at startup.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
path
# name: <cell-element>
# type: string
# elements: 1
# length: 549
 -- Built-in Function:  path (...)
     Modify or display Octave's load path.

     If NARGIN and NARGOUT are zero, display the elements of Octave's load path in an easy to read format.

     If NARGIN is zero and nargout is greater than zero, return the current load path.

     If NARGIN is greater than zero, concatenate the arguments, separating them with `pathsep()'.  Set the internal search path to the result and return it.

     No checks are made for duplicate elements.  See also: addpath, rmpath, genpath, pathdef, savepath, pathsep.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Modify or display Octave's load path.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
addpath
# name: <cell-element>
# type: string
# elements: 1
# length: 429
 -- Built-in Function:  addpath (DIR1, ...)
 -- Built-in Function:  addpath (DIR1, ..., OPTION)
     Add DIR1, ... to the current function search path.  If OPTION is `"-begin"' or 0 (the default), prepend the directory name to the current path.  If OPTION is `"-end"' or 1, append the directory name to the current path.  Directories added to the path must exist.  See also: path, rmpath, genpath, pathdef, savepath, pathsep.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 11
Add DIR1, .

# name: <cell-element>
# type: string
# elements: 1
# length: 6
rmpath
# name: <cell-element>
# type: string
# elements: 1
# length: 175
 -- Built-in Function:  rmpath (DIR1, ...)
     Remove DIR1, ... from the current function search path.

     See also: path, addpath, genpath, pathdef, savepath, pathsep.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 14
Remove DIR1, .

# name: <cell-element>
# type: string
# elements: 1
# length: 4
load
# name: <cell-element>
# type: string
# elements: 1
# length: 3368
 -- Command: load file
 -- Command: load options file
 -- Command: load options file v1 v2 ...
 -- Command: S = load("options", "file", "v1", "v2", ...)
     Load the named variables V1, V2, ..., from the file FILE.  If no variables are specified then all variables found in the file will be loaded.  As with `save', the list of variables to extract can be full names or use a pattern syntax.  The format of the file is automatically detected but may be overridden by supplying the appropriate option.

     If load is invoked using the functional form

          load ("-option1", ..., "file", "v1", ...)

     then the OPTIONS, FILE, and variable name arguments (V1, ...) must be specified as character strings.

     If a variable that is not marked as global is loaded from a file when a global symbol with the same name already exists, it is loaded in the global symbol table.  Also, if a variable is marked as global in a file and a local symbol exists, the local symbol is moved to the global symbol table and given the value from the file.

     If invoked with a single output argument, Octave returns data instead of inserting variables in the symbol table.  If the data file contains only numbers (TAB- or space-delimited columns), a matrix of values is returned.  Otherwise, `load' returns a structure with members  corresponding to the names of the variables in the file.

     The `load' command can read data stored in Octave's text and binary formats, and MATLAB's binary format.  If compiled with zlib support, it can also load gzip-compressed files.  It will automatically detect the type of file and do conversion from different floating point formats (currently only IEEE big and little endian, though other formats may be added in the future).

     Valid options for `load' are listed in the following table.

    `-force'
          This option is accepted for backward compatibility but is ignored.  Octave now overwrites variables currently in memory with those of the same name found in the file.

    `-ascii'
          Force Octave to assume the file contains columns of numbers in text format without any header or other information.  Data in the file will be loaded as a single numeric matrix with the name of the variable derived from the name of the file.

    `-binary'
          Force Octave to assume the file is in Octave's binary format.

    `-hdf5'
          Force Octave to assume the file is in HDF5 format.  (HDF5 is a free, portable binary format developed by the National Center for Supercomputing Applications at the University of Illinois.)  Note that Octave can read HDF5 files not created by itself, but may skip some datasets in formats that it cannot support.

    `-import'
          This option is accepted for backward compatibility but is ignored.  Octave can now support multi-dimensional HDF data and automatically modifies variable names if they are invalid Octave identifiers.

    `-mat'
    `-mat-binary'
    `-6'
    `-v6'
    `-7'
    `-v7'
          Force Octave to assume the file is in MATLAB's version 6 or 7 binary format.

    `-mat4-binary'
    `-4'
    `-v4'
    `-V4'
          Force Octave to assume the file is in the binary format written by MATLAB version 4.

    `-text'
          Force Octave to assume the file is in Octave's text format.
     See also: save, dlmwrite, csvwrite, fwrite.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Load the named variables V1, V2, .

# name: <cell-element>
# type: string
# elements: 1
# length: 4
save
# name: <cell-element>
# type: string
# elements: 1
# length: 3522
 -- Command: save file
 -- Command: save options file
 -- Command: save options file V1 V2 ...
 -- Command: save options file -struct STRUCT F1 F2 ...
     Save the named variables V1, V2, ..., in the file FILE.  The special filename `-' may be used to write output to the terminal.  If no variable names are listed, Octave saves all the variables in the current scope.  Otherwise, full variable names or pattern syntax can be used to specify the variables to save.  If the `-struct' modifier is used, fields F1 F2 ...  of the scalar structure STRUCT are saved as if they were variables with corresponding names.  Valid options for the `save' command are listed in the following table.  Options that modify the output format override the format specified by `default_save_options'.

     If save is invoked using the functional form

          save ("-option1", ..., "file", "v1", ...)

     then the OPTIONS, FILE, and variable name arguments (V1, ...) must be specified as character strings.

    `-ascii'
          Save a single matrix in a text file without header or any other information.

    `-binary'
          Save the data in Octave's binary data format.

    `-float-binary'
          Save the data in Octave's binary data format but only using single precision.  Only use this format if you know that all the values to be saved can be represented in single precision.

    `-hdf5'
          Save the data in HDF5 format.  (HDF5 is a free, portable binary format developed by the National Center for Supercomputing Applications at the University of Illinois.)

    `-float-hdf5'
          Save the data in HDF5 format but only using single precision.  Only use this format if you know that all the values to be saved can be represented in single precision.

    `-V7'
    `-v7'
    `-7'
    `-mat7-binary'
          Save the data in MATLAB's v7 binary data format.

    `-V6'
    `-v6'
    `-6'
    `-mat'
    `-mat-binary'
          Save the data in MATLAB's v6 binary data format.

    `-V4'
    `-v4'
    `-4'
    `-mat4-binary'
          Save the data in the binary format written by MATLAB version 4.

    `-text'
          Save the data in Octave's text data format.  (default).

    `-zip'
    `-z'
          Use the gzip algorithm to compress the file.  This works equally on files that are compressed with gzip outside of octave, and gzip can equally be used to convert the files for backward compatibility.

     The list of variables to save may use wildcard patterns containing the following special characters:
    `?'
          Match any single character.

    `*'
          Match zero or more characters.

    `[ LIST ]'
          Match the list of characters specified by LIST.  If the first character is `!' or `^', match all characters except those specified by LIST.  For example, the pattern `[a-zA-Z]' will match all lower and upper case alphabetic characters.

          Wildcards may also be used in the field name specifications when using the `-struct' modifier (but not in the struct name itself).


     Except when using the MATLAB binary data file format or the `-ascii' format, saving global variables also saves the global status of the variable.  If the variable is restored at a later time using `load', it will be restored as a global variable.

     The command

          save -binary data a b*

     saves the variable `a' and all variables beginning with `b' to the file `data' in Octave's binary format.  See also: load, default_save_options, dlmread, csvread, fread.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Save the named variables V1, V2, .

# name: <cell-element>
# type: string
# elements: 1
# length: 23
crash_dumps_octave_core
# name: <cell-element>
# type: string
# elements: 1
# length: 406
 -- Built-in Function: VAL = crash_dumps_octave_core ()
 -- Built-in Function: OLD_VAL = crash_dumps_octave_core (NEW_VAL)
     Query or set the internal variable that controls whether Octave tries to save all current variables to the file "octave-core" if it crashes or receives a hangup, terminate or similar signal.  See also: octave_core_file_limit, octave_core_file_name, octave_core_file_options.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 190
Query or set the internal variable that controls whether Octave tries to save all current variables to the file "octave-core" if it crashes or receives a hangup, terminate or similar signal.

# name: <cell-element>
# type: string
# elements: 1
# length: 20
default_save_options
# name: <cell-element>
# type: string
# elements: 1
# length: 351
 -- Built-in Function: VAL = default_save_options ()
 -- Built-in Function: OLD_VAL = default_save_options (NEW_VAL)
     Query or set the internal variable that specifies the default options for the `save' command, and defines the default format.  Typical values include `"-ascii"', `"-text -zip"'.  The default value is `-text'.  See also: save.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 125
Query or set the internal variable that specifies the default options for the `save' command, and defines the default format.

# name: <cell-element>
# type: string
# elements: 1
# length: 22
octave_core_file_limit
# name: <cell-element>
# type: string
# elements: 1
# length: 730
 -- Built-in Function: VAL = octave_core_file_limit ()
 -- Built-in Function: OLD_VAL = octave_core_file_limit (NEW_VAL)
     Query or set the internal variable that specifies the maximum amount of memory (in kilobytes) of the top-level workspace that Octave will attempt to save when writing data to the crash dump file (the name of the file is specified by OCTAVE_CORE_FILE_NAME).  If OCTAVE_CORE_FILE_OPTIONS flags specify a binary format, then OCTAVE_CORE_FILE_LIMIT will be approximately the maximum size of the file.  If a text file format is used, then the file could be much larger than the limit.  The default value is -1 (unlimited) See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_options.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 256
Query or set the internal variable that specifies the maximum amount of memory (in kilobytes) of the top-level workspace that Octave will attempt to save when writing data to the crash dump file (the name of the file is specified by OCTAVE_CORE_FILE_NAME).

# name: <cell-element>
# type: string
# elements: 1
# length: 21
octave_core_file_name
# name: <cell-element>
# type: string
# elements: 1
# length: 388
 -- Built-in Function: VAL = octave_core_file_name ()
 -- Built-in Function: OLD_VAL = octave_core_file_name (NEW_VAL)
     Query or set the internal variable that specifies the name of the file used for saving data from the top-level workspace if Octave aborts.  The default value is `"octave-core"' See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_options.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 138
Query or set the internal variable that specifies the name of the file used for saving data from the top-level workspace if Octave aborts.

# name: <cell-element>
# type: string
# elements: 1
# length: 24
octave_core_file_options
# name: <cell-element>
# type: string
# elements: 1
# length: 488
 -- Built-in Function: VAL = octave_core_file_options ()
 -- Built-in Function: OLD_VAL = octave_core_file_options (NEW_VAL)
     Query or set the internal variable that specifies the options used for saving the workspace data if Octave aborts.  The value of `octave_core_file_options' should follow the same format as the options for the `save' function.  The default value is Octave's binary format.  See also: crash_dumps_octave_core, octave_core_file_name, octave_core_file_limit.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 114
Query or set the internal variable that specifies the options used for saving the workspace data if Octave aborts.

# name: <cell-element>
# type: string
# elements: 1
# length: 25
save_header_format_string
# name: <cell-element>
# type: string
# elements: 1
# length: 671
 -- Built-in Function: VAL = save_header_format_string ()
 -- Built-in Function: OLD_VAL = save_header_format_string (NEW_VAL)
     Query or set the internal variable that specifies the format string used for the comment line written at the beginning of text-format data files saved by Octave.  The format string is passed to `strftime' and should begin with the character `#' and contain no newline characters.  If the value of `save_header_format_string' is the empty string, the header comment is omitted from text-format data files.  The default value is

          "# Created by Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USER@HOST>"
     See also: strftime, save.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 161
Query or set the internal variable that specifies the format string used for the comment line written at the beginning of text-format data files saved by Octave.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
lookup
# name: <cell-element>
# type: string
# elements: 1
# length: 1403
 -- Loadable Function: IDX = lookup (TABLE, Y, OPT)
     Lookup values in a sorted table.  Usually used as a prelude to interpolation.

     If table is strictly increasing and `idx = lookup (table, y)', then `table(idx(i)) <= y(i) < table(idx(i+1))' for all `y(i)' within the table.  If `y(i) < table (1)' then `idx(i)' is 0. If `y(i) >= table(end)' then `idx(i)' is `table(n)'.

     If the table is strictly decreasing, then the tests are reversed.  There are no guarantees for tables which are non-monotonic or are not strictly monotonic.

     The algorithm used by lookup is standard binary search, with optimizations to speed up the case of partially ordered arrays (dense downsampling).  In particular, looking up a single entry is of logarithmic complexity (unless a conversion occurs due to non-numeric or unequal types).

     TABLE and Y can also be cell arrays of strings (or Y can be a single string).  In this case, string lookup is performed using lexicographical comparison.

     If OPTS is specified, it shall be a string with letters indicating additional options.  For numeric lookup, 'l' in OPTS indicates that the leftmost subinterval shall be extended to infinity (i.e., all indices at least 1), and 'r' indicates that the rightmost subinterval shall be extended to infinity (i.e., all indices at most n-1).

     For string lookup, 'i' indicates case-insensitive comparison.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Lookup values in a sorted table.

# name: <cell-element>
# type: string
# elements: 1
# length: 14
save_precision
# name: <cell-element>
# type: string
# elements: 1
# length: 225
 -- Built-in Function: VAL = save_precision ()
 -- Built-in Function: OLD_VAL = save_precision (NEW_VAL)
     Query or set the internal variable that specifies the number of digits to keep when saving data in text format.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Query or set the internal variable that specifies the number of digits to keep when saving data in text format.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
lsode_options
# name: <cell-element>
# type: string
# elements: 1
# length: 1946
 -- Loadable Function:  lsode_options (OPT, VAL)
     When called with two arguments, this function allows you set options parameters for the function `lsode'.  Given one argument, `lsode_options' returns the value of the corresponding option.  If no arguments are supplied, the names of all the available options and their current values are displayed.

     Options include

    `"absolute tolerance"'
          Absolute tolerance.  May be either vector or scalar.  If a vector, it must match the dimension of the state vector.

    `"relative tolerance"'
          Relative tolerance parameter.  Unlike the absolute tolerance, this parameter may only be a scalar.

          The local error test applied at each integration step is

                 abs (local error in x(i)) <= ...
                     rtol * abs (y(i)) + atol(i)

    `"integration method"'
          A string specifying the method of integration to use to solve the ODE system.  Valid values are

         "adams"
         "non-stiff"
               No Jacobian used (even if it is available).

         "bdf"

         "stiff"
               Use stiff backward differentiation formula (BDF) method.  If a function to compute the Jacobian is not supplied, `lsode' will compute a finite difference approximation of the Jacobian matrix.

    `"initial step size"'
          The step size to be attempted on the first step (default is determined automatically).

    `"maximum order"'
          Restrict the maximum order of the solution method.  If using the Adams method, this option must be between 1 and 12.  Otherwise, it must be between 1 and 5, inclusive.

    `"maximum step size"'
          Setting the maximum stepsize will avoid passing over very large regions  (default is not specified).

    `"minimum step size"'
          The minimum absolute step size allowed (default is 0).

    `"step limit"'
          Maximum number of steps allowed (default is 100000).

# name: <cell-element>
# type: string
# elements: 1
# length: 105
When called with two arguments, this function allows you set options parameters for the function `lsode'.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
lsode
# name: <cell-element>
# type: string
# elements: 1
# length: 2600
 -- Loadable Function: [X, ISTATE, MSG] = lsode (FCN, X_0, T, T_CRIT)
     Solve the set of differential equations

          dx
          -- = f(x, t)
          dt

     with

          x(t_0) = x_0

     The solution is returned in the matrix X, with each row corresponding to an element of the vector T.  The first element of T should be t_0 and should correspond to the initial state of the system X_0, so that the first row of the output is X_0.

     The first argument, FCN, is a string, inline, or function handle that names the function f to call to compute the vector of right hand sides for the set of equations.  The function must have the form

          XDOT = f (X, T)

     in which XDOT and X are vectors and T is a scalar.

     If FCN is a two-element string array or a two-element cell array of strings, inline functions, or function handles, the first element names the function f described above, and the second element names a function to compute the Jacobian of f.  The Jacobian function must have the form

          JAC = j (X, T)

     in which JAC is the matrix of partial derivatives

                       | df_1  df_1       df_1 |
                       | ----  ----  ...  ---- |
                       | dx_1  dx_2       dx_N |
                       |                       |
                       | df_2  df_2       df_2 |
                       | ----  ----  ...  ---- |
                df_i   | dx_1  dx_2       dx_N |
          jac = ---- = |                       |
                dx_j   |  .    .     .    .    |
                       |  .    .      .   .    |
                       |  .    .       .  .    |
                       |                       |
                       | df_N  df_N       df_N |
                       | ----  ----  ...  ---- |
                       | dx_1  dx_2       dx_N |

     The second and third arguments specify the initial state of the system, x_0, and the initial value of the independent variable t_0.

     The fourth argument is optional, and may be used to specify a set of times that the ODE solver should not integrate past.  It is useful for avoiding difficulties with singularities and points where there is a discontinuity in the derivative.

     After a successful computation, the value of ISTATE will be 2 (consistent with the Fortran version of LSODE).

     If the computation is not successful, ISTATE will be something other than 2 and MSG will contain additional information.

     You can use the function `lsode_options' to set optional parameters for `lsode'.  See also: daspk, dassl, dasrt.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Solve the set of differential equations 

# name: <cell-element>
# type: string
# elements: 1
# length: 2
lu
# name: <cell-element>
# type: string
# elements: 1
# length: 2398
 -- Loadable Function: [L, U, P] = lu (A)
 -- Loadable Function: [L, U, P, Q] = lu (S)
 -- Loadable Function: [L, U, P, Q, R] = lu (S)
 -- Loadable Function: [...] = lu (S, THRES)
 -- Loadable Function: Y = lu (...)
 -- Loadable Function: [...] = lu (..., 'vector')
     Compute the LU decomposition of A.  If A is full subroutines from LAPACK are used and if A is sparse then UMFPACK is used.  The result is returned in a permuted form, according to the optional return value P.  For example, given the matrix `a = [1, 2; 3, 4]',

          [l, u, p] = lu (a)

     returns

          l =

            1.00000  0.00000
            0.33333  1.00000

          u =

            3.00000  4.00000
            0.00000  0.66667

          p =

            0  1
            1  0

     The matrix is not required to be square.

     Called with two or three output arguments and a spare input matrix, then "lu" does not attempt to perform sparsity preserving column permutations.  Called with a fourth output argument, the sparsity preserving column transformation Q is returned, such that `P * A * Q = L * U'.

     Called with a fifth output argument and a sparse input matrix, then "lu" attempts to use a scaling factor R on the input matrix such that `P * (R \ A) * Q = L * U'.  This typically leads to a sparser and more stable factorization.

     An additional input argument THRES, that defines the pivoting threshold can be given.  THRES can be a scalar, in which case it defines UMFPACK pivoting tolerance for both symmetric and unsymmetric cases.  If THRES is a two element vector, then the first element defines the pivoting tolerance for the unsymmetric UMFPACK pivoting strategy and the second the symmetric strategy.  By default, the values defined by `spparms' are used and are by default `[0.1, 0.001]'.

     Given the string argument 'vector', "lu" returns the values of P Q as vector values, such that for full matrix, `A (P,:) = L * U', and `R(P,:) * A (:, Q) = L * U'.

     With two output arguments, returns the permuted forms of the upper and lower triangular matrices, such that `A = L * U'.  With one output argument Y, then the matrix returned by the LAPACK routines is returned.  If the input matrix is sparse then the matrix L is embedded into U to give a return value similar to the full case.  For both full and sparse matrices, "lu" looses the permutation information.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Compute the LU decomposition of A.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
luinc
# name: <cell-element>
# type: string
# elements: 1
# length: 2264
 -- Loadable Function: [L, U, P, Q] = luinc (A, '0')
 -- Loadable Function: [L, U, P, Q] = luinc (A, DROPTOL)
 -- Loadable Function: [L, U, P, Q] = luinc (A, OPTS)
     Produce the incomplete LU factorization of the sparse matrix A.  Two types of incomplete factorization are possible, and the type is determined by the second argument to "luinc".

     Called with a second argument of '0', the zero-level incomplete LU factorization is produced.  This creates a factorization of A where the position of the non-zero arguments correspond to the same positions as in the matrix A.

     Alternatively, the fill-in of the incomplete LU factorization can be controlled through the variable DROPTOL or the structure OPTS.  The UMFPACK multifrontal factorization code by Tim A.  Davis is used for the incomplete LU factorization, (availability `http://www.cise.ufl.edu/research/sparse/umfpack/')

     DROPTOL determines the values below which the values in the LU factorization are dropped and replaced by zero.  It must be a positive scalar, and any values in the factorization whose absolute value are less than this value are dropped, expect if leaving them increase the sparsity of the matrix.  Setting DROPTOL to zero results in a complete LU factorization which is the default.

     OPTS is a structure containing one or more of the fields

    `droptol'
          The drop tolerance as above.  If OPTS only contains `droptol' then this is equivalent to using the variable DROPTOL.

    `milu'
          A logical variable flagging whether to use the modified incomplete LU factorization.  In the case that `milu' is true, the dropped values are subtracted from the diagonal of the matrix U of the factorization.  The default is `false'.

    `udiag'
          A logical variable that flags whether zero elements on the diagonal of U should be replaced with DROPTOL to attempt to avoid singular factors.  The default is `false'.

    `thresh'
          Defines the pivot threshold in the interval [0,1].  Values outside that range are ignored.

     All other fields in OPTS are ignored.  The outputs from "luinc" are the same as for "lu".

     Given the string argument 'vector', "luinc" returns the values of P Q as vector values.  See also: sparse, lu.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Produce the incomplete LU factorization of the sparse matrix A.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
abs
# name: <cell-element>
# type: string
# elements: 1
# length: 164
 -- Mapping Function:  abs (Z)
     Compute the magnitude of Z, defined as |Z| = `sqrt (x^2 + y^2)'.

     For example,

          abs (3 + 4i)
               => 5

# name: <cell-element>
# type: string
# elements: 1
# length: 64
Compute the magnitude of Z, defined as |Z| = `sqrt (x^2 + y^2)'.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
acos
# name: <cell-element>
# type: string
# elements: 1
# length: 124
 -- Mapping Function:  acos (X)
     Compute the inverse cosine in radians for each element of X.  See also: cos, acosd.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Compute the inverse cosine in radians for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
acosh
# name: <cell-element>
# type: string
# elements: 1
# length: 119
 -- Mapping Function:  acosh (X)
     Compute the inverse hyperbolic cosine for each element of X.  See also: cosh.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Compute the inverse hyperbolic cosine for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
angle
# name: <cell-element>
# type: string
# elements: 1
# length: 50
 -- Mapping Function:  angle (Z)
     See arg.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 8
See arg.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
arg
# name: <cell-element>
# type: string
# elements: 1
# length: 213
 -- Mapping Function:  arg (Z)
 -- Mapping Function:  angle (Z)
     Compute the argument of Z, defined as, THETA = `atan2 (Y, X)', in radians.

     For example,

          arg (3 + 4i)
               => 0.92730

# name: <cell-element>
# type: string
# elements: 1
# length: 74
Compute the argument of Z, defined as, THETA = `atan2 (Y, X)', in radians.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
asin
# name: <cell-element>
# type: string
# elements: 1
# length: 122
 -- Mapping Function:  asin (X)
     Compute the inverse sine in radians for each element of X.  See also: sin, asind.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Compute the inverse sine in radians for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
asinh
# name: <cell-element>
# type: string
# elements: 1
# length: 117
 -- Mapping Function:  asinh (X)
     Compute the inverse hyperbolic sine for each element of X.  See also: sinh.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Compute the inverse hyperbolic sine for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
atan
# name: <cell-element>
# type: string
# elements: 1
# length: 125
 -- Mapping Function:  atan (X)
     Compute the inverse tangent in radians for each element of X.  See also: tan, atand.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Compute the inverse tangent in radians for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
atanh
# name: <cell-element>
# type: string
# elements: 1
# length: 120
 -- Mapping Function:  atanh (X)
     Compute the inverse hyperbolic tangent for each element of X.  See also: tanh.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Compute the inverse hyperbolic tangent for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
ceil
# name: <cell-element>
# type: string
# elements: 1
# length: 297
 -- Mapping Function:  ceil (X)
     Return the smallest integer not less than X.  This is equivalent to rounding towards positive infinity.  If X is complex, return `ceil (real (X)) + ceil (imag (X)) * I'.
          ceil ([-2.7, 2.7])
             =>  -2   3
     See also: floor, round, fix.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Return the smallest integer not less than X.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
conj
# name: <cell-element>
# type: string
# elements: 1
# length: 130
 -- Mapping Function:  conj (Z)
     Return the complex conjugate of Z, defined as `conj (Z)' = X - IY.  See also: real, imag.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Return the complex conjugate of Z, defined as `conj (Z)' = X - IY.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
cos
# name: <cell-element>
# type: string
# elements: 1
# length: 121
 -- Mapping Function:  cos (X)
     Compute the cosine for each element of X in radians.  See also: acos, cosd, cosh.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Compute the cosine for each element of X in radians.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
cosh
# name: <cell-element>
# type: string
# elements: 1
# length: 123
 -- Mapping Function:  cosh (X)
     Compute the hyperbolic cosine for each element of X.  See also: acosh, sinh, tanh.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Compute the hyperbolic cosine for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
erf
# name: <cell-element>
# type: string
# elements: 1
# length: 290
 -- Mapping Function:  erf (Z)
     Computes the error function,

                                   z
                                  /
          erf (z) = (2/sqrt (pi)) | e^(-t^2) dt
                                  /
                               t=0
     See also: erfc, erfinv.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 29
Computes the error function, 

# name: <cell-element>
# type: string
# elements: 1
# length: 4
erfc
# name: <cell-element>
# type: string
# elements: 1
# length: 122
 -- Mapping Function:  erfc (Z)
     Computes the complementary error function, `1 - erf (Z)'.  See also: erf, erfinv.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Computes the complementary error function, `1 - erf (Z)'.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
exp
# name: <cell-element>
# type: string
# elements: 1
# length: 156
 -- Mapping Function:  exp (X)
     Compute `e^x' for each element of X.  To compute the matrix exponential, see *note Linear Algebra::.  See also: log.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Compute `e^x' for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
expm1
# name: <cell-element>
# type: string
# elements: 1
# length: 119
 -- Mapping Function:  expm1 (X)
     Compute `exp (X) - 1' accurately in the neighborhood of zero.  See also: exp.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Compute `exp (X) - 1' accurately in the neighborhood of zero.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
finite
# name: <cell-element>
# type: string
# elements: 1
# length: 195
 -- Mapping Function:  finite (X)
     Return 1 for elements of X that are finite values and zero otherwise.  For example,

          finite ([13, Inf, NA, NaN])
               => [ 1, 0, 0, 0 ]

# name: <cell-element>
# type: string
# elements: 1
# length: 69
Return 1 for elements of X that are finite values and zero otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
fix
# name: <cell-element>
# type: string
# elements: 1
# length: 300
 -- Mapping Function:  fix (X)
     Truncate fractional portion of X and return the integer portion.  This is equivalent to rounding towards zero.  If X is complex, return `fix (real (X)) + fix (imag (X)) * I'.
          fix ([-2.7, 2.7])
             => -2   2
     See also: ceil, floor, round.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Truncate fractional portion of X and return the integer portion.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
floor
# name: <cell-element>
# type: string
# elements: 1
# length: 303
 -- Mapping Function:  floor (X)
     Return the largest integer not greater than X.  This is equivalent to rounding towards negative infinity.  If X is complex, return `floor (real (X)) + floor (imag (X)) * I'.
          floor ([-2.7, 2.7])
               => -3   2
     See also: ceil, round, fix.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Return the largest integer not greater than X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
gamma
# name: <cell-element>
# type: string
# elements: 1
# length: 251
 -- Mapping Function:  gamma (Z)
     Computes the Gamma function,

                      infinity
                      /
          gamma (z) = | t^(z-1) exp (-t) dt.
                      /
                   t=0
     See also: gammainc, lgamma.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 29
Computes the Gamma function, 

# name: <cell-element>
# type: string
# elements: 1
# length: 4
imag
# name: <cell-element>
# type: string
# elements: 1
# length: 112
 -- Mapping Function:  imag (Z)
     Return the imaginary part of Z as a real number.  See also: real, conj.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return the imaginary part of Z as a real number.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
isalnum
# name: <cell-element>
# type: string
# elements: 1
# length: 136
 -- Mapping Function:  isalnum (S)
     Return 1 for characters that are letters or digits (`isalpha (S)' or `isdigit (S)' is true).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Return 1 for characters that are letters or digits (`isalpha (S)' or `isdigit (S)' is true).

# name: <cell-element>
# type: string
# elements: 1
# length: 7
isalpha
# name: <cell-element>
# type: string
# elements: 1
# length: 165
 -- Mapping Function:  isalpha (S)
 -- Mapping Function:  isletter (S)
     Return true for characters that are letters (`isupper (S)' or `islower (S)' is true).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 85
Return true for characters that are letters (`isupper (S)' or `islower (S)' is true).

# name: <cell-element>
# type: string
# elements: 1
# length: 7
isascii
# name: <cell-element>
# type: string
# elements: 1
# length: 115
 -- Mapping Function:  isascii (S)
     Return 1 for characters that are ASCII (in the range 0 to 127 decimal).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Return 1 for characters that are ASCII (in the range 0 to 127 decimal).

# name: <cell-element>
# type: string
# elements: 1
# length: 7
iscntrl
# name: <cell-element>
# type: string
# elements: 1
# length: 76
 -- Mapping Function:  iscntrl (S)
     Return 1 for control characters.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Return 1 for control characters.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
isdigit
# name: <cell-element>
# type: string
# elements: 1
# length: 92
 -- Mapping Function:  isdigit (S)
     Return 1 for characters that are decimal digits.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return 1 for characters that are decimal digits.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
isinf
# name: <cell-element>
# type: string
# elements: 1
# length: 188
 -- Mapping Function:  isinf (X)
     Return 1 for elements of X that are infinite and zero otherwise.  For example,

          isinf ([13, Inf, NA, NaN])
               => [ 0, 1, 0, 0 ]

# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return 1 for elements of X that are infinite and zero otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
isgraph
# name: <cell-element>
# type: string
# elements: 1
# length: 108
 -- Mapping Function:  isgraph (S)
     Return 1 for printable characters (but not the space character).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return 1 for printable characters (but not the space character).

# name: <cell-element>
# type: string
# elements: 1
# length: 7
islower
# name: <cell-element>
# type: string
# elements: 1
# length: 96
 -- Mapping Function:  islower (S)
     Return 1 for characters that are lower case letters.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return 1 for characters that are lower case letters.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
isna
# name: <cell-element>
# type: string
# elements: 1
# length: 222
 -- Mapping Function:  isna (X)
     Return 1 for elements of X that are NA (missing) values and zero otherwise.  For example,

          isna ([13, Inf, NA, NaN])
               => [ 0, 0, 1, 0 ]
     See also: isnan.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Return 1 for elements of X that are NA (missing) values and zero otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
isnan
# name: <cell-element>
# type: string
# elements: 1
# length: 257
 -- Mapping Function:  isnan (X)
     Return 1 for elements of X that are NaN values and zero otherwise.  NA values are also considered NaN values.  For example,

          isnan ([13, Inf, NA, NaN])
               => [ 0, 0, 1, 1 ]
     See also: isna.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Return 1 for elements of X that are NaN values and zero otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
isprint
# name: <cell-element>
# type: string
# elements: 1
# length: 110
 -- Mapping Function:  isprint (S)
     Return 1 for printable characters (including the space character).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Return 1 for printable characters (including the space character).

# name: <cell-element>
# type: string
# elements: 1
# length: 7
ispunct
# name: <cell-element>
# type: string
# elements: 1
# length: 80
 -- Mapping Function:  ispunct (S)
     Return 1 for punctuation characters.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Return 1 for punctuation characters.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
isspace
# name: <cell-element>
# type: string
# elements: 1
# length: 146
 -- Mapping Function:  isspace (S)
     Return 1 for whitespace characters (space, formfeed, newline, carriage return, tab, and vertical tab).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 102
Return 1 for whitespace characters (space, formfeed, newline, carriage return, tab, and vertical tab).

# name: <cell-element>
# type: string
# elements: 1
# length: 7
isupper
# name: <cell-element>
# type: string
# elements: 1
# length: 76
 -- Mapping Function:  isupper (S)
     Return 1 for upper case letters.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Return 1 for upper case letters.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
isxdigit
# name: <cell-element>
# type: string
# elements: 1
# length: 97
 -- Mapping Function:  isxdigit (S)
     Return 1 for characters that are hexadecimal digits.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return 1 for characters that are hexadecimal digits.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
lgamma
# name: <cell-element>
# type: string
# elements: 1
# length: 162
 -- Mapping Function:  lgamma (X)
 -- Mapping Function:  gammaln (X)
     Return the natural logarithm of the gamma function of X.  See also: gamma, gammainc.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Return the natural logarithm of the gamma function of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
log
# name: <cell-element>
# type: string
# elements: 1
# length: 211
 -- Mapping Function:  log (X)
     Compute the natural logarithm, `ln (X)', for each element of X.  To compute the matrix logarithm, see *note Linear Algebra::.  See also: exp, log1p, log2, log10, logspace.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Compute the natural logarithm, `ln (X)', for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
log10
# name: <cell-element>
# type: string
# elements: 1
# length: 130
 -- Mapping Function:  log10 (X)
     Compute the base-10 logarithm of each element of X.  See also: log, log2, logspace, exp.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Compute the base-10 logarithm of each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
log1p
# name: <cell-element>
# type: string
# elements: 1
# length: 131
 -- Mapping Function:  log1p (X)
     Compute `log (1 + X)' accurately in the neighborhood of zero.  See also: log, exp, expm1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Compute `log (1 + X)' accurately in the neighborhood of zero.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
real
# name: <cell-element>
# type: string
# elements: 1
# length: 90
 -- Mapping Function:  real (Z)
     Return the real part of Z.  See also: imag, conj.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Return the real part of Z.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
round
# name: <cell-element>
# type: string
# elements: 1
# length: 230
 -- Mapping Function:  round (X)
     Return the integer nearest to X.  If X is complex, return `round (real (X)) + round (imag (X)) * I'.
          round ([-2.7, 2.7])
               => -3   3
     See also: ceil, floor, fix.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Return the integer nearest to X.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
roundb
# name: <cell-element>
# type: string
# elements: 1
# length: 240
 -- Mapping Function:  roundb (X)
     Return the integer nearest to X.  If there are two nearest integers, return the even one (banker's rounding).  If X is complex, return `roundb (real (X)) + roundb (imag (X)) * I'.  See also: round.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Return the integer nearest to X.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
sign
# name: <cell-element>
# type: string
# elements: 1
# length: 248
 -- Mapping Function:  sign (X)
     Compute the "signum" function, which is defined as

                     -1, x < 0;
          sign (x) =  0, x = 0;
                      1, x > 0.

     For complex arguments, `sign' returns `x ./ abs (X)'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Compute the "signum" function, which is defined as 

# name: <cell-element>
# type: string
# elements: 1
# length: 3
sin
# name: <cell-element>
# type: string
# elements: 1
# length: 119
 -- Mapping Function:  sin (X)
     Compute the sine for each element of X in radians.  See also: asin, sind, sinh.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Compute the sine for each element of X in radians.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
sinh
# name: <cell-element>
# type: string
# elements: 1
# length: 121
 -- Mapping Function:  sinh (X)
     Compute the hyperbolic sine for each element of X.  See also: asinh, cosh, tanh.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Compute the hyperbolic sine for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
sqrt
# name: <cell-element>
# type: string
# elements: 1
# length: 220
 -- Mapping Function:  sqrt (X)
     Compute the square root of each element of X.  If X is negative, a complex result is returned.  To compute the matrix square root, see *note Linear Algebra::.  See also: realsqrt.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Compute the square root of each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
tan
# name: <cell-element>
# type: string
# elements: 1
# length: 122
 -- Mapping Function:  tan (Z)
     Compute the tangent for each element of X in radians.  See also: atan, tand, tanh.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Compute the tangent for each element of X in radians.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
tanh
# name: <cell-element>
# type: string
# elements: 1
# length: 120
 -- Mapping Function:  tanh (X)
     Compute hyperbolic tangent for each element of X.  See also: atanh, sinh, cosh.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Compute hyperbolic tangent for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
toascii
# name: <cell-element>
# type: string
# elements: 1
# length: 195
 -- Mapping Function:  toascii (S)
     Return ASCII representation of S in a matrix.  For example,

          toascii ("ASCII")
               => [ 65, 83, 67, 73, 73 ]

     See also: char.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Return ASCII representation of S in a matrix.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
tolower
# name: <cell-element>
# type: string
# elements: 1
# length: 356
 -- Mapping Function:  tolower (S)
 -- Mapping Function:  lower (S)
     Return a copy of the string or cell string S, with each upper-case character replaced by the corresponding lower-case one; non-alphabetic characters are left unchanged.  For example,

          tolower ("MiXeD cAsE 123")
               => "mixed case 123"
     See also: toupper.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 168
Return a copy of the string or cell string S, with each upper-case character replaced by the corresponding lower-case one; non-alphabetic characters are left unchanged.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
toupper
# name: <cell-element>
# type: string
# elements: 1
# length: 358
 -- Built-in Function:  toupper (S)
 -- Built-in Function:  upper (S)
     Return a copy of the string or cell string S, with each lower-case character replaced by the corresponding upper-case one; non-alphabetic characters are left unchanged.  For example,

          toupper ("MiXeD cAsE 123")
               => "MIXED CASE 123"
     See also: tolower.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 168
Return a copy of the string or cell string S, with each lower-case character replaced by the corresponding upper-case one; non-alphabetic characters are left unchanged.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
matrix_type
# name: <cell-element>
# type: string
# elements: 1
# length: 2920
 -- Loadable Function: TYPE = matrix_type (A)
 -- Loadable Function: A = matrix_type (A, TYPE)
 -- Loadable Function: A = matrix_type (A, 'upper', PERM)
 -- Loadable Function: A = matrix_type (A, 'lower', PERM)
 -- Loadable Function: A = matrix_type (A, 'banded', NL, NU)
     Identify the matrix type or mark a matrix as a particular type.  This allows rapid for solutions of linear equations involving A to be performed.  Called with a single argument, `matrix_type' returns the type of the matrix and caches it for future use.  Called with more than one argument, `matrix_type' allows the type of the matrix to be defined.

     The possible matrix types depend on whether the matrix is full or sparse, and can be one of the following

    'unknown'
          Remove any previously cached matrix type, and mark type as unknown

    'full'
          Mark the matrix as full.

    'positive definite'
          Probable full positive definite matrix.

    'diagonal'
          Diagonal Matrix.  (Sparse matrices only)

    'permuted diagonal'
          Permuted Diagonal matrix.  The permutation does not need to be specifically indicated, as the structure of the matrix explicitly gives this.  (Sparse matrices only)

    'upper'
          Upper triangular.  If the optional third argument PERM is given, the matrix is assumed to be a permuted upper triangular with the permutations defined by the vector PERM.

    'lower'
          Lower triangular.  If the optional third argument PERM is given, the matrix is assumed to be a permuted lower triangular with the permutations defined by the vector PERM.

    'banded'
    'banded positive definite'
          Banded matrix with the band size of NL below the diagonal and NU above it.  If NL and NU are 1, then the matrix is tridiagonal and treated with specialized code.  In addition the matrix can be marked as probably a positive definite (Sparse matrices only)

    'singular'
          The matrix is assumed to be singular and will be treated with a minimum norm solution


     Note that the matrix type will be discovered automatically on the first attempt to solve a linear equation involving A.  Therefore `matrix_type' is only useful to give Octave hints of the matrix type.  Incorrectly defining the matrix type will result in incorrect results from solutions of linear equations, and so it is entirely the responsibility of the user to correctly identify the matrix type.

     Also the test for positive definiteness is a low-cost test for a hermitian matrix with a real positive diagonal.  This does not guarantee that the matrix is positive definite, but only that it is a probable candidate.  When such a matrix is factorized, a Cholesky factorization is first attempted, and if that fails the matrix is then treated with an LU factorization.  Once the matrix has been factorized, `matrix_type' will return the correct classification of the matrix.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Identify the matrix type or mark a matrix as a particular type.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
min
# name: <cell-element>
# type: string
# elements: 1
# length: 993
 -- Loadable Function:  min (X)
 -- Loadable Function:  min (X, Y)
 -- Loadable Function:  min (X, Y, DIM)
 -- Loadable Function: [W, IW] = min (X)
     For a vector argument, return the minimum value.  For a matrix argument, return the minimum value from each column, as a row vector, or over the dimension DIM if defined.  For two matrices (or a matrix and scalar), return the pair-wise minimum.  Thus,

          min (min (X))

     returns the smallest element of X, and

          min (2:5, pi)
              =>  2.0000  3.0000  3.1416  3.1416
     compares each element of the range `2:5' with `pi', and returns a row vector of the minimum values.

     For complex arguments, the magnitude of the elements are used for comparison.

     If called with one input and two output arguments, `min' also returns the first index of the minimum value(s).  Thus,

          [x, ix] = min ([1, 3, 0, 2, 0])
              =>  x = 0
                  ix = 3
     See also: max, cummin, cummax.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
For a vector argument, return the minimum value.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
max
# name: <cell-element>
# type: string
# elements: 1
# length: 1003
 -- Loadable Function:  max (X)
 -- Loadable Function:  max (X, Y)
 -- Loadable Function:  max (X, Y, DIM)
 -- Loadable Function: [W, IW] = max (X)
     For a vector argument, return the maximum value.  For a matrix argument, return the maximum value from each column, as a row vector, or over the dimension DIM if defined.  For two matrices (or a matrix and scalar), return the pair-wise maximum.  Thus,

          max (max (X))

     returns the largest element of the matrix X, and

          max (2:5, pi)
              =>  3.1416  3.1416  4.0000  5.0000
     compares each element of the range `2:5' with `pi', and returns a row vector of the maximum values.

     For complex arguments, the magnitude of the elements are used for comparison.

     If called with one input and two output arguments, `max' also returns the first index of the maximum value(s).  Thus,

          [x, ix] = max ([1, 3, 5, 2, 5])
              =>  x = 5
                  ix = 3
     See also: min, cummax, cummin.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
For a vector argument, return the maximum value.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
cummin
# name: <cell-element>
# type: string
# elements: 1
# length: 750
 -- Loadable Function:  cummin (X)
 -- Loadable Function:  cummin (X, DIM)
 -- Loadable Function: [W, IW] = cummin (X)
     Return the cumulative minimum values along dimension DIM.  If DIM is unspecified it defaults to column-wise operation.  For example,

          cummin ([5 4 6 2 3 1])
              =>  5  4  4  2  2  1

     The call
            [w, iw] = cummin (x, dim)

     is equivalent to the following code:
          w = iw = zeros (size (x));
          idxw = idxx = repmat ({':'}, 1, ndims (x));
          for i = 1:size (x, dim)
            idxw{dim} = i; idxx{dim} = 1:i;
            [w(idxw{:}), iw(idxw{:})] = min(x(idxx{:}), [], dim);
          endfor

     but computed in a much faster manner.  See also: cummax, min, max.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Return the cumulative minimum values along dimension DIM.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
cummax
# name: <cell-element>
# type: string
# elements: 1
# length: 748
 -- Loadable Function:  cummax (X)
 -- Loadable Function:  cummax (X, DIM)
 -- Loadable Function: [W, IW] = cummax (X)
     Return the cumulative maximum values along dimension DIM.  If DIM is unspecified it defaults to column-wise operation.  For example,

          cummax ([1 3 2 6 4 5])
              =>  1  3  3  6  6  6

     The call
          [w, iw] = cummax (x, dim)

     is equivalent to the following code:
          w = iw = zeros (size (x));
          idxw = idxx = repmat ({':'}, 1, ndims (x));
          for i = 1:size (x, dim)
            idxw{dim} = i; idxx{dim} = 1:i;
            [w(idxw{:}), iw(idxw{:})] = max(x(idxx{:}), [], dim);
          endfor

     but computed in a much faster manner.  See also: cummin, max, min.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Return the cumulative maximum values along dimension DIM.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
md5sum
# name: <cell-element>
# type: string
# elements: 1
# length: 224
 -- Loadable Function:  md5sum (FILE)
 -- Loadable Function:  md5sum (STR, OPT)
     Calculates the MD5 sum of the file FILE.  If the second parameter OPT exists and is true, then calculate the MD5 sum of the string STR.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Calculates the MD5 sum of the file FILE.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
edit_history
# name: <cell-element>
# type: string
# elements: 1
# length: 1258
 -- Command: edit_history [FIRST] [LAST]
     If invoked with no arguments, `edit_history' allows you to edit the history list using the editor named by the variable `EDITOR'.  The commands to be edited are first copied to a temporary file.  When you exit the editor, Octave executes the commands that remain in the file.  It is often more convenient to use `edit_history' to define functions rather than attempting to enter them directly on the command line.  By default, the block of commands is executed as soon as you exit the editor.  To avoid executing any commands, simply delete all the lines from the buffer before exiting the editor.

     The `edit_history' command takes two optional arguments specifying the history numbers of first and last commands to edit.  For example, the command

          edit_history 13

     extracts all the commands from the 13th through the last in the history list.  The command

          edit_history 13 169

     only extracts commands 13 through 169.  Specifying a larger number for the first command than the last command reverses the list of commands before placing them in the buffer to be edited.  If both arguments are omitted, the previous command in the history list is used.  See also: run_history.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 129
If invoked with no arguments, `edit_history' allows you to edit the history list using the editor named by the variable `EDITOR'.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
history
# name: <cell-element>
# type: string
# elements: 1
# length: 837
 -- Command: history options
     If invoked with no arguments, `history' displays a list of commands that you have executed.  Valid options are:

    `-w FILE'
          Write the current history to the file FILE.  If the name is omitted, use the default history file (normally `~/.octave_hist').

    `-r FILE'
          Read the file FILE, replacing the current history list with its contents.  If the name is omitted, use the default history file (normally `~/.octave_hist').

    `N'
          Display only the most recent N lines of history.

    `-q'
          Don't number the displayed lines of history.  This is useful for cutting and pasting commands using the X Window System.

     For example, to display the five most recent commands that you have typed without displaying line numbers, use the command `history -q 5'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 91
If invoked with no arguments, `history' displays a list of commands that you have executed.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
run_history
# name: <cell-element>
# type: string
# elements: 1
# length: 212
 -- Command: run_history [FIRST] [LAST]
     Similar to `edit_history', except that the editor is not invoked, and the commands are simply executed as they appear in the history list.  See also: edit_history.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 138
Similar to `edit_history', except that the editor is not invoked, and the commands are simply executed as they appear in the history list.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
history_size
# name: <cell-element>
# type: string
# elements: 1
# length: 379
 -- Built-in Function: VAL = history_size ()
 -- Built-in Function: OLD_VAL = history_size (NEW_VAL)
     Query or set the internal variable that specifies how many entries to store in the history file.  The default value is `1024', but may be overridden by the environment variable `OCTAVE_HISTSIZE'.  See also: history_file, history_timestamp_format_string, saving_history.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 96
Query or set the internal variable that specifies how many entries to store in the history file.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
history_file
# name: <cell-element>
# type: string
# elements: 1
# length: 394
 -- Built-in Function: VAL = history_file ()
 -- Built-in Function: OLD_VAL = history_file (NEW_VAL)
     Query or set the internal variable that specifies the name of the file used to store command history.  The default value is `~/.octave_hist', but may be overridden by the environment variable `OCTAVE_HISTFILE'.  See also: history_size, saving_history, history_timestamp_format_string.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 101
Query or set the internal variable that specifies the name of the file used to store command history.

# name: <cell-element>
# type: string
# elements: 1
# length: 31
history_timestamp_format_string
# name: <cell-element>
# type: string
# elements: 1
# length: 493
 -- Built-in Function: VAL = history_timestamp_format_string ()
 -- Built-in Function: OLD_VAL = history_timestamp_format_string (NEW_VAL)
     Query or set the internal variable that specifies the format string for the comment line that is written to the history file when Octave exits.  The format string is passed to `strftime'.  The default value is

          "# Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USER@HOST>"
     See also: strftime, history_file, history_size, saving_history.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 143
Query or set the internal variable that specifies the format string for the comment line that is written to the history file when Octave exits.

# name: <cell-element>
# type: string
# elements: 1
# length: 14
saving_history
# name: <cell-element>
# type: string
# elements: 1
# length: 310
 -- Built-in Function: VAL = saving_history ()
 -- Built-in Function: OLD_VAL = saving_history (NEW_VAL)
     Query or set the internal variable that controls whether commands entered on the command line are saved in the history file.  See also: history_file, history_size, history_timestamp_format_string.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 124
Query or set the internal variable that controls whether commands entered on the command line are saved in the history file.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
argv
# name: <cell-element>
# type: string
# elements: 1
# length: 504
 -- Built-in Function:  argv ()
     Return the command line arguments passed to Octave.  For example, if you invoked Octave using the command

          octave --no-line-editing --silent

     `argv' would return a cell array of strings with the elements `--no-line-editing' and `--silent'.

     If you write an executable Octave script, `argv' will return the list of arguments passed to the script.  *Note Executable Octave Programs::, for an example of how to create an executable Octave script.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Return the command line arguments passed to Octave.

# name: <cell-element>
# type: string
# elements: 1
# length: 23
program_invocation_name
# name: <cell-element>
# type: string
# elements: 1
# length: 409
 -- Built-in Function: program_invocation_name ()
     Return the name that was typed at the shell prompt to run Octave.

     If executing a script from the command line (e.g., `octave foo.m') or using an executable Octave script, the program name is set to the name of the script.  *Note Executable Octave Programs::, for an example of how to create an executable Octave script.  See also: program_name.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 65
Return the name that was typed at the shell prompt to run Octave.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
program_name
# name: <cell-element>
# type: string
# elements: 1
# length: 162
 -- Built-in Function:  program_name ()
     Return the last component of the value returned by `program_invocation_name'.  See also: program_invocation_name.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Return the last component of the value returned by `program_invocation_name'.

# name: <cell-element>
# type: string
# elements: 1
# length: 18
sparse_auto_mutate
# name: <cell-element>
# type: string
# elements: 1
# length: 510
 -- Built-in Function: VAL = sparse_auto_mutate ()
 -- Built-in Function: OLD_VAL = sparse_auto_mutate (NEW_VAL)
     Query or set the internal variable that controls whether Octave will automatically mutate sparse matrices to real matrices to save memory.  For example,

          s = speye(3);
          sparse_auto_mutate (false)
          s (:, 1) = 1;
          typeinfo (s)
          => sparse matrix
          sparse_auto_mutate (true)
          s (1, :) = 1;
          typeinfo (s)
          => matrix

# name: <cell-element>
# type: string
# elements: 1
# length: 138
Query or set the internal variable that controls whether Octave will automatically mutate sparse matrices to real matrices to save memory.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
iscell
# name: <cell-element>
# type: string
# elements: 1
# length: 110
 -- Built-in Function:  iscell (X)
     Return true if X is a cell array object.  Otherwise, return false.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Return true if X is a cell array object.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
cell
# name: <cell-element>
# type: string
# elements: 1
# length: 436
 -- Built-in Function:  cell (X)
 -- Built-in Function:  cell (N, M)
     Create a new cell array object.  If invoked with a single scalar argument, `cell' returns a square cell array with the dimension specified.  If you supply two scalar arguments, `cell' takes them to be the number of rows and columns.  If given a vector with two elements, `cell' uses the values of the elements as the number of rows and columns, respectively.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Create a new cell array object.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
iscellstr
# name: <cell-element>
# type: string
# elements: 1
# length: 123
 -- Built-in Function:  iscellstr (CELL)
     Return true if every element of the cell array CELL is a character string
   
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Return true if every element of the cell array CELL is a character string  

# name: <cell-element>
# type: string
# elements: 1
# length: 7
cellstr
# name: <cell-element>
# type: string
# elements: 1
# length: 126
 -- Built-in Function:  cellstr (STRING)
     Create a new cell array object from the elements of the string array STRING.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Create a new cell array object from the elements of the string array STRING.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
struct2cell
# name: <cell-element>
# type: string
# elements: 1
# length: 288
 -- Built-in Function:  struct2cell (S)
     Create a new cell array from the objects stored in the struct object.  If F is the number of fields in the structure, the resulting cell array will have a dimension vector corresponding to `[F size(S)]'.  See also: cell2struct, fieldnames.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Create a new cell array from the objects stored in the struct object.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
class
# name: <cell-element>
# type: string
# elements: 1
# length: 327
 -- Built-in Function:  class (EXPR)
 -- Built-in Function:  class (S, ID)
 -- Built-in Function:  class (S, ID, P, ...)
     Return the class of the expression EXPR or create a class with fields from structure S and name (string) ID.  Additional arguments name a list of parent classes from which the new class is derived.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 108
Return the class of the expression EXPR or create a class with fields from structure S and name (string) ID.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
isobject
# name: <cell-element>
# type: string
# elements: 1
# length: 81
 -- Built-in Function:  isobject (X)
     Return true if X is a class object.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Return true if X is a class object.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
ismethod
# name: <cell-element>
# type: string
# elements: 1
# length: 137
 -- Built-in Function:  ismethod (X, METHOD)
     Return true if X is a class object and the string METHOD is a method of this class.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Return true if X is a class object and the string METHOD is a method of this class.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
methods
# name: <cell-element>
# type: string
# elements: 1
# length: 183
 -- Built-in Function:  methods (X)
 -- Built-in Function:  methods ("classname")
     Return a cell array containing the names of the methods for the object X or the named class.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Return a cell array containing the names of the methods for the object X or the named class.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
superiorto
# name: <cell-element>
# type: string
# elements: 1
# length: 305
 -- Built-in Function:  superiorto (CLASS_NAME, ...)
     When called from a class constructor, mark the object currently constructed as having a higher precedence than CLASS_NAME.  More that one such class can be specified in a single call.  This function may only be called from a class constructor.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 122
When called from a class constructor, mark the object currently constructed as having a higher precedence than CLASS_NAME.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
inferiorto
# name: <cell-element>
# type: string
# elements: 1
# length: 304
 -- Built-in Function:  inferiorto (CLASS_NAME, ...)
     When called from a class constructor, mark the object currently constructed as having a lower precedence than CLASS_NAME.  More that one such class can be specified in a single call.  This function may only be called from a class constructor.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 121
When called from a class constructor, mark the object currently constructed as having a lower precedence than CLASS_NAME.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
functions
# name: <cell-element>
# type: string
# elements: 1
# length: 132
 -- Built-in Function:  functions (FCN_HANDLE)
     Return a struct containing information about the function handle FCN_HANDLE.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Return a struct containing information about the function handle FCN_HANDLE.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
func2str
# name: <cell-element>
# type: string
# elements: 1
# length: 152
 -- Built-in Function:  func2str (FCN_HANDLE)
     Return a string containing the name of the function referenced by the function handle FCN_HANDLE.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 97
Return a string containing the name of the function referenced by the function handle FCN_HANDLE.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
str2func
# name: <cell-element>
# type: string
# elements: 1
# length: 115
 -- Built-in Function:  str2func (FCN_NAME)
     Return a function handle constructed from the string FCN_NAME.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Return a function handle constructed from the string FCN_NAME.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
inline
# name: <cell-element>
# type: string
# elements: 1
# length: 851
 -- Built-in Function:  inline (STR)
 -- Built-in Function:  inline (STR, ARG1, ...)
 -- Built-in Function:  inline (STR, N)
     Create an inline function from the character string STR.  If called with a single argument, the arguments of the generated function are extracted from the function itself.  The generated function arguments will then be in alphabetical order.  It should be noted that i, and j are ignored as arguments due to the ambiguity between their use as a variable or their use as an inbuilt constant.  All arguments followed by a parenthesis are considered to be functions.

     If the second and subsequent arguments are character strings, they are the names of the arguments of the function.

     If the second argument is an integer N, the arguments are `"x"', `"P1"', ..., `"PN"'.  See also: argnames, formula, vectorize.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Create an inline function from the character string STR.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
formula
# name: <cell-element>
# type: string
# elements: 1
# length: 208
 -- Built-in Function:  formula (FUN)
     Return a character string representing the inline function FUN.  Note that `char (FUN)' is equivalent to `formula (FUN)'.  See also: argnames, inline, vectorize.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return a character string representing the inline function FUN.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
argnames
# name: <cell-element>
# type: string
# elements: 1
# length: 193
 -- Built-in Function:  argnames (FUN)
     Return a cell array of character strings containing the names of the arguments of the inline function FUN.  See also: inline, formula, vectorize.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 106
Return a cell array of character strings containing the names of the arguments of the inline function FUN.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
vectorize
# name: <cell-element>
# type: string
# elements: 1
# length: 173
 -- Built-in Function:  vectorize (FUN)
     Create a vectorized version of the inline function FUN by replacing all occurrences of `*', `/', etc., with `.*', `./', etc.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 101
Create a vectorized version of the inline function FUN by replacing all occurrences of `*', `/', etc.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
single
# name: <cell-element>
# type: string
# elements: 1
# length: 98
 -- Built-in Function:  single (X)
     Convert X to single precision type.  See also: double.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Convert X to single precision type.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
int16
# name: <cell-element>
# type: string
# elements: 1
# length: 76
 -- Built-in Function:  int16 (X)
     Convert X to 16-bit integer type.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Convert X to 16-bit integer type.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
int32
# name: <cell-element>
# type: string
# elements: 1
# length: 76
 -- Built-in Function:  int32 (X)
     Convert X to 32-bit integer type.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Convert X to 32-bit integer type.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
int64
# name: <cell-element>
# type: string
# elements: 1
# length: 76
 -- Built-in Function:  int64 (X)
     Convert X to 64-bit integer type.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Convert X to 64-bit integer type.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
int8
# name: <cell-element>
# type: string
# elements: 1
# length: 74
 -- Built-in Function:  int8 (X)
     Convert X to 8-bit integer type.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Convert X to 8-bit integer type.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
list
# name: <cell-element>
# type: string
# elements: 1
# length: 119
 -- Built-in Function:  list (A1, A2, ...)
     Create a new list with elements given by the arguments A1, A2, ....
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Create a new list with elements given by the arguments A1, A2, .

# name: <cell-element>
# type: string
# elements: 1
# length: 3
nth
# name: <cell-element>
# type: string
# elements: 1
# length: 79
 -- Built-in Function:  nth (LIST, N)
     Return the N-th element of LIST.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Return the N-th element of LIST.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
append
# name: <cell-element>
# type: string
# elements: 1
# length: 429
 -- Built-in Function:  append (LIST, A1, A2, ...)
     Return a new list created by appending A1, A2, ..., to LIST.  If any of the arguments to be appended is a list, its elements are appended individually.  For example,

          x = list (1, 2);
          y = list (3, 4);
          append (x, y);

     results in the list containing the four elements `(1 2 3 4)', not a list containing the three elements `(1 2 (3 4))'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return a new list created by appending A1, A2, .

# name: <cell-element>
# type: string
# elements: 1
# length: 7
reverse
# name: <cell-element>
# type: string
# elements: 1
# length: 108
 -- Built-in Function:  reverse (LIST)
     Return a new list created by reversing the elements of LIST.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Return a new list created by reversing the elements of LIST.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
splice
# name: <cell-element>
# type: string
# elements: 1
# length: 386
 -- Built-in Function:  splice (LIST_1, OFFSET, LENGTH, LIST_2)
     Replace LENGTH elements of LIST_1 beginning at OFFSET with the contents of LIST_2 (if any).  If LENGTH is omitted, all elements from OFFSET to the end of LIST_1 are replaced.  As a special case, if OFFSET is one greater than the length of LIST_1 and LENGTH is 0, splice is equivalent to `append (LIST_1, LIST_2)'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 91
Replace LENGTH elements of LIST_1 beginning at OFFSET with the contents of LIST_2 (if any).

# name: <cell-element>
# type: string
# elements: 1
# length: 6
isnull
# name: <cell-element>
# type: string
# elements: 1
# length: 492
 -- Built-in Function:  isnull (X)
     Return 1 if X is a special null matrix, string or single quoted string.  Indexed assignment with such a value as right-hand side should delete array elements.  This function should be used when overloading indexed assignment for user-defined classes instead of `isempty', to distinguish the cases:
    `A(I) = []'
          This should delete elements if `I' is nonempty.

    `X = []; A(I) = X'
          This should give an error if `I' is nonempty.

# name: <cell-element>
# type: string
# elements: 1
# length: 71
Return 1 if X is a special null matrix, string or single quoted string.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
double
# name: <cell-element>
# type: string
# elements: 1
# length: 98
 -- Built-in Function:  double (X)
     Convert X to double precision type.  See also: single.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Convert X to double precision type.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
struct
# name: <cell-element>
# type: string
# elements: 1
# length: 509
 -- Built-in Function:  struct ("field", VALUE, "field", VALUE, ...)
     Create a structure and initialize its value.

     If the values are cell arrays, create a structure array and initialize its values.  The dimensions of each cell array of values must match.  Singleton cells and non-cell values are repeated so that they fill the entire array.  If the cells are empty, create an empty structure array with the specified field names.

     If the argument is an object, return the underlying struct.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Create a structure and initialize its value.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
isstruct
# name: <cell-element>
# type: string
# elements: 1
# length: 109
 -- Built-in Function:  isstruct (EXPR)
     Return 1 if the value of the expression EXPR is a structure.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Return 1 if the value of the expression EXPR is a structure.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
fieldnames
# name: <cell-element>
# type: string
# elements: 1
# length: 207
 -- Built-in Function:  fieldnames (STRUCT)
     Return a cell array of strings naming the elements of the structure STRUCT.  It is an error to call `fieldnames' with an argument that is not a structure.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Return a cell array of strings naming the elements of the structure STRUCT.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
isfield
# name: <cell-element>
# type: string
# elements: 1
# length: 215
 -- Built-in Function:  isfield (EXPR, NAME)
     Return true if the expression EXPR is a structure and it includes an element named NAME.  The first argument must be a structure and the second must be a string.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 88
Return true if the expression EXPR is a structure and it includes an element named NAME.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
cell2struct
# name: <cell-element>
# type: string
# elements: 1
# length: 518
 -- Built-in Function:  cell2struct (CELL, FIELDS, DIM)
     Convert CELL to a structure.  The number of fields in FIELDS must match the number of elements in CELL along dimension DIM, that is `numel (FIELDS) == size (CELL, DIM)'.

          A = cell2struct ({'Peter', 'Hannah', 'Robert';
                             185, 170, 168},
                           {'Name','Height'}, 1);
          A(1)
          => ans =
                {
                  Height = 185
                  Name   = Peter
                }

# name: <cell-element>
# type: string
# elements: 1
# length: 28
Convert CELL to a structure.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
rmfield
# name: <cell-element>
# type: string
# elements: 1
# length: 215
 -- Built-in Function:  rmfield (S, F)
     Remove field F from the structure S.  If F is a cell array of character strings or a character array, remove the named fields.  See also: cellstr, iscellstr, setfield.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Remove field F from the structure S.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
typeinfo
# name: <cell-element>
# type: string
# elements: 1
# length: 200
 -- Built-in Function:  typeinfo (EXPR)
     Return the type of the expression EXPR, as a string.  If EXPR is omitted, return an array of strings containing all the currently installed data types.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return the type of the expression EXPR, as a string.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
uint16
# name: <cell-element>
# type: string
# elements: 1
# length: 86
 -- Built-in Function:  uint16 (X)
     Convert X to unsigned 16-bit integer type.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Convert X to unsigned 16-bit integer type.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
uint32
# name: <cell-element>
# type: string
# elements: 1
# length: 86
 -- Built-in Function:  uint32 (X)
     Convert X to unsigned 32-bit integer type.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Convert X to unsigned 32-bit integer type.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
uint64
# name: <cell-element>
# type: string
# elements: 1
# length: 86
 -- Built-in Function:  uint64 (X)
     Convert X to unsigned 64-bit integer type.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Convert X to unsigned 64-bit integer type.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
uint8
# name: <cell-element>
# type: string
# elements: 1
# length: 84
 -- Built-in Function:  uint8 (X)
     Convert X to unsigned 8-bit integer type.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Convert X to unsigned 8-bit integer type.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
nargin
# name: <cell-element>
# type: string
# elements: 1
# length: 460
 -- Built-in Function:  nargin ()
 -- Built-in Function:  nargin (FCN_NAME)
     Within a function, return the number of arguments passed to the function.  At the top level, return the number of command line arguments passed to Octave.  If called with the optional argument FCN_NAME, return the maximum number of arguments the named function can accept, or -1 if the function accepts a variable number of arguments.  See also: nargout, varargin, varargout.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 73
Within a function, return the number of arguments passed to the function.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
nargout
# name: <cell-element>
# type: string
# elements: 1
# length: 622
 -- Built-in Function:  nargout ()
 -- Built-in Function:  nargout (FCN_NAME)
     Within a function, return the number of values the caller expects to receive.  If called with the optional argument FCN_NAME, return the maximum number of values the named function can produce, or -1 if the function can produce a variable number of values.

     For example,

          f ()

     will cause `nargout' to return 0 inside the function `f' and

          [s, t] = f ()

     will cause `nargout' to return 2 inside the function `f'.

     At the top level, `nargout' is undefined.  See also: nargin, varargin, varargout.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Within a function, return the number of values the caller expects to receive.

# name: <cell-element>
# type: string
# elements: 1
# length: 19
max_recursion_depth
# name: <cell-element>
# type: string
# elements: 1
# length: 309
 -- Built-in Function: VAL = max_recursion_depth ()
 -- Built-in Function: OLD_VAL = max_recursion_depth (NEW_VAL)
     Query or set the internal limit on the number of times a function may be called recursively.  If the limit is exceeded, an error message is printed and control returns to the top level.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Query or set the internal limit on the number of times a function may be called recursively.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
sizeof
# name: <cell-element>
# type: string
# elements: 1
# length: 77
 -- Built-in Function:  sizeof (VAL)
     Return the size of VAL in bytes
   
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Return the size of VAL in bytes  

# name: <cell-element>
# type: string
# elements: 1
# length: 7
subsref
# name: <cell-element>
# type: string
# elements: 1
# length: 843
 -- Built-in Function:  subsref (VAL, IDX)
     Perform the subscripted element selection operation according to the subscript specified by IDX.

     The subscript IDX is expected to be a structure array with fields `type' and `subs'.  Valid values for `type' are `"()"', `"{}"', and `"."'.  The `subs' field may be either `":"' or a cell array of index values.

     The following example shows how to extract the two first columns of a matrix

          val = magic(3)
               => val = [ 8   1   6
                          3   5   7
                          4   9   2 ]
          idx.type = "()";
          idx.subs = {":", 1:2};
          subsref(val, idx)
               => [ 8   1
                    3   5
                    4   9 ]

     Note that this is the same as writing `val(:,1:2)'.  See also: subsasgn, substruct.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 96
Perform the subscripted element selection operation according to the subscript specified by IDX.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
subsasgn
# name: <cell-element>
# type: string
# elements: 1
# length: 765
 -- Built-in Function:  subsasgn (VAL, IDX, RHS)
     Perform the subscripted assignment operation according to the subscript specified by IDX.

     The subscript IDX is expected to be a structure array with fields `type' and `subs'.  Valid values for `type' are `"()"', `"{}"', and `"."'.  The `subs' field may be either `":"' or a cell array of index values.

     The following example shows how to set the two first columns of a 3-by-3 matrix to zero.

          val = magic(3);
          idx.type = "()";
          idx.subs = {":", 1:2};
          subsasgn (val, idx, 0)
               => [ 0   0   6
                    0   0   7
                    0   0   2 ]

     Note that this is the same as writing `val(:,1:2) = 0'.  See also: subsref, substruct.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 89
Perform the subscripted assignment operation according to the subscript specified by IDX.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
diary
# name: <cell-element>
# type: string
# elements: 1
# length: 479
 -- Command: diary options
     Record a list of all commands _and_ the output they produce, mixed together just as you see them on your terminal.  Valid options are:

    `on'
          Start recording your session in a file called `diary' in your current working directory.

    `off'
          Stop recording your session in the diary file.

    `FILE'
          Record your session in the file named FILE.

     With no arguments, `diary' toggles the current diary state.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 114
Record a list of all commands _and_ the output they produce, mixed together just as you see them on your terminal.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
more
# name: <cell-element>
# type: string
# elements: 1
# length: 222
 -- Command: more
 -- Command: more on
 -- Command: more off
     Turn output pagination on or off.  Without an argument, `more' toggles the current state.  The current state can be determined via `page_screen_output'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Turn output pagination on or off.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
terminal_size
# name: <cell-element>
# type: string
# elements: 1
# length: 194
 -- Built-in Function:  terminal_size ()
     Return a two-element row vector containing the current size of the terminal window in characters (rows and columns).  See also: list_in_columns.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 116
Return a two-element row vector containing the current size of the terminal window in characters (rows and columns).

# name: <cell-element>
# type: string
# elements: 1
# length: 23
page_output_immediately
# name: <cell-element>
# type: string
# elements: 1
# length: 359
 -- Built-in Function: VAL = page_output_immediately ()
 -- Built-in Function: VAL = page_output_immediately (NEW_VAL)
     Query or set the internal variable that controls whether Octave sends output to the pager as soon as it is available.  Otherwise, Octave buffers its output and waits until just before the prompt is printed to flush it to the pager.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 117
Query or set the internal variable that controls whether Octave sends output to the pager as soon as it is available.

# name: <cell-element>
# type: string
# elements: 1
# length: 18
page_screen_output
# name: <cell-element>
# type: string
# elements: 1
# length: 429
 -- Built-in Function: VAL = page_screen_output ()
 -- Built-in Function: OLD_VAL = page_screen_output (NEW_VAL)
     Query or set the internal variable that controls whether output intended for the terminal window that is longer than one page is sent through a pager.  This allows you to view one screenful at a time.  Some pagers (such as `less'--see *note Installation::) are also capable of moving backward on the output.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 150
Query or set the internal variable that controls whether output intended for the terminal window that is longer than one page is sent through a pager.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
PAGER
# name: <cell-element>
# type: string
# elements: 1
# length: 424
 -- Built-in Function: VAL = PAGER ()
 -- Built-in Function: OLD_VAL = PAGER (NEW_VAL)
     Query or set the internal variable that specifies the program to use to display terminal output on your system.  The default value is normally `"less"', `"more"', or `"pg"', depending on what programs are installed on your system.  *Note Installation::.  See also: more, page_screen_output, page_output_immediately, PAGER_FLAGS.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Query or set the internal variable that specifies the program to use to display terminal output on your system.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
PAGER_FLAGS
# name: <cell-element>
# type: string
# elements: 1
# length: 209
 -- Built-in Function: VAL = PAGER_FLAGS ()
 -- Built-in Function: OLD_VAL = PAGER_FLAGS (NEW_VAL)
     Query or set the internal variable that specifies the options to pass to the pager.  See also: PAGER.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Query or set the internal variable that specifies the options to pass to the pager.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
autoload
# name: <cell-element>
# type: string
# elements: 1
# length: 969
 -- Built-in Function:  autoload (FUNCTION, FILE)
     Define FUNCTION to autoload from FILE.

     The second argument, FILE, should be an absolute file name or a file name in the same directory as the function or script from which the autoload command was run.  FILE should not depend on the Octave load path.

     Normally, calls to `autoload' appear in PKG_ADD script files that are evaluated when a directory is added to the Octave's load path.  To avoid having to hardcode directory names in FILE, if FILE is in the same directory as the PKG_ADD script then

          autoload ("foo", "bar.oct");

     will load the function `foo' from the file `bar.oct'.  The above when `bar.oct' is not in the same directory or uses like

          autoload ("foo", file_in_loadpath ("bar.oct"))

     are strongly discouraged, as their behavior might be unpredictable.

     With no arguments, return a structure containing the current autoload map.  See also: PKG_ADD.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 38
Define FUNCTION to autoload from FILE.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
mfilename
# name: <cell-element>
# type: string
# elements: 1
# length: 441
 -- Built-in Function:  mfilename ()
 -- Built-in Function:  mfilename (`"fullpath"')
 -- Built-in Function:  mfilename (`"fullpathext"')
     Return the name of the currently executing file.  At the top-level, return the empty string.  Given the argument `"fullpath"', include the directory part of the file name, but not the extension.  Given the argument `"fullpathext"', include the directory part of the file name and the extension.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return the name of the currently executing file.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
source
# name: <cell-element>
# type: string
# elements: 1
# length: 201
 -- Built-in Function:  source (FILE)
     Parse and execute the contents of FILE.  This is equivalent to executing commands from a script file, but without requiring the file to be named `FILE.m'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Parse and execute the contents of FILE.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
feval
# name: <cell-element>
# type: string
# elements: 1
# length: 666
 -- Built-in Function:  feval (NAME, ...)
     Evaluate the function named NAME.  Any arguments after the first are passed on to the named function.  For example,

          feval ("acos", -1)
               => 3.1416

     calls the function `acos' with the argument `-1'.

     The function `feval' is necessary in order to be able to write functions that call user-supplied functions, because Octave does not have a way to declare a pointer to a function (like C) or to declare a special kind of variable that can be used to hold the name of a function (like `EXTERNAL' in Fortran).  Instead, you must refer to functions by name, and use `feval' to call them.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Evaluate the function named NAME.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
eval
# name: <cell-element>
# type: string
# elements: 1
# length: 724
 -- Built-in Function:  eval (TRY, CATCH)
     Parse the string TRY and evaluate it as if it were an Octave program.  If that fails, evaluate the optional string CATCH.  The string TRY is evaluated in the current context, so any results remain available after `eval' returns.

     The following example makes the variable A with the approximate value 3.1416 available.

          eval("a = acos(-1);");

     If an error occurs during the evaluation of TRY the CATCH string is evaluated, as the following example shows:

          eval ('error ("This is a bad example");',
                'printf ("This error occurred:\n%s\n", lasterr ());');
               -| This error occurred:
                  This is a bad example

# name: <cell-element>
# type: string
# elements: 1
# length: 69
Parse the string TRY and evaluate it as if it were an Octave program.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
assignin
# name: <cell-element>
# type: string
# elements: 1
# length: 155
 -- Built-in Function:  assignin (CONTEXT, VARNAME, VALUE)
     Assign VALUE to VARNAME in context CONTEXT, which may be either `"base"' or `"caller"'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 87
Assign VALUE to VARNAME in context CONTEXT, which may be either `"base"' or `"caller"'.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
evalin
# name: <cell-element>
# type: string
# elements: 1
# length: 184
 -- Built-in Function:  evalin (CONTEXT, TRY, CATCH)
     Like `eval', except that the expressions are evaluated in the context CONTEXT, which may be either `"caller"' or `"base"'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 122
Like `eval', except that the expressions are evaluated in the context CONTEXT, which may be either `"caller"' or `"base"'.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
pinv
# name: <cell-element>
# type: string
# elements: 1
# length: 300
 -- Loadable Function:  pinv (X, TOL)
     Return the pseudoinverse of X.  Singular values less than TOL are ignored.

     If the second argument is omitted, it is assumed that

          tol = max (size (X)) * sigma_max (X) * eps,

     where `sigma_max (X)' is the maximal singular value of X.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Return the pseudoinverse of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
rats
# name: <cell-element>
# type: string
# elements: 1
# length: 385
 -- Built-in Function:  rats (X, LEN)
     Convert X into a rational approximation represented as a string.  You can convert the string back into a matrix as follows:

             r = rats(hilb(4));
             x = str2num(r)

     The optional second argument defines the maximum length of the string representing the elements of X.  By default LEN is 9.  See also: format, rat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Convert X into a rational approximation represented as a string.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
disp
# name: <cell-element>
# type: string
# elements: 1
# length: 386
 -- Built-in Function:  disp (X)
     Display the value of X.  For example,

          disp ("The value of pi is:"), disp (pi)

               -| the value of pi is:
               -| 3.1416

     Note that the output from `disp' always ends with a newline.

     If an output value is requested, `disp' prints nothing and returns the formatted output in a string.  See also: fdisp.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 23
Display the value of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
fdisp
# name: <cell-element>
# type: string
# elements: 1
# length: 321
 -- Built-in Function:  fdisp (FID, X)
     Display the value of X on the stream FID.  For example,

          fdisp (stdout, "The value of pi is:"), fdisp (stdout, pi)

               -| the value of pi is:
               -| 3.1416

     Note that the output from `fdisp' always ends with a newline.  See also: disp.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Display the value of X on the stream FID.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
format
# name: <cell-element>
# type: string
# elements: 1
# length: 4769
 -- Command: format
 -- Command: format options
     Reset or specify the format of the output produced by `disp' and Octave's normal echoing mechanism.  This command only affects the display of numbers but not how they are stored or computed.  To change the internal representation from the default double use one of the conversion functions such as `single', `uint8', `int64', etc.

     By default, Octave displays 5 significant digits in a human readable form (option `short' paired with `loose' format for matrices).  If `format' is invoked without any options, this default format is restored.

     Valid formats for floating point numbers are listed in the following table.

    `short'
          Fixed point format with 5 significant figures in a field that is a maximum of 10 characters wide.  (default).

          If Octave is unable to format a matrix so that columns line up on the decimal point and all numbers fit within the maximum field width then it switches to an exponential `e' format.

    `long'
          Fixed point format with 15 significant figures in a field that is a maximum of 20 characters wide.

          As with the `short' format, Octave will switch to an exponential `e' format if it is unable to format a matrix properly using the current format.

    `short e'
    `long e'
          Exponential format.  The number to be represented is split between a mantissa and an exponent (power of 10).  The mantissa has 5 significant digits in the short format and 15 digits in the long format.  For example, with the `short e' format, `pi' is displayed as `3.1416e+00'.

    `short E'
    `long E'
          Identical to `short e' or `long e' but displays an uppercase `E' to indicate the exponent.  For example, with the `long E' format, `pi' is displayed as `3.14159265358979E+00'.

    `short g'
    `long g'
          Optimally choose between fixed point and exponential format based on the magnitude of the number.  For example, with the `short g' format, `pi .^ [2; 4; 8; 16; 32]' is displayed as

               ans =

                     9.8696
                     97.409
                     9488.5
                 9.0032e+07
                 8.1058e+15

    `long G'
    `short G'
          Identical to `short g' or `long g' but displays an uppercase `E' to indicate the exponent.

    `free'
    `none'
          Print output in free format, without trying to line up columns of matrices on the decimal point.  This also causes complex numbers to be formatted as numeric pairs like this `(0.60419, 0.60709)' instead of like this `0.60419 + 0.60709i'.

     The following formats affect all numeric output (floating point and integer types).

    `+'
    `+ CHARS'
    `plus'
    `plus CHARS'
          Print a `+' symbol for nonzero matrix elements and a space for zero matrix elements.  This format can be very useful for examining the structure of a large sparse matrix.

          The optional argument CHARS specifies a list of 3 characters to use for printing values greater than zero, less than zero and equal to zero.  For example, with the `+ "+-."' format, `[1, 0, -1; -1, 0, 1]' is displayed as

               ans =

               +.-
               -.+

    `bank'
          Print in a fixed format with two digits to the right of the decimal point.

    `native-hex'
          Print the hexadecimal representation of numbers as they are stored in memory.  For example, on a workstation which stores 8 byte real values in IEEE format with the least significant byte first, the value of `pi' when printed in `native-hex' format is `400921fb54442d18'.

    `hex'
          The same as `native-hex', but always print the most significant byte first.

    `native-bit'
          Print the bit representation of numbers as stored in memory.  For example, the value of `pi' is

               01000000000010010010000111111011
               01010100010001000010110100011000

          (shown here in two 32 bit sections for typesetting purposes) when printed in native-bit format on a workstation which stores 8 byte real values in IEEE format with the least significant byte first.

    `bit'
          The same as `native-bit', but always print the most significant bits first.

    `rat'
          Print a rational approximation, i.e., values are approximated as the ratio of small integers.  For example, with the `rat' format, `pi' is displayed as `355/113'.

     The following two options affect the display of all matrices.

    `compact'
          Remove extra blank space around column number labels producing more compact output with more data per page.

    `loose'
          Insert blank lines above and below column number labels to produce a more readable output with less data per page.  (default).

# name: <cell-element>
# type: string
# elements: 1
# length: 99
Reset or specify the format of the output produced by `disp' and Octave's normal echoing mechanism.

# name: <cell-element>
# type: string
# elements: 1
# length: 18
fixed_point_format
# name: <cell-element>
# type: string
# elements: 1
# length: 732
 -- Built-in Function: VAL = fixed_point_format ()
 -- Built-in Function: OLD_VAL = fixed_point_format (NEW_VAL)
     Query or set the internal variable that controls whether Octave will use a scaled format to print matrix values such that the largest element may be written with a single leading digit with the scaling factor is printed on the first line of output.  For example,

          octave:1> logspace (1, 7, 5)'
          ans =

            1.0e+07  *

            0.00000
            0.00003
            0.00100
            0.03162
            1.00000

     Notice that first value appears to be zero when it is actually 1.  For this reason, you should be careful when setting `fixed_point_format' to a nonzero value.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 248
Query or set the internal variable that controls whether Octave will use a scaled format to print matrix values such that the largest element may be written with a single leading digit with the scaling factor is printed on the first line of output.

# name: <cell-element>
# type: string
# elements: 1
# length: 22
print_empty_dimensions
# name: <cell-element>
# type: string
# elements: 1
# length: 365
 -- Built-in Function: VAL = print_empty_dimensions ()
 -- Built-in Function: OLD_VAL = print_empty_dimensions (NEW_VAL)
     Query or set the internal variable that controls whether the dimensions of empty matrices are printed along with the empty matrix symbol, `[]'.  For example, the expression

          zeros (3, 0)

     will print

          ans = [](3x0)

# name: <cell-element>
# type: string
# elements: 1
# length: 143
Query or set the internal variable that controls whether the dimensions of empty matrices are printed along with the empty matrix symbol, `[]'.

# name: <cell-element>
# type: string
# elements: 1
# length: 15
split_long_rows
# name: <cell-element>
# type: string
# elements: 1
# length: 846
 -- Built-in Function: VAL = split_long_rows ()
 -- Built-in Function: OLD_VAL = split_long_rows (NEW_VAL)
     Query or set the internal variable that controls whether rows of a matrix may be split when displayed to a terminal window.  If the rows are split, Octave will display the matrix in a series of smaller pieces, each of which can fit within the limits of your terminal width and each set of rows is labeled so that you can easily see which columns are currently being displayed.  For example:

          octave:13> rand (2,10)
          ans =

           Columns 1 through 6:

            0.75883  0.93290  0.40064  0.43818  0.94958  0.16467
            0.75697  0.51942  0.40031  0.61784  0.92309  0.40201

           Columns 7 through 10:

            0.90174  0.11854  0.72313  0.73326
            0.44672  0.94303  0.56564  0.82150

# name: <cell-element>
# type: string
# elements: 1
# length: 123
Query or set the internal variable that controls whether rows of a matrix may be split when displayed to a terminal window.

# name: <cell-element>
# type: string
# elements: 1
# length: 22
output_max_field_width
# name: <cell-element>
# type: string
# elements: 1
# length: 261
 -- Built-in Function: VAL = output_max_field_width ()
 -- Built-in Function: OLD_VAL = output_max_field_width (NEW_VAL)
     Query or set the internal variable that specifies the maximum width of a numeric output field.  See also: format, output_precision.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 94
Query or set the internal variable that specifies the maximum width of a numeric output field.

# name: <cell-element>
# type: string
# elements: 1
# length: 16
output_precision
# name: <cell-element>
# type: string
# elements: 1
# length: 283
 -- Built-in Function: VAL = output_precision ()
 -- Built-in Function: OLD_VAL = output_precision (NEW_VAL)
     Query or set the internal variable that specifies the minimum number of significant figures to display for numeric output.  See also: format, output_max_field_width.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 122
Query or set the internal variable that specifies the minimum number of significant figures to display for numeric output.

# name: <cell-element>
# type: string
# elements: 1
# length: 22
struct_levels_to_print
# name: <cell-element>
# type: string
# elements: 1
# length: 222
 -- Built-in Function: VAL = struct_levels_to_print ()
 -- Built-in Function: OLD_VAL = struct_levels_to_print (NEW_VAL)
     Query or set the internal variable that specifies the number of structure levels to display.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Query or set the internal variable that specifies the number of structure levels to display.

# name: <cell-element>
# type: string
# elements: 1
# length: 16
silent_functions
# name: <cell-element>
# type: string
# elements: 1
# length: 382
 -- Built-in Function: VAL = silent_functions ()
 -- Built-in Function: OLD_VAL = silent_functions (NEW_VAL)
     Query or set the internal variable that controls whether internal output from a function is suppressed.  If this option is disabled, Octave will display the results produced by evaluating expressions within a function body that are not terminated with a semicolon.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 103
Query or set the internal variable that controls whether internal output from a function is suppressed.

# name: <cell-element>
# type: string
# elements: 1
# length: 16
string_fill_char
# name: <cell-element>
# type: string
# elements: 1
# length: 463
 -- Built-in Function: VAL = string_fill_char ()
 -- Built-in Function: OLD_VAL = string_fill_char (NEW_VAL)
     Query or set the internal variable used to pad all rows of a character matrix to the same length.  It must be a single character.  The default value is `" "' (a single space).  For example,

          string_fill_char ("X");
          [ "these"; "are"; "strings" ]
               => "theseXX"
                  "areXXXX"
                  "strings"

# name: <cell-element>
# type: string
# elements: 1
# length: 97
Query or set the internal variable used to pad all rows of a character matrix to the same length.

# name: <cell-element>
# type: string
# elements: 1
# length: 2
qr
# name: <cell-element>
# type: string
# elements: 1
# length: 2115
 -- Loadable Function: [Q, R, P] = qr (A)
 -- Loadable Function: [Q, R, P] = qr (A, '0')
     Compute the QR factorization of A, using standard LAPACK subroutines.  For example, given the matrix `a = [1, 2; 3, 4]',

          [q, r] = qr (a)

     returns

          q =

            -0.31623  -0.94868
            -0.94868   0.31623

          r =

            -3.16228  -4.42719
             0.00000  -0.63246

     The `qr' factorization has applications in the solution of least squares problems

          `min norm(A x - b)'

     for overdetermined systems of equations (i.e., `a'  is a tall, thin matrix).  The QR factorization is `q * r = a' where `q' is an orthogonal matrix and `r' is upper triangular.

     If given a second argument of '0', `qr' returns an economy-sized QR factorization, omitting zero rows of R and the corresponding columns of Q.

     If the matrix A is full, the permuted QR factorization `[Q, R, P] = qr (A)' forms the QR factorization such that the diagonal entries of `r' are decreasing in magnitude order.  For example,given the matrix `a = [1, 2; 3, 4]',

          [q, r, p] = qr(a)

     returns

          q =

            -0.44721  -0.89443
            -0.89443   0.44721

          r =

            -4.47214  -3.13050
             0.00000   0.44721

          p =

             0  1
             1  0

     The permuted `qr' factorization `[q, r, p] = qr (a)' factorization allows the construction of an orthogonal basis of `span (a)'.

     If the matrix A is sparse, then compute the sparse QR factorization of A, using CSPARSE.  As the matrix Q is in general a full matrix, this function returns the Q-less factorization R of A, such that `R = chol (A' * A)'.

     If the final argument is the scalar `0' and the number of rows is larger than the number of columns, then an economy factorization is returned.  That is R will have only `size (A,1)' rows.

     If an additional matrix B is supplied, then `qr' returns C, where `C = Q' * B'.  This allows the least squares approximation of `A \ B' to be calculated as

          [C,R] = spqr (A,B)
          X = R \ C

# name: <cell-element>
# type: string
# elements: 1
# length: 69
Compute the QR factorization of A, using standard LAPACK subroutines.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
qrupdate
# name: <cell-element>
# type: string
# elements: 1
# length: 629
 -- Loadable Function: [Q1, R1] = qrupdate (Q, R, U, V)
     Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of A + U*V', where U and V are column vectors (rank-1 update) or matrices with equal number of columns (rank-k update).  Notice that the latter case is done as a sequence of rank-1 updates; thus, for k large enough, it will be both faster and more accurate to recompute the factorization from scratch.

     The QR factorization supplied may be either full (Q is square) or economized (R is square).

     See also: qr, qrinsert, qrdelete.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 244
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of A + U*V', where U and V are column vectors (rank-1 update) or matrices with equal number of columns (rank-k update).

# name: <cell-element>
# type: string
# elements: 1
# length: 8
qrinsert
# name: <cell-element>
# type: string
# elements: 1
# length: 1020
 -- Loadable Function: [Q1, R1] = qrinsert (Q, R, J, X, ORIENT)
     Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of [A(:,1:j-1) x A(:,j:n)], where U is a column vector to be inserted into A (if ORIENT is `"col"'), or the QR factorization of [A(1:j-1,:);x;A(:,j:n)], where X is a row vector to be inserted into A (if ORIENT is `"row"').

     The default value of ORIENT is `"col"'.  If ORIENT is `"col"', U may be a matrix and J an index vector resulting in the QR factorization of a matrix B such that B(:,J) gives U and B(:,J) = [] gives A.  Notice that the latter case is done as a sequence of k insertions; thus, for k large enough, it will be both faster and more accurate to recompute the factorization from scratch.

     If ORIENT is `"col"', the QR factorization supplied may be either full (Q is square) or economized (R is square).

     If ORIENT is `"row"', full factorization is needed.  See also: qr, qrupdate, qrdelete.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 347
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of [A(:,1:j-1) x A(:,j:n)], where U is a column vector to be inserted into A (if ORIENT is `"col"'), or the QR factorization of [A(1:j-1,:);x;A(:,j:n)], where X is a row vector to be inserted into A (if ORIENT is `"row"').

# name: <cell-element>
# type: string
# elements: 1
# length: 8
qrdelete
# name: <cell-element>
# type: string
# elements: 1
# length: 947
 -- Loadable Function: [Q1, R1] = qrdelete (Q, R, J, ORIENT)
     Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of [A(:,1:j-1) A(:,j+1:n)], i.e., A with one column deleted (if ORIENT is "col"), or the QR factorization of [A(1:j-1,:);A(:,j+1:n)], i.e., A with one row deleted (if ORIENT is "row").

     The default value of ORIENT is "col".

     If ORIENT is `"col"', J may be an index vector resulting in the QR factorization of a matrix B such that A(:,J) = [] gives B.  Notice that the latter case is done as a sequence of k deletions; thus, for k large enough, it will be both faster and more accurate to recompute the factorization from scratch.

     If ORIENT is `"col"', the QR factorization supplied may be either full (Q is square) or economized (R is square).

     If ORIENT is `"row"', full factorization is needed.  See also: qr, qrinsert, qrupdate.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 155
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of [A(:,1:j-1) A(:,j+1:n)], i.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
qrshift
# name: <cell-element>
# type: string
# elements: 1
# length: 374
 -- Loadable Function: [Q1, R1] = qrshift (Q, R, I, J)
     Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of A(:,p), where p is the permutation
     `p = [1:i-1, shift(i:j, 1), j+1:n]' if I < J
     or
     `p = [1:j-1, shift(j:i,-1), i+1:n]' if J < I.
     See also: qr, qrinsert, qrdelete.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 259
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R upper trapezoidal, return the QR factorization of A(:,p), where p is the permutation  `p = [1:i-1, shift(i:j, 1), j+1:n]' if I < J  or  `p = [1:j-1, shift(j:i,-1), i+1:n]' if J < I.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
quad_options
# name: <cell-element>
# type: string
# elements: 1
# length: 1023
 -- Loadable Function:  quad_options (OPT, VAL)
     When called with two arguments, this function allows you set options parameters for the function `quad'.  Given one argument, `quad_options' returns the value of the corresponding option.  If no arguments are supplied, the names of all the available options and their current values are displayed.

     Options include

    `"absolute tolerance"'
          Absolute tolerance; may be zero for pure relative error test.

    `"relative tolerance"'
          Nonnegative relative tolerance.  If the absolute tolerance is zero, the relative tolerance must be greater than or equal to `max (50*eps, 0.5e-28)'.

    `"single precision absolute tolerance"'
          Absolute tolerance for single precision; may be zero for pure relative error test.

    `"single precision relative tolerance"'
          Nonnegative relative tolerance for single precision.  If the absolute tolerance is zero, the relative tolerance must be greater than or equal to `max (50*eps, 0.5e-28)'.

# name: <cell-element>
# type: string
# elements: 1
# length: 104
When called with two arguments, this function allows you set options parameters for the function `quad'.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
quad
# name: <cell-element>
# type: string
# elements: 1
# length: 1366
 -- Loadable Function: [V, IER, NFUN, ERR] = quad (F, A, B, TOL, SING)
     Integrate a nonlinear function of one variable using Quadpack.  The first argument is the name of the function, the function handle or the inline function to call to compute the value of the integrand.  It must have the form

          y = f (x)

     where Y and X are scalars.

     The second and third arguments are limits of integration.  Either or both may be infinite.

     The optional argument TOL is a vector that specifies the desired accuracy of the result.  The first element of the vector is the desired absolute tolerance, and the second element is the desired relative tolerance.  To choose a relative test only, set the absolute tolerance to zero.  To choose an absolute test only, set the relative tolerance to zero.

     The optional argument SING is a vector of values at which the integrand is known to be singular.

     The result of the integration is returned in V and IER contains an integer error code (0 indicates a successful integration).  The value of NFUN indicates how many function evaluations were required, and ERR contains an estimate of the error in the solution.

     You can use the function `quad_options' to set optional parameters for `quad'.

     It should be noted that since `quad' is written in Fortran it cannot be called recursively.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Integrate a nonlinear function of one variable using Quadpack.

# name: <cell-element>
# type: string
# elements: 1
# length: 2
qz
# name: <cell-element>
# type: string
# elements: 1
# length: 1734
 -- Loadable Function: LAMBDA = qz (A, B)
     Generalized eigenvalue problem A x = s B x, QZ decomposition.  There are three ways to call this function:
       1. `lambda = qz(A,B)'

          Computes the generalized eigenvalues LAMBDA of (A - s B).

       2. `[AA, BB, Q, Z, V, W, lambda] = qz (A, B)'

          Computes qz decomposition, generalized eigenvectors, and generalized eigenvalues of (A - sB)

                   A*V = B*V*diag(lambda)
                   W'*A = diag(lambda)*W'*B
                   AA = Q'*A*Z, BB = Q'*B*Z
          with Q and Z orthogonal (unitary)= I

       3. `[AA,BB,Z{, lambda}] = qz(A,B,opt)'

          As in form [2], but allows ordering of generalized eigenpairs for (e.g.) solution of discrete time algebraic Riccati equations.  Form 3 is not available for complex matrices, and does not compute the generalized eigenvectors V, W, nor the orthogonal matrix Q.
         OPT
               for ordering eigenvalues of the GEP pencil.  The leading block of the revised pencil contains all eigenvalues that satisfy:
              `"N"'
                    = unordered (default)

              `"S"'
                    = small: leading block has all |lambda| <=1

              `"B"'
                    = big: leading block has all |lambda| >= 1

              `"-"'
                    = negative real part: leading block has all eigenvalues in the open left half-plane

              `"+"'
                    = non-negative real part: leading block has all eigenvalues in the closed right half-plane

     Note: qz performs permutation balancing, but not scaling (see balance).  Order of output arguments was selected for compatibility with MATLAB

     See also: balance, eig, schur.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Generalized eigenvalue problem A x = s B x, QZ decomposition.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
rand
# name: <cell-element>
# type: string
# elements: 1
# length: 2365
 -- Loadable Function:  rand (X)
 -- Loadable Function:  rand (N, M)
 -- Loadable Function:  rand ("state", X)
 -- Loadable Function:  rand ("seed", X)
     Return a matrix with random elements uniformly distributed on the interval (0, 1).  The arguments are handled the same as the arguments for `eye'.

     You can query the state of the random number generator using the form

          v = rand ("state")

     This returns a column vector V of length 625.  Later, you can restore the random number generator to the state V using the form

          rand ("state", v)

     You may also initialize the state vector from an arbitrary vector of length <= 625 for V.  This new state will be a hash based on the value of V, not V itself.

     By default, the generator is initialized from `/dev/urandom' if it is available, otherwise from cpu time, wall clock time and the current fraction of a second.

     To compute the pseudo-random sequence, `rand' uses the Mersenne Twister with a period of 2^19937-1 (See M. Matsumoto and T. Nishimura, `Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator', ACM Trans. on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998, `http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html').  Do *not* use for cryptography without securely hashing several returned values together, otherwise the generator state can be learned after reading 624 consecutive values.

     Older versions of Octave used a different random number generator.  The new generator is used by default as it is significantly faster than the old generator, and produces random numbers with a significantly longer cycle time.  However, in some circumstances it might be desirable to obtain the same random sequences as used by the old generators.  To do this the keyword "seed" is used to specify that the old generators should be use, as in

          rand ("seed", val)

     which sets the seed of the generator to VAL.  The seed of the generator can be queried with

          s = rand ("seed")

     However, it should be noted that querying the seed will not cause `rand' to use the old generators, only setting the seed will.  To cause `rand' to once again use the new generators, the keyword "state" should be used to reset the state of the `rand'.  See also: randn, rande, randg, randp.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 82
Return a matrix with random elements uniformly distributed on the interval (0, 1).

# name: <cell-element>
# type: string
# elements: 1
# length: 5
randn
# name: <cell-element>
# type: string
# elements: 1
# length: 659
 -- Loadable Function:  randn (X)
 -- Loadable Function:  randn (N, M)
 -- Loadable Function:  randn ("state", X)
 -- Loadable Function:  randn ("seed", X)
     Return a matrix with normally distributed pseudo-random elements having zero mean and variance one.  The arguments are handled the same as the arguments for `rand'.

     By default, `randn' uses the Marsaglia and Tsang "Ziggurat technique" to transform from a uniform to a normal distribution.  (G. Marsaglia and W.W. Tsang, `Ziggurat method for generating random variables', J. Statistical Software, vol 5, 2000, `http://www.jstatsoft.org/v05/i08/')

     See also: rand, rande, randg, randp.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 99
Return a matrix with normally distributed pseudo-random elements having zero mean and variance one.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
rande
# name: <cell-element>
# type: string
# elements: 1
# length: 622
 -- Loadable Function:  rande (X)
 -- Loadable Function:  rande (N, M)
 -- Loadable Function:  rande ("state", X)
 -- Loadable Function:  rande ("seed", X)
     Return a matrix with exponentially distributed random elements.  The arguments are handled the same as the arguments for `rand'.

     By default, `randn' uses the Marsaglia and Tsang "Ziggurat technique" to transform from a uniform to a exponential distribution.  (G. Marsaglia and W.W. Tsang, `Ziggurat method for generating random variables', J. Statistical Software, vol 5, 2000, `http://www.jstatsoft.org/v05/i08/') See also: rand, randn, randg, randp.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return a matrix with exponentially distributed random elements.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
randg
# name: <cell-element>
# type: string
# elements: 1
# length: 1559
 -- Loadable Function:  randg (A, X)
 -- Loadable Function:  randg (A, N, M)
 -- Loadable Function:  randg ("state", X)
 -- Loadable Function:  randg ("seed", X)
     Return a matrix with `gamma(A,1)' distributed random elements.  The arguments are handled the same as the arguments for `rand', except for the argument A.

     This can be used to generate many distributions:

    `gamma (a, b)' for `a > -1', `b > 0'
               r = b * randg (a)

    `beta (a, b)' for `a > -1', `b > -1'
               r1 = randg (a, 1)
               r = r1 / (r1 + randg (b, 1))

    `Erlang (a, n)'
               r = a * randg (n)

    `chisq (df)' for `df > 0'
               r = 2 * randg (df / 2)

    `t(df)' for `0 < df < inf' (use randn if df is infinite)
               r = randn () / sqrt (2 * randg (df / 2) / df)

    `F (n1, n2)' for `0 < n1', `0 < n2'
               ## r1 equals 1 if n1 is infinite
               r1 = 2 * randg (n1 / 2) / n1
               ## r2 equals 1 if n2 is infinite
               r2 = 2 * randg (n2 / 2) / n2
               r = r1 / r2

    negative `binomial (n, p)' for `n > 0', `0 < p <= 1'
               r = randp ((1 - p) / p * randg (n))

    non-central `chisq (df, L)', for `df >= 0' and `L > 0'
          (use chisq if `L = 0')
               r = randp (L / 2)
               r(r > 0) = 2 * randg (r(r > 0))
               r(df > 0) += 2 * randg (df(df > 0)/2)

    `Dirichlet (a1, ... ak)'
               r = (randg (a1), ..., randg (ak))
               r = r / sum (r)
     See also: rand, randn, rande, randp.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Return a matrix with `gamma(A,1)' distributed random elements.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
randp
# name: <cell-element>
# type: string
# elements: 1
# length: 1350
 -- Loadable Function:  randp (L, X)
 -- Loadable Function:  randp (L, N, M)
 -- Loadable Function:  randp ("state", X)
 -- Loadable Function:  randp ("seed", X)
     Return a matrix with Poisson distributed random elements with mean value parameter given by the first argument, L.  The arguments are handled the same as the arguments for `rand', except for the argument L.

     Five different algorithms are used depending on the range of L and whether or not L is a scalar or a matrix.

    For scalar L <= 12, use direct method.
          Press, et al., 'Numerical Recipes in C', Cambridge University Press, 1992.

    For scalar L > 12, use rejection method.[1]
          Press, et al., 'Numerical Recipes in C', Cambridge University Press, 1992.

    For matrix L <= 10, use inversion method.[2]
          Stadlober E., et al., WinRand source code, available via FTP.

    For matrix L > 10, use patchwork rejection method.
          Stadlober E., et al., WinRand source code, available via FTP, or H. Zechner, 'Efficient sampling from continuous and discrete unimodal distributions', Doctoral Dissertation, 156pp., Technical University Graz, Austria, 1994.

    For L > 1e8, use normal approximation.
          L. Montanet, et al., 'Review of Particle Properties', Physical Review D 50 p1284, 1994
     See also: rand, randn, rande, randg.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 114
Return a matrix with Poisson distributed random elements with mean value parameter given by the first argument, L.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
rcond
# name: <cell-element>
# type: string
# elements: 1
# length: 392
 -- Loadable Function: C = rcond (A)
     Compute the 1-norm estimate of the reciprocal condition as returned by LAPACK.  If the matrix is well-conditioned then C will be near 1 and if the matrix is poorly conditioned it will be close to zero.

     The matrix A must not be sparse.  If the matrix is sparse then `condest (A)' or `rcond (full (A))' should be used instead.  See also: inv.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 78
Compute the 1-norm estimate of the reciprocal condition as returned by LAPACK.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
regexp
# name: <cell-element>
# type: string
# elements: 1
# length: 8476
 -- Loadable Function: [S, E, TE, M, T, NM] = regexp (STR, PAT)
 -- Loadable Function: [...] = regexp (STR, PAT, OPTS, ...)
     Regular expression string matching.  Matches PAT in STR and returns the position and matching substrings or empty values if there are none.

     The matched pattern PAT can include any of the standard regex operators, including:

    `.'
          Match any character

    `* + ? {}'
          Repetition operators, representing
         `*'
               Match zero or more times

         `+'
               Match one or more times

         `?'
               Match zero or one times

         `{}'
               Match range operator, which is of the form `{N}' to match exactly N times, `{M,}' to match M or more times, `{M,N}' to match between M and N times.

    `[...] [^...]'
          List operators, where for example `[ab]c' matches `ac' and `bc'

    `()'
          Grouping operator

    `|'
          Alternation operator.  Match one of a choice of regular expressions.  The alternatives must be delimited by the grouping operator `()' above

    `^ $'
          Anchoring operator.  `^' matches the start of the string STR and `$' the end

     In addition the following escaped characters have special meaning.  It should be noted that it is recommended to quote PAT in single quotes rather than double quotes, to avoid the escape sequences being interpreted by Octave before being passed to `regexp'.

    `\b'
          Match a word boundary

    `\B'
          Match within a word

    `\w'
          Matches any word character

    `\W'
          Matches any non word character

    `\<'
          Matches the beginning of a word

    `\>'
          Matches the end of a word

    `\s'
          Matches any whitespace character

    `\S'
          Matches any non whitespace character

    `\d'
          Matches any digit

    `\D'
          Matches any non-digit

     The outputs of `regexp' by default are in the order as given below

    S
          The start indices of each of the matching substrings

    E
          The end indices of each matching substring

    TE
          The extents of each of the matched token surrounded by `(...)' in PAT.

    M
          A cell array of the text of each match.

    T
          A cell array of the text of each token matched.

    NM
          A structure containing the text of each matched named token, with the name being used as the fieldname.  A named token is denoted as `(?<name>...)'

     Particular output arguments or the order of the output arguments can be selected by additional OPTS arguments.  These are strings and the correspondence between the output arguments and the optional argument are

                                                                                                                                                                                                                  'start'                                                                                                                                                                                                                                                                                                            S                                                                                                                                                                                                                                                                                                                  
                                                                                                                                                                                                                  'end'                                                                                                                                                                                                                                                                                                              E                                                                                                                                                                                                                                                                                                                  
                                                                                                                                                                                                                  'tokenExtents'                                                                                                                                                                                                                                                                                                     TE                                                                                                                                                                                                                                                                                                                 
                                                                                                                                                                                                                  'match'                                                                                                                                                                                                                                                                                                            M                                                                                                                                                                                                                                                                                                                  
                                                                                                                                                                                                                  'tokens'                                                                                                                                                                                                                                                                                                           T                                                                                                                                                                                                                                                                                                                  
                                                                                                                                                                                                                  'names'                                                                                                                                                                                                                                                                                                            NM                                                                                                                                                                                                                                                                                                                 

     A further optional argument is 'once', that limits the number of returned matches to the first match.  Additional arguments are

    matchcase
          Make the matching case sensitive.

    ignorecase
          Make the matching case insensitive.

    stringanchors
          Match the anchor characters at the beginning and end of the string.

    lineanchors
          Match the anchor characters at the beginning and end of the line.

    dotall
          The character `.' matches the newline character.

    dotexceptnewline
          The character `.' matches all but the newline character.

    freespacing
          The pattern can include arbitrary whitespace and comments starting with `#'.

    literalspacing
          The pattern is taken literally.
     See also: regexpi, regexprep.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Regular expression string matching.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
regexpi
# name: <cell-element>
# type: string
# elements: 1
# length: 335
 -- Loadable Function: [S, E, TE, M, T, NM] = regexpi (STR, PAT)
 -- Loadable Function: [...] = regexpi (STR, PAT, OPTS, ...)
     Case insensitive regular expression string matching.  Matches PAT in STR and returns the position and matching substrings or empty values if there are none.  *Note regexp: doc-regexp, for more details
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Case insensitive regular expression string matching.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
regexprep
# name: <cell-element>
# type: string
# elements: 1
# length: 1203
 -- Loadable Function: STRING = regexprep (STRING, PAT, REPSTR, OPTIONS)
     Replace matches of PAT in  STRING with REPSTR.

     The replacement can contain `$i', which substitutes for the ith set of parentheses in the match string.  E.g.,

             regexprep("Bill Dunn",'(\w+) (\w+)','$2, $1')
     returns "Dunn, Bill"

     OPTIONS may be zero or more of
    `once'
          Replace only the first occurrence of PAT in the result.

    `warnings'
          This option is present for compatibility but is ignored.

    `ignorecase or matchcase'
          Ignore case for the pattern matching (see `regexpi').  Alternatively, use (?i) or (?-i) in the pattern.

    `lineanchors and stringanchors'
          Whether characters ^ and $ match the beginning and ending of lines.  Alternatively, use (?m) or (?-m) in the pattern.

    `dotexceptnewline and dotall'
          Whether . matches newlines in the string.  Alternatively, use (?s) or (?-s) in the pattern.

    `freespacing or literalspacing'
          Whether whitespace and # comments can be used to make the regular expression more readable.  Alternatively, use (?x) or (?-x) in the pattern.

     See also: regexp,regexpi,strrep.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Replace matches of PAT in STRING with REPSTR.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
schur
# name: <cell-element>
# type: string
# elements: 1
# length: 1362
 -- Loadable Function: S = schur (A)
 -- Loadable Function: [U, S] = schur (A, OPT)
     The Schur decomposition is used to compute eigenvalues of a square matrix, and has applications in the solution of algebraic Riccati equations in control (see `are' and `dare').  `schur' always returns `s = u' * a * u' where `u'  is a unitary matrix (`u'* u' is identity) and `s' is upper triangular.  The eigenvalues of `a' (and `s') are the diagonal elements of `s'.  If the matrix `a' is real, then the real Schur decomposition is computed, in which the matrix `u' is orthogonal and `s' is block upper triangular with blocks of size at most `2 x 2' along the diagonal.  The diagonal elements of `s' (or the eigenvalues of the `2 x 2' blocks, when appropriate) are the eigenvalues of `a' and `s'.

     The eigenvalues are optionally ordered along the diagonal according to the value of `opt'.  `opt = "a"' indicates that all eigenvalues with negative real parts should be moved to the leading block of `s' (used in `are'), `opt = "d"' indicates that all eigenvalues with magnitude less than one should be moved to the leading block of `s' (used in `dare'), and `opt = "u"', the default, indicates that no ordering of eigenvalues should occur.  The leading `k' columns of `u' always span the `a'-invariant subspace corresponding to the `k' leading eigenvalues of `s'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 177
The Schur decomposition is used to compute eigenvalues of a square matrix, and has applications in the solution of algebraic Riccati equations in control (see `are' and `dare').

# name: <cell-element>
# type: string
# elements: 1
# length: 3
SIG
# name: <cell-element>
# type: string
# elements: 1
# length: 113
 -- Built-in Function:  SIG ()
     Return a structure containing Unix signal names and their defined values.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 73
Return a structure containing Unix signal names and their defined values.

# name: <cell-element>
# type: string
# elements: 1
# length: 18
debug_on_interrupt
# name: <cell-element>
# type: string
# elements: 1
# length: 398
 -- Built-in Function: VAL = debug_on_interrupt ()
 -- Built-in Function: OLD_VAL = debug_on_interrupt (NEW_VAL)
     Query or set the internal variable that controls whether Octave will try to enter debugging mode when it receives an interrupt signal (typically generated with `C-c').  If a second interrupt signal is received before reaching the debugging mode, a normal interrupt will occur.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 167
Query or set the internal variable that controls whether Octave will try to enter debugging mode when it receives an interrupt signal (typically generated with `C-c').

# name: <cell-element>
# type: string
# elements: 1
# length: 24
sighup_dumps_octave_core
# name: <cell-element>
# type: string
# elements: 1
# length: 291
 -- Built-in Function: VAL = sighup_dumps_octave_core ()
 -- Built-in Function: OLD_VAL = sighup_dumps_octave_core (NEW_VAL)
     Query or set the internal variable that controls whether Octave tries to save all current variables to the file "octave-core" if it receives a hangup signal.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 157
Query or set the internal variable that controls whether Octave tries to save all current variables to the file "octave-core" if it receives a hangup signal.

# name: <cell-element>
# type: string
# elements: 1
# length: 25
sigterm_dumps_octave_core
# name: <cell-element>
# type: string
# elements: 1
# length: 296
 -- Built-in Function: VAL = sigterm_dumps_octave_core ()
 -- Built-in Function: OLD_VAL = sigterm_dumps_octave_core (NEW_VAL)
     Query or set the internal variable that controls whether Octave tries to save all current variables to the file "octave-core" if it receives a terminate signal.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 160
Query or set the internal variable that controls whether Octave tries to save all current variables to the file "octave-core" if it receives a terminate signal.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
issparse
# name: <cell-element>
# type: string
# elements: 1
# length: 113
 -- Loadable Function:  issparse (EXPR)
     Return 1 if the value of the expression EXPR is a sparse matrix.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return 1 if the value of the expression EXPR is a sparse matrix.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
sparse
# name: <cell-element>
# type: string
# elements: 1
# length: 1398
 -- Loadable Function: S = sparse (A)
 -- Loadable Function: S = sparse (I, J, SV, M, N, NZMAX)
 -- Loadable Function: S = sparse (I, J, SV)
 -- Loadable Function: S = sparse (I, J, S, M, N, "unique")
 -- Loadable Function: S = sparse (M, N)
     Create a sparse matrix from the full matrix or row, column, value triplets.  If A is a full matrix, convert it to a sparse matrix representation, removing all zero values in the process.

     Given the integer index vectors I and J, a 1-by-`nnz' vector of real of complex values SV, overall dimensions M and N of the sparse matrix.  The argument `nzmax' is ignored but accepted for compatibility with MATLAB.  If M or N are not specified their values are derived from the maximum index in the vectors I and J as given by `M = max (I)', `N = max (J)'.

     *Note*: if multiple values are specified with the same I, J indices, the corresponding values in S will be added.

     The following are all equivalent:

          s = sparse (i, j, s, m, n)
          s = sparse (i, j, s, m, n, "summation")
          s = sparse (i, j, s, m, n, "sum")

     Given the option "unique". if more than two values are specified for the same I, J indices, the last specified value will be used.

     `sparse(M, N)' is equivalent to `sparse ([], [], [], M, N, 0)'

     If any of SV, I or J are scalars, they are expanded to have a common size.  See also: full.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Create a sparse matrix from the full matrix or row, column, value triplets.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
spparms
# name: <cell-element>
# type: string
# elements: 1
# length: 2274
 -- Loadable Function:   spparms ()
 -- Loadable Function: VALS = spparms ()
 -- Loadable Function: [KEYS, VALS] = spparms ()
 -- Loadable Function: VAL = spparms (KEY)
 -- Loadable Function:   spparms (VALS)
 -- Loadable Function:   spparms ('defaults')
 -- Loadable Function:   spparms ('tight')
 -- Loadable Function:   spparms (KEY, VAL)
     Sets or displays the parameters used by the sparse solvers and factorization functions.  The first four calls above get information about the current settings, while the others change the current settings.  The parameters are stored as pairs of keys and values, where the values are all floats and the keys are one of the following strings:

    `spumoni'
          Printing level of debugging information of the solvers (default 0)

    `ths_rel'
          Included for compatibility.  Not used.  (default 1)

    `ths_abs'
          Included for compatibility.  Not used.  (default 1)

    `exact_d'
          Included for compatibility.  Not used.  (default 0)

    `supernd'
          Included for compatibility.  Not used.  (default 3)

    `rreduce'
          Included for compatibility.  Not used.  (default 3)

    `wh_frac'
          Included for compatibility.  Not used.  (default 0.5)

    `autommd'
          Flag whether the LU/QR and the '\' and '/' operators will automatically use the sparsity preserving mmd functions (default 1)

    `autoamd'
          Flag whether the LU and the '\' and '/' operators will automatically use the sparsity preserving amd functions (default 1)

    `piv_tol'
          The pivot tolerance of the UMFPACK solvers (default 0.1)

    `sym_tol'
          The pivot tolerance of the UMFPACK symmetric solvers (default 0.001)

    `bandden'
          The density of non-zero elements in a banded matrix before it is treated by the LAPACK banded solvers (default 0.5)

    `umfpack'
          Flag whether the UMFPACK or mmd solvers are used for the LU, '\' and '/' operations (default 1)

     The value of individual keys can be set with `spparms (KEY, VAL)'.  The default values can be restored with the special keyword 'defaults'.  The special keyword 'tight' can be used to set the mmd solvers to attempt for a sparser solution at the potential cost of longer running time.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 87
Sets or displays the parameters used by the sparse solvers and factorization functions.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
sqrtm
# name: <cell-element>
# type: string
# elements: 1
# length: 322
 -- Loadable Function: [RESULT, ERROR_ESTIMATE] = sqrtm (A)
     Compute the matrix square root of the square matrix A.

     Ref: Nicholas J. Higham.  A new sqrtm for MATLAB.  Numerical Analysis Report No. 336, Manchester Centre for Computational Mathematics, Manchester, England, January 1999.  See also: expm, logm.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Compute the matrix square root of the square matrix A.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
char
# name: <cell-element>
# type: string
# elements: 1
# length: 1120
 -- Built-in Function:  char (X)
 -- Built-in Function:  char (X, ...)
 -- Built-in Function:  char (S1, S2, ...)
 -- Built-in Function:  char (CELL_ARRAY)
     Create a string array from one or more numeric matrices, character matrices, or cell arrays.  Arguments are concatenated vertically.  The returned values are padded with blanks as needed to make each row of the string array have the same length.  Empty input strings are significant and will concatenated in the output.

     For numerical input, each element is converted to the corresponding ASCII character.  A range error results if an input is outside the ASCII range (0-255).

     For cell arrays, each element is concatenated separately.  Cell arrays converted through `char' can mostly be converted back with `cellstr'.  For example,

          char ([97, 98, 99], "", {"98", "99", 100}, "str1", ["ha", "lf"])
               => ["abc    "
                   "       "
                   "98     "
                   "99     "
                   "d      "
                   "str1   "
                   "half   "]
     See also: strvcat, cellstr.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Create a string array from one or more numeric matrices, character matrices, or cell arrays.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
strvcat
# name: <cell-element>
# type: string
# elements: 1
# length: 1120
 -- Built-in Function:  strvcat (X)
 -- Built-in Function:  strvcat (X, ...)
 -- Built-in Function:  strvcat (S1, S2, ...)
 -- Built-in Function:  strvcat (CELL_ARRAY)
     Create a character array from one or more numeric matrices, character matrices, or cell arrays.  Arguments are concatenated vertically.  The returned values are padded with blanks as needed to make each row of the string array have the same length.  Unlike `char', empty strings are removed and will not appear in the output.

     For numerical input, each element is converted to the corresponding ASCII character.  A range error results if an input is outside the ASCII range (0-255).

     For cell arrays, each element is concatenated separately.  Cell arrays converted through `strvcat' can mostly be converted back with `cellstr'.  For example,

          strvcat ([97, 98, 99], "", {"98", "99", 100}, "str1", ["ha", "lf"])
               => ["abc    "
                   "98     "
                   "99     "
                   "d      "
                   "str1   "
                   "half   "]
     See also: char, strcat, cstrcat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 95
Create a character array from one or more numeric matrices, character matrices, or cell arrays.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
ischar
# name: <cell-element>
# type: string
# elements: 1
# length: 101
 -- Built-in Function:  ischar (A)
     Return 1 if A is a character array.  Otherwise, return 0.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Return 1 if A is a character array.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
strcmp
# name: <cell-element>
# type: string
# elements: 1
# length: 671
 -- Built-in Function:  strcmp (S1, S2)
     Return 1 if the character strings S1 and S2 are the same, and 0 otherwise.

     If either S1 or S2 is a cell array of strings, then an array of the same size is returned, containing the values described above for every member of the cell array.  The other argument may also be a cell array of strings (of the same size or with only one element), char matrix or character string.

     *Caution:* For compatibility with MATLAB, Octave's strcmp function returns 1 if the character strings are equal, and 0 otherwise.  This is just the opposite of the corresponding C library function.  See also: strcmpi, strncmp, strncmpi.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Return 1 if the character strings S1 and S2 are the same, and 0 otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
strncmp
# name: <cell-element>
# type: string
# elements: 1
# length: 829
 -- Built-in Function:  strncmp (S1, S2, N)
     Return 1 if the first N characters of strings S1 and S2 are the same, and 0 otherwise.

          strncmp ("abce", "abcd", 3)
               => 1

     If either S1 or S2 is a cell array of strings, then an array of the same size is returned, containing the values described above for every member of the cell array.  The other argument may also be a cell array of strings (of the same size or with only one element), char matrix or character string.

          strncmp ("abce", {"abcd", "bca", "abc"}, 3)
               => [1, 0, 1]

     *Caution:* For compatibility with MATLAB, Octave's strncmp function returns 1 if the character strings are equal, and 0 otherwise.  This is just the opposite of the corresponding C library function.  See also: strncmpi, strcmp, strcmpi.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Return 1 if the first N characters of strings S1 and S2 are the same, and 0 otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 15
list_in_columns
# name: <cell-element>
# type: string
# elements: 1
# length: 971
 -- Built-in Function:  list_in_columns (ARG, WIDTH)
     Return a string containing the elements of ARG listed in columns with an overall maximum width of WIDTH.  The argument ARG must be a cell array of character strings or a character array.  If WIDTH is not specified, the width of the terminal screen is used.  Newline characters are used to break the lines in the output string.  For example:

          list_in_columns ({"abc", "def", "ghijkl", "mnop", "qrs", "tuv"}, 20)
               => ans = abc     mnop
                      def     qrs
                      ghijkl  tuv

          whos ans
               =>
               Variables in the current scope:

                 Attr Name        Size                     Bytes  Class
                 ==== ====        ====                     =====  =====
                      ans         1x37                        37  char

               Total is 37 elements using 37 bytes

     See also: terminal_size.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 104
Return a string containing the elements of ARG listed in columns with an overall maximum width of WIDTH.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
svd
# name: <cell-element>
# type: string
# elements: 1
# length: 1030
 -- Loadable Function: S = svd (A)
 -- Loadable Function: [U, S, V] = svd (A)
     Compute the singular value decomposition of A

          A = U*S*V'

     The function `svd' normally returns the vector of singular values.  If asked for three return values, it computes U, S, and V.  For example,

          svd (hilb (3))

     returns

          ans =

            1.4083189
            0.1223271
            0.0026873

     and

          [u, s, v] = svd (hilb (3))

     returns

          u =

            -0.82704   0.54745   0.12766
            -0.45986  -0.52829  -0.71375
            -0.32330  -0.64901   0.68867

          s =

            1.40832  0.00000  0.00000
            0.00000  0.12233  0.00000
            0.00000  0.00000  0.00269

          v =

            -0.82704   0.54745   0.12766
            -0.45986  -0.52829  -0.71375
            -0.32330  -0.64901   0.68867

     If given a second argument, `svd' returns an economy-sized decomposition, eliminating the unnecessary rows or columns of U or V.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Compute the singular value decomposition of A 

# name: <cell-element>
# type: string
# elements: 1
# length: 3
syl
# name: <cell-element>
# type: string
# elements: 1
# length: 280
 -- Loadable Function: X = syl (A, B, C)
     Solve the Sylvester equation

          A X + X B + C = 0
     using standard LAPACK subroutines.  For example,

          syl ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])
               => [ -0.50000, -0.66667; -0.66667, -0.50000 ]

# name: <cell-element>
# type: string
# elements: 1
# length: 29
Solve the Sylvester equation 

# name: <cell-element>
# type: string
# elements: 1
# length: 8
symbfact
# name: <cell-element>
# type: string
# elements: 1
# length: 1135
 -- Loadable Function: [COUNT, H, PARENT, POST, R] = symbfact (S, TYP, MODE)
     Performs a symbolic factorization analysis on the sparse matrix S.  Where

    S
          S is a complex or real sparse matrix.

    TYP
          Is the type of the factorization and can be one of

         `sym'
               Factorize S.  This is the default.

         `col'
               Factorize `S' * S'.

         `row'
               Factorize `S * S''.

         `lo'
               Factorize `S''

    MODE
          The default is to return the Cholesky factorization for R, and if MODE is 'L', the conjugate transpose of the Cholesky factorization is returned.  The conjugate transpose version is faster and uses less memory, but returns the same values for COUNT, H, PARENT and POST outputs.

     The output variables are

    COUNT
          The row counts of the Cholesky factorization as determined by TYP.

    H
          The height of the elimination tree.

    PARENT
          The elimination tree itself.

    POST
          A sparse boolean matrix whose structure is that of the Cholesky factorization as determined by TYP.

# name: <cell-element>
# type: string
# elements: 1
# length: 66
Performs a symbolic factorization analysis on the sparse matrix S.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
symrcm
# name: <cell-element>
# type: string
# elements: 1
# length: 923
 -- Loadable Function: P = symrcm (S)
     Symmetric reverse Cuthill-McKee permutation of S.  Return a permutation vector P such that `S (P, P)' tends to have its diagonal elements closer to the diagonal than S.  This is a good preordering for LU or Cholesky factorization of matrices that come from 'long, skinny' problems.  It works for both symmetric and asymmetric S.

     The algorithm represents a heuristic approach to the NP-complete bandwidth minimization problem.  The implementation is based in the descriptions found in

     E. Cuthill, J. McKee: Reducing the Bandwidth of Sparse Symmetric Matrices. Proceedings of the 24th ACM National Conference, 157-172 1969, Brandon Press, New Jersey.

     Alan George, Joseph W. H. Liu: Computer Solution of Large Sparse Positive Definite Systems, Prentice Hall Series in Computational Mathematics, ISBN 0-13-165274-5, 1981.

     See also: colperm, colamd, symamd.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Symmetric reverse Cuthill-McKee permutation of S.

# name: <cell-element>
# type: string
# elements: 1
# length: 26
ignore_function_time_stamp
# name: <cell-element>
# type: string
# elements: 1
# length: 826
 -- Built-in Function: VAL = ignore_function_time_stamp ()
 -- Built-in Function: OLD_VAL = ignore_function_time_stamp (NEW_VAL)
     Query or set the internal variable that controls whether Octave checks the time stamp on files each time it looks up functions defined in function files.  If the internal variable is set to `"system"', Octave will not automatically recompile function files in subdirectories of `OCTAVE-HOME/lib/VERSION' if they have changed since they were last compiled, but will recompile other function files in the search path if they change.  If set to `"all"', Octave will not recompile any function files unless their definitions are removed with `clear'.  If set to "none", Octave will always check time stamps on files to determine whether functions defined in function files need to recompiled.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 153
Query or set the internal variable that controls whether Octave checks the time stamp on files each time it looks up functions defined in function files.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
dup2
# name: <cell-element>
# type: string
# elements: 1
# length: 244
 -- Built-in Function: [FID, MSG] = dup2 (OLD, NEW)
     Duplicate a file descriptor.

     If successful, FID is greater than zero and contains the new file ID.  Otherwise, FID is negative and MSG contains a system-dependent error message.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 28
Duplicate a file descriptor.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
exec
# name: <cell-element>
# type: string
# elements: 1
# length: 485
 -- Built-in Function: [ERR, MSG] = exec (FILE, ARGS)
     Replace current process with a new process.  Calling `exec' without first calling `fork' will terminate your current Octave process and replace it with the program named by FILE.  For example,

          exec ("ls" "-l")

     will run `ls' and return you to your shell prompt.

     If successful, `exec' does not return.  If `exec' does return, ERR will be nonzero, and MSG will contain a system-dependent error message.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Replace current process with a new process.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
popen2
# name: <cell-element>
# type: string
# elements: 1
# length: 1255
 -- Built-in Function: [IN, OUT, PID] = popen2 (COMMAND, ARGS)
     Start a subprocess with two-way communication.  The name of the process is given by COMMAND, and ARGS is an array of strings containing options for the command.  The file identifiers for the input and output streams of the subprocess are returned in IN and OUT.  If execution of the command is successful, PID contains the process ID of the subprocess.  Otherwise, PID is -1.

     For example,

          [in, out, pid] = popen2 ("sort", "-r");
          fputs (in, "these\nare\nsome\nstrings\n");
          fclose (in);
          EAGAIN = errno ("EAGAIN");
          done = false;
          do
            s = fgets (out);
            if (ischar (s))
              fputs (stdout, s);
            elseif (errno () == EAGAIN)
              sleep (0.1);
              fclear (out);
            else
              done = true;
            endif
          until (done)
          fclose (out);
          waitpid (pid);
               -| these
               -| strings
               -| some
               -| are

     Note that `popen2', unlike `popen', will not "reap" the child process.  If you don't use `waitpid' to check the child's exit status, it will linger until Octave exits.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Start a subprocess with two-way communication.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
fcntl
# name: <cell-element>
# type: string
# elements: 1
# length: 1288
 -- Built-in Function: [ERR, MSG] = fcntl (FID, REQUEST, ARG)
     Change the properties of the open file FID.  The following values may be passed as REQUEST:

    `F_DUPFD'
          Return a duplicate file descriptor.

    `F_GETFD'
          Return the file descriptor flags for FID.

    `F_SETFD'
          Set the file descriptor flags for FID.

    `F_GETFL'
          Return the file status flags for FID.  The following codes may be returned (some of the flags may be undefined on some systems).

         `O_RDONLY'
               Open for reading only.

         `O_WRONLY'
               Open for writing only.

         `O_RDWR'
               Open for reading and writing.

         `O_APPEND'
               Append on each write.

         `O_CREAT'
               Create the file if it does not exist.

         `O_NONBLOCK'
               Nonblocking mode.

         `O_SYNC'
               Wait for writes to complete.

         `O_ASYNC'
               Asynchronous I/O.

    `F_SETFL'
          Set the file status flags for FID to the value specified by ARG.  The only flags that can be changed are `O_APPEND' and `O_NONBLOCK'.

     If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Change the properties of the open file FID.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
fork
# name: <cell-element>
# type: string
# elements: 1
# length: 624
 -- Built-in Function: [PID, MSG] = fork ()
     Create a copy of the current process.

     Fork can return one of the following values:

    > 0
          You are in the parent process.  The value returned from `fork' is the process id of the child process.  You should probably arrange to wait for any child processes to exit.

    0
          You are in the child process.  You can call `exec' to start another process.  If that fails, you should probably call `exit'.

    < 0
          The call to `fork' failed for some reason.  You must take evasive action.  A system dependent error message will be waiting in MSG.

# name: <cell-element>
# type: string
# elements: 1
# length: 37
Create a copy of the current process.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
getpgrp
# name: <cell-element>
# type: string
# elements: 1
# length: 101
 -- Built-in Function: pgid = getpgrp ()
     Return the process group id of the current process.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Return the process group id of the current process.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
getpid
# name: <cell-element>
# type: string
# elements: 1
# length: 93
 -- Built-in Function: pid = getpid ()
     Return the process id of the current process.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Return the process id of the current process.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
getppid
# name: <cell-element>
# type: string
# elements: 1
# length: 93
 -- Built-in Function: pid = getppid ()
     Return the process id of the parent process.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Return the process id of the parent process.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
getegid
# name: <cell-element>
# type: string
# elements: 1
# length: 103
 -- Built-in Function: egid = getegid ()
     Return the effective group id of the current process.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Return the effective group id of the current process.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
getgid
# name: <cell-element>
# type: string
# elements: 1
# length: 96
 -- Built-in Function: gid = getgid ()
     Return the real group id of the current process.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Return the real group id of the current process.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
geteuid
# name: <cell-element>
# type: string
# elements: 1
# length: 102
 -- Built-in Function: euid = geteuid ()
     Return the effective user id of the current process.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return the effective user id of the current process.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
getuid
# name: <cell-element>
# type: string
# elements: 1
# length: 95
 -- Built-in Function: uid = getuid ()
     Return the real user id of the current process.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Return the real user id of the current process.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
kill
# name: <cell-element>
# type: string
# elements: 1
# length: 565
 -- Built-in Function: [ERR, MSG] = kill (PID, SIG)
     Send signal SIG to process PID.

     If PID is positive, then signal SIG is sent to PID.

     If PID is 0, then signal SIG is sent to every process in the process group of the current process.

     If PID is -1, then signal SIG is sent to every process except process 1.

     If PID is less than -1, then signal SIG is sent to every process in the process group -PID.

     If SIG is 0, then no signal is sent, but error checking is still performed.

     Return 0 if successful, otherwise return -1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Send signal SIG to process PID.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
fstat
# name: <cell-element>
# type: string
# elements: 1
# length: 161
 -- Built-in Function: [INFO, ERR, MSG] = fstat (FID)
     Return information about the open file FID.  See `stat' for a description of the contents of INFO.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Return information about the open file FID.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
lstat
# name: <cell-element>
# type: string
# elements: 1
# length: 73
 -- Built-in Function: [INFO, ERR, MSG] = lstat (FILE)
     See stat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 9
See stat.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
mkfifo
# name: <cell-element>
# type: string
# elements: 1
# length: 258
 -- Built-in Function: [ERR, MSG] = mkfifo (NAME, MODE)
     Create a FIFO special file named NAME with file mode MODE

     If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Create a FIFO special file named NAME with file mode MODE 

# name: <cell-element>
# type: string
# elements: 1
# length: 4
pipe
# name: <cell-element>
# type: string
# elements: 1
# length: 313
 -- Built-in Function: [READ_FD, WRITE_FD, ERR, MSG] = pipe ()
     Create a pipe and return the reading and writing ends of the pipe into READ_FD and WRITE_FD respectively.

     If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 105
Create a pipe and return the reading and writing ends of the pipe into READ_FD and WRITE_FD respectively.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
stat
# name: <cell-element>
# type: string
# elements: 1
# length: 2402
 -- Built-in Function: [INFO, ERR, MSG] = stat (FILE)
 -- Built-in Function: [INFO, ERR, MSG] = lstat (FILE)
     Return a structure S containing the following information about FILE.

    `dev'
          ID of device containing a directory entry for this file.

    `ino'
          File number of the file.

    `mode'
          File mode, as an integer.  Use the functions `S_ISREG', `S_ISDIR', `S_ISCHR', `S_ISBLK', `S_ISFIFO', `S_ISLNK', or `S_ISSOCK' to extract information from this value.

    `modestr'
          File mode, as a string of ten letters or dashes as would be returned by `ls -l'.

    `nlink'
          Number of links.

    `uid'
          User ID of file's owner.

    `gid'
          Group ID of file's group.

    `rdev'
          ID of device for block or character special files.

    `size'
          Size in bytes.

    `atime'
          Time of last access in the same form as time values returned from `time'.  *Note Timing Utilities::.

    `mtime'
          Time of last modification in the same form as time values returned from `time'.  *Note Timing Utilities::.

    `ctime'
          Time of last file status change in the same form as time values returned from `time'.  *Note Timing Utilities::.

    `blksize'
          Size of blocks in the file.

    `blocks'
          Number of blocks allocated for file.

     If the call is successful ERR is 0 and MSG is an empty string.  If the file does not exist, or some other error occurs, S is an empty matrix, ERR is -1, and MSG contains the corresponding system error message.

     If FILE is a symbolic link, `stat' will return information about the actual file that is referenced by the link.  Use `lstat' if you want information about the symbolic link itself.

     For example,

          [s, err, msg] = stat ("/vmlinuz")
                => s =
                  {
                    atime = 855399756
                    rdev = 0
                    ctime = 847219094
                    uid = 0
                    size = 389218
                    blksize = 4096
                    mtime = 847219094
                    gid = 6
                    nlink = 1
                    blocks = 768
                    mode = -rw-r--r--
                    modestr = -rw-r--r--
                    ino = 9316
                    dev = 2049
                  }
               => err = 0
               => msg =

# name: <cell-element>
# type: string
# elements: 1
# length: 69
Return a structure S containing the following information about FILE.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
S_ISREG
# name: <cell-element>
# type: string
# elements: 1
# length: 190
 -- Built-in Function:  S_ISREG (MODE)
     Return true if MODE corresponds to a regular file.  The value of MODE is assumed to be returned from a call to `stat'.  See also: stat, lstat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Return true if MODE corresponds to a regular file.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
S_ISDIR
# name: <cell-element>
# type: string
# elements: 1
# length: 187
 -- Built-in Function:  S_ISDIR (MODE)
     Return true if MODE corresponds to a directory.  The value of MODE is assumed to be returned from a call to `stat'.  See also: stat, lstat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Return true if MODE corresponds to a directory.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
S_ISCHR
# name: <cell-element>
# type: string
# elements: 1
# length: 195
 -- Built-in Function:  S_ISCHR (MODE)
     Return true if MODE corresponds to a character devicey.  The value of MODE is assumed to be returned from a call to `stat'.  See also: stat, lstat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Return true if MODE corresponds to a character devicey.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
S_ISBLK
# name: <cell-element>
# type: string
# elements: 1
# length: 190
 -- Built-in Function:  S_ISBLK (MODE)
     Return true if MODE corresponds to a block device.  The value of MODE is assumed to be returned from a call to `stat'.  See also: stat, lstat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Return true if MODE corresponds to a block device.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
S_ISFIFO
# name: <cell-element>
# type: string
# elements: 1
# length: 183
 -- Built-in Function:  S_ISFIFO (MODE)
     Return true if MODE corresponds to a fifo.  The value of MODE is assumed to be returned from a call to `stat'.  See also: stat, lstat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Return true if MODE corresponds to a fifo.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
S_ISLNK
# name: <cell-element>
# type: string
# elements: 1
# length: 191
 -- Built-in Function:  S_ISLNK (MODE)
     Return true if MODE corresponds to a symbolic link.  The value of MODE is assumed to be returned from a call to `stat'.  See also: stat, lstat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Return true if MODE corresponds to a symbolic link.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
S_ISSOCK
# name: <cell-element>
# type: string
# elements: 1
# length: 71
 -- Built-in Function:  S_ISSOCK (MODE)
     See also: stat, lstat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
See also: stat, lstat.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
uname
# name: <cell-element>
# type: string
# elements: 1
# length: 549
 -- Built-in Function: [UTS, ERR, MSG] = uname ()
     Return system information in the structure.  For example,

          uname ()
               => {
                     sysname = x86_64
                     nodename = segfault
                     release = 2.6.15-1-amd64-k8-smp
                     version = Linux
                     machine = #2 SMP Thu Feb 23 04:57:49 UTC 2006
                   }

     If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Return system information in the structure.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
unlink
# name: <cell-element>
# type: string
# elements: 1
# length: 222
 -- Built-in Function: [ERR, MSG] = unlink (FILE)
     Delete the file named FILE.

     If successful, ERR is 0 and MSG is an empty string.  Otherwise, ERR is nonzero and MSG contains a system-dependent error message.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 27
Delete the file named FILE.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
waitpid
# name: <cell-element>
# type: string
# elements: 1
# length: 1411
 -- Built-in Function: [PID, STATUS, MSG] = waitpid (PID, OPTIONS)
     Wait for process PID to terminate.  The PID argument can be:

    -1
          Wait for any child process.

    0
          Wait for any child process whose process group ID is equal to that of the Octave interpreter process.

    > 0
          Wait for termination of the child process with ID PID.

     The OPTIONS argument can be a bitwise OR of zero or more of the following constants:

    `0'
          Wait until signal is received or a child process exits (this is the default if the OPTIONS argument is missing).

    `WNOHANG'
          Do not hang if status is not immediately available.

    `WUNTRACED'
          Report the status of any child processes that are stopped, and whose status has not yet been reported since they stopped.

    `WCONTINUE'
          Return if a stopped child has been resumed by delivery of `SIGCONT'.  This value may not be meaningful on all systems.

     If the returned value of PID is greater than 0, it is the process ID of the child process that exited.  If an error occurs, PID will be less than zero and MSG will contain a system-dependent error message.  The value of STATUS contains additional system-dependent information about the subprocess that exited.  See also: WCONTINUE, WCOREDUMP, WEXITSTATUS, WIFCONTINUED, WIFSIGNALED, WIFSTOPPED, WNOHANG, WSTOPSIG, WTERMSIG, WUNTRACED.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Wait for process PID to terminate.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
WIFEXITED
# name: <cell-element>
# type: string
# elements: 1
# length: 239
 -- Built-in Function:  WIFEXITED (STATUS)
     Given STATUS from a call to `waitpid', return true if the child terminated normally.  See also: waitpid, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 84
Given STATUS from a call to `waitpid', return true if the child terminated normally.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
WEXITSTATUS
# name: <cell-element>
# type: string
# elements: 1
# length: 299
 -- Built-in Function:  WEXITSTATUS (STATUS)
     Given STATUS from a call to `waitpid', return the exit status of the child.  This function should only be employed if `WIFEXITED' returned true.  See also: waitpid, WIFEXITED, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Given STATUS from a call to `waitpid', return the exit status of the child.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
WIFSIGNALED
# name: <cell-element>
# type: string
# elements: 1
# length: 254
 -- Built-in Function:  WIFSIGNALED (STATUS)
     Given STATUS from a call to `waitpid', return true if the child process was terminated by a signal.  See also: waitpid, WIFEXITED, WEXITSTATUS, WTERMSIG, WCOREDUMP, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 99
Given STATUS from a call to `waitpid', return true if the child process was terminated by a signal.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
WTERMSIG
# name: <cell-element>
# type: string
# elements: 1
# length: 340
 -- Built-in Function:  WTERMSIG (STATUS)
     Given STATUS from a call to `waitpid', return the number of the signal that caused the child process to terminate.  This function should only be employed if `WIFSIGNALED' returned true.  See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WCOREDUMP, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 114
Given STATUS from a call to `waitpid', return the number of the signal that caused the child process to terminate.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
WCOREDUMP
# name: <cell-element>
# type: string
# elements: 1
# length: 457
 -- Built-in Function:  WCOREDUMP (STATUS)
     Given STATUS from a call to `waitpid', return true if the child produced a core dump.  This function should only be employed if `WIFSIGNALED' returned true.  The macro used to implement this function is not specified in POSIX.1-2001 and is not available on some Unix implementations (e.g., AIX, SunOS).  See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WIFSTOPPED, WSTOPSIG, WIFCONTINUED.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 85
Given STATUS from a call to `waitpid', return true if the child produced a core dump.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
WIFSTOPPED
# name: <cell-element>
# type: string
# elements: 1
# length: 375
 -- Built-in Function:  WIFSTOPPED (STATUS)
     Given STATUS from a call to `waitpid', return true if the child process was stopped by delivery of a signal; this is only possible if the call was done using `WUNTRACED' or when the child is being traced (see ptrace(2)).  See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WSTOPSIG, WIFCONTINUED.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 220
Given STATUS from a call to `waitpid', return true if the child process was stopped by delivery of a signal; this is only possible if the call was done using `WUNTRACED' or when the child is being traced (see ptrace(2)).

# name: <cell-element>
# type: string
# elements: 1
# length: 8
WSTOPSIG
# name: <cell-element>
# type: string
# elements: 1
# length: 327
 -- Built-in Function:  WSTOPSIG (STATUS)
     Given STATUS from a call to `waitpid', return the number of the signal which caused the child to stop.  This function should only be employed if `WIFSTOPPED' returned true.  See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, WIFCONTINUED.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 102
Given STATUS from a call to `waitpid', return the number of the signal which caused the child to stop.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
WIFCONTINUED
# name: <cell-element>
# type: string
# elements: 1
# length: 264
 -- Built-in Function:  WIFCONTINUED (STATUS)
     Given STATUS from a call to `waitpid', return true if the child process was resumed by delivery of `SIGCONT'.  See also: waitpid, WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG, WCOREDUMP, WIFSTOPPED, WSTOPSIG.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Given STATUS from a call to `waitpid', return true if the child process was resumed by delivery of `SIGCONT'.

# name: <cell-element>
# type: string
# elements: 1
# length: 22
canonicalize_file_name
# name: <cell-element>
# type: string
# elements: 1
# length: 122
 -- Built-in Function: [CNAME, STATUS, MSG] canonicalize_file_name (NAME)
     Return the canonical name of file NAME.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Return the canonical name of file NAME.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
F_DUPFD
# name: <cell-element>
# type: string
# elements: 1
# length: 183
 -- Built-in Function:  F_DUPFD ()
     Return the value required to request that `fcntl' return a duplicate file descriptor.  See also: fcntl, F_GETFD, F_GETFL, F_SETFD, F_SETFL.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 85
Return the value required to request that `fcntl' return a duplicate file descriptor.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
F_GETFD
# name: <cell-element>
# type: string
# elements: 1
# length: 184
 -- Built-in Function:  F_GETFD ()
     Return the value required to request that `fcntl' to return the file descriptor flags.  See also: fcntl, F_DUPFD, F_GETFL, F_SETFD, F_SETFL.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Return the value required to request that `fcntl' to return the file descriptor flags.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
F_GETFL
# name: <cell-element>
# type: string
# elements: 1
# length: 180
 -- Built-in Function:  F_GETFL ()
     Return the value required to request that `fcntl' to return the file status flags.  See also: fcntl, F_DUPFD, F_GETFD, F_SETFD, F_SETFL.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 82
Return the value required to request that `fcntl' to return the file status flags.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
F_SETFD
# name: <cell-element>
# type: string
# elements: 1
# length: 181
 -- Built-in Function:  F_SETFD ()
     Return the value required to request that `fcntl' to set the file descriptor flags.  See also: fcntl, F_DUPFD, F_GETFD, F_GETFL, F_SETFL.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Return the value required to request that `fcntl' to set the file descriptor flags.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
F_SETFL
# name: <cell-element>
# type: string
# elements: 1
# length: 177
 -- Built-in Function:  F_SETFL ()
     Return the value required to request that `fcntl' to set the file status flags.  See also: fcntl, F_DUPFD, F_GETFD, F_GETFL, F_SETFD.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 79
Return the value required to request that `fcntl' to set the file status flags.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
O_APPEND
# name: <cell-element>
# type: string
# elements: 1
# length: 336
 -- Built-in Function:  O_APPEND ()
     Return the numerical value of the file status flag that may be returned by `fcntl' to indicate each write operation appends, or that may be passed to `fcntl' to set the write mode to append.\nSee also: fcntl, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 190
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate each write operation appends, or that may be passed to `fcntl' to set the write mode to append.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
O_ASYNC
# name: <cell-element>
# type: string
# elements: 1
# length: 258
 -- Built-in Function:  O_ASYNC ()
     Return the numerical value of the file status flag that may be returned by `fcntl' to indicate asynchronous I/O.  See also: fcntl, O_APPEND, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 112
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate asynchronous I/O.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
O_CREAT
# name: <cell-element>
# type: string
# elements: 1
# length: 292
 -- Built-in Function:  O_CREAT ()
     Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file should be created if it does not exist.  See also: fcntl, O_APPEND, O_ASYNC, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 146
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file should be created if it does not exist.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
O_EXCL
# name: <cell-element>
# type: string
# elements: 1
# length: 267
 -- Built-in Function:  O_EXCL ()
     Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that file locking is used.  See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 121
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that file locking is used.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
O_NONBLOCK
# name: <cell-element>
# type: string
# elements: 1
# length: 332
 -- Built-in Function:  O_NONBLOCK ()
     Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that non-blocking I/O is in use, or that may be passsed to `fcntl' to set non-blocking I/O.  See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 186
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that non-blocking I/O is in use, or that may be passsed to `fcntl' to set non-blocking I/O.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
O_RDONLY
# name: <cell-element>
# type: string
# elements: 1
# length: 278
 -- Built-in Function:  O_RDONLY ()
     Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file is open for reading only.  See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDWR, O_SYNC, O_TRUNC, O_WRONLY.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 132
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file is open for reading only.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
O_RDWR
# name: <cell-element>
# type: string
# elements: 1
# length: 290
 -- Built-in Function:  O_RDWR ()
     Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file is open for both reading and writing.  See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_SYNC, O_TRUNC, O_WRONLY.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 144
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file is open for both reading and writing.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
O_SYNC
# name: <cell-element>
# type: string
# elements: 1
# length: 281
 -- Built-in Function:  O_SYNC ()
     Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file is open for synchronous I/O.  See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_TRUNC, O_WRONLY.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 135
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file is open for synchronous I/O.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
O_TRUNC
# name: <cell-element>
# type: string
# elements: 1
# length: 297
 -- Built-in Variable: O_TRUNC ()
     Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that if file exists, it should be truncated when writing.  See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_WRONLY.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 152
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that if file exists, it should be truncated when writing.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
O_WRONLY
# name: <cell-element>
# type: string
# elements: 1
# length: 278
 -- Built-in Function:  O_WRONLY ()
     Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file is open for writing only.  See also: fcntl, O_APPEND, O_ASYNC, O_CREAT, O_EXCL, O_NONBLOCK, O_RDONLY, O_RDWR, O_SYNC, O_TRUNC.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 132
Return the numerical value of the file status flag that may be returned by `fcntl' to indicate that a file is open for writing only.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
WNOHANG
# name: <cell-element>
# type: string
# elements: 1
# length: 266
 -- Built-in Function:  WNOHANG ()
     Return the numerical value of the option argument that may be passed to `waitpid' to indicate that it should return its status immediately instead of waiting for a process to exit.  See also: waitpid, WUNTRACED, WCONTINUE.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 180
Return the numerical value of the option argument that may be passed to `waitpid' to indicate that it should return its status immediately instead of waiting for a process to exit.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
WUNTRACED
# name: <cell-element>
# type: string
# elements: 1
# length: 285
 -- Built-in Function:  WUNTRACED ()
     Return the numerical value of the option argument that may be passed to `waitpid' to indicate that it should also return if the child process has stopped but is not traced via the `ptrace' system call See also: waitpid, WNOHANG, WCONTINUE.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 239
Return the numerical value of the option argument that may be passed to `waitpid' to indicate that it should also return if the child process has stopped but is not traced via the `ptrace' system call See also: waitpid, WNOHANG, WCONTINUE.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
WCONTINUE
# name: <cell-element>
# type: string
# elements: 1
# length: 276
 -- Built-in Function: WCONINTUE ()
     Return the numerical value of the option argument that may be passed to `waitpid' to indicate that it should also return if a stopped child has been resumed by delivery of a `SIGCONT' signal.  See also: waitpid, WNOHANG, WUNTRACED.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 191
Return the numerical value of the option argument that may be passed to `waitpid' to indicate that it should also return if a stopped child has been resumed by delivery of a `SIGCONT' signal.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
clc
# name: <cell-element>
# type: string
# elements: 1
# length: 143
 -- Built-in Function:  clc ()
 -- Built-in Function:  home ()
     Clear the terminal screen and move the cursor to the upper left corner.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Clear the terminal screen and move the cursor to the upper left corner.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
getenv
# name: <cell-element>
# type: string
# elements: 1
# length: 194
 -- Built-in Function:  getenv (VAR)
     Return the value of the environment variable VAR.  For example,

          getenv ("PATH")

     returns a string containing the value of your path.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Return the value of the environment variable VAR.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
putenv
# name: <cell-element>
# type: string
# elements: 1
# length: 152
 -- Built-in Function:  putenv (VAR, VALUE)
 -- Built-in Function:  setenv (VAR, VALUE)
     Set the value of the environment variable VAR to VALUE.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Set the value of the environment variable VAR to VALUE.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
kbhit
# name: <cell-element>
# type: string
# elements: 1
# length: 411
 -- Built-in Function:  kbhit ()
     Read a single keystroke from the keyboard.  If called with one argument, don't wait for a keypress.  For example,

          x = kbhit ();

     will set X to the next character typed at the keyboard as soon as it is typed.

          x = kbhit (1);

     identical to the above example, but don't wait for a keypress, returning the empty string if no key is available.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Read a single keystroke from the keyboard.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
pause
# name: <cell-element>
# type: string
# elements: 1
# length: 421
 -- Built-in Function:  pause (SECONDS)
     Suspend the execution of the program.  If invoked without any arguments, Octave waits until you type a character.  With a numeric argument, it pauses for the given number of seconds.  For example, the following statement prints a message and then waits 5 seconds before clearing the screen.

          fprintf (stderr, "wait please...\n");
          pause (5);
          clc;

# name: <cell-element>
# type: string
# elements: 1
# length: 37
Suspend the execution of the program.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
sleep
# name: <cell-element>
# type: string
# elements: 1
# length: 118
 -- Built-in Function:  sleep (SECONDS)
     Suspend the execution of the program for the given number of seconds.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Suspend the execution of the program for the given number of seconds.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
usleep
# name: <cell-element>
# type: string
# elements: 1
# length: 293
 -- Built-in Function:  usleep (MICROSECONDS)
     Suspend the execution of the program for the given number of microseconds.  On systems where it is not possible to sleep for periods of time less than one second, `usleep' will pause the execution for `round (MICROSECONDS / 1e6)' seconds.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Suspend the execution of the program for the given number of microseconds.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
isieee
# name: <cell-element>
# type: string
# elements: 1
# length: 140
 -- Built-in Function:  isieee ()
     Return 1 if your computer claims to conform to the IEEE standard for floating point calculations.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 97
Return 1 if your computer claims to conform to the IEEE standard for floating point calculations.

# name: <cell-element>
# type: string
# elements: 1
# length: 19
native_float_format
# name: <cell-element>
# type: string
# elements: 1
# length: 107
 -- Built-in Function:  native_float_format ()
     Return the native floating point format as a string
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Return the native floating point format as a string  

# name: <cell-element>
# type: string
# elements: 1
# length: 12
tilde_expand
# name: <cell-element>
# type: string
# elements: 1
# length: 658
 -- Built-in Function:  tilde_expand (STRING)
     Performs tilde expansion on STRING.  If STRING begins with a tilde character, (`~'), all of the characters preceding the first slash (or all characters, if there is no slash) are treated as a possible user name, and the tilde and the following characters up to the slash are replaced by the home directory of the named user.  If the tilde is followed immediately by a slash, the tilde is replaced by the home directory of the user running Octave.  For example,

          tilde_expand ("~joeuser/bin")
               => "/home/joeuser/bin"
          tilde_expand ("~/bin")
               => "/home/jwe/bin"

# name: <cell-element>
# type: string
# elements: 1
# length: 35
Performs tilde expansion on STRING.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
time
# name: <cell-element>
# type: string
# elements: 1
# length: 413
 -- Loadable Function:  time ()
     Return the current time as the number of seconds since the epoch.  The epoch is referenced to 00:00:00 CUT (Coordinated Universal Time) 1 Jan 1970.  For example, on Monday February 17, 1997 at 07:15:06 CUT, the value returned by `time' was 856163706.  See also: strftime, strptime, localtime, gmtime, mktime, now, date, clock, datenum, datestr, datevec, calendar, weekday.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 65
Return the current time as the number of seconds since the epoch.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
gmtime
# name: <cell-element>
# type: string
# elements: 1
# length: 694
 -- Loadable Function:  gmtime (T)
     Given a value returned from time (or any non-negative integer), return a time structure corresponding to CUT.  For example,

          gmtime (time ())
               => {
                     usec = 0
                     year = 97
                     mon = 1
                     mday = 17
                     sec = 6
                     zone = CST
                     min = 15
                     wday = 1
                     hour = 7
                     isdst = 0
                     yday = 47
                   }
     See also: strftime, strptime, localtime, mktime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Given a value returned from time (or any non-negative integer), return a time structure corresponding to CUT.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
localtime
# name: <cell-element>
# type: string
# elements: 1
# length: 699
 -- Loadable Function:  localtime (T)
     Given a value returned from time (or any non-negative integer), return a time structure corresponding to the local time zone.

          localtime (time ())
               => {
                     usec = 0
                     year = 97
                     mon = 1
                     mday = 17
                     sec = 6
                     zone = CST
                     min = 15
                     wday = 1
                     hour = 1
                     isdst = 0
                     yday = 47
                   }
     See also: strftime, strptime, gmtime, mktime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 125
Given a value returned from time (or any non-negative integer), return a time structure corresponding to the local time zone.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
mktime
# name: <cell-element>
# type: string
# elements: 1
# length: 356
 -- Loadable Function:  mktime (TM_STRUCT)
     Convert a time structure corresponding to the local time to the number of seconds since the epoch.  For example,

          mktime (localtime (time ()))
               => 856163706
     See also: strftime, strptime, localtime, gmtime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Convert a time structure corresponding to the local time to the number of seconds since the epoch.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
strftime
# name: <cell-element>
# type: string
# elements: 1
# length: 2887
 -- Loadable Function:  strftime (FMT, TM_STRUCT)
     Format the time structure TM_STRUCT in a flexible way using the format string FMT that contains `%' substitutions similar to those in `printf'.  Except where noted, substituted fields have a fixed size; numeric fields are padded if necessary.  Padding is with zeros by default; for fields that display a single number, padding can be changed or inhibited by following the `%' with one of the modifiers described below.  Unknown field specifiers are copied as normal characters.  All other characters are copied to the output without change.  For example,

          strftime ("%r (%Z) %A %e %B %Y", localtime (time ()))
               => "01:15:06 AM (CST) Monday 17 February 1997"

     Octave's `strftime' function supports a superset of the ANSI C field specifiers.

     Literal character fields:

    `%'
          % character.

    `n'
          Newline character.

    `t'
          Tab character.

     Numeric modifiers (a nonstandard extension):

    `- (dash)'
          Do not pad the field.

    `_ (underscore)'
          Pad the field with spaces.

     Time fields:

    `%H'
          Hour (00-23).

    `%I'
          Hour (01-12).

    `%k'
          Hour (0-23).

    `%l'
          Hour (1-12).

    `%M'
          Minute (00-59).

    `%p'
          Locale's AM or PM.

    `%r'
          Time, 12-hour (hh:mm:ss [AP]M).

    `%R'
          Time, 24-hour (hh:mm).

    `%s'
          Time in seconds since 00:00:00, Jan 1, 1970 (a nonstandard extension).

    `%S'
          Second (00-61).

    `%T'
          Time, 24-hour (hh:mm:ss).

    `%X'
          Locale's time representation (%H:%M:%S).

    `%Z'
          Time zone (EDT), or nothing if no time zone is determinable.

     Date fields:

    `%a'
          Locale's abbreviated weekday name (Sun-Sat).

    `%A'
          Locale's full weekday name, variable length (Sunday-Saturday).

    `%b'
          Locale's abbreviated month name (Jan-Dec).

    `%B'
          Locale's full month name, variable length (January-December).

    `%c'
          Locale's date and time (Sat Nov 04 12:02:33 EST 1989).

    `%C'
          Century (00-99).

    `%d'
          Day of month (01-31).

    `%e'
          Day of month ( 1-31).

    `%D'
          Date (mm/dd/yy).

    `%h'
          Same as %b.

    `%j'
          Day of year (001-366).

    `%m'
          Month (01-12).

    `%U'
          Week number of year with Sunday as first day of week (00-53).

    `%w'
          Day of week (0-6).

    `%W'
          Week number of year with Monday as first day of week (00-53).

    `%x'
          Locale's date representation (mm/dd/yy).

    `%y'
          Last two digits of year (00-99).

    `%Y'
          Year (1970-).
     See also: strptime, localtime, gmtime, mktime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 143
Format the time structure TM_STRUCT in a flexible way using the format string FMT that contains `%' substitutions similar to those in `printf'.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
strptime
# name: <cell-element>
# type: string
# elements: 1
# length: 496
 -- Loadable Function: [TM_STRUCT, NCHARS] = strptime (STR, FMT)
     Convert the string STR to the time structure TM_STRUCT under the control of the format string FMT.

     If FMT fails to match, NCHARS is 0; otherwise it is set to the position of last matched character plus 1. Always check for this unless you're absolutely sure the date string will be parsed correctly.  See also: strftime, localtime, gmtime, mktime, time, now, date, clock, datenum, datestr, datevec, calendar, weekday.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Convert the string STR to the time structure TM_STRUCT under the control of the format string FMT.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
quit
# name: <cell-element>
# type: string
# elements: 1
# length: 265
 -- Built-in Function:  exit (STATUS)
 -- Built-in Function:  quit (STATUS)
     Exit the current Octave session.  If the optional integer value STATUS is supplied, pass that value to the operating system as the Octave's exit status.  The default value is zero.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Exit the current Octave session.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
warranty
# name: <cell-element>
# type: string
# elements: 1
# length: 105
 -- Built-in Function:  warranty ()
     Describe the conditions for copying and distributing Octave.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Describe the conditions for copying and distributing Octave.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
system
# name: <cell-element>
# type: string
# elements: 1
# length: 1316
 -- Built-in Function:  system (STRING, RETURN_OUTPUT, TYPE)
     Execute a shell command specified by STRING.  The second argument is optional.  If TYPE is `"async"', the process is started in the background and the process id of the child process is returned immediately.  Otherwise, the process is started, and Octave waits until it exits.  If the TYPE argument is omitted, a value of `"sync"' is assumed.

     If two input arguments are given (the actual value of RETURN_OUTPUT is irrelevant) and the subprocess is started synchronously, or if SYSTEM is called with one input argument and one or more output arguments, the output from the command is returned.  Otherwise, if the subprocess is executed synchronously, its output is sent to the standard output.  To send the output of a command executed with SYSTEM through the pager, use a command like

          disp (system (cmd, 1));

     or

          printf ("%s\n", system (cmd, 1));

     The `system' function can return two values.  The first is the exit status of the command and the second is any output from the command that was written to the standard output stream.  For example,

          [status, output] = system ("echo foo; exit 2");

     will set the variable `output' to the string `foo', and the variable `status' to the integer `2'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Execute a shell command specified by STRING.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
atexit
# name: <cell-element>
# type: string
# elements: 1
# length: 961
 -- Built-in Function:  atexit (FCN)
 -- Built-in Function:  atexit (FCN, FLAG)
     Register a function to be called when Octave exits.  For example,

          function last_words ()
            disp ("Bye bye");
          endfunction
          atexit ("last_words");

     will print the message "Bye bye" when Octave exits.

     The additional argument FLAG will register or unregister FCN from the list of functions to be called when Octave exits.  If FLAG is true, the function is registered, and if FLAG is false, it is unregistered.  For example, after registering the function `last_words' above,

          atexit ("last_words", false);

     will remove the function from the list and Octave will not call `last_words' when it exits.

     Note that `atexit' only removes the first occurrence of a function from the list, so if a function was placed in the list multiple times with `atexit', it must also be removed from the list multiple times.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Register a function to be called when Octave exits.

# name: <cell-element>
# type: string
# elements: 1
# length: 18
octave_config_info
# name: <cell-element>
# type: string
# elements: 1
# length: 238
 -- Built-in Function:  octave_config_info (OPTION)
     Return a structure containing configuration and installation information for Octave.

     if OPTION is a string, return the configuration information for the specified option.

   
# name: <cell-element>
# type: string
# elements: 1
# length: 84
Return a structure containing configuration and installation information for Octave.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
tsearch
# name: <cell-element>
# type: string
# elements: 1
# length: 276
 -- Loadable Function: IDX = tsearch (X, Y, T, XI, YI)
     Searches for the enclosing Delaunay convex hull.  For `T = delaunay (X, Y)', finds the index in T containing the points `(XI, YI)'.  For points outside the convex hull, IDX is NaN.  See also: delaunay, delaunayn.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Searches for the enclosing Delaunay convex hull.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
typecast
# name: <cell-element>
# type: string
# elements: 1
# length: 505
 -- Loadable Function:  typecast (X, TYPE)
     Convert from one datatype to another without changing the underlying data.  The argument TYPE defines the type of the return argument and must be one of 'uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64', 'single' or 'double'.

     An example of the use of typecast on a little-endian machine is

          X = uint16 ([1, 65535]);
          typecast (X, 'uint8')
          => [   0,   1, 255, 255]
     See also: cast, swapbytes.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Convert from one datatype to another without changing the underlying data.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
urlwrite
# name: <cell-element>
# type: string
# elements: 1
# length: 1338
 -- Loadable Function:  urlwrite (URL, LOCALFILE)
 -- Loadable Function: F = urlwrite (URL, LOCALFILE)
 -- Loadable Function: [F, SUCCESS] = urlwrite (URL, LOCALFILE)
 -- Loadable Function: [F, SUCCESS, MESSAGE] = urlwrite (URL, LOCALFILE)
     Download a remote file specified by its URL and save it as LOCALFILE.  For example,

          urlwrite ("ftp://ftp.octave.org/pub/octave/README",
                    "README.txt");

     The full path of the downloaded file is returned in F.  The variable SUCCESS is 1 if the download was successful, otherwise it is 0 in which case MESSAGE contains an error message.  If no output argument is specified and if an error occurs, then the error is signaled through Octave's error handling mechanism.

     This function uses libcurl.  Curl supports, among others, the HTTP, FTP and FILE protocols.  Username and password may be specified in the URL, for example:

          urlwrite ("http://username:password@example.com/file.txt",
                    "file.txt");

     GET and POST requests can be specified by METHOD and PARAM.  The parameter METHOD is either `get' or `post' and PARAM is a cell array of parameter and value pairs.  For example:

          urlwrite ("http://www.google.com/search", "search.html",
                    "get", {"query", "octave"});
     See also: urlread.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Download a remote file specified by its URL and save it as LOCALFILE.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
urlread
# name: <cell-element>
# type: string
# elements: 1
# length: 1195
 -- Loadable Function: S = urlread (URL)
 -- Loadable Function: [S, SUCCESS] = urlread (URL)
 -- Loadable Function: [S, SUCCESS, MESSAGE] = urlread (URL)
 -- Loadable Function: [...] = urlread (URL, METHOD, PARAM)
     Download a remote file specified by its URL and return its content in string S.  For example,

          s = urlread ("ftp://ftp.octave.org/pub/octave/README");

     The variable SUCCESS is 1 if the download was successful, otherwise it is 0 in which case MESSAGE contains an error message.  If no output argument is specified and if an error occurs, then the error is signaled through Octave's error handling mechanism.

     This function uses libcurl.  Curl supports, among others, the HTTP, FTP and FILE protocols.  Username and password may be specified in the URL.  For example,

          s = urlread ("http://user:password@example.com/file.txt");

     GET and POST requests can be specified by METHOD and PARAM.  The parameter METHOD is either `get' or `post' and PARAM is a cell array of parameter and value pairs.  For example,

          s = urlread ("http://www.google.com/search", "get",
                       {"query", "octave"});
     See also: urlwrite.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 79
Download a remote file specified by its URL and return its content in string S.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
isvarname
# name: <cell-element>
# type: string
# elements: 1
# length: 94
 -- Built-in Function:  isvarname (NAME)
     Return true if NAME is a valid variable name
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Return true if NAME is a valid variable name  

# name: <cell-element>
# type: string
# elements: 1
# length: 16
file_in_loadpath
# name: <cell-element>
# type: string
# elements: 1
# length: 648
 -- Built-in Function:  file_in_loadpath (FILE)
 -- Built-in Function:  file_in_loadpath (FILE, "all")
     Return the absolute name of FILE if it can be found in the list of directories specified by `path'.  If no file is found, return an empty matrix.

     If the first argument is a cell array of strings, search each directory of the loadpath for element of the cell array and return the first that matches.

     If the second optional argument `"all"' is supplied, return a cell array containing the list of all files that have the same name in the path.  If no files are found, return an empty cell array.  See also: file_in_path, path.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 99
Return the absolute name of FILE if it can be found in the list of directories specified by `path'.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
file_in_path
# name: <cell-element>
# type: string
# elements: 1
# length: 794
 -- Built-in Function:  file_in_path (PATH, FILE)
 -- Built-in Function:  file_in_path (PATH, FILE, "all")
     Return the absolute name of FILE if it can be found in PATH.  The value of PATH should be a colon-separated list of directories in the format described for `path'.  If no file is found, return an empty matrix.  For example,

          file_in_path (EXEC_PATH, "sh")
               => "/bin/sh"

     If the second argument is a cell array of strings, search each directory of the path for element of the cell array and return the first that matches.

     If the third optional argument `"all"' is supplied, return a cell array containing the list of all files that have the same name in the path.  If no files are found, return an empty cell array.  See also: file_in_loadpath.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Return the absolute name of FILE if it can be found in PATH.

# name: <cell-element>
# type: string
# elements: 1
# length: 17
do_string_escapes
# name: <cell-element>
# type: string
# elements: 1
# length: 120
 -- Built-in Function:  do_string_escapes (STRING)
     Convert special characters in STRING to their escaped forms.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Convert special characters in STRING to their escaped forms.

# name: <cell-element>
# type: string
# elements: 1
# length: 19
undo_string_escapes
# name: <cell-element>
# type: string
# elements: 1
# length: 732
 -- Built-in Function:  undo_string_escapes (S)
     Converts special characters in strings back to their escaped forms.  For example, the expression

          bell = "\a";

     assigns the value of the alert character (control-g, ASCII code 7) to the string variable `bell'.  If this string is printed, the system will ring the terminal bell (if it is possible).  This is normally the desired outcome.  However, sometimes it is useful to be able to print the original representation of the string, with the special characters replaced by their escape sequences.  For example,

          octave:13> undo_string_escapes (bell)
          ans = \a

     replaces the unprintable alert character with its printable representation.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 67
Converts special characters in strings back to their escaped forms.

# name: <cell-element>
# type: string
# elements: 1
# length: 20
is_absolute_filename
# name: <cell-element>
# type: string
# elements: 1
# length: 105
 -- Built-in Function:  is_absolute_filename (FILE)
     Return true if FILE is an absolute filename.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Return true if FILE is an absolute filename.

# name: <cell-element>
# type: string
# elements: 1
# length: 27
is_rooted_relative_filename
# name: <cell-element>
# type: string
# elements: 1
# length: 118
 -- Built-in Function:  is_rooted_relative_filename (FILE)
     Return true if FILE is a rooted-relative filename.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Return true if FILE is a rooted-relative filename.

# name: <cell-element>
# type: string
# elements: 1
# length: 22
make_absolute_filename
# name: <cell-element>
# type: string
# elements: 1
# length: 127
 -- Built-in Function:  make_absolute_filename (FILE)
     Return the full name of FILE, relative to the current directory.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return the full name of FILE, relative to the current directory.

# name: <cell-element>
# type: string
# elements: 1
# length: 16
find_dir_in_path
# name: <cell-element>
# type: string
# elements: 1
# length: 318
 -- Built-in Function:  find_dir_in_path (DIR)
     Return the full name of the path element matching DIR.  The match is performed at the end of each path element.  For example, if DIR is `"foo/bar"', it matches the path element `"/some/dir/foo/bar"', but not `"/some/dir/foo/bar/baz"' or `"/some/dir/allfoo/bar"'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Return the full name of the path element matching DIR.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
errno
# name: <cell-element>
# type: string
# elements: 1
# length: 339
 -- Built-in Function: ERR = errno ()
 -- Built-in Function: ERR = errno (VAL)
 -- Built-in Function: ERR = errno (NAME)
     Return the current value of the system-dependent variable errno, set its value to VAL and return the previous value, or return the named error code given NAME as a character string, or -1 if NAME is not found.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 209
Return the current value of the system-dependent variable errno, set its value to VAL and return the previous value, or return the named error code given NAME as a character string, or -1 if NAME is not found.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
errno_list
# name: <cell-element>
# type: string
# elements: 1
# length: 111
 -- Built-in Function:  errno_list ()
     Return a structure containing the system-dependent errno values.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return a structure containing the system-dependent errno values.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
isglobal
# name: <cell-element>
# type: string
# elements: 1
# length: 184
 -- Built-in Function:  isglobal (NAME)
     Return 1 if NAME is globally visible.  Otherwise, return 0.  For example,

          global x
          isglobal ("x")
               => 1

# name: <cell-element>
# type: string
# elements: 1
# length: 37
Return 1 if NAME is globally visible.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
is_global
# name: <cell-element>
# type: string
# elements: 1
# length: 106
 -- Built-in Function:  isglobal (NAME)
     This function has been deprecated.  Use isglobal instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
exist
# name: <cell-element>
# type: string
# elements: 1
# length: 1031
 -- Built-in Function:  exist (NAME, TYPE)
     Return 1 if the name exists as a variable, 2 if the name is an absolute file name, an ordinary file in Octave's `path', or (after appending `.m') a function file in Octave's `path', 3 if the name is a `.oct' or `.mex' file in Octave's `path', 5 if the name is a built-in function, 7 if the name is a directory, or 103 if the name is a function not associated with a file (entered on the command line).

     Otherwise, return 0.

     This function also returns 2 if a regular file called NAME exists in Octave's search path.  If you want information about other types of files, you should use some combination of the functions `file_in_path' and `stat' instead.

     If the optional argument TYPE is supplied, check only for symbols of the specified type.  Valid types are

    `"var"'
          Check only for variables.

    `"builtin"'
          Check only for built-in functions.

    `"file"'
          Check only for files.

    `"dir"'
          Check only for directories.

# name: <cell-element>
# type: string
# elements: 1
# length: 142
Return 1 if the name exists as a variable, 2 if the name is an absolute file name, an ordinary file in Octave's `path', or (after appending `.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
who
# name: <cell-element>
# type: string
# elements: 1
# length: 1046
 -- Command: who
 -- Command: who pattern ...
 -- Command: who option pattern ...
 -- Command: C = who("pattern", ...)
     List currently defined variables matching the given patterns.  Valid pattern syntax is the same as described for the `clear' command.  If no patterns are supplied, all variables are listed.  By default, only variables visible in the local scope are displayed.

     The following are valid options but may not be combined.

    `global'
          List variables in the global scope rather than the current scope.

    `-regexp'
          The patterns are considered to be regular expressions when matching the variables to display.  The same pattern syntax accepted by the `regexp' function is used.

    `-file'
          The next argument is treated as a filename.  All variables found within the specified file are listed.  No patterns are accepted when reading variables from a file.

     If called as a function, return a cell array of defined variable names matching the given patterns.  See also: whos, regexp.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 61
List currently defined variables matching the given patterns.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
whos
# name: <cell-element>
# type: string
# elements: 1
# length: 1377
 -- Command: whos
 -- Command: whos pattern ...
 -- Command: whos option pattern ...
 -- Command: S = whos("pattern", ...)
     Provide detailed information on currently defined variables matching the given patterns.  Options and pattern syntax are the same as for the `who' command.  Extended information about each variable is summarized in a table with the following default entries.

    Attr
          Attributes of the listed variable.  Possible attributes are:
         blank
               Variable in local scope

         `g'
               Variable with global scope

         `p'
               Persistent variable

    Name
          The name of the variable.

    Size
          The logical size of the variable.  A scalar is 1x1, a vector is 1xN or Nx1, a 2-D matrix is MxN.

    Bytes
          The amount of memory currently used to store the variable.

    Class
          The class of the variable.  Examples include double, single, char, uint16, cell, and struct.

     The table can be customized to display more or less information through the function `whos_line_format'.

     If `whos' is called as a function, return a struct array of defined variable names matching the given patterns.  Fields in the structure describing each variable are: name, size, bytes, class, global, sparse, complex, nesting, persistent.  See also: who, whos_line_format.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 88
Provide detailed information on currently defined variables matching the given patterns.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
mlock
# name: <cell-element>
# type: string
# elements: 1
# length: 151
 -- Built-in Function:  mlock ()
     Lock the current function into memory so that it can't be cleared.  See also: munlock, mislocked, persistent.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Lock the current function into memory so that it can't be cleared.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
munlock
# name: <cell-element>
# type: string
# elements: 1
# length: 173
 -- Built-in Function:  munlock (FCN)
     Unlock the named function.  If no function is named then unlock the current function.  See also: mlock, mislocked, persistent.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Unlock the named function.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
mislocked
# name: <cell-element>
# type: string
# elements: 1
# length: 209
 -- Built-in Function:  mislocked (FCN)
     Return true if the named function is locked.  If no function is named then return true if the current function is locked.  See also: mlock, munlock, persistent.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Return true if the named function is locked.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
clear
# name: <cell-element>
# type: string
# elements: 1
# length: 2049
 -- Command: clear [options] pattern ...
     Delete the names matching the given patterns from the symbol table.  The pattern may contain the following special characters:

    `?'
          Match any single character.

    `*'
          Match zero or more characters.

    `[ LIST ]'
          Match the list of characters specified by LIST.  If the first character is `!' or `^', match all characters except those specified by LIST.  For example, the pattern `[a-zA-Z]' will match all lower and upper case alphabetic characters.

     For example, the command

          clear foo b*r

     clears the name `foo' and all names that begin with the letter `b' and end with the letter `r'.

     If `clear' is called without any arguments, all user-defined variables (local and global) are cleared from the symbol table.  If `clear' is called with at least one argument, only the visible names matching the arguments are cleared.  For example, suppose you have defined a function `foo', and then hidden it by performing the assignment `foo = 2'.  Executing the command `clear foo' once will clear the variable definition and restore the definition of `foo' as a function.  Executing `clear foo' a second time will clear the function definition.

     The following options are available in both long and short form
    `-all, -a'
          Clears all local and global user-defined variables and all functions from the symbol table.

    `-exclusive, -x'
          Clears the variables that don't match the following pattern.

    `-functions, -f'
          Clears the function names and the built-in symbols names.

    `-global, -g'
          Clears the global symbol names.

    `-variables, -v'
          Clears the local variable names.

    `-classes, -c'
          Clears the class structure table and clears all objects.

    `-regexp, -r'
          The arguments are treated as regular expressions as any variables that match will be cleared.
     With the exception of `exclusive', all long options can be used without the dash as well.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 67
Delete the names matching the given patterns from the symbol table.

# name: <cell-element>
# type: string
# elements: 1
# length: 16
whos_line_format
# name: <cell-element>
# type: string
# elements: 1
# length: 1622
 -- Built-in Function: VAL = whos_line_format ()
 -- Built-in Function: OLD_VAL = whos_line_format (NEW_VAL)
     Query or set the format string used by the command `whos'.

     A full format string is:

          %[modifier]<command>[:width[:left-min[:balance]]];

     The following command sequences are available:

    `%a'
          Prints attributes of variables (g=global, p=persistent, f=formal parameter, a=automatic variable).

    `%b'
          Prints number of bytes occupied by variables.

    `%c'
          Prints class names of variables.

    `%e'
          Prints elements held by variables.

    `%n'
          Prints variable names.

    `%s'
          Prints dimensions of variables.

    `%t'
          Prints type names of variables.

     Every command may also have an alignment modifier:

    `l'
          Left alignment.

    `r'
          Right alignment (default).

    `c'
          Column-aligned (only applicable to command %s).

     The `width' parameter is a positive integer specifying the minimum number of columns used for printing.  No maximum is needed as the field will auto-expand as required.

     The parameters `left-min' and `balance' are only available when the column-aligned modifier is used with the command `%s'.  `balance' specifies the column number within the field width which will be aligned between entries.  Numbering starts from 0 which indicates the leftmost column.  `left-min' specifies the minimum field width to the left of the specified balance column.

     The default format is `"  %a:4; %ln:6; %cs:16:6:1;  %rb:12;  %lc:-1;\n"'.  See also: whos.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Query or set the format string used by the command `whos'.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
geometric_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 349
 -- Function File:  geometric_rnd (P, R, C)
 -- Function File:  geometric_rnd (P, SZ)
     Return an R by C matrix of random samples from the geometric distribution with parameter P, which must be a scalar or of size R by C.

     If R and C are given create a matrix with R rows and C columns.  Or if SZ is a vector, create a matrix of size SZ.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 133
Return an R by C matrix of random samples from the geometric distribution with parameter P, which must be a scalar or of size R by C.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
meshdom
# name: <cell-element>
# type: string
# elements: 1
# length: 103
 -- Function File:  meshdom (X, Y)
     This function has been deprecated.  Use `meshgrid' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
is_square
# name: <cell-element>
# type: string
# elements: 1
# length: 100
 -- Function File:  is_square (X)
     This function has been deprecated.  Use issquare instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
poisson_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 178
 -- Function File:  poisson_pdf (X, LAMBDA)
     For each element of X, compute the probability density function (PDF) at X of the poisson distribution with parameter LAMBDA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 125
For each element of X, compute the probability density function (PDF) at X of the poisson distribution with parameter LAMBDA.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
spkron
# name: <cell-element>
# type: string
# elements: 1
# length: 98
 -- Function File:  spkron (A, B)
     This function has been deprecated.  Use `kron' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
spcholinv
# name: <cell-element>
# type: string
# elements: 1
# length: 101
 -- Function File:  spcholinv (U)
     This function has been deprecated.  Use `cholinv' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
weibull_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 260
 -- Function File:  weibull_cdf (X, SHAPE, SCALE)
     Compute the cumulative distribution function (CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE, which is

          1 - exp(-(x/shape)^scale)

     for X >= 0.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 147
Compute the cumulative distribution function (CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE, which is 

# name: <cell-element>
# type: string
# elements: 1
# length: 7
weibpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 297
 -- Function File:  weibpdf (X, SCALE, SHAPE)
     Compute the probability density function (PDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE which is given by

             scale * shape^(-scale) * x^(scale-1) * exp(-(x/shape)^scale)

     for X > 0.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 151
Compute the probability density function (PDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE which is given by 

# name: <cell-element>
# type: string
# elements: 1
# length: 10
normal_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 222
 -- Function File:  normal_cdf (X, M, V)
     For each element of X, compute the cumulative distribution function (CDF) at X of the normal distribution with mean M and variance V.

     Default values are M = 0, V = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 133
For each element of X, compute the cumulative distribution function (CDF) at X of the normal distribution with mean M and variance V.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
chisquare_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 180
 -- Function File:  chisquare_inv (X, N)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the chisquare distribution with N degrees of freedom.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 130
For each element of X, compute the quantile (the inverse of the CDF) at X of the chisquare distribution with N degrees of freedom.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
splu
# name: <cell-element>
# type: string
# elements: 1
# length: 299
 -- Loadable Function: [L, U] = splu (A)
 -- Loadable Function: [L, U, P] = splu (A)
 -- Loadable Function: [L, U, P, Q] = splu (A)
 -- Loadable Function: [L, U, P, Q] = splu (..., THRES)
 -- Loadable Function: [L, U, P] = splu (..., Q)
     This function has been deprecated.  Use `lu' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
gamma_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 173
 -- Function File:  gamma_pdf (X, A, B)
     For each element of X, return the probability density function (PDF) at X of the Gamma distribution with parameters A and B.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 124
For each element of X, return the probability density function (PDF) at X of the Gamma distribution with parameters A and B.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
t_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 167
 -- Function File:  t_inv (X, N)
     For each component of X, compute the quantile (the inverse of the CDF) at X of the t (Student) distribution with parameter N.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 125
For each component of X, compute the quantile (the inverse of the CDF) at X of the t (Student) distribution with parameter N.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
pascal_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 329
 -- Function File:  pascal_pdf (X, N, P)
     For each element of X, compute the probability density function (PDF) at X of the Pascal (negative binomial) distribution with parameters N and P.

     The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 146
For each element of X, compute the probability density function (PDF) at X of the Pascal (negative binomial) distribution with parameters N and P.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
isstr
# name: <cell-element>
# type: string
# elements: 1
# length: 94
 -- Function File:  isstr (A)
     This function has been deprecated.  Use ischar instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
is_struct
# name: <cell-element>
# type: string
# elements: 1
# length: 100
 -- Function File:  is_struct (A)
     This function has been deprecated.  Use isstruct instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
chisquare_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 181
 -- Function File:  chisquare_pdf (X, N)
     For each element of X, compute the probability density function (PDF) at X of the chisquare distribution with N degrees of freedom.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 131
For each element of X, compute the probability density function (PDF) at X of the chisquare distribution with N degrees of freedom.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
spdiag
# name: <cell-element>
# type: string
# elements: 1
# length: 113
 -- Function File:  spdiag (V, K)
     This function has been deprecated.  Use `sparse (diag (...))' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
setstr
# name: <cell-element>
# type: string
# elements: 1
# length: 93
 -- Function File:  setstr (S)
     This function has been deprecated.  Use char instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
spmin
# name: <cell-element>
# type: string
# elements: 1
# length: 146
 -- Mapping Function:  spmin (X, Y, DIM)
 -- Mapping Function: [W, IW] = spmin (X)
     This function has been deprecated.  Use `min' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
uniform_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 182
 -- Function File:  uniform_cdf (X, A, B)
     Return the CDF at X of the uniform distribution on [A, B], i.e., PROB (uniform (A, B) <= x).

     Default values are A = 0, B = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Return the CDF at X of the uniform distribution on [A, B], i.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
weibull_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 301
 -- Function File:  weibull_pdf (X, SHAPE, SCALE)
     Compute the probability density function (PDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE which is given by

             scale * shape^(-scale) * x^(scale-1) * exp(-(x/shape)^scale)

     for X > 0.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 151
Compute the probability density function (PDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE which is given by 

# name: <cell-element>
# type: string
# elements: 1
# length: 9
spcumprod
# name: <cell-element>
# type: string
# elements: 1
# length: 106
 -- Function File:  spcumprod (X, DIM)
     This function has been deprecated.  Use `cumprod' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
spprod
# name: <cell-element>
# type: string
# elements: 1
# length: 100
 -- Function File:  spprod (X, DIM)
     This function has been deprecated.  Use `prod' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
str2mat
# name: <cell-element>
# type: string
# elements: 1
# length: 349
 -- Function File:  str2mat (S_1, ..., S_N)
     Return a matrix containing the strings S_1, ..., S_N as its rows.  Each string is padded with blanks in order to form a valid matrix.

     This function is modelled after MATLAB.  In Octave, you can create a matrix of strings by `[S_1; ...; S_N]' even if the strings are not all the same length.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Return a matrix containing the strings S_1, .

# name: <cell-element>
# type: string
# elements: 1
# length: 10
is_complex
# name: <cell-element>
# type: string
# elements: 1
# length: 102
 -- Function File:  is_complex (A)
     This function has been deprecated.  Use iscomplex instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
lognormal_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 343
 -- Function File:  lognormal_inv (X, A, V)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the lognormal distribution with parameters A and V.  If a random variable follows this distribution, its logarithm is normally distributed with mean `log (A)' and variance V.

     Default values are A = 1, V = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 128
For each element of X, compute the quantile (the inverse of the CDF) at X of the lognormal distribution with parameters A and V.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
t_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 175
 -- Function File:  t_pdf (X, N)
     For each element of X, compute the probability density function (PDF) at X of the T (Student) distribution with N degrees of freedom.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 133
For each element of X, compute the probability density function (PDF) at X of the T (Student) distribution with N degrees of freedom.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
com2str
# name: <cell-element>
# type: string
# elements: 1
# length: 319
 -- Function File:  com2str (ZZ, FLG)
     This function has been deprecated.  Use num2str instead.

     Convert complex number to a string.  *Inputs*
    ZZ
          complex number

    FLG
          format flag 0 (default):            -1, 0, 1,   1i,   1 + 0.5i 1 (for use with zpout): -1, 0, + 1, + 1i, + 1 + 0.5i

# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
polyinteg
# name: <cell-element>
# type: string
# elements: 1
# length: 308
 -- Function File:  polyinteg (C)
     Return the coefficients of the integral of the polynomial whose coefficients are represented by the vector C.

     The constant of integration is set to zero.  See also: polyint, poly, polyderiv, polyreduce, roots, conv, deconv, residue, filter, polyval, polyvalm.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Return the coefficients of the integral of the polynomial whose coefficients are represented by the vector C.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
f_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 388
 -- Function File:  f_rnd (M, N, R, C)
 -- Function File:  f_rnd (M, N, SZ)
     Return an R by C matrix of random samples from the F distribution with M and N degrees of freedom.  Both M and N must be scalar or of size R by C.  If SZ is a vector the random samples are in a matrix of size SZ.

     If R and C are omitted, the size of the result matrix is the common size of M and N.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Return an R by C matrix of random samples from the F distribution with M and N degrees of freedom.

# name: <cell-element>
# type: string
# elements: 1
# length: 15
exponential_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 383
 -- Function File:  exponential_rnd (LAMBDA, R, C)
 -- Function File:  exponential_rnd (LAMBDA, SZ)
     Return an R by C matrix of random samples from the exponential distribution with parameter LAMBDA, which must be a scalar or of size R by C.  Or if SZ is a vector, create a matrix of size SZ.

     If R and C are omitted, the size of the result matrix is the size of LAMBDA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 140
Return an R by C matrix of random samples from the exponential distribution with parameter LAMBDA, which must be a scalar or of size R by C.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
lognormal_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 389
 -- Function File:  lognormal_rnd (A, V, R, C)
 -- Function File:  lognormal_rnd (A, V, SZ)
     Return an R by C matrix of random samples from the lognormal distribution with parameters A and V.  Both A and V must be scalar or of size R by C.  Or if SZ is a vector, create a matrix of size SZ.

     If R and C are omitted, the size of the result matrix is the common size of A and V.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Return an R by C matrix of random samples from the lognormal distribution with parameters A and V.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
binomial_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 154
 -- Function File:  binomial_inv (X, N, P)
     For each element of X, compute the quantile at X of the binomial distribution with parameters N and P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 102
For each element of X, compute the quantile at X of the binomial distribution with parameters N and P.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
poisson_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 275
 -- Function File:  poisson_rnd (LAMBDA, R, C)
     Return an R by C matrix of random samples from the Poisson distribution with parameter LAMBDA, which must be a scalar or of size R by C.

     If R and C are omitted, the size of the result matrix is the size of LAMBDA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 136
Return an R by C matrix of random samples from the Poisson distribution with parameter LAMBDA, which must be a scalar or of size R by C.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
weibinv
# name: <cell-element>
# type: string
# elements: 1
# length: 187
 -- Function File:  weibinv (X, SCALE, SHAPE)
     Compute the quantile (the inverse of the CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 132
Compute the quantile (the inverse of the CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
spcumsum
# name: <cell-element>
# type: string
# elements: 1
# length: 104
 -- Function File:  spcumsum (X, DIM)
     This function has been deprecated.  Use `cumsum' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
is_matrix
# name: <cell-element>
# type: string
# elements: 1
# length: 100
 -- Function File:  is_matrix (A)
     This function has been deprecated.  Use ismatrix instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 15
exponential_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 185
 -- Function File:  exponential_inv (X, LAMBDA)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the exponential distribution with parameter LAMBDA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 128
For each element of X, compute the quantile (the inverse of the CDF) at X of the exponential distribution with parameter LAMBDA.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
geometric_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 146
 -- Function File:  geometric_inv (X, P)
     For each element of X, compute the quantile at X of the geometric distribution with parameter P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 96
For each element of X, compute the quantile at X of the geometric distribution with parameter P.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
spatan2
# name: <cell-element>
# type: string
# elements: 1
# length: 100
 -- Function File:  spatan2 (Y, X)
     This function has been deprecated.  Use `atan2' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
lognormal_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 348
 -- Function File:  lognormal_cdf (X, A, V)
     For each element of X, compute the cumulative distribution function (CDF) at X of the lognormal distribution with parameters A and V.  If a random variable follows this distribution, its logarithm is normally distributed with mean `log (A)' and variance V.

     Default values are A = 1, V = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 133
For each element of X, compute the cumulative distribution function (CDF) at X of the lognormal distribution with parameters A and V.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
gamma_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 178
 -- Function File:  gamma_cdf (X, A, B)
     For each element of X, compute the cumulative distribution function (CDF) at X of the Gamma distribution with parameters A and B.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 129
For each element of X, compute the cumulative distribution function (CDF) at X of the Gamma distribution with parameters A and B.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
clearplot
# name: <cell-element>
# type: string
# elements: 1
# length: 94
 -- Function File:  clearplot ()
     This function has been deprecated.  Use clf instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 14
unmark_command
# name: <cell-element>
# type: string
# elements: 1
# length: 133
 -- Built-in Function:  unmark_command (NAME)
     This function is obsolete and will be removed from a future version of Octave.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 78
This function is obsolete and will be removed from a future version of Octave.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
dmult
# name: <cell-element>
# type: string
# elements: 1
# length: 163
 -- Function File:  dmult (A, B)
     This function has been deprecated.  Use the direct syntax `diag(A)*B' which is more readable and now also more efficient.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 15
struct_contains
# name: <cell-element>
# type: string
# elements: 1
# length: 114
 -- Function File:  struct_contains (EXPR, NAME)
     This function has been deprecated.  Use isfield instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
normal_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 345
 -- Function File:  normal_rnd (M, V, R, C)
 -- Function File:  normal_rnd (M, V, SZ)
     Return an R by C  or `size (SZ)' matrix of random samples from the normal distribution with parameters M and V.  Both M and V must be scalar or of size R by C.

     If R and C are omitted, the size of the result matrix is the common size of M and V.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 110
Return an R by C or `size (SZ)' matrix of random samples from the normal distribution with parameters M and V.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
spmax
# name: <cell-element>
# type: string
# elements: 1
# length: 146
 -- Mapping Function:  spmax (X, Y, DIM)
 -- Mapping Function: [W, IW] = spmax (X)
     This function has been deprecated.  Use `max' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
spchol2inv
# name: <cell-element>
# type: string
# elements: 1
# length: 103
 -- Function File:  spchol2inv (U)
     This function has been deprecated.  Use `chol2inv' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
is_bool
# name: <cell-element>
# type: string
# elements: 1
# length: 96
 -- Function File:  is_bool (A)
     This function has been deprecated.  Use isbool instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
gamma_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 343
 -- Function File:  gamma_rnd (A, B, R, C)
 -- Function File:  gamma_rnd (A, B, SZ)
     Return an R by C or a `size (SZ)' matrix of random samples from the Gamma distribution with parameters A and B.  Both A and B must be scalar or of size R by C.

     If R and C are omitted, the size of the result matrix is the common size of A and B.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Return an R by C or a `size (SZ)' matrix of random samples from the Gamma distribution with parameters A and B.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
pascal_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 303
 -- Function File:  pascal_inv (X, N, P)
     For each element of X, compute the quantile at X of the Pascal (negative binomial) distribution with parameters N and P.

     The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 120
For each element of X, compute the quantile at X of the Pascal (negative binomial) distribution with parameters N and P.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
uniform_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 172
 -- Function File:  uniform_pdf (X, A, B)
     For each element of X, compute the PDF at X of the uniform distribution on [A, B].

     Default values are A = 0, B = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 82
For each element of X, compute the PDF at X of the uniform distribution on [A, B].

# name: <cell-element>
# type: string
# elements: 1
# length: 15
exponential_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 243
 -- Function File:  exponential_cdf (X, LAMBDA)
     For each element of X, compute the cumulative distribution function (CDF) at X of the exponential distribution with parameter LAMBDA.

     The arguments can be of common size or scalar.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 133
For each element of X, compute the cumulative distribution function (CDF) at X of the exponential distribution with parameter LAMBDA.

# name: <cell-element>
# type: string
# elements: 1
# length: 18
hypergeometric_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 262
 -- Function File:  hypergeometric_inv (X, M, T, N)
     For each element of X, compute the quantile at X of the hypergeometric distribution with parameters M, T, and N.

     The parameters M, T, and N must positive integers with M and N not greater than T.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 112
For each element of X, compute the quantile at X of the hypergeometric distribution with parameters M, T, and N.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
wiener_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 435
 -- Function File:  wiener_rnd (T, D, N)
     Return a simulated realization of the D-dimensional Wiener Process on the interval [0, T].  If D is omitted, D = 1 is used.  The first column of the return matrix contains time, the remaining columns contain the Wiener process.

     The optional parameter N gives the number of summands used for simulating the process over an interval of length 1.  If N is omitted, N = 1000 is used.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 90
Return a simulated realization of the D-dimensional Wiener Process on the interval [0, T].

# name: <cell-element>
# type: string
# elements: 1
# length: 6
spfind
# name: <cell-element>
# type: string
# elements: 1
# length: 231
 -- Loadable Function:  spfind (X)
 -- Loadable Function:  spfind (X, N)
 -- Loadable Function:  spfind (X, N, DIRECTION)
 -- Loadable Function: [I, J, V spfind (...)
     This function has been deprecated.  Use `find' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
iscommand
# name: <cell-element>
# type: string
# elements: 1
# length: 128
 -- Built-in Function:  iscommand (NAME)
     This function is obsolete and will be removed from a future version of Octave.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 78
This function is obsolete and will be removed from a future version of Octave.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
lognormal_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 344
 -- Function File:  lognormal_pdf (X, A, V)
     For each element of X, compute the probability density function (PDF) at X of the lognormal distribution with parameters A and V.  If a random variable follows this distribution, its logarithm is normally distributed with mean `log (A)' and variance V.

     Default values are A = 1, V = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 129
For each element of X, compute the probability density function (PDF) at X of the lognormal distribution with parameters A and V.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
beta_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 141
 -- Function File:  beta_pdf (X, A, B)
     For each element of X, returns the PDF at X of the beta distribution with parameters A and B.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 93
For each element of X, returns the PDF at X of the beta distribution with parameters A and B.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
weibrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 397
 -- Function File:  weibrnd (SCALE, SHAPE, R, C)
 -- Function File:  weibrnd (SCALE, SHAPE, SZ)
     Return an R by C matrix of random samples from the Weibull distribution with parameters SCALE and SHAPE which must be scalar or of size R by C.  Or if SZ is a vector return a matrix of size SZ.

     If R and C are omitted, the size of the result matrix is the common size of ALPHA and SIGMA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 143
Return an R by C matrix of random samples from the Weibull distribution with parameters SCALE and SHAPE which must be scalar or of size R by C.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
intersection
# name: <cell-element>
# type: string
# elements: 1
# length: 107
 -- Function File:  intersection (X, Y)
     This function has been deprecated.  Use intersect instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
weibull_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 191
 -- Function File:  weibull_inv (X, SHAPE, SCALE)
     Compute the quantile (the inverse of the CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 132
Compute the quantile (the inverse of the CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
weibcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 256
 -- Function File:  weibcdf (X, SCALE, SHAPE)
     Compute the cumulative distribution function (CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE, which is

          1 - exp(-(x/shape)^scale)

     for X >= 0.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 147
Compute the cumulative distribution function (CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE, which is 

# name: <cell-element>
# type: string
# elements: 1
# length: 5
t_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 348
 -- Function File:  t_rnd (N, R, C)
 -- Function File:  t_rnd (N, SZ)
     Return an R by C matrix of random samples from the t (Student) distribution with N degrees of freedom.  N must be a scalar or of size R by C.  Or if SZ is a vector create a matrix of size SZ.

     If R and C are omitted, the size of the result matrix is the size of N.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 102
Return an R by C matrix of random samples from the t (Student) distribution with N degrees of freedom.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
spchol
# name: <cell-element>
# type: string
# elements: 1
# length: 191
 -- Loadable Function: R = spchol (A)
 -- Loadable Function: [R, P] = spchol (A)
 -- Loadable Function: [R, P, Q] = spchol (A)
     This function has been deprecated.  Use `chol' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 18
hypergeometric_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 405
 -- Function File:  hypergeometric_pdf (X, M, T, N)
     Compute the probability density function (PDF) at X of the hypergeometric distribution with parameters M, T, and N.  This is the probability of obtaining X marked items when randomly drawing a sample of size N without replacement from a population of total size T containing M marked items.

     The arguments must be of common size or scalar.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 115
Compute the probability density function (PDF) at X of the hypergeometric distribution with parameters M, T, and N.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
loadimage
# name: <cell-element>
# type: string
# elements: 1
# length: 214
 -- Function File: [X, MAP] = loadimage (FILE)
     Load an image file and its associated color map from the specified FILE.  The image must be stored in Octave's image format.  See also: saveimage, load, save.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 72
Load an image file and its associated color map from the specified FILE.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
binomial_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 180
 -- Function File:  binomial_pdf (X, N, P)
     For each element of X, compute the probability density function (PDF) at X of the binomial distribution with parameters N and P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 128
For each element of X, compute the probability density function (PDF) at X of the binomial distribution with parameters N and P.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
spsumsq
# name: <cell-element>
# type: string
# elements: 1
# length: 102
 -- Function File:  spsumsq (X, DIM)
     This function has been deprecated.  Use `sumsq' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
chisquare_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 330
 -- Function File:  chisquare_rnd (N, R, C)
 -- Function File:  chisquare_rnd (N, SZ)
     Return an R by C  or a `size (SZ)' matrix of random samples from the chisquare distribution with N degrees of freedom.  N must be a scalar or of size R by C.

     If R and C are omitted, the size of the result matrix is the size of N.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 117
Return an R by C or a `size (SZ)' matrix of random samples from the chisquare distribution with N degrees of freedom.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
splchol
# name: <cell-element>
# type: string
# elements: 1
# length: 208
 -- Loadable Function: L = splchol (A)
 -- Loadable Function: [L, P] = splchol (A)
 -- Loadable Function: [L, P, Q] = splchol (A)
     This function has been deprecated.  Use `chol (...,'lower')' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
spinv
# name: <cell-element>
# type: string
# elements: 1
# length: 105
 -- Function File: [X, RCOND] = spinv (A)
     This function has been deprecated.  Use `inv' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
spsum
# name: <cell-element>
# type: string
# elements: 1
# length: 98
 -- Function File:  spsum (X, DIM)
     This function has been deprecated.  Use `sum' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
poisson_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 179
 -- Function File:  poisson_inv (X, LAMBDA)
     For each component of X, compute the quantile (the inverse of the CDF) at X of the Poisson distribution with parameter LAMBDA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 126
For each component of X, compute the quantile (the inverse of the CDF) at X of the Poisson distribution with parameter LAMBDA.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
beta_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 339
 -- Function File:  beta_rnd (A, B, R, C)
 -- Function File:  beta_rnd (A, B, SZ)
     Return an R by C or `size (SZ)' matrix of random samples from the Beta distribution with parameters A and B.  Both A and B must be scalar or of size R  by C.

     If R and C are omitted, the size of the result matrix is the common size of A and B.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 108
Return an R by C or `size (SZ)' matrix of random samples from the Beta distribution with parameters A and B.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
chisquare_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 185
 -- Function File:  chisquare_cdf (X, N)
     For each element of X, compute the cumulative distribution function (CDF) at X of the chisquare distribution with N degrees of freedom.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 135
For each element of X, compute the cumulative distribution function (CDF) at X of the chisquare distribution with N degrees of freedom.

# name: <cell-element>
# type: string
# elements: 1
# length: 15
mark_as_command
# name: <cell-element>
# type: string
# elements: 1
# length: 134
 -- Built-in Function:  mark_as_command (NAME)
     This function is obsolete and will be removed from a future version of Octave.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 78
This function is obsolete and will be removed from a future version of Octave.

# name: <cell-element>
# type: string
# elements: 1
# length: 18
hypergeometric_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 458
 -- Function File:  hypergeometric_cdf (X, M, T, N)
     Compute the cumulative distribution function (CDF) at X of the hypergeometric distribution with parameters M, T, and N.  This is the probability of obtaining not more than X marked items when randomly drawing a sample of size N without replacement from a population of total size T containing M marked items.

     The parameters M, T, and N must positive integers with M and N not greater than T.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 119
Compute the cumulative distribution function (CDF) at X of the hypergeometric distribution with parameters M, T, and N.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
is_scalar
# name: <cell-element>
# type: string
# elements: 1
# length: 100
 -- Function File:  is_scalar (A)
     This function has been deprecated.  Use isscalar instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
uniform_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 335
 -- Function File:  uniform_rnd (A, B, R, C)
 -- Function File:  uniform_rnd (A, B, SZ)
     Return an R by C or a `size (SZ)' matrix of random samples from the uniform distribution on [A, B].  Both A and B must be scalar or of size R by C.

     If R and C are omitted, the size of the result matrix is the common size of A and B.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 99
Return an R by C or a `size (SZ)' matrix of random samples from the uniform distribution on [A, B].

# name: <cell-element>
# type: string
# elements: 1
# length: 10
create_set
# name: <cell-element>
# type: string
# elements: 1
# length: 142
 -- Function File:  create_set (X)
 -- Function File:  create_set (X, "rows")
     This function has been deprecated.  Use unique instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 17
unmark_rawcommand
# name: <cell-element>
# type: string
# elements: 1
# length: 136
 -- Built-in Function:  unmark_rawcommand (NAME)
     This function is obsolete and will be removed from a future version of Octave.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 78
This function is obsolete and will be removed from a future version of Octave.

# name: <cell-element>
# type: string
# elements: 1
# length: 15
struct_elements
# name: <cell-element>
# type: string
# elements: 1
# length: 113
 -- Function File:  struct_elements (STRUCT)
     This function has been deprecated.  Use fieldnames instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
beta_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 173
 -- Function File:  beta_inv (X, A, B)
     For each component of X, compute the quantile (the inverse of the CDF) at X of the Beta distribution with parameters A and B.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 125
For each component of X, compute the quantile (the inverse of the CDF) at X of the Beta distribution with parameters A and B.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
gamma_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 175
 -- Function File:  gamma_inv (X, A, B)
     For each component of X, compute the quantile (the inverse of the CDF) at X of the Gamma distribution with parameters A and B.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 126
For each component of X, compute the quantile (the inverse of the CDF) at X of the Gamma distribution with parameters A and B.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
split
# name: <cell-element>
# type: string
# elements: 1
# length: 118
 -- Function File:  split (S, T, N)
     This function has been deprecated.  Use `char (strsplit (s, t))' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
clg
# name: <cell-element>
# type: string
# elements: 1
# length: 88
 -- Function File:  clg ()
     This function has been deprecated.  Use clf instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 15
exponential_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 181
 -- Function File:  exponential_pdf (X, LAMBDA)
     For each element of X, compute the probability density function (PDF) of the exponential distribution with parameter LAMBDA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 124
For each element of X, compute the probability density function (PDF) of the exponential distribution with parameter LAMBDA.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
f_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 167
 -- Function File:  f_inv (X, M, N)
     For each component of X, compute the quantile (the inverse of the CDF) at X of the F distribution with parameters M and N.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 122
For each component of X, compute the quantile (the inverse of the CDF) at X of the F distribution with parameters M and N.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
normal_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 218
 -- Function File:  normal_pdf (X, M, V)
     For each element of X, compute the probability density function (PDF) at X of the normal distribution with mean M and variance V.

     Default values are M = 0, V = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 129
For each element of X, compute the probability density function (PDF) at X of the normal distribution with mean M and variance V.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
binomial_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 353
 -- Function File:  binomial_rnd (N, P, R, C)
 -- Function File:  binomial_rnd (N, P, SZ)
     Return an R by C  or a `size (SZ)' matrix of random samples from the binomial distribution with parameters N and P.  Both N and P must be scalar or of size R by C.

     If R and C are omitted, the size of the result matrix is the common size of N and P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 114
Return an R by C or a `size (SZ)' matrix of random samples from the binomial distribution with parameters N and P.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
pascal_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 298
 -- Function File:  pascal_cdf (X, N, P)
     For each element of X, compute the CDF at x of the Pascal (negative binomial) distribution with parameters N and P.

     The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 115
For each element of X, compute the CDF at x of the Pascal (negative binomial) distribution with parameters N and P.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
geometric_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 172
 -- Function File:  geometric_pdf (X, P)
     For each element of X, compute the probability density function (PDF) at X of the geometric distribution with parameter P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 122
For each element of X, compute the probability density function (PDF) at X of the geometric distribution with parameter P.

# name: <cell-element>
# type: string
# elements: 1
# length: 18
mark_as_rawcommand
# name: <cell-element>
# type: string
# elements: 1
# length: 137
 -- Built-in Function:  mark_as_rawcommand (NAME)
     This function is obsolete and will be removed from a future version of Octave.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 78
This function is obsolete and will be removed from a future version of Octave.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
is_vector
# name: <cell-element>
# type: string
# elements: 1
# length: 100
 -- Function File:  is_vector (A)
     This function has been deprecated.  Use isvector instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
f_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 171
 -- Function File:  f_cdf (X, M, N)
     For each element of X, compute the CDF at X of the F distribution with M and N degrees of freedom, i.e., PROB (F (M, N) <= X).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 101
For each element of X, compute the CDF at X of the F distribution with M and N degrees of freedom, i.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
normal_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 217
 -- Function File:  normal_inv (X, M, V)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the normal distribution with mean M and variance V.

     Default values are M = 0, V = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 128
For each element of X, compute the quantile (the inverse of the CDF) at X of the normal distribution with mean M and variance V.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
israwcommand
# name: <cell-element>
# type: string
# elements: 1
# length: 131
 -- Built-in Function:  israwcommand (NAME)
     This function is obsolete and will be removed from a future version of Octave.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 78
This function is obsolete and will be removed from a future version of Octave.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
uniform_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 202
 -- Function File:  uniform_inv (X, A, B)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the uniform distribution on [A, B].

     Default values are A = 0, B = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 112
For each element of X, compute the quantile (the inverse of the CDF) at X of the uniform distribution on [A, B].

# name: <cell-element>
# type: string
# elements: 1
# length: 13
geometric_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 141
 -- Function File:  geometric_cdf (X, P)
     For each element of X, compute the CDF at X of the geometric distribution with parameter P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 91
For each element of X, compute the CDF at X of the geometric distribution with parameter P.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
binomial_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 149
 -- Function File:  binomial_cdf (X, N, P)
     For each element of X, compute the CDF at X of the binomial distribution with parameters N and P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 97
For each element of X, compute the CDF at X of the binomial distribution with parameters N and P.

# name: <cell-element>
# type: string
# elements: 1
# length: 18
hypergeometric_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 302
 -- Function File:  hypergeometric_rnd (M, T, N, R, C)
 -- Function File:  hygernd (M, T, N, SZ)
     Return an R by C matrix of random samples from the hypergeometric distribution with parameters M, T, and N.

     The parameters M, T, and N must positive integers with M and N not greater than T.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 107
Return an R by C matrix of random samples from the hypergeometric distribution with parameters M, T, and N.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
beta_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 172
 -- Function File:  beta_cdf (X, A, B)
     For each element of X, returns the CDF at X of the beta distribution with parameters A and B, i.e., PROB (beta (A, B) <= X).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 96
For each element of X, returns the CDF at X of the beta distribution with parameters A and B, i.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
is_symmetric
# name: <cell-element>
# type: string
# elements: 1
# length: 110
 -- Function File:  issymmetric (X, TOL)
     This function has been deprecated.  Use issymmetric instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
weibull_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 405
 -- Function File:  weibull_rnd (SHAPE, SCALE, R, C)
 -- Function File:  weibull_rnd (SHAPE, SCALE, SZ)
     Return an R by C matrix of random samples from the Weibull distribution with parameters SCALE and SHAPE which must be scalar or of size R by C.  Or if SZ is a vector return a matrix of size SZ.

     If R and C are omitted, the size of the result matrix is the common size of ALPHA and SIGMA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 143
Return an R by C matrix of random samples from the Weibull distribution with parameters SCALE and SHAPE which must be scalar or of size R by C.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
lchol
# name: <cell-element>
# type: string
# elements: 1
# length: 157
 -- Loadable Function: L = lchol (A)
 -- Loadable Function: [L, P] = lchol (A)
     This function has been deprecated.  Use `chol (...,'lower')' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
is_list
# name: <cell-element>
# type: string
# elements: 1
# length: 96
 -- Function File:  is_list (A)
     This function has been deprecated.  Use islist instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
spqr
# name: <cell-element>
# type: string
# elements: 1
# length: 224
 -- Loadable Function: R = spqr (A)
 -- Loadable Function: R = spqr (A,0)
 -- Loadable Function: [C, R] = spqr (A,B)
 -- Loadable Function: [C, R] = spqr (A,B,0)
     This function has been deprecated.  Use `qr' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
t_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 168
 -- Function File:  t_cdf (X, N)
     For each element of X, compute the CDF at X of the t (Student) distribution with N degrees of freedom, i.e., PROB (t(N) <= X).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 105
For each element of X, compute the CDF at X of the t (Student) distribution with N degrees of freedom, i.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
poisson_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 182
 -- Function File:  poisson_cdf (X, LAMBDA)
     For each element of X, compute the cumulative distribution function (CDF) at X of the Poisson distribution with parameter lambda.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 129
For each element of X, compute the cumulative distribution function (CDF) at X of the Poisson distribution with parameter lambda.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
f_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 174
 -- Function File:  f_pdf (X, M, N)
     For each element of X, compute the probability density function (PDF) at X of the F distribution with M and N degrees of freedom.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 129
For each element of X, compute the probability density function (PDF) at X of the F distribution with M and N degrees of freedom.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
spdet
# name: <cell-element>
# type: string
# elements: 1
# length: 109
 -- Loadable Function: [D, RCOND] = spdet (A)
     This function has been deprecated.  Use `det' instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
is_stream
# name: <cell-element>
# type: string
# elements: 1
# length: 100
 -- Function File:  is_stream (A)
     This function has been deprecated.  Use isstream instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
This function has been deprecated.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
pascal_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 400
 -- Function File:  pascal_rnd (N, P, R, C)
 -- Function File:  pascal_rnd (N, P, SZ)
     Return an R by C matrix of random samples from the Pascal (negative binomial) distribution with parameters N and P.  Both N and P must be scalar or of size R by C.

     If R and C are omitted, the size of the result matrix is the common size of N and P.  Or if SZ is a vector, create a matrix of size SZ.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 115
Return an R by C matrix of random samples from the Pascal (negative binomial) distribution with parameters N and P.

# name: <cell-element>
# type: string
# elements: 1
# length: 14
hotelling_test
# name: <cell-element>
# type: string
# elements: 1
# length: 540
 -- Function File: [PVAL, TSQ] = hotelling_test (X, M)
     For a sample X from a multivariate normal distribution with unknown mean and covariance matrix, test the null hypothesis that `mean (X) == M'.

     Hotelling's T^2 is returned in TSQ.  Under the null, (n-p) T^2 / (p(n-1)) has an F distribution with p and n-p degrees of freedom, where n and p are the numbers of samples and variables, respectively.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 142
For a sample X from a multivariate normal distribution with unknown mean and covariance matrix, test the null hypothesis that `mean (X) == M'.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
t_test_2
# name: <cell-element>
# type: string
# elements: 1
# length: 839
 -- Function File: [PVAL, T, DF] = t_test_2 (X, Y, ALT)
     For two samples x and y from normal distributions with unknown means and unknown equal variances, perform a two-sample t-test of the null hypothesis of equal means.  Under the null, the test statistic T follows a Student distribution with DF degrees of freedom.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative `mean (X) != mean (Y)'.  If ALT is `">"', the one-sided alternative `mean (X) > mean (Y)' is used.  Similarly for `"<"', the one-sided alternative `mean (X) < mean (Y)' is used.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 164
For two samples x and y from normal distributions with unknown means and unknown equal variances, perform a two-sample t-test of the null hypothesis of equal means.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
t_test
# name: <cell-element>
# type: string
# elements: 1
# length: 811
 -- Function File: [PVAL, T, DF] = t_test (X, M, ALT)
     For a sample X from a normal distribution with unknown mean and variance, perform a t-test of the null hypothesis `mean (X) == M'.  Under the null, the test statistic T follows a Student distribution with `DF = length (X) - 1' degrees of freedom.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative `mean (X) != M'.  If ALT is `">"', the one-sided alternative `mean (X) > M' is considered.  Similarly for "<", the one-sided alternative `mean (X) < M' is considered.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 130
For a sample X from a normal distribution with unknown mean and variance, perform a t-test of the null hypothesis `mean (X) == M'.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
cor_test
# name: <cell-element>
# type: string
# elements: 1
# length: 1347
 -- Function File:  cor_test (X, Y, ALT, METHOD)
     Test whether two samples X and Y come from uncorrelated populations.

     The optional argument string ALT describes the alternative hypothesis, and can be `"!="' or `"<>"' (non-zero), `">"' (greater than 0), or `"<"' (less than 0).  The default is the two-sided case.

     The optional argument string METHOD specifies on which correlation coefficient the test should be based.  If METHOD is `"pearson"' (default), the (usual) Pearson's product moment correlation coefficient is used.  In this case, the data should come from a bivariate normal distribution.  Otherwise, the other two methods offer nonparametric alternatives.  If METHOD is `"kendall"', then Kendall's rank correlation tau is used.  If METHOD is `"spearman"', then Spearman's rank correlation rho is used.  Only the first character is necessary.

     The output is a structure with the following elements:

    PVAL
          The p-value of the test.

    STAT
          The value of the test statistic.

    DIST
          The distribution of the test statistic.

    PARAMS
          The parameters of the null distribution of the test statistic.

    ALTERNATIVE
          The alternative hypothesis.

    METHOD
          The method used for testing.

     If no output argument is given, the p-value is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Test whether two samples X and Y come from uncorrelated populations.

# name: <cell-element>
# type: string
# elements: 1
# length: 17
f_test_regression
# name: <cell-element>
# type: string
# elements: 1
# length: 491
 -- Function File: [PVAL, F, DF_NUM, DF_DEN] = f_test_regression (Y, X, RR, R)
     Perform an F test for the null hypothesis rr * b = r in a classical normal regression model y = X * b + e.

     Under the null, the test statistic F follows an F distribution with DF_NUM and DF_DEN degrees of freedom.

     The p-value (1 minus the CDF of this distribution at F) is returned in PVAL.

     If not given explicitly, R = 0.

     If no output argument is given, the p-value is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 106
Perform an F test for the null hypothesis rr * b = r in a classical normal regression model y = X * b + e.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
z_test
# name: <cell-element>
# type: string
# elements: 1
# length: 809
 -- Function File: [PVAL, Z] = z_test (X, M, V, ALT)
     Perform a Z-test of the null hypothesis `mean (X) == M' for a sample X from a normal distribution with unknown mean and known variance V.  Under the null, the test statistic Z follows a standard normal distribution.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative `mean (X) != M'.  If ALT is `">"', the one-sided alternative `mean (X) > M' is considered.  Similarly for `"<"', the one-sided alternative `mean (X) < M' is considered.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed along with some information.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 137
Perform a Z-test of the null hypothesis `mean (X) == M' for a sample X from a normal distribution with unknown mean and known variance V.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
welch_test
# name: <cell-element>
# type: string
# elements: 1
# length: 853
 -- Function File: [PVAL, T, DF] = welch_test (X, Y, ALT)
     For two samples X and Y from normal distributions with unknown means and unknown and not necessarily equal variances, perform a Welch test of the null hypothesis of equal means.  Under the null, the test statistic T approximately follows a Student distribution with DF degrees of freedom.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative `mean (X) != M'.  If ALT is `">"', the one-sided alternative mean(x) > M is considered.  Similarly for `"<"', the one-sided alternative mean(x) < M is considered.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 177
For two samples X and Y from normal distributions with unknown means and unknown and not necessarily equal variances, perform a Welch test of the null hypothesis of equal means.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
mcnemar_test
# name: <cell-element>
# type: string
# elements: 1
# length: 524
 -- Function File: [PVAL, CHISQ, DF] = mcnemar_test (X)
     For a square contingency table X of data cross-classified on the row and column variables, McNemar's test can be used for testing the null hypothesis of symmetry of the classification probabilities.

     Under the null, CHISQ is approximately distributed as chisquare with DF degrees of freedom.

     The p-value (1 minus the CDF of this distribution at CHISQ) is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 198
For a square contingency table X of data cross-classified on the row and column variables, McNemar's test can be used for testing the null hypothesis of symmetry of the classification probabilities.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
anova
# name: <cell-element>
# type: string
# elements: 1
# length: 957
 -- Function File: [PVAL, F, DF_B, DF_W] = anova (Y, G)
     Perform a one-way analysis of variance (ANOVA).  The goal is to test whether the population means of data taken from K different groups are all equal.

     Data may be given in a single vector Y with groups specified by a corresponding vector of group labels G (e.g., numbers from 1 to K).  This is the general form which does not impose any restriction on the number of data in each group or the group labels.

     If Y is a matrix and G is omitted, each column of Y is treated as a group.  This form is only appropriate for balanced ANOVA in which the numbers of samples from each group are all equal.

     Under the null of constant means, the statistic F follows an F distribution with DF_B and DF_W degrees of freedom.

     The p-value (1 minus the CDF of this distribution at F) is returned in PVAL.

     If no output argument is given, the standard one-way ANOVA table is printed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Perform a one-way analysis of variance (ANOVA).

# name: <cell-element>
# type: string
# elements: 1
# length: 25
kolmogorov_smirnov_test_2
# name: <cell-element>
# type: string
# elements: 1
# length: 1111
 -- Function File: [PVAL, KS, D] = kolmogorov_smirnov_test_2 (X, Y, ALT)
     Perform a 2-sample Kolmogorov-Smirnov test of the null hypothesis that the samples X and Y come from the same (continuous) distribution.  I.e., if F and G are the CDFs corresponding to the X and Y samples, respectively, then the null is that F == G.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative F != G.  In this case, the test statistic KS follows a two-sided Kolmogorov-Smirnov distribution.  If ALT is `">"', the one-sided alternative F > G is considered.  Similarly for `"<"', the one-sided alternative F < G is considered.  In this case, the test statistic KS has a one-sided Kolmogorov-Smirnov distribution.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     The third returned value, D, is the test statistic, the maximum vertical distance between the two cumulative distribution functions.

     If no output argument is given, the p-value is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 136
Perform a 2-sample Kolmogorov-Smirnov test of the null hypothesis that the samples X and Y come from the same (continuous) distribution.

# name: <cell-element>
# type: string
# elements: 1
# length: 27
chisquare_test_independence
# name: <cell-element>
# type: string
# elements: 1
# length: 441
 -- Function File: [PVAL, CHISQ, DF] = chisquare_test_independence (X)
     Perform a chi-square test for independence based on the contingency table X.  Under the null hypothesis of independence, CHISQ approximately has a chi-square distribution with DF degrees of freedom.

     The p-value (1 minus the CDF of this distribution at chisq) of the test is returned in PVAL.

     If no output argument is given, the p-value is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Perform a chi-square test for independence based on the contingency table X.

# name: <cell-element>
# type: string
# elements: 1
# length: 19
kruskal_wallis_test
# name: <cell-element>
# type: string
# elements: 1
# length: 1087
 -- Function File: [PVAL, K, DF] = kruskal_wallis_test (X1, ...)
     Perform a Kruskal-Wallis one-factor "analysis of variance".

     Suppose a variable is observed for K > 1 different groups, and let X1, ..., XK be the corresponding data vectors.

     Under the null hypothesis that the ranks in the pooled sample are not affected by the group memberships, the test statistic K is approximately chi-square with DF = K - 1 degrees of freedom.

     If the data contains ties (some value appears more than once) K is divided by

     1 - SUM_TIES / (N^3 - N)

     where SUM_TIES is the sum of T^2 - T over each group of ties where T is the number of ties in the group and N is the total number of values in the input data.  For more info on this adjustment see "Use of Ranks in One-Criterion Variance Analysis" in Journal of the American Statistical Association, Vol. 47, No. 260 (Dec 1952) by William H. Kruskal and W. Allen Wallis.

     The p-value (1 minus the CDF of this distribution at K) is returned in PVAL.

     If no output argument is given, the p-value is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Perform a Kruskal-Wallis one-factor "analysis of variance".

# name: <cell-element>
# type: string
# elements: 1
# length: 8
run_test
# name: <cell-element>
# type: string
# elements: 1
# length: 327
 -- Function File: [PVAL, CHISQ] = run_test (X)
     Perform a chi-square test with 6 degrees of freedom based on the upward runs in the columns of X.  Can be used to test whether X contains independent data.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 97
Perform a chi-square test with 6 degrees of freedom based on the upward runs in the columns of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 17
t_test_regression
# name: <cell-element>
# type: string
# elements: 1
# length: 814
 -- Function File: [PVAL, T, DF] = t_test_regression (Y, X, RR, R, ALT)
     Perform an t test for the null hypothesis `RR * B = R' in a classical normal regression model `Y = X * B + E'.  Under the null, the test statistic T follows a T distribution with DF degrees of freedom.

     If R is omitted, a value of 0 is assumed.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative `RR * B != R'.  If ALT is `">"', the one-sided alternative `RR * B > R' is used.  Similarly for "<", the one-sided alternative `RR * B < R' is used.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 110
Perform an t test for the null hypothesis `RR * B = R' in a classical normal regression model `Y = X * B + E'.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
z_test_2
# name: <cell-element>
# type: string
# elements: 1
# length: 842
 -- Function File: [PVAL, Z] = z_test_2 (X, Y, V_X, V_Y, ALT)
     For two samples X and Y from normal distributions with unknown means and known variances V_X and V_Y, perform a Z-test of the hypothesis of equal means.  Under the null, the test statistic Z follows a standard normal distribution.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative `mean (X) != mean (Y)'.  If alt is `">"', the one-sided alternative `mean (X) > mean (Y)' is used.  Similarly for `"<"', the one-sided alternative `mean (X) < mean (Y)' is used.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed along with some information.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 152
For two samples X and Y from normal distributions with unknown means and known variances V_X and V_Y, perform a Z-test of the hypothesis of equal means.

# name: <cell-element>
# type: string
# elements: 1
# length: 23
kolmogorov_smirnov_test
# name: <cell-element>
# type: string
# elements: 1
# length: 1293
 -- Function File: [PVAL, KS] = kolmogorov_smirnov_test (X, DIST, PARAMS, ALT)
     Perform a Kolmogorov-Smirnov test of the null hypothesis that the sample X comes from the (continuous) distribution dist.  I.e., if F and G are the CDFs corresponding to the sample and dist, respectively, then the null is that F == G.

     The optional argument PARAMS contains a list of parameters of DIST.  For example, to test whether a sample X comes from a uniform distribution on [2,4], use

          kolmogorov_smirnov_test(x, "uniform", 2, 4)

     DIST can be any string for which a function DIST_CDF that calculates the CDF of distribution DIST exists.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative F != G.  In this case, the test statistic KS follows a two-sided Kolmogorov-Smirnov distribution.  If ALT is `">"', the one-sided alternative F > G is considered.  Similarly for `"<"', the one-sided alternative F > G is considered.  In this case, the test statistic KS has a one-sided Kolmogorov-Smirnov distribution.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 121
Perform a Kolmogorov-Smirnov test of the null hypothesis that the sample X comes from the (continuous) distribution dist.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
u_test
# name: <cell-element>
# type: string
# elements: 1
# length: 847
 -- Function File: [PVAL, Z] = u_test (X, Y, ALT)
     For two samples X and Y, perform a Mann-Whitney U-test of the null hypothesis PROB (X > Y) == 1/2 == PROB (X < Y).  Under the null, the test statistic Z approximately follows a standard normal distribution.  Note that this test is equivalent to the Wilcoxon rank-sum test.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative PROB (X > Y) != 1/2.  If ALT is `">"', the one-sided alternative PROB (X > Y) > 1/2 is considered.  Similarly for `"<"', the one-sided alternative PROB (X > Y) < 1/2 is considered.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 114
For two samples X and Y, perform a Mann-Whitney U-test of the null hypothesis PROB (X > Y) == 1/2 == PROB (X < Y).

# name: <cell-element>
# type: string
# elements: 1
# length: 8
var_test
# name: <cell-element>
# type: string
# elements: 1
# length: 841
 -- Function File: [PVAL, F, DF_NUM, DF_DEN] = var_test (X, Y, ALT)
     For two samples X and Y from normal distributions with unknown means and unknown variances, perform an F-test of the null hypothesis of equal variances.  Under the null, the test statistic F follows an F-distribution with DF_NUM and DF_DEN degrees of freedom.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative `var (X) != var (Y)'.  If ALT is `">"', the one-sided alternative `var (X) > var (Y)' is used.  Similarly for "<", the one-sided alternative `var (X) > var (Y)' is used.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 152
For two samples X and Y from normal distributions with unknown means and unknown variances, perform an F-test of the null hypothesis of equal variances.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
sign_test
# name: <cell-element>
# type: string
# elements: 1
# length: 905
 -- Function File: [PVAL, B, N] = sign_test (X, Y, ALT)
     For two matched-pair samples X and Y, perform a sign test of the null hypothesis PROB (X > Y) == PROB (X < Y) == 1/2.  Under the null, the test statistic B roughly follows a binomial distribution with parameters `N = sum (X != Y)' and P = 1/2.

     With the optional argument `alt', the alternative of interest can be selected.  If ALT is `"!="' or `"<>"', the null hypothesis is tested against the two-sided alternative PROB (X < Y) != 1/2.  If ALT is `">"', the one-sided alternative PROB (X > Y) > 1/2 ("x is stochastically greater than y") is considered.  Similarly for `"<"', the one-sided alternative PROB (X > Y) < 1/2 ("x is stochastically less than y") is considered.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 117
For two matched-pair samples X and Y, perform a sign test of the null hypothesis PROB (X > Y) == PROB (X < Y) == 1/2.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
manova
# name: <cell-element>
# type: string
# elements: 1
# length: 614
 -- Function File:  manova (Y, G)
     Perform a one-way multivariate analysis of variance (MANOVA).  The goal is to test whether the p-dimensional population means of data taken from K different groups are all equal.  All data are assumed drawn independently from p-dimensional normal distributions with the same covariance matrix.

     The data matrix is given by Y.  As usual, rows are observations and columns are variables.  The vector G specifies the corresponding group labels (e.g., numbers from 1 to K).

     The LR test statistic (Wilks' Lambda) and approximate p-values are computed and displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Perform a one-way multivariate analysis of variance (MANOVA).

# name: <cell-element>
# type: string
# elements: 1
# length: 13
wilcoxon_test
# name: <cell-element>
# type: string
# elements: 1
# length: 910
 -- Function File: [PVAL, Z] = wilcoxon_test (X, Y, ALT)
     For two matched-pair sample vectors X and Y, perform a Wilcoxon signed-rank test of the null hypothesis PROB (X > Y) == 1/2.  Under the null, the test statistic Z approximately follows a standard normal distribution when N > 25.

     *Warning*: This function assumes a normal distribution for Z and thus is invalid for N <= 25.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative PROB (X > Y) != 1/2.  If alt is `">"', the one-sided alternative PROB (X > Y) > 1/2 is considered.  Similarly for `"<"', the one-sided alternative PROB (X > Y) < 1/2 is considered.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 124
For two matched-pair sample vectors X and Y, perform a Wilcoxon signed-rank test of the null hypothesis PROB (X > Y) == 1/2.

# name: <cell-element>
# type: string
# elements: 1
# length: 16
hotelling_test_2
# name: <cell-element>
# type: string
# elements: 1
# length: 656
 -- Function File: [PVAL, TSQ] = hotelling_test_2 (X, Y)
     For two samples X from multivariate normal distributions with the same number of variables (columns), unknown means and unknown equal covariance matrices, test the null hypothesis `mean (X) == mean (Y)'.

     Hotelling's two-sample T^2 is returned in TSQ.  Under the null,

          (n_x+n_y-p-1) T^2 / (p(n_x+n_y-2))

     has an F distribution with p and n_x+n_y-p-1 degrees of freedom, where n_x and n_y are the sample sizes and p is the number of variables.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 203
For two samples X from multivariate normal distributions with the same number of variables (columns), unknown means and unknown equal covariance matrices, test the null hypothesis `mean (X) == mean (Y)'.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
prop_test_2
# name: <cell-element>
# type: string
# elements: 1
# length: 820
 -- Function File: [PVAL, Z] = prop_test_2 (X1, N1, X2, N2, ALT)
     If X1 and N1 are the counts of successes and trials in one sample, and X2 and N2 those in a second one, test the null hypothesis that the success probabilities P1 and P2 are the same.  Under the null, the test statistic Z approximately follows a standard normal distribution.

     With the optional argument string ALT, the alternative of interest can be selected.  If ALT is `"!="' or `"<>"', the null is tested against the two-sided alternative P1 != P2.  If ALT is `">"', the one-sided alternative P1 > P2 is used.  Similarly for `"<"', the one-sided alternative P1 < P2 is used.  The default is the two-sided case.

     The p-value of the test is returned in PVAL.

     If no output argument is given, the p-value of the test is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 183
If X1 and N1 are the counts of successes and trials in one sample, and X2 and N2 those in a second one, test the null hypothesis that the success probabilities P1 and P2 are the same.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
bartlett_test
# name: <cell-element>
# type: string
# elements: 1
# length: 471
 -- Function File: [PVAL, CHISQ, DF] = bartlett_test (X1, ...)
     Perform a Bartlett test for the homogeneity of variances in the data vectors X1, X2, ..., XK, where K > 1.

     Under the null of equal variances, the test statistic CHISQ approximately follows a chi-square distribution with DF degrees of freedom.

     The p-value (1 minus the CDF of this distribution at CHISQ) is returned in PVAL.

     If no output argument is given, the p-value is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Perform a Bartlett test for the homogeneity of variances in the data vectors X1, X2, .

# name: <cell-element>
# type: string
# elements: 1
# length: 26
chisquare_test_homogeneity
# name: <cell-element>
# type: string
# elements: 1
# length: 586
 -- Function File: [PVAL, CHISQ, DF] = chisquare_test_homogeneity (X, Y, C)
     Given two samples X and Y, perform a chisquare test for homogeneity of the null hypothesis that X and Y come from the same distribution, based on the partition induced by the (strictly increasing) entries of C.

     For large samples, the test statistic CHISQ approximately follows a chisquare distribution with DF = `length (C)' degrees of freedom.

     The p-value (1 minus the CDF of this distribution at CHISQ) is returned in PVAL.

     If no output argument is given, the p-value is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 210
Given two samples X and Y, perform a chisquare test for homogeneity of the null hypothesis that X and Y come from the same distribution, based on the partition induced by the (strictly increasing) entries of C.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
stdnormal_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 158
 -- Function File:  stdnormal_pdf (X)
     For each element of X, compute the probability density function (PDF) of the standard normal distribution at X.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 111
For each element of X, compute the probability density function (PDF) of the standard normal distribution at X.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
binoinv
# name: <cell-element>
# type: string
# elements: 1
# length: 149
 -- Function File:  binoinv (X, N, P)
     For each element of X, compute the quantile at X of the binomial distribution with parameters N and P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 102
For each element of X, compute the quantile at X of the binomial distribution with parameters N and P.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
frnd
# name: <cell-element>
# type: string
# elements: 1
# length: 386
 -- Function File:  frnd (M, N, R, C)
 -- Function File:  frnd (M, N, SZ)
     Return an R by C matrix of random samples from the F distribution with M and N degrees of freedom.  Both M and N must be scalar or of size R by C.  If SZ is a vector the random samples are in a matrix of size SZ.

     If R and C are omitted, the size of the result matrix is the common size of M and N.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Return an R by C matrix of random samples from the F distribution with M and N degrees of freedom.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
gamrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 398
 -- Function File:  gamrnd (A, B, R, C)
 -- Function File:  gamrnd (A, B, SZ)
     Return an R by C or a `size (SZ)' matrix of random samples from the Gamma distribution with parameters A and B.  Both A and B must be scalar or of size R by C.

     If R and C are omitted, the size of the result matrix is the common size of A and B.  See also: gamma, gammaln, gammainc, gampdf, gamcdf, gaminv.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Return an R by C or a `size (SZ)' matrix of random samples from the Gamma distribution with parameters A and B.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
norminv
# name: <cell-element>
# type: string
# elements: 1
# length: 224
 -- Function File:  norminv (X, M, S)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the normal distribution with mean M and standard deviation S.

     Default values are M = 0, S = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 138
For each element of X, compute the quantile (the inverse of the CDF) at X of the normal distribution with mean M and standard deviation S.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
poisscdf
# name: <cell-element>
# type: string
# elements: 1
# length: 179
 -- Function File:  poisscdf (X, LAMBDA)
     For each element of X, compute the cumulative distribution function (CDF) at X of the Poisson distribution with parameter lambda.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 129
For each element of X, compute the cumulative distribution function (CDF) at X of the Poisson distribution with parameter lambda.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
poisspdf
# name: <cell-element>
# type: string
# elements: 1
# length: 175
 -- Function File:  poisspdf (X, LAMBDA)
     For each element of X, compute the probability density function (PDF) at X of the poisson distribution with parameter LAMBDA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 125
For each element of X, compute the probability density function (PDF) at X of the poisson distribution with parameter LAMBDA.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
geocdf
# name: <cell-element>
# type: string
# elements: 1
# length: 134
 -- Function File:  geocdf (X, P)
     For each element of X, compute the CDF at X of the geometric distribution with parameter P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 91
For each element of X, compute the CDF at X of the geometric distribution with parameter P.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
empirical_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 198
 -- Function File:  empirical_inv (X, DATA)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the empirical distribution obtained from the univariate sample DATA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 145
For each element of X, compute the quantile (the inverse of the CDF) at X of the empirical distribution obtained from the univariate sample DATA.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
gaminv
# name: <cell-element>
# type: string
# elements: 1
# length: 233
 -- Function File:  gaminv (X, A, B)
     For each component of X, compute the quantile (the inverse of the CDF) at X of the Gamma distribution with parameters A and B.  See also: gamma, gammaln, gammainc, gampdf, gamcdf, gamrnd.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 126
For each component of X, compute the quantile (the inverse of the CDF) at X of the Gamma distribution with parameters A and B.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
discrete_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 220
 -- Function File:  discrete_cdf (X, V, P)
     For each element of X, compute the cumulative distribution function (CDF) at X of a univariate discrete distribution which assumes the values in V with probabilities P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 168
For each element of X, compute the cumulative distribution function (CDF) at X of a univariate discrete distribution which assumes the values in V with probabilities P.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
cauchy_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 265
 -- Function File:  cauchy_pdf (X, LAMBDA, SIGMA)
     For each element of X, compute the probability density function (PDF) at X of the Cauchy distribution with location parameter LAMBDA and scale parameter SIGMA > 0.  Default values are LAMBDA = 0, SIGMA = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 163
For each element of X, compute the probability density function (PDF) at X of the Cauchy distribution with location parameter LAMBDA and scale parameter SIGMA > 0.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
betarnd
# name: <cell-element>
# type: string
# elements: 1
# length: 337
 -- Function File:  betarnd (A, B, R, C)
 -- Function File:  betarnd (A, B, SZ)
     Return an R by C or `size (SZ)' matrix of random samples from the Beta distribution with parameters A and B.  Both A and B must be scalar or of size R  by C.

     If R and C are omitted, the size of the result matrix is the common size of A and B.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 108
Return an R by C or `size (SZ)' matrix of random samples from the Beta distribution with parameters A and B.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
empirical_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 377
 -- Function File:  empirical_rnd (N, DATA)
 -- Function File:  empirical_rnd (DATA, R, C)
 -- Function File:  empirical_rnd (DATA, SZ)
     Generate a bootstrap sample of size N from the empirical distribution obtained from the univariate sample DATA.

     If R and C are given create a matrix with R rows and C columns.  Or if SZ is a vector, create a matrix of size SZ.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Generate a bootstrap sample of size N from the empirical distribution obtained from the univariate sample DATA.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
stdnormal_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 159
 -- Function File:  stdnormal_inv (X)
     For each component of X, compute the quantile (the inverse of the CDF) at X of the standard normal distribution.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 112
For each component of X, compute the quantile (the inverse of the CDF) at X of the standard normal distribution.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
normcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 229
 -- Function File:  normcdf (X, M, S)
     For each element of X, compute the cumulative distribution function (CDF) at X of the normal distribution with mean M and standard deviation S.

     Default values are M = 0, S = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 143
For each element of X, compute the cumulative distribution function (CDF) at X of the normal distribution with mean M and standard deviation S.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
gampdf
# name: <cell-element>
# type: string
# elements: 1
# length: 231
 -- Function File:  gampdf (X, A, B)
     For each element of X, return the probability density function (PDF) at X of the Gamma distribution with parameters A and B.  See also: gamma, gammaln, gammainc, gamcdf, gaminv, gamrnd.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 124
For each element of X, return the probability density function (PDF) at X of the Gamma distribution with parameters A and B.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
discrete_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 427
 -- Function File:  discrete_rnd (N, V, P)
 -- Function File:  discrete_rnd (V, P, R, C)
 -- Function File:  discrete_rnd (V, P, SZ)
     Generate a row vector containing a random sample of size N from the univariate distribution which assumes the values in V with probabilities P.  N must be a scalar.

     If R and C are given create a matrix with R rows and C columns.  Or if SZ is a vector, create a matrix of size SZ.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 143
Generate a row vector containing a random sample of size N from the univariate distribution which assumes the values in V with probabilities P.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
chi2cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 179
 -- Function File:  chi2cdf (X, N)
     For each element of X, compute the cumulative distribution function (CDF) at X of the chisquare distribution with N degrees of freedom.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 135
For each element of X, compute the cumulative distribution function (CDF) at X of the chisquare distribution with N degrees of freedom.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
expinv
# name: <cell-element>
# type: string
# elements: 1
# length: 171
 -- Function File:  expinv (X, LAMBDA)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the exponential distribution with mean LAMBDA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 123
For each element of X, compute the quantile (the inverse of the CDF) at X of the exponential distribution with mean LAMBDA.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
chi2pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 181
 -- Function File:  chisquare_pdf (X, N)
     For each element of X, compute the probability density function (PDF) at X of the chisquare distribution with N degrees of freedom.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 131
For each element of X, compute the probability density function (PDF) at X of the chisquare distribution with N degrees of freedom.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
unifcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 178
 -- Function File:  unifcdf (X, A, B)
     Return the CDF at X of the uniform distribution on [A, B], i.e., PROB (uniform (A, B) <= x).

     Default values are A = 0, B = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Return the CDF at X of the uniform distribution on [A, B], i.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
betapdf
# name: <cell-element>
# type: string
# elements: 1
# length: 140
 -- Function File:  betapdf (X, A, B)
     For each element of X, returns the PDF at X of the beta distribution with parameters A and B.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 93
For each element of X, returns the PDF at X of the beta distribution with parameters A and B.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
stdnormal_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 184
 -- Function File:  stdnormal_rnd (R, C)
 -- Function File:  stdnormal_rnd (SZ)
     Return an R by C or `size (SZ)' matrix of random numbers from the standard normal distribution.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 95
Return an R by C or `size (SZ)' matrix of random numbers from the standard normal distribution.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
unidrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 461
 -- Function File:  unidrnd (MX);
 -- Function File:  unidrnd (MX, V);
 -- Function File:  unidrnd (MX, M, N, ...);
     Return random values from discrete uniform distribution, with maximum value(s) given by the integer MX, which may be a scalar or multidimensional array.

     If MX is a scalar, the size of the result is specified by the vector V, or by the optional arguments M, N, ....  Otherwise, the size of the result is the same as the size of MX.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 152
Return random values from discrete uniform distribution, with maximum value(s) given by the integer MX, which may be a scalar or multidimensional array.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
hygepdf
# name: <cell-element>
# type: string
# elements: 1
# length: 394
 -- Function File:  hygepdf (X, T, M, N)
     Compute the probability density function (PDF) at X of the hypergeometric distribution with parameters T, M, and N.  This is the probability of obtaining X marked items when randomly drawing a sample of size N without replacement from a population of total size T containing M marked items.

     The arguments must be of common size or scalar.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 115
Compute the probability density function (PDF) at X of the hypergeometric distribution with parameters T, M, and N.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
wblrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 395
 -- Function File:  wblrnd (SCALE, SHAPE, R, C)
 -- Function File:  wblrnd (SCALE, SHAPE, SZ)
     Return an R by C matrix of random samples from the Weibull distribution with parameters SCALE and SHAPE which must be scalar or of size R by C.  Or if SZ is a vector return a matrix of size SZ.

     If R and C are omitted, the size of the result matrix is the common size of ALPHA and SIGMA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 143
Return an R by C matrix of random samples from the Weibull distribution with parameters SCALE and SHAPE which must be scalar or of size R by C.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
cauchy_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 265
 -- Function File:  cauchy_cdf (X, LAMBDA, SIGMA)
     For each element of X, compute the cumulative distribution function (CDF) at X of the Cauchy distribution with location parameter LAMBDA and scale parameter SIGMA.  Default values are LAMBDA = 0, SIGMA = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 163
For each element of X, compute the cumulative distribution function (CDF) at X of the Cauchy distribution with location parameter LAMBDA and scale parameter SIGMA.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
normrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 363
 -- Function File:  normrnd (M, S, R, C)
 -- Function File:  normrnd (M, S, SZ)
     Return an R by C  or `size (SZ)' matrix of random samples from the normal distribution with parameters mean M and standard deviation S.  Both M and S must be scalar or of size R by C.

     If R and C are omitted, the size of the result matrix is the common size of M and S.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 134
Return an R by C or `size (SZ)' matrix of random samples from the normal distribution with parameters mean M and standard deviation S.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
exppdf
# name: <cell-element>
# type: string
# elements: 1
# length: 167
 -- Function File:  exppdf (X, LAMBDA)
     For each element of X, compute the probability density function (PDF) of the exponential distribution with mean LAMBDA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 119
For each element of X, compute the probability density function (PDF) of the exponential distribution with mean LAMBDA.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
unidinv
# name: <cell-element>
# type: string
# elements: 1
# length: 212
 -- Function File:  unidinv (X, V)
     For each component of X, compute the quantile (the inverse of the CDF) at X of the univariate discrete distribution which assumes the values in V with equal probability
   
# name: <cell-element>
# type: string
# elements: 1
# length: 170
For each component of X, compute the quantile (the inverse of the CDF) at X of the univariate discrete distribution which assumes the values in V with equal probability  

# name: <cell-element>
# type: string
# elements: 1
# length: 4
finv
# name: <cell-element>
# type: string
# elements: 1
# length: 166
 -- Function File:  finv (X, M, N)
     For each component of X, compute the quantile (the inverse of the CDF) at X of the F distribution with parameters M and N.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 122
For each component of X, compute the quantile (the inverse of the CDF) at X of the F distribution with parameters M and N.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
normpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 225
 -- Function File:  normpdf (X, M, S)
     For each element of X, compute the probability density function (PDF) at X of the normal distribution with mean M and standard deviation S.

     Default values are M = 0, S = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 139
For each element of X, compute the probability density function (PDF) at X of the normal distribution with mean M and standard deviation S.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
logninv
# name: <cell-element>
# type: string
# elements: 1
# length: 357
 -- Function File:  logninv (X, MU, SIGMA)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the lognormal distribution with parameters MU and SIGMA.  If a random variable follows this distribution, its logarithm is normally distributed with mean `log (MU)' and variance SIGMA.

     Default values are MU = 1, SIGMA = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 133
For each element of X, compute the quantile (the inverse of the CDF) at X of the lognormal distribution with parameters MU and SIGMA.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
expcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 229
 -- Function File:  expcdf (X, LAMBDA)
     For each element of X, compute the cumulative distribution function (CDF) at X of the exponential distribution with mean LAMBDA.

     The arguments can be of common size or scalar.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 128
For each element of X, compute the cumulative distribution function (CDF) at X of the exponential distribution with mean LAMBDA.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
logncdf
# name: <cell-element>
# type: string
# elements: 1
# length: 364
 -- Function File:  logncdf (X, MU, SIGMA)
     For each element of X, compute the cumulative distribution function (CDF) at X of the lognormal distribution with parameters MU and SIGMA.  If a random variable follows this distribution, its logarithm is normally distributed with mean MU and standard deviation SIGMA.

     Default values are MU = 1, SIGMA = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 138
For each element of X, compute the cumulative distribution function (CDF) at X of the lognormal distribution with parameters MU and SIGMA.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
laplace_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 148
 -- Function File:  laplace_pdf (X)
     For each element of X, compute the probability density function (PDF) at X of the Laplace distribution.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 103
For each element of X, compute the probability density function (PDF) at X of the Laplace distribution.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
laplace_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 204
 -- Function File:  laplace_rnd (R, C)
 -- Function File:  laplace_rnd (SZ);
     Return an R by C matrix of random numbers from the Laplace distribution.  Or if SZ is a vector, create a matrix of SZ.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 72
Return an R by C matrix of random numbers from the Laplace distribution.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
lognrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 402
 -- Function File:  lognrnd (MU, SIGMA, R, C)
 -- Function File:  lognrnd (MU, SIGMA, SZ)
     Return an R by C matrix of random samples from the lognormal distribution with parameters MU and SIGMA.  Both MU and SIGMA must be scalar or of size R by C.  Or if SZ is a vector, create a matrix of size SZ.

     If R and C are omitted, the size of the result matrix is the common size of MU and SIGMA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 103
Return an R by C matrix of random samples from the lognormal distribution with parameters MU and SIGMA.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
poissinv
# name: <cell-element>
# type: string
# elements: 1
# length: 176
 -- Function File:  poissinv (X, LAMBDA)
     For each component of X, compute the quantile (the inverse of the CDF) at X of the Poisson distribution with parameter LAMBDA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 126
For each component of X, compute the quantile (the inverse of the CDF) at X of the Poisson distribution with parameter LAMBDA.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
hygeinv
# name: <cell-element>
# type: string
# elements: 1
# length: 251
 -- Function File:  hygeinv (X, T, M, N)
     For each element of X, compute the quantile at X of the hypergeometric distribution with parameters T, M, and N.

     The parameters T, M, and N must positive integers with M and N not greater than T.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 112
For each element of X, compute the quantile at X of the hypergeometric distribution with parameters T, M, and N.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
fcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 170
 -- Function File:  fcdf (X, M, N)
     For each element of X, compute the CDF at X of the F distribution with M and N degrees of freedom, i.e., PROB (F (M, N) <= X).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 101
For each element of X, compute the CDF at X of the F distribution with M and N degrees of freedom, i.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
stdnormal_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 129
 -- Function File:  stdnormal_cdf (X)
     For each component of X, compute the CDF of the standard normal distribution at X.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 82
For each component of X, compute the CDF of the standard normal distribution at X.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
nbininv
# name: <cell-element>
# type: string
# elements: 1
# length: 300
 -- Function File:  nbininv (X, N, P)
     For each element of X, compute the quantile at X of the Pascal (negative binomial) distribution with parameters N and P.

     The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 120
For each element of X, compute the quantile at X of the Pascal (negative binomial) distribution with parameters N and P.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
logistic_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 151
 -- Function File:  logistic_inv (X)
     For each component of X, compute the quantile (the inverse of the CDF) at X of the logistic distribution.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 105
For each component of X, compute the quantile (the inverse of the CDF) at X of the logistic distribution.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
hygecdf
# name: <cell-element>
# type: string
# elements: 1
# length: 447
 -- Function File:  hygecdf (X, T, M, N)
     Compute the cumulative distribution function (CDF) at X of the hypergeometric distribution with parameters T, M, and N.  This is the probability of obtaining not more than X marked items when randomly drawing a sample of size N without replacement from a population of total size T containing M marked items.

     The parameters T, M, and N must positive integers with M and N not greater than T.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 119
Compute the cumulative distribution function (CDF) at X of the hypergeometric distribution with parameters T, M, and N.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
unidpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 210
 -- Function File:  unidpdf (X, V)
     For each element of X, compute the probability density function (PDF) at X of a univariate discrete distribution which assumes the values in V with equal probability.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 166
For each element of X, compute the probability density function (PDF) at X of a univariate discrete distribution which assumes the values in V with equal probability.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
logistic_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 121
 -- Function File:  logistic_cdf (X)
     For each component of X, compute the CDF at X of the logistic distribution.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 75
For each component of X, compute the CDF at X of the logistic distribution.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
gamcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 236
 -- Function File:  gamcdf (X, A, B)
     For each element of X, compute the cumulative distribution function (CDF) at X of the Gamma distribution with parameters A and B.  See also: gamma, gammaln, gammainc, gampdf, gaminv, gamrnd.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 129
For each element of X, compute the cumulative distribution function (CDF) at X of the Gamma distribution with parameters A and B.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
unifinv
# name: <cell-element>
# type: string
# elements: 1
# length: 198
 -- Function File:  unifinv (X, A, B)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the uniform distribution on [A, B].

     Default values are A = 0, B = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 112
For each element of X, compute the quantile (the inverse of the CDF) at X of the uniform distribution on [A, B].

# name: <cell-element>
# type: string
# elements: 1
# length: 4
tpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 174
 -- Function File:  tpdf (X, N)
     For each element of X, compute the probability density function (PDF) at X of the T (Student) distribution with N degrees of freedom.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 133
For each element of X, compute the probability density function (PDF) at X of the T (Student) distribution with N degrees of freedom.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
nbinpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 326
 -- Function File:  nbinpdf (X, N, P)
     For each element of X, compute the probability density function (PDF) at X of the Pascal (negative binomial) distribution with parameters N and P.

     The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 146
For each element of X, compute the probability density function (PDF) at X of the Pascal (negative binomial) distribution with parameters N and P.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
geoinv
# name: <cell-element>
# type: string
# elements: 1
# length: 139
 -- Function File:  geoinv (X, P)
     For each element of X, compute the quantile at X of the geometric distribution with parameter P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 96
For each element of X, compute the quantile at X of the geometric distribution with parameter P.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
discrete_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 210
 -- Function File:  discrete_inv (X, V, P)
     For each component of X, compute the quantile (the inverse of the CDF) at X of the univariate distribution which assumes the values in V with probabilities P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 158
For each component of X, compute the quantile (the inverse of the CDF) at X of the univariate distribution which assumes the values in V with probabilities P.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
unidcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 214
 -- Function File:  unidcdf (X, V)
     For each element of X, compute the cumulative distribution function (CDF) at X of a univariate discrete distribution which assumes the values in V with equal probability.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 170
For each element of X, compute the cumulative distribution function (CDF) at X of a univariate discrete distribution which assumes the values in V with equal probability.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
binopdf
# name: <cell-element>
# type: string
# elements: 1
# length: 175
 -- Function File:  binopdf (X, N, P)
     For each element of X, compute the probability density function (PDF) at X of the binomial distribution with parameters N and P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 128
For each element of X, compute the probability density function (PDF) at X of the binomial distribution with parameters N and P.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
wblcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 254
 -- Function File:  wblcdf (X, SCALE, SHAPE)
     Compute the cumulative distribution function (CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE, which is

          1 - exp(-(x/shape)^scale)
     for X >= 0.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 147
Compute the cumulative distribution function (CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE, which is 

# name: <cell-element>
# type: string
# elements: 1
# length: 7
hygernd
# name: <cell-element>
# type: string
# elements: 1
# length: 474
 -- Function File:  hygernd (T, M, N, R, C)
 -- Function File:  hygernd (T, M, N, SZ)
 -- Function File:  hygernd (T, M, N)
     Return an R by C matrix of random samples from the hypergeometric distribution with parameters T, M, and N.

     The parameters T, M, and N must positive integers with M and N not greater than T.

     The parameter SZ must be scalar or a vector of matrix dimensions.  If SZ is scalar, then a SZ by SZ matrix of random samples is generated.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 107
Return an R by C matrix of random samples from the hypergeometric distribution with parameters T, M, and N.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
trnd
# name: <cell-element>
# type: string
# elements: 1
# length: 346
 -- Function File:  trnd (N, R, C)
 -- Function File:  trnd (N, SZ)
     Return an R by C matrix of random samples from the t (Student) distribution with N degrees of freedom.  N must be a scalar or of size R by C.  Or if SZ is a vector create a matrix of size SZ.

     If R and C are omitted, the size of the result matrix is the size of N.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 102
Return an R by C matrix of random samples from the t (Student) distribution with N degrees of freedom.

# name: <cell-element>
# type: string
# elements: 1
# length: 22
kolmogorov_smirnov_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 365
 -- Function File:  kolmogorov_smirnov_cdf (X, TOL)
     Return the CDF at X of the Kolmogorov-Smirnov distribution,
                   Inf
          Q(x) =   SUM    (-1)^k exp(-2 k^2 x^2)
                 k = -Inf

     for X > 0.

     The optional parameter TOL specifies the precision up to which the series should be evaluated;  the default is TOL = `eps'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 110
Return the CDF at X of the Kolmogorov-Smirnov distribution,  Inf  Q(x) = SUM (-1)^k exp(-2 k^2 x^2)  k = -Inf 

# name: <cell-element>
# type: string
# elements: 1
# length: 11
laplace_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 152
 -- Function File:  laplace_cdf (X)
     For each element of X, compute the cumulative distribution function (CDF) at X of the Laplace distribution.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 107
For each element of X, compute the cumulative distribution function (CDF) at X of the Laplace distribution.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
exprnd
# name: <cell-element>
# type: string
# elements: 1
# length: 360
 -- Function File:  exprnd (LAMBDA, R, C)
 -- Function File:  exprnd (LAMBDA, SZ)
     Return an R by C matrix of random samples from the exponential distribution with mean LAMBDA, which must be a scalar or of size R by C.  Or if SZ is a vector, create a matrix of size SZ.

     If R and C are omitted, the size of the result matrix is the size of LAMBDA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 135
Return an R by C matrix of random samples from the exponential distribution with mean LAMBDA, which must be a scalar or of size R by C.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
poissrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 272
 -- Function File:  poissrnd (LAMBDA, R, C)
     Return an R by C matrix of random samples from the Poisson distribution with parameter LAMBDA, which must be a scalar or of size R by C.

     If R and C are omitted, the size of the result matrix is the size of LAMBDA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 136
Return an R by C matrix of random samples from the Poisson distribution with parameter LAMBDA, which must be a scalar or of size R by C.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
chi2inv
# name: <cell-element>
# type: string
# elements: 1
# length: 174
 -- Function File:  chi2inv (X, N)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the chisquare distribution with N degrees of freedom.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 130
For each element of X, compute the quantile (the inverse of the CDF) at X of the chisquare distribution with N degrees of freedom.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
unifrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 327
 -- Function File:  unifrnd (A, B, R, C)
 -- Function File:  unifrnd (A, B, SZ)
     Return an R by C or a `size (SZ)' matrix of random samples from the uniform distribution on [A, B].  Both A and B must be scalar or of size R by C.

     If R and C are omitted, the size of the result matrix is the common size of A and B.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 99
Return an R by C or a `size (SZ)' matrix of random samples from the uniform distribution on [A, B].

# name: <cell-element>
# type: string
# elements: 1
# length: 12
logistic_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 206
 -- Function File:  logistic_rnd (R, C)
 -- Function File:  logistic_rnd (SZ)
     Return an R by C matrix of random numbers from the logistic distribution.  Or if SZ is a vector, create a matrix of SZ.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 73
Return an R by C matrix of random numbers from the logistic distribution.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
cauchy_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 378
 -- Function File:  cauchy_rnd (LAMBDA, SIGMA, R, C)
 -- Function File:  cauchy_rnd (LAMBDA, SIGMA, SZ)
     Return an R by C or a `size (SZ)' matrix of random samples from the Cauchy distribution with parameters LAMBDA and SIGMA which must both be scalar or of size R by C.

     If R and C are omitted, the size of the result matrix is the common size of LAMBDA and SIGMA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 165
Return an R by C or a `size (SZ)' matrix of random samples from the Cauchy distribution with parameters LAMBDA and SIGMA which must both be scalar or of size R by C.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
betainv
# name: <cell-element>
# type: string
# elements: 1
# length: 172
 -- Function File:  betainv (X, A, B)
     For each component of X, compute the quantile (the inverse of the CDF) at X of the Beta distribution with parameters A and B.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 125
For each component of X, compute the quantile (the inverse of the CDF) at X of the Beta distribution with parameters A and B.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
unifpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 168
 -- Function File:  unifpdf (X, A, B)
     For each element of X, compute the PDF at X of the uniform distribution on [A, B].

     Default values are A = 0, B = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 82
For each element of X, compute the PDF at X of the uniform distribution on [A, B].

# name: <cell-element>
# type: string
# elements: 1
# length: 7
betacdf
# name: <cell-element>
# type: string
# elements: 1
# length: 171
 -- Function File:  betacdf (X, A, B)
     For each element of X, returns the CDF at X of the beta distribution with parameters A and B, i.e., PROB (beta (A, B) <= X).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 96
For each element of X, returns the CDF at X of the beta distribution with parameters A and B, i.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
lognpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 360
 -- Function File:  lognpdf (X, MU, SIGMA)
     For each element of X, compute the probability density function (PDF) at X of the lognormal distribution with parameters MU and SIGMA.  If a random variable follows this distribution, its logarithm is normally distributed with mean MU and standard deviation SIGMA.

     Default values are MU = 1, SIGMA = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 134
For each element of X, compute the probability density function (PDF) at X of the lognormal distribution with parameters MU and SIGMA.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
nbincdf
# name: <cell-element>
# type: string
# elements: 1
# length: 295
 -- Function File:  nbincdf (X, N, P)
     For each element of X, compute the CDF at x of the Pascal (negative binomial) distribution with parameters N and P.

     The number of failures in a Bernoulli experiment with success probability P before the N-th success follows this distribution.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 115
For each element of X, compute the CDF at x of the Pascal (negative binomial) distribution with parameters N and P.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
geopdf
# name: <cell-element>
# type: string
# elements: 1
# length: 165
 -- Function File:  geopdf (X, P)
     For each element of X, compute the probability density function (PDF) at X of the geometric distribution with parameter P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 122
For each element of X, compute the probability density function (PDF) at X of the geometric distribution with parameter P.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
wienrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 432
 -- Function File:  wienrnd (T, D, N)
     Return a simulated realization of the D-dimensional Wiener Process on the interval [0, T].  If D is omitted, D = 1 is used.  The first column of the return matrix contains time, the remaining columns contain the Wiener process.

     The optional parameter N gives the number of summands used for simulating the process over an interval of length 1.  If N is omitted, N = 1000 is used.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 90
Return a simulated realization of the D-dimensional Wiener Process on the interval [0, T].

# name: <cell-element>
# type: string
# elements: 1
# length: 13
empirical_cdf
# name: <cell-element>
# type: string
# elements: 1
# length: 203
 -- Function File:  empirical_cdf (X, DATA)
     For each element of X, compute the cumulative distribution function (CDF) at X of the empirical distribution obtained from the univariate sample DATA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 150
For each element of X, compute the cumulative distribution function (CDF) at X of the empirical distribution obtained from the univariate sample DATA.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
geornd
# name: <cell-element>
# type: string
# elements: 1
# length: 335
 -- Function File:  geornd (P, R, C)
 -- Function File:  geornd (P, SZ)
     Return an R by C matrix of random samples from the geometric distribution with parameter P, which must be a scalar or of size R by C.

     If R and C are given create a matrix with R rows and C columns.  Or if SZ is a vector, create a matrix of size SZ.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 133
Return an R by C matrix of random samples from the geometric distribution with parameter P, which must be a scalar or of size R by C.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
binocdf
# name: <cell-element>
# type: string
# elements: 1
# length: 144
 -- Function File:  binocdf (X, N, P)
     For each element of X, compute the CDF at X of the binomial distribution with parameters N and P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 97
For each element of X, compute the CDF at X of the binomial distribution with parameters N and P.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
tinv
# name: <cell-element>
# type: string
# elements: 1
# length: 294
 -- Function File:  tinv (X, N)
     For each probability value X, compute the inverse of the cumulative distribution function (CDF) of the t (Student) distribution with degrees of freedom N.  This function is analogous to looking in a table for the t-value of a single-tailed distribution.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 154
For each probability value X, compute the inverse of the cumulative distribution function (CDF) of the t (Student) distribution with degrees of freedom N.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
binornd
# name: <cell-element>
# type: string
# elements: 1
# length: 343
 -- Function File:  binornd (N, P, R, C)
 -- Function File:  binornd (N, P, SZ)
     Return an R by C  or a `size (SZ)' matrix of random samples from the binomial distribution with parameters N and P.  Both N and P must be scalar or of size R by C.

     If R and C are omitted, the size of the result matrix is the common size of N and P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 114
Return an R by C or a `size (SZ)' matrix of random samples from the binomial distribution with parameters N and P.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
tcdf
# name: <cell-element>
# type: string
# elements: 1
# length: 202
 -- Function File:  tcdf (X, N)
     For each element of X, compute the cumulative distribution function (CDF) at X of the t (Student) distribution with N degrees of freedom, i.e., PROB (t(N) <= X).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 140
For each element of X, compute the cumulative distribution function (CDF) at X of the t (Student) distribution with N degrees of freedom, i.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
fpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 173
 -- Function File:  fpdf (X, M, N)
     For each element of X, compute the probability density function (PDF) at X of the F distribution with M and N degrees of freedom.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 129
For each element of X, compute the probability density function (PDF) at X of the F distribution with M and N degrees of freedom.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
wblinv
# name: <cell-element>
# type: string
# elements: 1
# length: 186
 -- Function File:  wblinv (X, SCALE, SHAPE)
     Compute the quantile (the inverse of the CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 132
Compute the quantile (the inverse of the CDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
cauchy_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 260
 -- Function File:  cauchy_inv (X, LAMBDA, SIGMA)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the Cauchy distribution with location parameter LAMBDA and scale parameter SIGMA.  Default values are LAMBDA = 0, SIGMA = 1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 158
For each element of X, compute the quantile (the inverse of the CDF) at X of the Cauchy distribution with location parameter LAMBDA and scale parameter SIGMA.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
nbinrnd
# name: <cell-element>
# type: string
# elements: 1
# length: 394
 -- Function File:  nbinrnd (N, P, R, C)
 -- Function File:  nbinrnd (N, P, SZ)
     Return an R by C matrix of random samples from the Pascal (negative binomial) distribution with parameters N and P.  Both N and P must be scalar or of size R by C.

     If R and C are omitted, the size of the result matrix is the common size of N and P.  Or if SZ is a vector, create a matrix of size SZ.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 115
Return an R by C matrix of random samples from the Pascal (negative binomial) distribution with parameters N and P.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
empirical_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 199
 -- Function File:  empirical_pdf (X, DATA)
     For each element of X, compute the probability density function (PDF) at X of the empirical distribution obtained from the univariate sample DATA.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 146
For each element of X, compute the probability density function (PDF) at X of the empirical distribution obtained from the univariate sample DATA.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
wblpdf
# name: <cell-element>
# type: string
# elements: 1
# length: 296
 -- Function File:  wblpdf (X, SCALE, SHAPE)
     Compute the probability density function (PDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE which is given by

             scale * shape^(-scale) * x^(scale-1) * exp(-(x/shape)^scale)

     for X > 0.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 151
Compute the probability density function (PDF) at X of the Weibull distribution with shape parameter SCALE and scale parameter SHAPE which is given by 

# name: <cell-element>
# type: string
# elements: 1
# length: 11
laplace_inv
# name: <cell-element>
# type: string
# elements: 1
# length: 147
 -- Function File:  laplace_inv (X)
     For each element of X, compute the quantile (the inverse of the CDF) at X of the Laplace distribution.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 102
For each element of X, compute the quantile (the inverse of the CDF) at X of the Laplace distribution.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
chi2rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 318
 -- Function File:  chi2rnd (N, R, C)
 -- Function File:  chi2rnd (N, SZ)
     Return an R by C  or a `size (SZ)' matrix of random samples from the chisquare distribution with N degrees of freedom.  N must be a scalar or of size R by C.

     If R and C are omitted, the size of the result matrix is the size of N.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 117
Return an R by C or a `size (SZ)' matrix of random samples from the chisquare distribution with N degrees of freedom.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
discrete_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 216
 -- Function File:  discrete_pdf (X, V, P)
     For each element of X, compute the probability density function (PDF) at X of a univariate discrete distribution which assumes the values in V with probabilities P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 164
For each element of X, compute the probability density function (PDF) at X of a univariate discrete distribution which assumes the values in V with probabilities P.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
logistic_pdf
# name: <cell-element>
# type: string
# elements: 1
# length: 121
 -- Function File:  logistic_pdf (X)
     For each component of X, compute the PDF at X of the logistic distribution.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 75
For each component of X, compute the PDF at X of the logistic distribution.

# name: <cell-element>
# type: string
# elements: 1
# length: 31
logistic_regression_derivatives
# name: <cell-element>
# type: string
# elements: 1
# length: 206
 -- Function File: [DL, D2L] = logistic_regression_derivatives (X, Z, Z1, G, G1, P)
     Called by logistic_regression.  Calculates derivates of the log-likelihood for ordinal logistic regression model.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Called by logistic_regression.

# name: <cell-element>
# type: string
# elements: 1
# length: 19
logistic_regression
# name: <cell-element>
# type: string
# elements: 1
# length: 1609
 -- Function File: [THETA, BETA, DEV, DL, D2L, P] = logistic_regression (Y, X, PRINT, THETA, BETA)
     Perform ordinal logistic regression.

     Suppose Y takes values in K ordered categories, and let `gamma_i (X)' be the cumulative probability that Y falls in one of the first I categories given the covariate X.  Then

          [theta, beta] = logistic_regression (y, x)

     fits the model

          logit (gamma_i (x)) = theta_i - beta' * x,   i = 1 ... k-1

     The number of ordinal categories, K, is taken to be the number of distinct values of `round (Y)'.  If K equals 2, Y is binary and the model is ordinary logistic regression.  The matrix X is assumed to have full column rank.

     Given Y only, `theta = logistic_regression (y)' fits the model with baseline logit odds only.

     The full form is

          [theta, beta, dev, dl, d2l, gamma]
             = logistic_regression (y, x, print, theta, beta)

     in which all output arguments and all input arguments except Y are optional.

     Setting PRINT to 1 requests summary information about the fitted model to be displayed.  Setting PRINT to 2 requests information about convergence at each iteration.  Other values request no information to be displayed.  The input arguments THETA and BETA give initial estimates for THETA and BETA.

     The returned value DEV holds minus twice the log-likelihood.

     The returned values DL and D2L are the vector of first and the matrix of second derivatives of the log-likelihood with respect to THETA and BETA.

     P holds estimates for the conditional distribution of Y given X.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Perform ordinal logistic regression.

# name: <cell-element>
# type: string
# elements: 1
# length: 30
logistic_regression_likelihood
# name: <cell-element>
# type: string
# elements: 1
# length: 193
 -- Function File: [G, G1, P, DEV] = logistic_regression_likelihood (Y, X, BETA, Z, Z1)
     Calculates likelihood for the ordinal logistic regression model.  Called by logistic_regression.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Calculates likelihood for the ordinal logistic regression model.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
spearman
# name: <cell-element>
# type: string
# elements: 1
# length: 598
 -- Function File:  spearman (X, Y)
     Compute Spearman's rank correlation coefficient RHO for each of the variables specified by the input arguments.

     For matrices, each row is an observation and each column a variable; vectors are always observations and may be row or column vectors.

     `spearman (X)' is equivalent to `spearman (X, X)'.

     For two data vectors X and Y, Spearman's RHO is the correlation of the ranks of X and Y.

     If X and Y are drawn from independent distributions, RHO has zero mean and variance `1 / (n - 1)', and is asymptotically normally distributed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Compute Spearman's rank correlation coefficient RHO for each of the variables specified by the input arguments.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
ols
# name: <cell-element>
# type: string
# elements: 1
# length: 754
 -- Function File: [BETA, SIGMA, R] = ols (Y, X)
     Ordinary least squares estimation for the multivariate model y = x b + e with mean (e) = 0 and cov (vec (e)) = kron (s, I).   where y is a t by p matrix, x is a t by k matrix, b is a k by p matrix, and e is a t by p matrix.

     Each row of Y and X is an observation and each column a variable.

     The return values BETA, SIGMA, and R are defined as follows.

    BETA
          The OLS estimator for B, `BETA = pinv (X) * Y', where `pinv (X)' denotes the pseudoinverse of X.

    SIGMA
          The OLS estimator for the matrix S,

               SIGMA = (Y-X*BETA)'
                 * (Y-X*BETA)
                 / (T-rank(X))

    R
          The matrix of OLS residuals, `R = Y - X * BETA'.

# name: <cell-element>
# type: string
# elements: 1
# length: 123
Ordinary least squares estimation for the multivariate model y = x b + e with mean (e) = 0 and cov (vec (e)) = kron (s, I).

# name: <cell-element>
# type: string
# elements: 1
# length: 4
mode
# name: <cell-element>
# type: string
# elements: 1
# length: 497
 -- Function File: [M, F, C] = mode (X, DIM)
     Count the most frequently appearing value.  `mode' counts the frequency along the first non-singleton dimension and if two or more values have the same frequency returns the smallest of the two in M.  The dimension along which to count can be specified by the DIM parameter.

     The variable F counts the frequency of each of the most frequently occurring elements.  The cell array C contains all of the elements with the maximum frequency .
   
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Count the most frequently appearing value.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
probit
# name: <cell-element>
# type: string
# elements: 1
# length: 139
 -- Function File:  probit (P)
     For each component of P, return the probit (the quantile of the standard normal distribution) of P.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 99
For each component of P, return the probit (the quantile of the standard normal distribution) of P.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
ppplot
# name: <cell-element>
# type: string
# elements: 1
# length: 827
 -- Function File: [P, Y] = ppplot (X, DIST, PARAMS)
     Perform a PP-plot (probability plot).

     If F is the CDF of the distribution DIST with parameters PARAMS and X a sample vector of length N, the PP-plot graphs ordinate Y(I) = F (I-th largest element of X) versus abscissa P(I) = (I - 0.5)/N.  If the sample comes from F, the pairs will approximately follow a straight line.

     The default for DIST is the standard normal distribution.  The optional argument PARAMS contains a list of parameters of DIST.  For example, for a probability plot of the uniform distribution on [2,4] and X, use

          ppplot (x, "uniform", 2, 4)

     DIST can be any string for which a function DIST_CDF that calculates the CDF of distribution DIST exists.

     If no output arguments are given, the data are plotted directly.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Perform a PP-plot (probability plot).

# name: <cell-element>
# type: string
# elements: 1
# length: 6
qqplot
# name: <cell-element>
# type: string
# elements: 1
# length: 903
 -- Function File: [Q, S] = qqplot (X, DIST, PARAMS)
     Perform a QQ-plot (quantile plot).

     If F is the CDF of the distribution DIST with parameters PARAMS and G its inverse, and X a sample vector of length N, the QQ-plot graphs ordinate S(I) = I-th largest element of x versus abscissa Q(If) = G((I - 0.5)/N).

     If the sample comes from F except for a transformation of location and scale, the pairs will approximately follow a straight line.

     The default for DIST is the standard normal distribution.  The optional argument PARAMS contains a list of parameters of DIST.  For example, for a quantile plot of the uniform distribution on [2,4] and X, use

          qqplot (x, "uniform", 2, 4)

     DIST can be any string for which a function DIST_INV that calculates the inverse CDF of distribution DIST exists.

     If no output arguments are given, the data are plotted directly.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Perform a QQ-plot (quantile plot).

# name: <cell-element>
# type: string
# elements: 1
# length: 6
median
# name: <cell-element>
# type: string
# elements: 1
# length: 489
 -- Function File:  median (X, DIM)
     If X is a vector, compute the median value of the elements of X.  If the elements of X are sorted, the median is defined as

                      x(ceil(N/2)),             N odd
          median(x) =
                      (x(N/2) + x((N/2)+1))/2,  N even
     If X is a matrix, compute the median value for each column and return them in a row vector.  If the optional DIM argument is given, operate along this dimension.  See also: std, mean.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
If X is a vector, compute the median value of the elements of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
cov
# name: <cell-element>
# type: string
# elements: 1
# length: 302
 -- Function File:  cov (X, Y)
     Compute covariance.

     If each row of X and Y is an observation and each column is a variable, the (I, J)-th entry of `cov (X, Y)' is the covariance between the I-th variable in X and the J-th variable in Y.  If called with one argument, compute `cov (X, X)'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 19
Compute covariance.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
table
# name: <cell-element>
# type: string
# elements: 1
# length: 254
 -- Function File: [T, L_X] = table (X)
 -- Function File: [T, L_X, L_Y] = table (X, Y)
     Create a contingency table T from data vectors.  The L vectors are the corresponding levels.

     Currently, only 1- and 2-dimensional tables are supported.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Create a contingency table T from data vectors.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
histc
# name: <cell-element>
# type: string
# elements: 1
# length: 1039
 -- Function File: N = histc (Y, EDGES)
 -- Function File: N = histc (Y, EDGES, DIM)
 -- Function File: [N, IDX] = histc (...)
     Produce histogram counts.

     When Y is a vector, the function counts the number of elements of Y that fall in the histogram bins defined by EDGES.  This must be a vector of monotonically non-decreasing values that define the edges of the histogram bins.  So, `N (k)' contains the number of elements in Y for which `EDGES (k) <= Y < EDGES (k+1)'.  The final element of N contains the number of elements of Y that was equal to the last element of EDGES.

     When Y is a N-dimensional array, the same operation as above is repeated along dimension DIM.  If this argument is given, the operation is performed along the first non-singleton dimension.

     If a second output argument is requested an index matrix is also returned.  The IDX matrix has same size as Y.  Each element of IDX contains the index of the histogram bin in which the corresponding element of Y was counted.

     See also: hist.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 25
Produce histogram counts.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
std
# name: <cell-element>
# type: string
# elements: 1
# length: 780
 -- Function File:  std (X)
 -- Function File:  std (X, OPT)
 -- Function File:  std (X, OPT, DIM)
     If X is a vector, compute the standard deviation of the elements of X.

          std (x) = sqrt (sumsq (x - mean (x)) / (n - 1))
     If X is a matrix, compute the standard deviation for each column and return them in a row vector.

     The argument OPT determines the type of normalization to use.  Valid values are

    0:
          normalizes with N-1, provides the square root of best unbiased estimator of   the variance [default]

    1:
          normalizes with N, this provides the square root of the second moment around   the mean

     The third argument DIM determines the dimension along which the standard deviation is calculated.  See also: mean, median.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 70
If X is a vector, compute the standard deviation of the elements of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
range
# name: <cell-element>
# type: string
# elements: 1
# length: 319
 -- Function File:  range (X)
 -- Function File:  range (X, DIM)
     If X is a vector, return the range, i.e., the difference between the maximum and the minimum, of the input data.

     If X is a matrix, do the above for each column of X.

     If the optional argument DIM is supplied, work along dimension DIM.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 38
If X is a vector, return the range, i.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
skewness
# name: <cell-element>
# type: string
# elements: 1
# length: 340
 -- Function File:  skewness (X, DIM)
     If X is a vector of length n, return the skewness

          skewness (x) = N^(-1) std(x)^(-3) sum ((x - mean(x)).^3)

     of X.  If X is a matrix, return the skewness along the first non-singleton dimension of the matrix.  If the optional DIM argument is given, operate along this dimension.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 50
If X is a vector of length n, return the skewness 

# name: <cell-element>
# type: string
# elements: 1
# length: 10
studentize
# name: <cell-element>
# type: string
# elements: 1
# length: 274
 -- Function File:  studentize (X, DIM)
     If X is a vector, subtract its mean and divide by its standard deviation.

     If X is a matrix, do the above along the first non-singleton dimension.  If the optional argument DIM is given then operate along this dimension.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 73
If X is a vector, subtract its mean and divide by its standard deviation.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
var
# name: <cell-element>
# type: string
# elements: 1
# length: 553
 -- Function File:  var (X)
     For vector arguments, return the (real) variance of the values.  For matrix arguments, return a row vector containing the variance for each column.

     The argument OPT determines the type of normalization to use.  Valid values are

    0:
          Normalizes with N-1, provides the best unbiased estimator of the variance [default].

    1:
          Normalizes with N, this provides the second moment around the mean.

     The third argument DIM determines the dimension along which the variance is calculated.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
For vector arguments, return the (real) variance of the values.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
values
# name: <cell-element>
# type: string
# elements: 1
# length: 192
 -- Function File:  values (X)
     Return the different values in a column vector, arranged in ascending order.

     As an example, `values([1, 2, 3, 1])' returns the vector `[1, 2, 3]'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Return the different values in a column vector, arranged in ascending order.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
ranks
# name: <cell-element>
# type: string
# elements: 1
# length: 192
 -- Function File:  ranks (X, DIM)
     Return the ranks of X along the first non-singleton dimension adjust for ties.  If the optional argument DIM is given, operate along this dimension.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 78
Return the ranks of X along the first non-singleton dimension adjust for ties.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
prctile
# name: <cell-element>
# type: string
# elements: 1
# length: 721
 -- Function File: Y = prctile (X, P)
 -- Function File: Q = prctile (X, P, DIM)
     For a sample X, compute the quantiles, Y, corresponding to the cumulative probability values, P, in percent.  All non-numeric values (NaNs) of X are ignored.

     If X is a matrix, compute the percentiles for each column and return them in a matrix, such that the i-th row of Y contains the P(i)th percentiles of each column of X.

     The optional argument DIM determines the dimension along which the percentiles are calculated.  If DIM is omitted, and X is a vector or matrix, it defaults to 1 (column wise quantiles).  In the instance that X is a N-d array, DIM defaults to the first dimension whose size greater than unity.

   
# name: <cell-element>
# type: string
# elements: 1
# length: 108
For a sample X, compute the quantiles, Y, corresponding to the cumulative probability values, P, in percent.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
kendall
# name: <cell-element>
# type: string
# elements: 1
# length: 859
 -- Function File:  kendall (X, Y)
     Compute Kendall's TAU for each of the variables specified by the input arguments.

     For matrices, each row is an observation and each column a variable; vectors are always observations and may be row or column vectors.

     `kendall (X)' is equivalent to `kendall (X, X)'.

     For two data vectors X, Y of common length N, Kendall's TAU is the correlation of the signs of all rank differences of X and Y;  i.e., if both X and Y have distinct entries, then

                   1
          tau = -------   SUM sign (q(i) - q(j)) * sign (r(i) - r(j))
                n (n-1)   i,j

     in which the Q(I) and R(I)  are the ranks of X and Y, respectively.

     If X and Y are drawn from independent distributions, Kendall's TAU is asymptotically normal with mean 0 and variance `(2 * (2N+5)) / (9 * N * (N-1))'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 81
Compute Kendall's TAU for each of the variables specified by the input arguments.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
center
# name: <cell-element>
# type: string
# elements: 1
# length: 250
 -- Function File:  center (X)
 -- Function File:  center (X, DIM)
     If X is a vector, subtract its mean.  If X is a matrix, do the above for each column.  If the optional argument DIM is given, perform the above operation along this dimension
   
# name: <cell-element>
# type: string
# elements: 1
# length: 36
If X is a vector, subtract its mean.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
iqr
# name: <cell-element>
# type: string
# elements: 1
# length: 319
 -- Function File:  iqr (X, DIM)
     If X is a vector, return the interquartile range, i.e., the difference between the upper and lower quartile, of the input data.

     If X is a matrix, do the above for first non-singleton dimension of X.  If the option DIM argument is given, then operate along this dimension.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
If X is a vector, return the interquartile range, i.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
statistics
# name: <cell-element>
# type: string
# elements: 1
# length: 312
 -- Function File:  statistics (X)
     If X is a matrix, return a matrix with the minimum, first quartile, median, third quartile, maximum, mean, standard deviation, skewness and kurtosis of the columns of X as its columns.

     If X is a vector, calculate the statistics along the non-singleton dimension.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 184
If X is a matrix, return a matrix with the minimum, first quartile, median, third quartile, maximum, mean, standard deviation, skewness and kurtosis of the columns of X as its columns.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
meansq
# name: <cell-element>
# type: string
# elements: 1
# length: 315
 -- Function File:  meansq (X)
 -- Function File:  meansq (X, DIM)
     For vector arguments, return the mean square of the values.  For matrix arguments, return a row vector containing the mean square of each column.  With the optional DIM argument, returns the mean squared of the values along this dimension.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 59
For vector arguments, return the mean square of the values.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
mahalanobis
# name: <cell-element>
# type: string
# elements: 1
# length: 244
 -- Function File:  mahalanobis (X, Y)
     Return the Mahalanobis' D-square distance between the multivariate samples X and Y, which must have the same number of components (columns), but may have a different number of observations (rows).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 196
Return the Mahalanobis' D-square distance between the multivariate samples X and Y, which must have the same number of components (columns), but may have a different number of observations (rows).

# name: <cell-element>
# type: string
# elements: 1
# length: 7
cloglog
# name: <cell-element>
# type: string
# elements: 1
# length: 138
 -- Function File:  cloglog (X)
     Return the complementary log-log function of X, defined as

          cloglog(x) = - log (- log (X))

# name: <cell-element>
# type: string
# elements: 1
# length: 59
Return the complementary log-log function of X, defined as 

# name: <cell-element>
# type: string
# elements: 1
# length: 8
quantile
# name: <cell-element>
# type: string
# elements: 1
# length: 2540
 -- Function File: Q = quantile (X, P)
 -- Function File: Q = quantile (X, P, DIM)
 -- Function File: Q = quantile (X, P, DIM, METHOD)
     For a sample, X, calculate the quantiles, Q, corresponding to the cumulative probability values in P.  All non-numeric values (NaNs) of X are ignored.

     If X is a matrix, compute the quantiles for each column and return them in a matrix, such that the i-th row of Q contains the P(i)th quantiles of each column of X.

     The optional argument DIM determines the dimension along which the percentiles are calculated.  If DIM is omitted, and X is a vector or matrix, it defaults to 1 (column wise quantiles).  In the instance that X is a N-d array, DIM defaults to the first dimension whose size greater than unity.

     The methods available to calculate sample quantiles are the nine methods used by R (http://www.r-project.org/).  The default value is METHOD = 5.

     Discontinuous sample quantile methods 1, 2, and 3

       1. Method 1: Inverse of empirical distribution function.

       2. Method 2: Similar to method 1 but with averaging at discontinuities.

       3. Method 3: SAS definition: nearest even order statistic.

     Continuous sample quantile methods 4 through 9, where p(k) is the linear interpolation function respecting each methods' representative cdf.

       4. Method 4: p(k) = k / n. That is, linear interpolation of the empirical cdf.

       5. Method 5: p(k) = (k - 0.5) / n. That is a piecewise linear function where the knots are the values midway through the steps of the empirical cdf.

       6. Method 6: p(k) = k / (n + 1).

       7. Method 7: p(k) = (k - 1) / (n - 1).

       8. Method 8: p(k) = (k - 1/3) / (n + 1/3).  The resulting quantile estimates are approximately median-unbiased regardless of the distribution of X.

       9. Method 9: p(k) = (k - 3/8) / (n + 1/4).  The resulting quantile estimates are approximately unbiased for the expected order statistics if X is normally distributed.

     Hyndman and Fan (1996) recommend method 8.  Maxima, S, and R (versions prior to 2.0.0) use 7 as their default.  Minitab and SPSS use method 6.  MATLAB uses method 5.

     References:

        * Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.  Wadsworth & Brooks/Cole.

        * Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in statistical packages, American Statistician, 50, 361-365.

        * R: A Language and Environment for Statistical Computing; `http://cran.r-project.org/doc/manuals/fullrefman.pdf'.

# name: <cell-element>
# type: string
# elements: 1
# length: 101
For a sample, X, calculate the quantiles, Q, corresponding to the cumulative probability values in P.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
moment
# name: <cell-element>
# type: string
# elements: 1
# length: 530
 -- Function File:  moment (X, P, OPT, DIM)
     If X is a vector, compute the P-th moment of X.

     If X is a matrix, return the row vector containing the P-th moment of each column.

     With the optional string opt, the kind of moment to be computed can be specified.  If opt contains `"c"' or `"a"', central and/or absolute moments are returned.  For example,

          moment (x, 3, "ac")

     computes the third central absolute moment of X.

     If the optional argument DIM is supplied, work along dimension DIM.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 47
If X is a vector, compute the P-th moment of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
corrcoef
# name: <cell-element>
# type: string
# elements: 1
# length: 376
 -- Function File:  corrcoef (X, Y)
     Compute correlation.

     If each row of X and Y is an observation and each column is a variable, the (I, J)-th entry of `corrcoef (X, Y)' is the correlation between the I-th variable in X and the J-th variable in Y.

          corrcoef(x,y) = cov(x,y)/(std(x)*std(y))

     If called with one argument, compute `corrcoef (X, X)'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 20
Compute correlation.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
logit
# name: <cell-element>
# type: string
# elements: 1
# length: 130
 -- Function File:  logit (P)
     For each component of P, return the logit of P defined as
          logit(P) = log (P / (1-P))

# name: <cell-element>
# type: string
# elements: 1
# length: 86
For each component of P, return the logit of P defined as  logit(P) = log (P / (1-P)) 

# name: <cell-element>
# type: string
# elements: 1
# length: 3
cor
# name: <cell-element>
# type: string
# elements: 1
# length: 484
 -- Function File:  cor (X, Y)
     Compute correlation.

     The (I, J)-th entry of `cor (X, Y)' is the correlation between the I-th variable in X and the J-th variable in Y.

          corrcoef(x,y) = cov(x,y)/(std(x)*std(y))

     For matrices, each row is an observation and each column a variable; vectors are always observations and may be row or column vectors.

     `cor (X)' is equivalent to `cor (X, X)'.

     Note that the `corrcoef' function does the same as `cor'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 20
Compute correlation.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
kurtosis
# name: <cell-element>
# type: string
# elements: 1
# length: 354
 -- Function File:  kurtosis (X, DIM)
     If X is a vector of length N, return the kurtosis

          kurtosis (x) = N^(-1) std(x)^(-4) sum ((x - mean(x)).^4) - 3

     of X.  If X is a matrix, return the kurtosis over the first non-singleton dimension.  The optional argument DIM can be given to force the kurtosis to be given over that dimension.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 50
If X is a vector of length N, return the kurtosis 

# name: <cell-element>
# type: string
# elements: 1
# length: 3
cut
# name: <cell-element>
# type: string
# elements: 1
# length: 519
 -- Function File:  cut (X, BREAKS)
     Create categorical data out of numerical or continuous data by cutting into intervals.

     If BREAKS is a scalar, the data is cut into that many equal-width intervals.  If BREAKS is a vector of break points, the category has `length (BREAKS) - 1' groups.

     The returned value is a vector of the same size as X telling which group each point in X belongs to.  Groups are labelled from 1 to the number of groups; points outside the range of BREAKS are labelled by `NaN'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Create categorical data out of numerical or continuous data by cutting into intervals.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
gls
# name: <cell-element>
# type: string
# elements: 1
# length: 582
 -- Function File: [BETA, V, R] = gls (Y, X, O)
     Generalized least squares estimation for the multivariate model y = x b + e with mean (e) = 0 and cov (vec (e)) = (s^2) o,  where y is a t by p matrix, x is a t by k matrix, b is a k by p matrix, e is a t by p matrix, and o is a t p by t p matrix.

     Each row of Y and X is an observation and each column a variable.  The return values BETA, V, and R are defined as follows.

    BETA
          The GLS estimator for b.

    V
          The GLS estimator for s^2.

    R
          The matrix of GLS residuals, r = y - x beta.

# name: <cell-element>
# type: string
# elements: 1
# length: 246
Generalized least squares estimation for the multivariate model y = x b + e with mean (e) = 0 and cov (vec (e)) = (s^2) o, where y is a t by p matrix, x is a t by k matrix, b is a k by p matrix, e is a t by p matrix, and o is a t p by t p matrix.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
run_count
# name: <cell-element>
# type: string
# elements: 1
# length: 237
 -- Function File:  run_count (X, N)
     Count the upward runs along the first non-singleton dimension of X of length 1, 2, ..., N-1 and greater than or equal to N.  If the optional argument DIM is given operate along this dimension
   
# name: <cell-element>
# type: string
# elements: 1
# length: 84
Count the upward runs along the first non-singleton dimension of X of length 1, 2, .

# name: <cell-element>
# type: string
# elements: 1
# length: 4
mean
# name: <cell-element>
# type: string
# elements: 1
# length: 688
 -- Function File:  mean (X, DIM, OPT)
     If X is a vector, compute the mean of the elements of X

          mean (x) = SUM_i x(i) / N
     If X is a matrix, compute the mean for each column and return them in a row vector.

     With the optional argument OPT, the kind of mean computed can be selected.  The following options are recognized:

    `"a"'
          Compute the (ordinary) arithmetic mean.  This is the default.

    `"g"'
          Compute the geometric mean.

    `"h"'
          Compute the harmonic mean.

     If the optional argument DIM is supplied, work along dimension DIM.

     Both DIM and OPT are optional.  If both are supplied, either may appear first.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 56
If X is a vector, compute the mean of the elements of X 

# name: <cell-element>
# type: string
# elements: 1
# length: 9
griddatan
# name: <cell-element>
# type: string
# elements: 1
# length: 360
 -- Function File: YI = griddatan (X, Y, XI, METHOD, OPTIONS)
     Generate a regular mesh from irregular data using interpolation.  The function is defined by `Y = f (X)'.  The interpolation points are all XI.

     The interpolation method can be `"nearest"' or `"linear"'.  If method is omitted it defaults to `"linear"'.  See also: griddata, delaunayn.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Generate a regular mesh from irregular data using interpolation.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
delaunay3
# name: <cell-element>
# type: string
# elements: 1
# length: 481
 -- Function File: T = delaunay3 (X, Y, Z)
 -- Function File: T = delaunay3 (X, Y, Z, OPT)
     A matrix of size [n, 4] is returned.  Each row contains a set of tetrahedron which are described by the indices to the data point vectors (x,y,z).

     A fourth optional argument, which must be a string or cell array of strings, contains extra options passed to the underlying qhull command.  See the documentation for the Qhull library for details.  See also: delaunay,delaunayn.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 36
A matrix of size [n, 4] is returned.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
griddata3
# name: <cell-element>
# type: string
# elements: 1
# length: 377
 -- Function File: VI = griddata3 (X, Y, Z, V XI, YI, ZI, METHOD, OPTIONS)
     Generate a regular mesh from irregular data using interpolation.  The function is defined by `Y = f (X,Y,Z)'.  The interpolation points are all XI.

     The interpolation method can be `"nearest"' or `"linear"'.  If method is omitted it defaults to `"linear"'.  See also: griddata, delaunayn.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Generate a regular mesh from irregular data using interpolation.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
trisurf
# name: <cell-element>
# type: string
# elements: 1
# length: 360
 -- Function File:  trisurf (TRI, X, Y, Z)
 -- Function File: H = trisurf (...)
     Plot a triangular surface in 3D.  The variable TRI is the triangular meshing of the points `(X, Y)' which is returned from `delaunay'.  The variable Z is value at the point `(X, Y)'.  The output argument H is the graphic handle to the plot.  See also: triplot, delaunay3.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Plot a triangular surface in 3D.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
rectint
# name: <cell-element>
# type: string
# elements: 1
# length: 436
 -- Function File: AREA = rectint (A, B)
     Compute the area of intersection of rectangles in A and rectangles in B.  Rectangles are defined as [x y width height] where x and y are the minimum values of the two orthogonal dimensions.

     If A or B are matrices, then the output, AREA, is a matrix where the i-th row corresponds to the i-th row of a and the j-th column corresponds to the j-th row of b.

     See also: polyarea.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 72
Compute the area of intersection of rectangles in A and rectangles in B.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
voronoi
# name: <cell-element>
# type: string
# elements: 1
# length: 878
 -- Function File:  voronoi (X, Y)
 -- Function File:  voronoi (X, Y, "plotstyle")
 -- Function File:  voronoi (X, Y, "plotstyle", OPTIONS)
 -- Function File: [VX, VY] = voronoi (...)
     plots voronoi diagram of points `(X, Y)'.  The voronoi facets with points at infinity are not drawn.  [VX, VY] = voronoi(...) returns the vertices instead of plotting the diagram. plot (VX, VY) shows the voronoi diagram.

     A fourth optional argument, which must be a string, contains extra options passed to the underlying qhull command.  See the documentation for the Qhull library for details.

            x = rand (10, 1);
            y = rand (size (x));
            h = convhull (x, y);
            [vx, vy] = voronoi (x, y);
            plot (vx, vy, "-b", x, y, "o", x(h), y(h), "-g")
            legend ("", "points", "hull");

     See also: voronoin, delaunay, convhull.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 41
plots voronoi diagram of points `(X, Y)'.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
dsearch
# name: <cell-element>
# type: string
# elements: 1
# length: 293
 -- Function File: IDX = dsearch (X, Y, TRI, XI, YI)
 -- Function File: IDX = dsearch (X, Y, TRI, XI, YI, S)
     Returns the index IDX or the closest point in `X, Y' to the elements `[XI(:), YI(:)]'.  The variable S is accepted but ignored for compatibility.  See also: dsearchn, tsearch.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Returns the index IDX or the closest point in `X, Y' to the elements `[XI(:), YI(:)]'.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
delaunayn
# name: <cell-element>
# type: string
# elements: 1
# length: 1199
 -- Function File: T = delaunayn (P)
 -- Function File: T = delaunayn (P, OPT)
     Form the Delaunay triangulation for a set of points.  The Delaunay triangulation is a tessellation of the convex hull of the points such that no n-sphere defined by the n-triangles contains any other points from the set.  The input matrix P of size `[n, dim]' contains N points in a space of dimension dim.  The return matrix T has the size `[m, dim+1]'.  It contains for each row a set of indices to the points, which describes a simplex of dimension dim.  For example, a 2d simplex is a triangle and 3d simplex is a tetrahedron.

     Extra options for the underlying Qhull command can be specified by the second argument.  This argument is a cell array of strings.  The default options depend on the dimension of the input:

        * 2D and 3D: OPT = `{"Qt", "Qbb", "Qc"}'

        * 4D and higher: OPT = `{"Qt", "Qbb", "Qc", "Qz"}'

     If OPT is [], then the default arguments are used.  If OPT is `{""}', then none of the default arguments are used by Qhull.  See the Qhull documentation for the available options.

     All options can also be specified as single string, for example `"Qt Qbb Qc Qz"'.

   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Form the Delaunay triangulation for a set of points.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
tsearchn
# name: <cell-element>
# type: string
# elements: 1
# length: 357
 -- Function File: [IDX, P] = tsearchn (X, T, XI)
     Searches for the enclosing Delaunay convex hull.  For `T = delaunayn (X)', finds the index in T containing the points XI.  For points outside the convex hull, IDX is NaN.  If requested `tsearchn' also returns the Barycentric coordinates P of the enclosing triangles.  See also: delaunay, delaunayn.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Searches for the enclosing Delaunay convex hull.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
convhull
# name: <cell-element>
# type: string
# elements: 1
# length: 428
 -- Function File: H = convhull (X, Y)
 -- Function File: H = convhull (X, Y, OPT)
     Returns the index vector to the points of the enclosing convex hull.  The data points are defined by the x and y vectors.

     A third optional argument, which must be a string, contains extra options passed to the underlying qhull command.  See the documentation for the Qhull library for details.

     See also: delaunay, convhulln.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Returns the index vector to the points of the enclosing convex hull.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
voronoin
# name: <cell-element>
# type: string
# elements: 1
# length: 555
 -- Function File: [C, F] = voronoin (PTS)
 -- Function File: [C, F] = voronoin (PTS, OPTIONS)
     computes n- dimensional voronoi facets.  The input matrix PTS of size [n, dim] contains n points of dimension dim.  C contains the points of the voronoi facets.  The list F contains for each facet the indices of the voronoi points.

     A second optional argument, which must be a string, contains extra options passed to the underlying qhull command.  See the documentation for the Qhull library for details.  See also: voronoin, delaunay, convhull.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
computes n- dimensional voronoi facets.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
inpolygon
# name: <cell-element>
# type: string
# elements: 1
# length: 293
 -- Function File: [IN, ON] = inpolygon (X, Y, XV, XY)
     For a polygon defined by `(XV, YV)' points, determine if the points `(X, Y)' are inside or outside the polygon.  The variables X, Y, must have the same dimension.  The optional output ON gives the points that are on the polygon.

   
# name: <cell-element>
# type: string
# elements: 1
# length: 111
For a polygon defined by `(XV, YV)' points, determine if the points `(X, Y)' are inside or outside the polygon.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
griddata
# name: <cell-element>
# type: string
# elements: 1
# length: 495
 -- Function File: ZI = griddata (X, Y, Z, XI, YI, METHOD)
 -- Function File: [XI, YI, ZI] = griddata (X, Y, Z, XI, YI, METHOD)
     Generate a regular mesh from irregular data using interpolation.  The function is defined by `Z = f (X, Y)'.  The interpolation points are all `(XI, YI)'.  If XI, YI are vectors then they are made into a 2D mesh.

     The interpolation method can be `"nearest"', `"cubic"' or `"linear"'.  If method is omitted it defaults to `"linear"'.  See also: delaunay.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Generate a regular mesh from irregular data using interpolation.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
trimesh
# name: <cell-element>
# type: string
# elements: 1
# length: 357
 -- Function File:  trimesh (TRI, X, Y, Z)
 -- Function File: H = trimesh (...)
     Plot a triangular mesh in 3D.  The variable TRI is the triangular meshing of the points `(X, Y)' which is returned from `delaunay'.  The variable Z is value at the point `(X, Y)'.  The output argument H is the graphic handle to the plot.  See also: triplot, delaunay3.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 29
Plot a triangular mesh in 3D.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
dsearchn
# name: <cell-element>
# type: string
# elements: 1
# length: 465
 -- Function File: IDX = dsearchn (X, TRI, XI)
 -- Function File: IDX = dsearchn (X, TRI, XI, OUTVAL)
 -- Function File: IDX = dsearchn (X, XI)
 -- Function File: [IDX, D] = dsearchn (...)
     Returns the index IDX or the closest point in X to the elements XI.  If OUTVAL is supplied, then the values of XI that are not contained within one of the simplicies TRI are set to OUTVAL.  Generally, TRI is returned from `delaunayn (X)'.  See also: dsearch, tsearch.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 67
Returns the index IDX or the closest point in X to the elements XI.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
triplot
# name: <cell-element>
# type: string
# elements: 1
# length: 433
 -- Function File:  triplot (TRI, X, Y)
 -- Function File:  triplot (TRI, X, Y, LINESPEC)
 -- Function File: H = triplot (...)
     Plot a triangular mesh in 2D.  The variable TRI is the triangular meshing of the points `(X, Y)' which is returned from `delaunay'.  If given, the LINESPEC determines the properties to use for the lines.  The output argument H is the graphic handle to the plot.  See also: plot, trimesh, delaunay.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 29
Plot a triangular mesh in 2D.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
delaunay
# name: <cell-element>
# type: string
# elements: 1
# length: 863
 -- Function File: TRI = delaunay (X, Y)
 -- Function File: TRI = delaunay (X, Y, OPT)
     The return matrix of size [n, 3] contains a set triangles which are described by the indices to the data point x and y vector.  The triangulation satisfies the Delaunay circum-circle criterion.  No other data point is in the circum-circle of the defining triangle.

     A third optional argument, which must be a string, contains extra options passed to the underlying qhull command.  See the documentation for the Qhull library for details.

          x = rand (1, 10);
          y = rand (size (x));
          T = delaunay (x, y);
          X = [x(T(:,1)); x(T(:,2)); x(T(:,3)); x(T(:,1))];
          Y = [y(T(:,1)); y(T(:,2)); y(T(:,3)); y(T(:,1))];
          axis ([0,1,0,1]);
          plot (X, Y, "b", x, y, "r*");
     See also: voronoi, delaunay3, delaunayn.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 126
The return matrix of size [n, 3] contains a set triangles which are described by the indices to the data point x and y vector.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
isonormals
# name: <cell-element>
# type: string
# elements: 1
# length: 3208
 -- Function File: [N] = isonormals (VAL, V)
 -- Function File: [N] = isonormals (VAL, P)
 -- Function File: [N] = isonormals (X, Y, Z, VAL, V)
 -- Function File: [N] = isonormals (X, Y, Z, VAL, P)
 -- Function File: [N] = isonormals (..., "negate")
 -- Function File: isonormals (..., P)
     If called with one output argument and the first input argument VAL is a three-dimensional array that contains the data for an isosurface geometry and the second input argument V keeps the vertices of an isosurface then return the normals N in form of a matrix with the same size than V at computed points `[x, y, z] = meshgrid (1:l, 1:m, 1:n)'.  The output argument N can be taken to manually set VERTEXNORMALS of a patch.

     If called with further input arguments X, Y and Z which are three-dimensional arrays with the same size than VAL then the volume data is taken at those given points.  Instead of the vertices data V a patch handle P can be passed to this function.

     If given the string input argument "negate" as last input argument then compute the reverse vector normals of an isosurface geometry.

     If no output argument is given then directly redraw the patch that is given by the patch handle P.

     For example,
          function [] = isofinish (p)
            set (gca, "DataAspectRatioMode","manual","DataAspectRatio",[1 1 1]);
            set (p, "VertexNormals", -get(p,"VertexNormals")); ## Revert normals
            set (p, "FaceColor", "interp");
            ## set (p, "FaceLighting", "phong");
            ## light ("Position", [1 1 5]); ## Available with JHandles
          endfunction

          N = 15;    ## Increase number of vertices in each direction
          iso = .4;  ## Change isovalue to .1 to display a sphere
          lin = linspace (0, 2, N);
          [x, y, z] = meshgrid (lin, lin, lin);
          c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);
          figure (); ## Open another figure window

          subplot (2, 2, 1); view (-38, 20);
          [f, v, cdat] = isosurface (x, y, z, c, iso, y);
          p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, \
          	   "FaceColor", "interp", "EdgeColor", "none");
          isofinish (p); ## Call user function isofinish

          subplot (2, 2, 2); view (-38, 20);
          p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, \
          	   "FaceColor", "interp", "EdgeColor", "none");
          isonormals (x, y, z, c, p); ## Directly modify patch
          isofinish (p);

          subplot (2, 2, 3); view (-38, 20);
          p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, \
          	   "FaceColor", "interp", "EdgeColor", "none");
          n = isonormals (x, y, z, c, v); ## Compute normals of isosurface
          set (p, "VertexNormals", n);    ## Manually set vertex normals
          isofinish (p);

          subplot (2, 2, 4); view (-38, 20);
          p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", cdat, \
          	   "FaceColor", "interp", "EdgeColor", "none");
          isonormals (x, y, z, c, v, "negate"); ## Use reverse directly
          isofinish (p);

     See also: isosurface, isocolors, isocaps, marching_cube.

   
# name: <cell-element>
# type: string
# elements: 1
# length: 345
If called with one output argument and the first input argument VAL is a three-dimensional array that contains the data for an isosurface geometry and the second input argument V keeps the vertices of an isosurface then return the normals N in form of a matrix with the same size than V at computed points `[x, y, z] = meshgrid (1:l, 1:m, 1:n)'.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
grid
# name: <cell-element>
# type: string
# elements: 1
# length: 569
 -- Function File:  grid (ARG)
 -- Function File:  grid ("minor", ARG2)
 -- Function File:  grid (HAX, ...)
     Force the display of a grid on the plot.  The argument may be either `"on"', or `"off"'.  If it is omitted, the current grid state is toggled.

     If ARG is `"minor"' then the minor grid is toggled.  When using a minor grid a second argument ARG2 is allowed, which can be either `"on"' or `"off"' to explicitly set the state of the minor grid.

     If the first argument is an axis handle, HAX, operate on the specified axis object.  See also: plot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Force the display of a grid on the plot.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
semilogx
# name: <cell-element>
# type: string
# elements: 1
# length: 239
 -- Function File:  semilogx (ARGS)
     Produce a two-dimensional plot using a log scale for the X axis.  See the description of `plot' for a description of the arguments that `semilogx' will accept.  See also: plot, semilogy, loglog.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Produce a two-dimensional plot using a log scale for the X axis.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
surface
# name: <cell-element>
# type: string
# elements: 1
# length: 765
 -- Function File:  surface (X, Y, Z, C)
 -- Function File:  surface (X, Y, Z)
 -- Function File:  surface (Z, C)
 -- Function File:  surface (Z)
 -- Function File:  surface (..., PROP, VAL)
 -- Function File:  surface (H, ...)
 -- Function File: H = surface (...)
     Plot a surface graphic object given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the surface.  If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)).  Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.  If X and Y are missing, they are constructed from size of the matrix Z.

     Any additional properties passed are assigned to the surface.  See also: surf, mesh, patch, line.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 141
Plot a surface graphic object given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the surface.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
title
# name: <cell-element>
# type: string
# elements: 1
# length: 138
 -- Function File:  title (TITLE)
 -- Function File:  title (TITLE, P1, V1, ...)
     Create a title object and return a handle to it.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Create a title object and return a handle to it.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
ellipsoid
# name: <cell-element>
# type: string
# elements: 1
# length: 380
 -- Function File: [X, Y, Z] = ellipsoid (XC,YC, ZC, XR, YR, ZR, N)
 -- Function File:  ellipsoid (H, ...)
     Generate three matrices in `meshgrid' format that define an ellipsoid.  Called with no return arguments, `ellipsoid' calls directly `surf (X, Y, Z)'.  If an axes handle is passed as the first argument, the surface is plotted to this set of axes.  See also: sphere.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 70
Generate three matrices in `meshgrid' format that define an ellipsoid.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
isfigure
# name: <cell-element>
# type: string
# elements: 1
# length: 130
 -- Function File:  isfigure (H)
     Return true if H is a graphics handle that contains a figure object and false otherwise.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 88
Return true if H is a graphics handle that contains a figure object and false otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
findobj
# name: <cell-element>
# type: string
# elements: 1
# length: 1576
 -- Function File: H = findobj ()
 -- Function File: H = findobj (PROP_NAME, PROP_VALUE)
 -- Function File: H = findobj ('-property', PROP_NAME)
 -- Function File: H = findobj ('-regexp', PROP_NAME, PATTERN)
 -- Function File: H = findobj ('flat', ...)
 -- Function File: H = findobj (H, ...)
 -- Function File: H = findobj (H, '-depth', D, ...)
     Find object with specified property values.  The simplest form is

          findobj (PROP_NAME, PROP_VALUE)

     which returns all of the handles to the objects with the name PROP_NAME and the name PROP_VALUE.  The search can be limited to a particular object or set of objects and their descendants by passing a handle or set of handles H as the first argument to `findobj'.

     The depth of hierarchy of objects to which to search to can be limited with the '-depth' argument.  To limit the number depth of the hierarchy to search to D generations of children, and example is

          findobj (H, '-depth', D, PROP_NAME, PROP_VALUE)

     Specifying a depth D of 0, limits the search to the set of object passed in H.  A depth D of 0 is equivalent to the '-flat' argument.

     A specified logical operator may be applied to the pairs of PROP_NAME and PROP_VALUE.  The supported logical operators are '-and', '-or', '-xor', '-not'.

     The objects may also be matched by comparing a regular expression to the property values, where property values that match `regexp (PROP_VALUE, PATTERN)' are returned.  Finally, objects may be matched by property name only, using the '-property' option.  See also: get, set.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Find object with specified property values.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
loglogerr
# name: <cell-element>
# type: string
# elements: 1
# length: 479
 -- Function File:  loglogerr (ARGS)
     Produce two-dimensional plots on double logarithm axis with errorbars.  Many different combinations of arguments are possible.  The most used form is

          loglogerr (X, Y, EY, FMT)

     which produces a double logarithm plot of Y versus X with errors in the Y-scale defined by EY and the plot format defined by FMT.  See errorbar for available formats and additional information.  See also: errorbar, semilogxerr, semilogyerr.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 70
Produce two-dimensional plots on double logarithm axis with errorbars.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
gcbo
# name: <cell-element>
# type: string
# elements: 1
# length: 514
 -- Function File: H = gcbo ()
 -- Function File: [H, FIG] = gcbo ()
     Return a handle to the object whose callback is currently executing.  If no callback is executing, this function returns the empty matrix.  This handle is obtained from the root object property "CallbackObject".

     Additionally return the handle of the figure containing the object whose callback is currently executing.  If no callback is executing, the second output is also set to the empty matrix.

     See also: gcf, gca, gcbf.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Return a handle to the object whose callback is currently executing.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
stem
# name: <cell-element>
# type: string
# elements: 1
# length: 1419
 -- Function File: H = stem (X, Y, LINESPEC)
 -- Function File: H = stem (..., "filled")
     Plot a stem graph from two vectors of x-y data.  If only one argument is given, it is taken as the y-values and the x coordinates are taken from the indices of the elements.

     If Y is a matrix, then each column of the matrix is plotted as a separate stem graph.  In this case X can either be a vector, the same length as the number of rows in Y, or it can be a matrix of the same size as Y.

     The default color is `"r"' (red).  The default line style is `"-"' and the default marker is `"o"'.  The line style can be altered by the `linespec' argument in the same manner as the `plot' command.  For example

          x = 1:10;
          y = ones (1, length (x))*2.*x;
          stem (x, y, "b");

     plots 10 stems with heights from 2 to 20 in blue;

     The return value of `stem' is a vector if "stem series" graphics handles, with one handle per column of the variable Y.  This handle regroups the elements of the stem graph together as the children of the "stem series" handle, allowing them to be altered together.  For example

          x = [0 : 10].';
          y = [sin(x), cos(x)]
          h = stem (x, y);
          set (h(2), "color", "g");
          set (h(1), "basevalue", -1)

     changes the color of the second "stem series"  and moves the base line of the first.  See also: bar, barh, plot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Plot a stem graph from two vectors of x-y data.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
ezplot
# name: <cell-element>
# type: string
# elements: 1
# length: 1395
 -- Function File:  ezplot (F)
 -- Function File:  ezplot (FX, FY)
 -- Function File:  ezplot (..., DOM)
 -- Function File:  ezplot (..., N)
 -- Function File:  ezplot (H, ...)
 -- Function File: H = ezplot (...)
     Plots in two-dimensions the curve defined by F.  The function F may be a string, inline function or function handle and can have either one or two variables.  If F has one variable, then the function is plotted over the domain `-2*pi < X < 2*pi' with 500 points.

     If F has two variables then `F(X,Y) = 0' is calculated over the meshed domain `-2*pi < X | Y < 2*pi' with 60 by 60 in the mesh.  For example

          ezplot (@(X, Y) X .^ 2 - Y .^ 2 - 1)

     If two functions are passed as strings, inline functions or function handles, then the parametric function

          X = FX (T)
          Y = FY (T)

     is plotted over the domain `-2*pi < T < 2*pi' with 500 points.

     If DOM is a two element vector, it represents the minimum and maximum value of X, Y and T.  If it is a four element vector, then the minimum and maximum values of X and T are determined by the first two elements and the minimum and maximum of Y by the second pair of elements.

     N is a scalar defining the number of points to use in plotting the function.

     The optional return value H provides a list of handles to the the line objects plotted.

     See also: plot, ezplot3.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Plots in two-dimensions the curve defined by F.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
ezcontourf
# name: <cell-element>
# type: string
# elements: 1
# length: 1013
 -- Function File:  ezcontourf (F)
 -- Function File:  ezcontourf (..., DOM)
 -- Function File:  ezcontourf (..., N)
 -- Function File:  ezcontourf (H, ...)
 -- Function File: H = ezcontourf (...)
     Plots the filled contour lines of a function.  F is a string, inline function or function handle with two arguments defining the function.  By default the plot is over the domain `-2*pi < X < 2*pi' and `-2*pi < Y < 2*pi' with 60 points in each dimension.

     If DOM is a two element vector, it represents the minimum and maximum value of both X and Y.  If DOM is a four element vector, then the minimum and maximum value of X and Y are specify separately.

     N is a scalar defining the number of points to use in each dimension.

     The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).

          f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
          ezcontourf (f, [-3, 3]);

     See also: ezplot, ezcontour, ezsurfc, ezmeshc.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Plots the filled contour lines of a function.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
ezcontour
# name: <cell-element>
# type: string
# elements: 1
# length: 1001
 -- Function File:  ezcontour (F)
 -- Function File:  ezcontour (..., DOM)
 -- Function File:  ezcontour (..., N)
 -- Function File:  ezcontour (H, ...)
 -- Function File: H = ezcontour (...)
     Plots the contour lines of a function.  F is a string, inline function or function handle with two arguments defining the function.  By default the plot is over the domain `-2*pi < X < 2*pi' and `-2*pi < Y < 2*pi' with 60 points in each dimension.

     If DOM is a two element vector, it represents the minimum and maximum value of both X and Y.  If DOM is a four element vector, then the minimum and maximum value of X and Y are specify separately.

     N is a scalar defining the number of points to use in each dimension.

     The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).

          f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
          ezcontour (f, [-3, 3]);

     See also: ezplot, ezcontourf, ezsurfc, ezmeshc.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 38
Plots the contour lines of a function.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
orient
# name: <cell-element>
# type: string
# elements: 1
# length: 361
 -- Function File:  orient (ORIENTATION)
     Set the default print orientation.  Valid values for ORIENTATION include `"landscape"', `"portrait"', and `"tall"'.

     The `"tall"' option sets the orientation to portait and fills the page with the plot, while leaving a 0.25in border.

     If called with no arguments, return the default print orientation.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Set the default print orientation.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
ginput
# name: <cell-element>
# type: string
# elements: 1
# length: 281
 -- Function File: [X, Y, BUTTONS] = ginput (N)
     Return which mouse buttons were pressed and keys were hit on the current figure.  If N is defined, then wait for N mouse clicks before returning.  If N is not defined, then `ginput' will loop until the return key is pressed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 80
Return which mouse buttons were pressed and keys were hit on the current figure.

# name: <cell-element>
# type: string
# elements: 1
# length: 14
gnuplot_binary
# name: <cell-element>
# type: string
# elements: 1
# length: 236
 -- Loadable Function: VAL = gnuplot_binary ()
 -- Loadable Function: OLD_VAL = gnuplot_binary (NEW_VAL)
     Query or set the name of the program invoked by the plot command.  The default value `\"gnuplot\"'.  *Note Installation::.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 65
Query or set the name of the program invoked by the plot command.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
barh
# name: <cell-element>
# type: string
# elements: 1
# length: 1088
 -- Function File:  barh (X, Y)
 -- Function File:  barh (Y)
 -- Function File:  barh (X, Y, W)
 -- Function File:  barh (X, Y, W, STYLE)
 -- Function File: H = barh (..., PROP, VAL)
 -- Function File:  barh (H, ...)
     Produce a horizontal bar graph from two vectors of x-y data.

     If only one argument is given, it is taken as a vector of y-values and the x coordinates are taken to be the indices of the elements.

     The default width of 0.8 for the bars can be changed using W.

     If Y is a matrix, then each column of Y is taken to be a separate bar graph plotted on the same graph.  By default the columns are plotted side-by-side.  This behavior can be changed by the STYLE argument, which can take the values `"grouped"' (the default), or `"stacked"'.

     The optional return value H provides a handle to the bar series object.  See `bar' for a description of the use of the bar series.

     The optional input handle H allows an axis handle to be passed.  Properties of the patch graphics object can be changed using PROP, VAL pairs.

     See also: bar, plot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Produce a horizontal bar graph from two vectors of x-y data.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
ylim
# name: <cell-element>
# type: string
# elements: 1
# length: 771
 -- Function File: XL = ylim ()
 -- Function File:  ylim (XL)
 -- Function File: M = ylim ('mode')
 -- Function File:  ylim (M)
 -- Function File:  ylim (H, ...)
     Get or set the limits of the y-axis of the current plot.  Called without arguments `ylim' returns the y-axis limits of the current plot.  If passed a two element vector XL, the limits of the y-axis are set to this value.

     The current mode for calculation of the y-axis can be returned with a call `ylim ('mode')', and can be either 'auto' or 'manual'.  The current plotting mode can be set by passing either 'auto' or 'manual' as the argument.

     If passed an handle as the first argument, then operate on this handle rather than the current axes handle.  See also: xlim, zlim, set, get, gca.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Get or set the limits of the y-axis of the current plot.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
scatter3
# name: <cell-element>
# type: string
# elements: 1
# length: 1391
 -- Function File:  scatter3 (X, Y, Z, S, C)
 -- Function File:  scatter3 (..., 'filled')
 -- Function File:  scatter3 (..., STYLE)
 -- Function File:  scatter3 (..., PROP, VAL)
 -- Function File:  scatter3 (H, ...)
 -- Function File: H = scatter3 (...)
     Plot a scatter plot of the data in 3D.  A marker is plotted at each point defined by the points in the vectors X, Y and Z.  The size of the markers used is determined by S, which can be a scalar or a vector of the same length of X, Y and Z.  If S is not given or is an empty matrix, then the default value of 8 points is used.

     The color of the markers is determined by C, which can be a string defining a fixed color, a 3 element vector giving the red, green and blue components of the color, a vector of the same length as X that gives a scaled index into the current colormap, or a N-by-3 matrix defining the colors of each of the markers individually.

     The marker to use can be changed with the STYLE argument, that is a string defining a marker in the same manner as the `plot' command.  If the argument 'filled' is given then the markers as filled.  All additional arguments are passed to the underlying patch command.

     The optional return value H provides a handle to the patch object

          [x, y, z] = peaks (20);
          scatter3 (x(:), y(:), z(:), [], z(:));

     See also: plot, patch, scatter.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 38
Plot a scatter plot of the data in 3D.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
patch
# name: <cell-element>
# type: string
# elements: 1
# length: 741
 -- Function File:  patch ()
 -- Function File:  patch (X, Y, C)
 -- Function File:  patch (X, Y, Z, C)
 -- Function File:  patch (FV)
 -- Function File:  patch ('Faces', F, 'Vertices', V, ...)
 -- Function File:  patch (..., PROP, VAL)
 -- Function File:  patch (H, ...)
 -- Function File: H = patch (...)
     Create patch object from X and Y with color C and insert in the current axes object.  Return handle to patch object.

     For a uniform colored patch, C can be given as an RGB vector, scalar value referring to the current colormap, or string value (for example, "r" or "red").

     If passed a structure FV contain the fields "vertices", "faces" and optionally "facevertexcdata", create the patch based on these properties.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 84
Create patch object from X and Y with color C and insert in the current axes object.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
allchild
# name: <cell-element>
# type: string
# elements: 1
# length: 413
 -- Function File: H = allchild (HANDLES)
     Find all children, including hidden children, of a graphics object.

     This function is similar to `get (h, "children")', but also returns includes hidden objects.  If HANDLES is a scalar, H will be a vector.  Otherwise, H will be a cell matrix of the same size as HANDLES and each cell will contain a vector of handles.  See also: get, set, findall, findobj.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 67
Find all children, including hidden children, of a graphics object.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
ezsurf
# name: <cell-element>
# type: string
# elements: 1
# length: 1533
 -- Function File:  ezsurf (F)
 -- Function File:  ezsurf (FX, FY, FZ)
 -- Function File:  ezsurf (..., DOM)
 -- Function File:  ezsurf (..., N)
 -- Function File:  ezsurf (..., 'circ')
 -- Function File:  ezsurf (H, ...)
 -- Function File: H = ezsurf (...)
     Plots the surface defined by a function.  F is a string, inline function or function handle with two arguments defining the function.  By default the plot is over the domain `-2*pi < X < 2*pi' and `-2*pi < Y < 2*pi' with 60 points in each dimension.

     If DOM is a two element vector, it represents the minimum and maximum value of both X and Y.  If DOM is a four element vector, then the minimum and maximum value of X and Y are specify separately.

     N is a scalar defining the number of points to use in each dimension.

     If three functions are passed, then plot the parametrically defined function `[FX (S, T), FY (S, T), FZ (S, T)]'.

     If the argument 'circ' is given, then the function is plotted over a disk centered on the middle of the domain DOM.

     The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).

          f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
          ezsurf (f, [-3, 3]);

     An example of a parametrically defined function is

          fx = @(s,t) cos (s) .* cos(t);
          fy = @(s,t) sin (s) .* cos(t);
          fz = @(s,t) sin(t);
          ezsurf (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);

     See also: ezplot, ezmesh, ezsurfc, ezmeshc.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Plots the surface defined by a function.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
view
# name: <cell-element>
# type: string
# elements: 1
# length: 183
 -- Function File:  view (AZIMUTH, ELEVATION)
 -- Function File:  view (DIMS)
 -- Function File: [AZIMUTH, ELEVATION] = view ()
     Set or get the viewpoint for the current axes.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Set or get the viewpoint for the current axes.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
findall
# name: <cell-element>
# type: string
# elements: 1
# length: 446
 -- Function File: H = findall ()
 -- Function File: H = findall (PROP_NAME, PROP_VALUE)
 -- Function File: H = findall (H, ...)
 -- Function File: H = findall (H, "-depth", D, ...)
     Find object with specified property values including hidden handles.

     This function performs the same function as `findobj', but it includes hidden objects in its search.  For full documentation, see `findobj'.  See also: get, set, findobj, allchild.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Find object with specified property values including hidden handles.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
gca
# name: <cell-element>
# type: string
# elements: 1
# length: 417
 -- Function File:  gca ()
     Return a handle to the current axis object.  If no axis object exists, create one and return its handle.  The handle may then be used to examine or set properties of the axes.  For example,

          ax = gca ();
          set (ax, "position", [0.5, 0.5, 0.5, 0.5]);

     creates an empty axes object, then changes its location and size in the figure window.  See also: get, set.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Return a handle to the current axis object.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
semilogxerr
# name: <cell-element>
# type: string
# elements: 1
# length: 477
 -- Function File:  semilogxerr (ARGS)
     Produce two-dimensional plots on a semilogarithm axis with errorbars.  Many different combinations of arguments are possible.  The most used form is

          semilogxerr (X, Y, EY, FMT)

     which produces a semi-logarithm plot of Y versus X with errors in the Y-scale defined by EY and the plot format defined by FMT.  See errorbar for available formats and additional information.  See also: errorbar, loglogerr semilogyerr.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Produce two-dimensional plots on a semilogarithm axis with errorbars.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
semilogyerr
# name: <cell-element>
# type: string
# elements: 1
# length: 477
 -- Function File:  semilogyerr (ARGS)
     Produce two-dimensional plots on a semilogarithm axis with errorbars.  Many different combinations of arguments are possible.  The most used form is

          semilogyerr (X, Y, EY, FMT)

     which produces a semi-logarithm plot of Y versus X with errors in the Y-scale defined by EY and the plot format defined by FMT.  See errorbar for available formats and additional information.  See also: errorbar, loglogerr semilogxerr.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Produce two-dimensional plots on a semilogarithm axis with errorbars.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
sphere
# name: <cell-element>
# type: string
# elements: 1
# length: 468
 -- Function File: [X, Y, Z] = sphere (N)
 -- Function File:  sphere (H, ...)
     Generates three matrices in `meshgrid' format, such that `surf (X, Y, Z)' generates a unit sphere.  The matrices of `N+1'-by-`N+1'.  If N is omitted then a default value of 20 is assumed.

     Called with no return arguments, `sphere' call directly `surf (X, Y, Z)'.  If an axes handle is passed as the first argument, the surface is plotted to this set of axes.  See also: peaks.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Generates three matrices in `meshgrid' format, such that `surf (X, Y, Z)' generates a unit sphere.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
xlabel
# name: <cell-element>
# type: string
# elements: 1
# length: 351
 -- Function File:  xlabel (STRING)
 -- Function File:  ylabel (STRING)
 -- Function File:  zlabel (STRING)
 -- Function File:  xlabel (H, STRING)
     Specify x, y, and z axis labels for the current figure.  If H is specified then label the axis defined by H.  See also: plot, semilogx, semilogy, loglog, polar, mesh, contour, bar, stairs, title.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Specify x, y, and z axis labels for the current figure.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
meshz
# name: <cell-element>
# type: string
# elements: 1
# length: 382
 -- Function File:  meshz (X, Y, Z)
     Plot a curtain mesh given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.  If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)).  Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.  See also: meshgrid, mesh, contour.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 128
Plot a curtain mesh given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
ezplot3
# name: <cell-element>
# type: string
# elements: 1
# length: 885
 -- Function File:  ezplot3 (FX, FY, FZ)
 -- Function File:  ezplot3 (..., DOM)
 -- Function File:  ezplot3 (..., N)
 -- Function File:  ezplot3 (H, ...)
 -- Function File: H = ezplot3 (...)
     Plots in three-dimensions the curve defined parametrically.  FX, FY, and FZ are strings, inline functions or function handles with one arguments defining the function.  By default the plot is over the domain `-2*pi < X < 2*pi' with 60 points.

     If DOM is a two element vector, it represents the minimum and maximum value of T.  N is a scalar defining the number of points to use.

     The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).

          fx = @(t) cos (t);
          fy = @(t) sin (t);
          fz = @(t) t;
          ezplot3 (fx, fy, fz, [0, 10*pi], 100);

     See also: plot3, ezplot, ezsurf, ezmesh.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Plots in three-dimensions the curve defined parametrically.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
hidden
# name: <cell-element>
# type: string
# elements: 1
# length: 312
 -- Function File:  hidden (MODE)
 -- Function File:  hidden ()
     Manipulation the mesh hidden line removal.  Called with no argument the hidden line removal is toggled.  The argument MODE can be either 'on' or 'off' and the set of the hidden line removal is set accordingly.  See also: mesh, meshc, surf.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Manipulation the mesh hidden line removal.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
shg
# name: <cell-element>
# type: string
# elements: 1
# length: 136
 -- Function File:  shg
     Show the graph window.  Currently, this is the same as executing `drawnow'.  See also: drawnow, figure.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Show the graph window.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
specular
# name: <cell-element>
# type: string
# elements: 1
# length: 525
 -- Function File:  specular (SX, SY, SZ, L, V)
 -- Function File:  specular (SX, SY, SZ, L, V, SE)
     Calculate specular reflection strength of a surface defined by the normal vector elements SX, SY, SZ using Phong's approximation.  The light and view vectors can be specified using parameter L and V respectively.  Both can be given as 2-element vectors [azimuth, elevation] in degrees or as 3-element vector [x, y, z].  An optional 6th argument describes the specular exponent (spread) SE.  See also: surfl, diffuse.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 129
Calculate specular reflection strength of a surface defined by the normal vector elements SX, SY, SZ using Phong's approximation.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
gcf
# name: <cell-element>
# type: string
# elements: 1
# length: 533
 -- Function File:  gcf ()
     Return the current figure handle.  If a figure does not exist, create one and return its handle.  The handle may then be used to examine or set properties of the figure.  For example,

          fplot (@sin, [-10, 10]);
          fig = gcf ();
          set (fig, "visible", "off");

     plots a sine wave, finds the handle of the current figure, and then makes that figure invisible.  Setting the visible property of the figure to `"on"' will cause it to be displayed again.  See also: get, set.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Return the current figure handle.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
ezmesh
# name: <cell-element>
# type: string
# elements: 1
# length: 1530
 -- Function File:  ezmesh (F)
 -- Function File:  ezmesh (FX, FY, FZ)
 -- Function File:  ezmesh (..., DOM)
 -- Function File:  ezmesh (..., N)
 -- Function File:  ezmesh (..., 'circ')
 -- Function File:  ezmesh (H, ...)
 -- Function File: H = ezmesh (...)
     Plots the mesh defined by a function.  F is a string, inline function or function handle with two arguments defining the function.  By default the plot is over the domain `-2*pi < X < 2*pi' and `-2*pi < Y < 2*pi' with 60 points in each dimension.

     If DOM is a two element vector, it represents the minimum and maximum value of both X and Y.  If DOM is a four element vector, then the minimum and maximum value of X and Y are specify separately.

     N is a scalar defining the number of points to use in each dimension.

     If three functions are passed, then plot the parametrically defined function `[FX (S, T), FY (S, T), FZ (S, T)]'.

     If the argument 'circ' is given, then the function is plotted over a disk centered on the middle of the domain DOM.

     The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).

          f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
          ezmesh (f, [-3, 3]);

     An example of a parametrically defined function is

          fx = @(s,t) cos (s) .* cos(t);
          fy = @(s,t) sin (s) .* cos(t);
          fz = @(s,t) sin(t);
          ezmesh (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);

     See also: ezplot, ezsurf, ezsurfc, ezmeshc.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Plots the mesh defined by a function.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
bar
# name: <cell-element>
# type: string
# elements: 1
# length: 1384
 -- Function File:  bar (X, Y)
 -- Function File:  bar (Y)
 -- Function File:  bar (X, Y, W)
 -- Function File:  bar (X, Y, W, STYLE)
 -- Function File: H = bar (..., PROP, VAL)
 -- Function File:  bar (H, ...)
     Produce a bar graph from two vectors of x-y data.

     If only one argument is given, it is taken as a vector of y-values and the x coordinates are taken to be the indices of the elements.

     The default width of 0.8 for the bars can be changed using W.

     If Y is a matrix, then each column of Y is taken to be a separate bar graph plotted on the same graph.  By default the columns are plotted side-by-side.  This behavior can be changed by the STYLE argument, which can take the values `"grouped"' (the default), or `"stacked"'.

     The optional return value H provides a handle to the "bar series" object with one handle per column of the variable Y.  This series allows common elements of the group of bar series objects to be changed in a single bar series and the same properties are changed in the other "bar series".  For example

          h = bar (rand (5, 10));
          set (h(1), "basevalue", 0.5);

     changes the position on the base of all of the bar series.

     The optional input handle H allows an axis handle to be passed.  Properties of the patch graphics object can be changed using PROP, VAL pairs.

     See also: barh, plot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Produce a bar graph from two vectors of x-y data.

# name: <cell-element>
# type: string
# elements: 1
# length: 18
waitforbuttonpress
# name: <cell-element>
# type: string
# elements: 1
# length: 208
 -- Function File: B = waitforbuttonpress ()
     Wait for button or mouse press.over a figure window.  The value of B returns 0 if a mouse button was pressed or 1 is a key was pressed.  See also: ginput.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Wait for button or mouse press.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
pie
# name: <cell-element>
# type: string
# elements: 1
# length: 717
 -- Function File:  pie (Y)
 -- Function File:  pie (Y, EXPLODE)
 -- Function File:  pie (..., LABELS)
 -- Function File:  pie (H, ...);
 -- Function File: H = pie (...);
     Produce a pie chart.

     Called with a single vector argument, produces a pie chart of the elements in X, with the size of the slice determined by percentage size of the values of X.

     The variable EXPLODE is a vector of the same length as X that if non zero 'explodes' the slice from the pie chart.

     If given LABELS is a cell array of strings of the same length as X, giving the labels of each of the slices of the pie chart.

     The optional return value H provides a handle to the patch object.

     See also: bar, stem.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 20
Produce a pie chart.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
surfc
# name: <cell-element>
# type: string
# elements: 1
# length: 389
 -- Function File:  surfc (X, Y, Z)
     Plot a surface and contour given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.  If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)).  Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.  See also: meshgrid, surf, contour.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 135
Plot a surface and contour given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
fplot
# name: <cell-element>
# type: string
# elements: 1
# length: 685
 -- Function File:  fplot (FN, LIMITS)
 -- Function File:  fplot (FN, LIMITS, TOL)
 -- Function File:  fplot (FN, LIMITS, N)
 -- Function File:  fplot (..., FMT)
     Plot a function FN, within the defined limits.  FN an be either a string, a function handle or an inline function.  The limits of the plot are given by LIMITS of the form `[XLO, XHI]' or `[XLO, XHI, YLO, YHI]'.  TOL is the default tolerance to use for the plot, and if TOL is an integer it is assumed that it defines the number points to use in the plot.  The FMT argument is passed to the plot command.

             fplot ("cos", [0, 2*pi])
             fplot ("[cos(x), sin(x)]", [0, 2*pi])
     See also: plot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Plot a function FN, within the defined limits.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
ylabel
# name: <cell-element>
# type: string
# elements: 1
# length: 102
 -- Function File:  ylabel (STRING)
 -- Function File:  ylabel (H, STRING)
     See also: xlabel..
   
# name: <cell-element>
# type: string
# elements: 1
# length: 17
See also: xlabel.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
sombrero
# name: <cell-element>
# type: string
# elements: 1
# length: 284
 -- Function File:  sombrero (N)
     Produce the familiar three-dimensional sombrero plot using N grid lines.  If N is omitted, a value of 41 is assumed.

     The function plotted is

          z = sin (sqrt (x^2 + y^2)) / (sqrt (x^2 + y^2))
     See also: surf, meshgrid, mesh.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 72
Produce the familiar three-dimensional sombrero plot using N grid lines.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
pcolor
# name: <cell-element>
# type: string
# elements: 1
# length: 1144
 -- Function File:  pcolor (X, Y, C)
 -- Function File:  pcolor (C)
     Density plot for given matrices X, and Y from `meshgrid' and a matrix C corresponding to the X and Y coordinates of the mesh's vertices.  If X and Y are vectors, then a typical vertex is (X(j), Y(i), C(i,j)).  Thus, columns of C correspond to different X values and rows of C correspond to different Y values.

     The `colormap' is scaled to the extents of C.  Limits may be placed on the color axis by the command `caxis', or by setting the `clim' property of the parent axis.

     The face color of each cell of the mesh is determined by interpolating the values of C for the cell's vertices.  Contrast this with `imagesc' which renders one cell for each element of C.

     `shading' modifies an attribute determining the manner by which the face color of each cell is interpolated from the values of C, and the visibility of the cells' edges.  By default the attribute is "faceted", which renders a single color for each cell's face with the edge visible.

     H is the handle to the surface object.

     See also: caxis, contour, meshgrid, imagesc, shading.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 136
Density plot for given matrices X, and Y from `meshgrid' and a matrix C corresponding to the X and Y coordinates of the mesh's vertices.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
surfnorm
# name: <cell-element>
# type: string
# elements: 1
# length: 1094
 -- Function File:  surfnorm (X, Y, Z)
 -- Function File:  surfnorm (Z)
 -- Function File: [NX, NY, NZ] = surfnorm (...)
 -- Function File:  surfnorm (H, ...)
     Find the vectors normal to a meshgridded surface.  The meshed gridded surface is defined by X, Y, and Z.  If X and Y are not defined, then it is assumed that they are given by

          [X, Y] = meshgrid (1:size(Z, 1),
                               1:size(Z, 2));

     If no return arguments are requested, a surface plot with the normal vectors to the surface is plotted.  Otherwise the components of the normal vectors at the mesh gridded points are returned in NX, NY, and NZ.

     The normal vectors are calculated by taking the cross product of the diagonals of each of the quadrilaterals in the meshgrid to find the normal vectors of the centers of these quadrilaterals.  The four nearest normal vectors to the meshgrid points are then averaged to obtain the normal to the surface at the meshgridded points.

     An example of the use of `surfnorm' is

          surfnorm (peaks (25));
     See also: surf, quiver3.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Find the vectors normal to a meshgridded surface.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
text
# name: <cell-element>
# type: string
# elements: 1
# length: 375
 -- Function File: H = text (X, Y, LABEL)
 -- Function File: H = text (X, Y, Z, LABEL)
 -- Function File: H = text (X, Y, LABEL, P1, V1, ...)
 -- Function File: H = text (X, Y, Z, LABEL, P1, V1, ...)
     Create a text object with text LABEL at position X, Y, Z on the current axes.  Property-value pairs following LABEL may be used to specify the appearance of the text.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Create a text object with text LABEL at position X, Y, Z on the current axes.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
ezmeshc
# name: <cell-element>
# type: string
# elements: 1
# length: 1326
 -- Function File:  ezmeshc (F)
 -- Function File:  ezmeshc (FX, FY, FZ)
 -- Function File:  ezmeshc (..., DOM)
 -- Function File:  ezmeshc (..., N)
 -- Function File:  ezmeshc (..., 'circ')
 -- Function File:  ezmeshc (H, ...)
 -- Function File: H = ezmeshc (...)
     Plots the mesh and contour lines defined by a function.  F is a string, inline function or function handle with two arguments defining the function.  By default the plot is over the domain `-2*pi < X < 2*pi' and `-2*pi < Y < 2*pi' with 60 points in each dimension.

     If DOM is a two element vector, it represents the minimum and maximum value of both X and Y.  If DOM is a four element vector, then the minimum and maximum value of X and Y are specify separately.

     N is a scalar defining the number of points to use in each dimension.

     If three functions are passed, then plot the parametrically defined function `[FX (S, T), FY (S, T), FZ (S, T)]'.

     If the argument 'circ' is given, then the function is plotted over a disk centered on the middle of the domain DOM.

     The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).

          f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
          ezmeshc (f, [-3, 3]);

     See also: ezplot, ezsurfc, ezsurf, ezmesh.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Plots the mesh and contour lines defined by a function.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
plotyy
# name: <cell-element>
# type: string
# elements: 1
# length: 1209
 -- Function File:  plotyy (X1, Y1, X2, Y2)
 -- Function File:  plotyy (..., FUN)
 -- Function File:  plotyy (..., FUN1, FUN2)
 -- Function File:  plotyy (H, ...)
 -- Function File: [AX, H1, H2] = plotyy (...)
     Plots two sets of data with independent y-axes.  The arguments X1 and Y1 define the arguments for the first plot and X1 and Y2 for the second.

     By default the arguments are evaluated with `feval (@plot, X, Y)'.  However the type of plot can be modified with the FUN argument, in which case the plots are generated by `feval (FUN, X, Y)'.  FUN can be a function handle, an inline function or a string of a function name.

     The function to use for each of the plots can be independently defined with FUN1 and FUN2.

     If given, H defines the principal axis in which to plot the X1 and Y1 data.  The return value AX is a two element vector with the axis handles of the two plots.  H1 and H2 are handles to the objects generated by the plot commands.

          x = 0:0.1:2*pi;
          y1 = sin (x);
          y2 = exp (x - 1);
          ax = plotyy (x, y1, x - 1, y2, @plot, @semilogy);
          xlabel ("X");
          ylabel (ax(1), "Axis 1");
          ylabel (ax(2), "Axis 2");

# name: <cell-element>
# type: string
# elements: 1
# length: 47
Plots two sets of data with independent y-axes.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
rose
# name: <cell-element>
# type: string
# elements: 1
# length: 892
 -- Function File:  rose (TH, R)
 -- Function File:  rose (H, ...)
 -- Function File: H = rose (...)
 -- Function File: [R, TH] = rose (...)
     Plot an angular histogram.  With one vector argument TH, plots the histogram with 20 angular bins.  If TH is a matrix, then each column of TH produces a separate histogram.

     If R is given and is a scalar, then the histogram is produced with R bins.  If R is a vector, then the center of each bin are defined by the values of R.

     The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).

     If two output arguments are requested, then rather than plotting the histogram, the polar vectors necessary to plot the histogram are returned.

          [r, t] = rose ([2*randn(1e5,1), pi + 2 * randn(1e5,1)]);
          polar (r, t);

     See also: plot, compass, polar, hist.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Plot an angular histogram.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
comet
# name: <cell-element>
# type: string
# elements: 1
# length: 560
 -- Function File:  comet (Y)
 -- Function File:  comet (X, Y)
 -- Function File:  comet (X, Y, P)
 -- Function File:  comet (AX, ...)
     Produce a simple comet style animation along the trajectory provided by the input coordinate vectors (X, Y), where X will default to the indices of Y.

     The speed of the comet may be controlled by P, which represents the time which passes as the animation passes from one point to the next.  The default for P is 0.1 seconds.

     If AX is specified the animation is produced in that axis rather than the `gca'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 150
Produce a simple comet style animation along the trajectory provided by the input coordinate vectors (X, Y), where X will default to the indices of Y.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
clabel
# name: <cell-element>
# type: string
# elements: 1
# length: 1453
 -- Function File:  clabel (C, H)
 -- Function File:  clabel (C, H, V)
 -- Function File:  clabel (C, H, "manual")
 -- Function File:  clabel (C)
 -- Function File:  clabel (C, H)
 -- Function File:  clabel (..., PROP, VAL, ...)
 -- Function File: H = clabel (...)
     Adds labels to the contours of a contour plot.  The contour plot is specified by the contour matrix C and optionally the contourgroup object H that are returned by `contour', `contourf' and `contour3'.  The contour labels are rotated and placed in the contour itself.

     By default, all contours are labelled.  However, the contours to label can be specified by the vector V.  If the "manual" argument is given then the contours to label can be selected with the mouse.

     Additional property/value pairs that are valid properties of text objects can be given and are passed to the underlying text objects.  Additionally, the property "LabelSpacing" is available allowing the spacing between labels on a contour (in points) to be specified.  The default is 144 points, or 2 inches.

     The returned value H is the set of text object that represent the contour labels.  The "userdata" property of the text objects contains the numerical value of the contour label.

     An example of the use of `clabel' is

          [c, h] = contour (peaks(), -4 : 6);
          clabel (c, h, -4 : 2 : 6, 'fontsize', 12);

     See also: contour, contourf, contour3, meshc, surfc, text.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Adds labels to the contours of a contour plot.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
axis
# name: <cell-element>
# type: string
# elements: 1
# length: 2333
 -- Function File:  axis (LIMITS)
     Set axis limits for plots.

     The argument LIMITS should be a 2, 4, or 6 element vector.  The first and second elements specify the lower and upper limits for the x axis.  The third and fourth specify the limits for the y-axis, and the fifth and sixth specify the limits for the z-axis.

     Without any arguments, `axis' turns autoscaling on.

     With one output argument, `x = axis' returns the current axes

     The vector argument specifying limits is optional, and additional string arguments may be used to specify various axis properties.  For example,

          axis ([1, 2, 3, 4], "square");

     forces a square aspect ratio, and

          axis ("labely", "tic");

     turns tic marks on for all axes and tic mark labels on for the y-axis only.

     The following options control the aspect ratio of the axes.

    `"square"'
          Force a square aspect ratio.

    `"equal"'
          Force x distance to equal y-distance.

    `"normal"'
          Restore the balance.

     The following options control the way axis limits are interpreted.

    `"auto"'
          Set the specified axes to have nice limits around the data or all if no axes are specified.

    `"manual"'
          Fix the current axes limits.

    `"tight"'
          Fix axes to the limits of the data.

     The option `"image"' is equivalent to `"tight"' and `"equal"'.

     The following options affect the appearance of tic marks.

    `"on"'
          Turn tic marks and labels on for all axes.

    `"off"'
          Turn tic marks off for all axes.

    `"tic[xyz]"'
          Turn tic marks on for all axes, or turn them on for the specified axes and off for the remainder.

    `"label[xyz]"'
          Turn tic labels on for all axes, or turn them on for the specified axes and off for the remainder.

    `"nolabel"'
          Turn tic labels off for all axes.
     Note, if there are no tic marks for an axis, there can be no labels.

     The following options affect the direction of increasing values on the axes.

    `"ij"'
          Reverse y-axis, so lower values are nearer the top.

    `"xy"'
          Restore y-axis, so higher values are nearer the top.

     If an axes handle is passed as the first argument, then operate on this axes rather than the current axes.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Set axis limits for plots.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
cla
# name: <cell-element>
# type: string
# elements: 1
# length: 406
 -- Function File:  cla ()
 -- Function File:  cla ("reset")
 -- Function File:  cla (HAX)
 -- Function File:  cla (HAX, "reset")
     Delete the children of the current axes with visible handles.  If HAX is specified and is an axes object handle, operate on it instead of the current axes.  If the optional argument `"reset"' is specified, also delete the children with hidden handles.  See also: clf.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Delete the children of the current axes with visible handles.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
surfl
# name: <cell-element>
# type: string
# elements: 1
# length: 1410
 -- Function File:  surfl (X, Y, Z)
 -- Function File:  surfl (Z)
 -- Function File:  surfl (X, Y, Z, L)
 -- Function File:  surfl (X, Y, Z, L, P)
 -- Function File:  surfl (...,"light")
     Plot a lighted surface given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.  If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)).  Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.

     The light direction can be specified using L.  It can be given as 2-element vector [azimuth, elevation] in degrees or as 3-element vector [lx, ly, lz].  The default value is rotated 45° counter-clockwise from the current view.

     The material properties of the surface can specified using a 4-element vector P = [AM D SP EXP] which defaults to P = [0.55 0.6 0.4 10].
    `"AM" strength of ambient light'

    `"D" strength of diffuse reflection'

    `"SP" strength of specular reflection'

    `"EXP" specular exponent'

     The default lighting mode "cdata", changes the cdata property to give the impression of a lighted surface.  Please note: the alternative "light" mode, which creates a light object to illuminate the surface is not implemented (yet).

     Example:

          colormap(bone);
          surfl(peaks);
          shading interp;
     See also: surf, diffuse, specular, surface.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 131
Plot a lighted surface given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
subplot
# name: <cell-element>
# type: string
# elements: 1
# length: 736
 -- Function File:  subplot (ROWS, COLS, INDEX)
 -- Function File:  subplot (RCN)
     Set up a plot grid with COLS by ROWS subwindows and plot in location given by INDEX.

     If only one argument is supplied, then it must be a three digit value specifying the location in digits 1 (rows) and 2 (columns) and the plot index in digit 3.

     The plot index runs row-wise.  First all the columns in a row are filled and then the next row is filled.

     For example, a plot with 2 by 3 grid will have plot indices running as follows:

               +-----+-----+-----+
               |  1  |  2  |  3  |
               +-----+-----+-----+
               |  4  |  5  |  6  |
               +-----+-----+-----+
     See also: plot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 84
Set up a plot grid with COLS by ROWS subwindows and plot in location given by INDEX.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
contourc
# name: <cell-element>
# type: string
# elements: 1
# length: 1036
 -- Function File: [C, LEV] = contourc (X, Y, Z, VN)
     Compute isolines (contour lines) of the matrix Z.  Parameters X, Y and VN are optional.

     The return value LEV is a vector of the contour levels.  The return value C is a 2 by N matrix containing the contour lines in the following format

          C = [lev1, x1, x2, ..., levn, x1, x2, ...
               len1, y1, y2, ..., lenn, y1, y2, ...]

     in which contour line N has a level (height) of LEVN and length of LENN.

     If X and Y are omitted they are taken as the row/column index of Z.  VN is either a scalar denoting the number of lines to compute or a vector containing the values of the lines.  If only one value is wanted, set `VN = [val, val]'; If VN is omitted it defaults to 10.

     For example,
          x = 0:2;
          y = x;
          z = x' * y;
          contourc (x, y, z, 2:3)
               =>   2.0000   2.0000   1.0000   3.0000   1.5000   2.0000
               2.0000   1.0000   2.0000   2.0000   2.0000   1.5000
     See also: contour.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Compute isolines (contour lines) of the matrix Z.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
plot3
# name: <cell-element>
# type: string
# elements: 1
# length: 1525
 -- Function File:  plot3 (ARGS)
     Produce three-dimensional plots.  Many different combinations of arguments are possible.  The simplest form is

          plot3 (X, Y, Z)

     in which the arguments are taken to be the vertices of the points to be plotted in three dimensions.  If all arguments are vectors of the same length, then a single continuous line is drawn.  If all arguments are matrices, then each column of the matrices is treated as a separate line.  No attempt is made to transpose the arguments to make the number of rows match.

     If only two arguments are given, as

          plot3 (X, C)

     the real and imaginary parts of the second argument are used as the Y and Z coordinates, respectively.

     If only one argument is given, as

          plot3 (C)

     the real and imaginary parts of the argument are used as the Y and Z values, and they are plotted versus their index.

     Arguments may also be given in groups of three as

          plot3 (X1, Y1, Z1, X2, Y2, Z2, ...)

     in which each set of three arguments is treated as a separate line or set of lines in three dimensions.

     To plot multiple one- or two-argument groups, separate each group with an empty format string, as

          plot3 (X1, C1, "", C2, "", ...)

     An example of the use of `plot3' is

             z = [0:0.05:5];
             plot3 (cos(2*pi*z), sin(2*pi*z), z, ";helix;");
             plot3 (z, exp(2i*pi*z), ";complex sinusoid;");
     See also: plot, xlabel, ylabel, zlabel, title, print.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Produce three-dimensional plots.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
ezpolar
# name: <cell-element>
# type: string
# elements: 1
# length: 773
 -- Function File:  ezpolar (F)
 -- Function File:  ezpolar (..., DOM)
 -- Function File:  ezpolar (..., N)
 -- Function File:  ezpolar (H, ...)
 -- Function File: H = ezpolar (...)
     Plots in polar plot defined by a function.  The function F is either a string, inline function or function handle with one arguments defining the function.  By default the plot is over the domain `0 < X < 2*pi' with 60 points.

     If DOM is a two element vector, it represents the minimum and maximum value of both T.  N is a scalar defining the number of points to use.

     The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).

          ezpolar (@(t) 1 + sin (t));

     See also: polar, ezplot, ezsurf, ezmesh.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Plots in polar plot defined by a function.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
ribbon
# name: <cell-element>
# type: string
# elements: 1
# length: 428
 -- Function File:  ribbon (X, Y, WIDTH)
 -- Function File:  ribbon (Y)
 -- Function File: H = ribbon (...)
     Plot a ribbon plot for the columns of Y vs.  X.  The optional parameter WIDTH specifies the width of a single ribbon (default is 0.75).  If X is omitted, a vector containing the row numbers is assumed (1:rows(Y)).  If requested, return a vector H of the handles to the surface objects.  See also: gca, colorbar.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Plot a ribbon plot for the columns of Y vs.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
pareto
# name: <cell-element>
# type: string
# elements: 1
# length: 1386
 -- Function File:  pareto (X)
 -- Function File:  pareto (X, Y)
 -- Function File:  pareto (H, ...)
 -- Function File: H = pareto (...)
     Draw a Pareto chart, also called ABC chart.  A Pareto chart is a bar graph used to arrange information in such a way that priorities for process improvement can be established.  It organizes and displays information to show the relative importance of data.  The chart is similar to the histogram or bar chart, except that the bars are arranged in decreasing order from left to right along the abscissa.

     The fundamental idea (Pareto principle) behind the use of Pareto diagrams is that the majority of an effect is due to a small subset of the causes, so for quality improvement the first few (as presented on the diagram) contributing causes to a problem usually account for the majority of the result.  Thus, targeting these "major causes" for elimination results in the most cost-effective improvement scheme.

     The data are passed as X and the abscissa as Y.  If Y is absent, then the abscissa are assumed to be `1 : length (X)'.  Y can be a string array, a cell array of strings or a numerical vector.

     An example of the use of `pareto' is

          Cheese = {"Cheddar", "Swiss", "Camembert", ...
                    "Munster", "Stilton", "Blue"};
          Sold = [105, 30, 70, 10, 15, 20];
          pareto(Sold, Cheese);

# name: <cell-element>
# type: string
# elements: 1
# length: 43
Draw a Pareto chart, also called ABC chart.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
legend
# name: <cell-element>
# type: string
# elements: 1
# length: 3141
 -- Function File:  legend (ST1, ST2, ...)
 -- Function File:  legend (ST1, ST2, ..., "location", POS)
 -- Function File:  legend (MATSTR)
 -- Function File:  legend (MATSTR, "location", POS)
 -- Function File:  legend (CELL)
 -- Function File:  legend (CELL, "location", POS)
 -- Function File:  legend ('FUNC')
     Display a legend for the current axes using the specified strings as labels.  Legend entries may be specified as individual character string arguments, a character array, or a cell array of character strings.  Legend works on line graphs, bar graphs, etc.  A plot must exist before legend is called.

     The optional parameter POS specifies the location of the legend as follows:

                                                                   north                                                                                                                                            center top
                                                                   south                                                                                                                                            center bottom
                                                                   east                                                                                                                                             right center
                                                                   west                                                                                                                                             left center
                                                                   northeast                                                                                                                                        right top (default)
                                                                   northwest                                                                                                                                        left top
                                                                   southeast                                                                                                                                        right bottom
                                                                   southwest                                                                                                                                        left bottom

                                                                   outside                                                                                                                                          can be appended to any location string

     Some specific functions are directly available using FUNC:

    "show"
          Show legends from the plot

    "hide"
    "off"
          Hide legends from the plot

    "boxon"
          Draw a box around legends

    "boxoff"
          Withdraw the box around legends

    "left"
          Text is to the left of the keys

    "right"
          Text is to the right of the keys

# name: <cell-element>
# type: string
# elements: 1
# length: 76
Display a legend for the current axes using the specified strings as labels.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
mesh
# name: <cell-element>
# type: string
# elements: 1
# length: 367
 -- Function File:  mesh (X, Y, Z)
     Plot a mesh given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.  If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)).  Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.  See also: meshgrid, contour.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 120
Plot a mesh given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
peaks
# name: <cell-element>
# type: string
# elements: 1
# length: 854
 -- Function File:  peaks ()
 -- Function File:  peaks (N)
 -- Function File:  peaks (X, Y)
 -- Function File: Z = peaks (...)
 -- Function File: [X, Y, Z] = peaks (...)
     Generate a function with lots of local maxima and minima.  The function has the form


     f(x,y) = 3*(1-x)^2*exp(-x^2 - (y+1)^2) ...
              - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2) ...
              - 1/3*exp(-(x+1)^2 - y^2)

     Called without a return argument, `peaks' plots the surface of the above function using `mesh'.  If N is a scalar, the `peaks' returns the values of the above function on a N-by-N mesh over the range `[-3,3]'.  The default value for N is 49.

     If N is a vector, then it represents the X and Y values of the grid on which to calculate the above function.  The X and Y values can be specified separately.  See also: surf, mesh, meshgrid.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Generate a function with lots of local maxima and minima.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
contour
# name: <cell-element>
# type: string
# elements: 1
# length: 982
 -- Function File:  contour (Z)
 -- Function File:  contour (Z, VN)
 -- Function File:  contour (X, Y, Z)
 -- Function File:  contour (X, Y, Z, VN)
 -- Function File:  contour (..., STYLE)
 -- Function File:  contour (H, ...)
 -- Function File: [C, H] = contour (...)
     Plot level curves (contour lines) of the matrix Z, using the contour matrix C computed by `contourc' from the same arguments; see the latter for their interpretation.  The set of contour levels, C, is only returned if requested.  For example:

          x = 0:2;
          y = x;
          z = x' * y;
          contour (x, y, z, 2:3)

     The style to use for the plot can be defined with a line style STYLE in a similar manner to the line styles used with the `plot' command.  Any markers defined by STYLE are ignored.

     The optional input and output argument H allows an axis handle to be passed to `contour' and the handles to the contour objects to be returned.  See also: contourc, patch, plot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 166
Plot level curves (contour lines) of the matrix Z, using the contour matrix C computed by `contourc' from the same arguments; see the latter for their interpretation.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
isosurface
# name: <cell-element>
# type: string
# elements: 1
# length: 3902
 -- Function File: [FV] = isosurface (VAL, ISO)
 -- Function File: [FV] = isosurface (X, Y, Z, VAL, ISO)
 -- Function File: [FV] = isosurface (..., "noshare", "verbose")
 -- Function File: [FVC] = isosurface (..., COL)
 -- Function File: [F, V] = isosurface (X, Y, Z, VAL, ISO)
 -- Function File: [F, V, C] = isosurface (X, Y, Z, VAL, ISO, COL)
 -- Function File:  isosurface (X, Y, Z, VAL, ISO, COL, OPT)
     If called with one output argument and the first input argument VAL is a three-dimensional array that contains the data of an isosurface geometry and the second input argument ISO keeps the isovalue as a scalar value then return a structure array FV that contains the fields FACES and VERTICES at computed points `[x, y, z] = meshgrid (1:l, 1:m, 1:n)'.  The output argument FV can directly be taken as an input argument for the `patch' function.

     If called with further input arguments X, Y and Z which are three-dimensional arrays with the same size than VAL then the volume data is taken at those given points.

     The string input argument "noshare" is only for compatibility and has no effect. If given the string input argument "verbose" then print messages to the command line interface about the current progress.

     If called with the input argument COL which is a three-dimensional array of the same size than VAL then take those values for the interpolation of coloring the isosurface geometry.  Add the field FACEVERTEXCDATA to the structure array FV.

     If called with two or three output arguments then return the information about the faces F, vertices V and color data C as seperate arrays instead of a single structure array.

     If called with no output argument then directly process the isosurface geometry with the `patch' command.

     For example

          [x, y, z] = meshgrid (1:5, 1:5, 1:5);
          val = rand (5, 5, 5);
          isosurface (x, y, z, val, .5);

     will directly draw a random isosurface geometry in a graphics window.  Another example for an isosurface geometry with different additional coloring

          N = 15;    ## Increase number of vertices in each direction
          iso = .4;  ## Change isovalue to .1 to display a sphere
          lin = linspace (0, 2, N);
          [x, y, z] = meshgrid (lin, lin, lin);
          c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);
          figure (); ## Open another figure window

          subplot (2, 2, 1); view (-38, 20);
          [f, v] = isosurface (x, y, z, c, iso);
          p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
          set (gca, "DataAspectRatioMode","manual", "DataAspectRatio", [1 1 1]);
           set (p, "FaceColor", "green", "FaceLighting", "phong");
           light ("Position", [1 1 5]); ## Available with the JHandles package

          subplot (2, 2, 2); view (-38, 20);
          p = patch ("Faces", f, "Vertices", v, "EdgeColor", "blue");
          set (gca, "DataAspectRatioMode","manual", "DataAspectRatio", [1 1 1]);
           set (p, "FaceColor", "none", "FaceLighting", "phong");
           light ("Position", [1 1 5]);

          subplot (2, 2, 3); view (-38, 20);
          [f, v, c] = isosurface (x, y, z, c, iso, y);
          p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", c, \
                     "FaceColor", "interp", "EdgeColor", "none");
          set (gca, "DataAspectRatioMode","manual", "DataAspectRatio", [1 1 1]);
           set (p, "FaceLighting", "phong");
           light ("Position", [1 1 5]);

          subplot (2, 2, 4); view (-38, 20);
          p = patch ("Faces", f, "Vertices", v, "FaceVertexCData", c, \
                     "FaceColor", "interp", "EdgeColor", "blue");
          set (gca, "DataAspectRatioMode","manual", "DataAspectRatio", [1 1 1]);
           set (p, "FaceLighting", "phong");
           light ("Position", [1 1 5]);

     See also: isocolors, isonormals, isocaps.

   
# name: <cell-element>
# type: string
# elements: 1
# length: 352
If called with one output argument and the first input argument VAL is a three-dimensional array that contains the data of an isosurface geometry and the second input argument ISO keeps the isovalue as a scalar value then return a structure array FV that contains the fields FACES and VERTICES at computed points `[x, y, z] = meshgrid (1:l, 1:m, 1:n)'.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
isocolors
# name: <cell-element>
# type: string
# elements: 1
# length: 3332
 -- Function File: [CD] = isocolors (C, V)
 -- Function File: [CD] = isocolors (X, Y, Z, C, V)
 -- Function File: [CD] = isocolors (X, Y, Z, R, G, B, V)
 -- Function File: [CD] = isocolors (R, G, B, V)
 -- Function File: [CD] = isocolors (..., P)
 -- Function File: isocolors (...)
     If called with one output argument and the first input argument C is a three-dimensional array that contains color values and the second input argument V keeps the vertices of a geometry then return a matrix CD with color data information for the geometry at computed points `[x, y, z] = meshgrid (1:l, 1:m, 1:n)'.  The output argument CD can be taken to manually set FaceVertexCData of a patch.

     If called with further input arguments X, Y and Z which are three-dimensional arrays of the same size than C then the color data is taken at those given points.  Instead of the color data C this function can also be called with RGB values R, G, B.  If input argumnets X, Y, Z are not given then again `meshgrid' computed values are taken.

     Optionally, the patch handle P can be given as the last input argument to all variations of function calls instead of the vertices data V.  Finally, if no output argument is given then directly change the colors of a patch that is given by the patch handle P.

     For example,
          function [] = isofinish (p)
            set (gca, "DataAspectRatioMode", "manual", \
                 "DataAspectRatio", [1 1 1]);
            set (p, "FaceColor", "interp");
            ## set (p, "FaceLighting", "flat");
            ## light ("Position", [1 1 5]); ## Available with JHandles
          endfunction

          N = 15;    ## Increase number of vertices in each direction
          iso = .4;  ## Change isovalue to .1 to display a sphere
          lin = linspace (0, 2, N);
          [x, y, z] = meshgrid (lin, lin, lin);
          c = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);
          figure (); ## Open another figure window

          subplot (2, 2, 1); view (-38, 20);
          [f, v] = isosurface (x, y, z, c, iso);
          p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
          cdat = rand (size (c));       ## Compute random patch color data
          isocolors (x, y, z, cdat, p); ## Directly set colors of patch
          isofinish (p);                ## Call user function isofinish

          subplot (2, 2, 2); view (-38, 20);
          p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
          [r, g, b] = meshgrid (lin, 2-lin, 2-lin);
          cdat = isocolors (x, y, z, c, v); ## Compute color data vertices
          set (p, "FaceVertexCData", cdat); ## Set color data manually
          isofinish (p);

          subplot (2, 2, 3); view (-38, 20);
          p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
          cdat = isocolors (r, g, b, c, p); ## Compute color data patch
          set (p, "FaceVertexCData", cdat); ## Set color data manually
          isofinish (p);

          subplot (2, 2, 4); view (-38, 20);
          p = patch ("Faces", f, "Vertices", v, "EdgeColor", "none");
          r = g = b = repmat ([1:N] / N, [N, 1, N]); ## Black to white
          cdat = isocolors (x, y, z, r, g, b, v);
          set (p, "FaceVertexCData", cdat);
          isofinish (p);

     See also: isosurface, isonormals, isocaps.

   
# name: <cell-element>
# type: string
# elements: 1
# length: 314
If called with one output argument and the first input argument C is a three-dimensional array that contains color values and the second input argument V keeps the vertices of a geometry then return a matrix CD with color data information for the geometry at computed points `[x, y, z] = meshgrid (1:l, 1:m, 1:n)'.

# name: <cell-element>
# type: string
# elements: 1
# length: 15
gnuplot_drawnow
# name: <cell-element>
# type: string
# elements: 1
# length: 228
 -- Function File:  drawnow ()
     Update and display the current graphics.

     Octave automatically calls drawnow just before printing a prompt, when `sleep' or `pause' is called, or while waiting for command-line input.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Update and display the current graphics.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
quiver3
# name: <cell-element>
# type: string
# elements: 1
# length: 1453
 -- Function File:  quiver3 (U, V, W)
 -- Function File:  quiver3 (X, Y, Z, U, V, W)
 -- Function File:  quiver3 (..., S)
 -- Function File:  quiver3 (..., STYLE)
 -- Function File:  quiver3 (..., 'filled')
 -- Function File:  quiver3 (H, ...)
 -- Function File: H = quiver3 (...)
     Plot the `(U, V, W)' components of a vector field in an `(X, Y), Z' meshgrid.  If the grid is uniform, you can specify X, Y Z as vectors.

     If X, Y and Z are undefined they are assumed to be `(1:M, 1:N, 1:P)' where `[M, N] = size(U)' and `P = max (size (W))'.

     The variable S is a scalar defining a scaling factor to use for  the arrows of the field relative to the mesh spacing.  A value of 0 disables all scaling.  The default value is 1.

     The style to use for the plot can be defined with a line style STYLE in a similar manner to the line styles used with the `plot' command.  If a marker is specified then markers at the grid points of the vectors are printed rather than arrows.  If the argument 'filled' is given then the markers as filled.

     The optional return value H provides a quiver group that regroups the components of the quiver plot (body, arrow and marker), and allows them to be changed together

          [x, y, z] = peaks (25);
          surf (x, y, z);
          hold on;
          [u, v, w] = surfnorm (x, y, z / 10);
          h = quiver3 (x, y, z, u, v, w);
          set (h, "maxheadsize", 0.33);

     See also: plot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Plot the `(U, V, W)' components of a vector field in an `(X, Y), Z' meshgrid.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
clf
# name: <cell-element>
# type: string
# elements: 1
# length: 481
 -- Function File:  clf ()
 -- Function File:  clf ("reset")
 -- Function File:  clf (HFIG)
 -- Function File:  clf (HFIG, "reset")
     Clear the current figure window.  `clf' operates by deleting child graphics objects with visible handles (`HandleVisibility' = on).  If HFIG is specified operate on it instead of the current figure.  If the optional argument `"reset"' is specified, all objects including those with hidden handles are deleted.  See also: cla, close, delete.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Clear the current figure window.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
hggroup
# name: <cell-element>
# type: string
# elements: 1
# length: 379
 -- Function File:  hggroup ()
 -- Function File:  hggroup (H)
 -- Function File:  hggroup (..., PROPERTY, VALUE, ...)
     Create group object with parent H.  If no parent is specified, the group is created in the current axes.  Return the handle of the group object created.

     Multiple property-value pairs may be specified for the group, but they must appear in pairs.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Create group object with parent H.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
backend
# name: <cell-element>
# type: string
# elements: 1
# length: 399
 -- Function File:  backend (NAME)
 -- Function File:  backend (HLIST, NAME)
     Change the default graphics backend to NAME.  If the backend is not already loaded, it is first initialized (initialization is done through the execution of `__init_NAME__').

     When called with a list of figure handles, HLIST, the backend is changed only for the listed figures.  See also: available_backends.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Change the default graphics backend to NAME.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
refreshdata
# name: <cell-element>
# type: string
# elements: 1
# length: 886
 -- Function File:  refreshdata ()
 -- Function File:  refreshdata (H)
 -- Function File:  refreshdata (H, WORKSPACE)
     Evaluate any `datasource' properties of the current figure and update the plot if the corresponding data has changed.  If called with one or more arguments H is a scalar or array of figure handles to refresh.  The optional second argument WORKSPACE can take the following values.

    `"base"'
          Evaluate the datasource properties in the base workspace.  (default).

    `"caller"'
          Evaluate the datasource properties in the workspace of the function that called `refreshdata'.

     An example of the use of `refreshdata' is:

          x = 0:0.1:10;
          y = sin (x);
          plot (x, y, "ydatasource", "y");
          for i = 1 : 100
            pause(0.1)
            y = sin (x + 0.1 * i);
            refreshdata();
          endfor

# name: <cell-element>
# type: string
# elements: 1
# length: 117
Evaluate any `datasource' properties of the current figure and update the plot if the corresponding data has changed.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
line
# name: <cell-element>
# type: string
# elements: 1
# length: 394
 -- Function File:  line ()
 -- Function File:  line (X, Y)
 -- Function File:  line (X, Y, Z)
 -- Function File:  line (X, Y, Z, PROPERTY, VALUE, ...)
     Create line object from X and Y and insert in current axes object.  Return a handle (or vector of handles) to the line objects created.

     Multiple property-value pairs may be specified for the line, but they must appear in pairs.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Create line object from X and Y and insert in current axes object.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
ezsurfc
# name: <cell-element>
# type: string
# elements: 1
# length: 1329
 -- Function File:  ezsurfc (F)
 -- Function File:  ezsurfc (FX, FY, FZ)
 -- Function File:  ezsurfc (..., DOM)
 -- Function File:  ezsurfc (..., N)
 -- Function File:  ezsurfc (..., 'circ')
 -- Function File:  ezsurfc (H, ...)
 -- Function File: H = ezsurfc (...)
     Plots the surface and contour lines defined by a function.  F is a string, inline function or function handle with two arguments defining the function.  By default the plot is over the domain `-2*pi < X < 2*pi' and `-2*pi < Y < 2*pi' with 60 points in each dimension.

     If DOM is a two element vector, it represents the minimum and maximum value of both X and Y.  If DOM is a four element vector, then the minimum and maximum value of X and Y are specify separately.

     N is a scalar defining the number of points to use in each dimension.

     If three functions are passed, then plot the parametrically defined function `[FX (S, T), FY (S, T), FZ (S, T)]'.

     If the argument 'circ' is given, then the function is plotted over a disk centered on the middle of the domain DOM.

     The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).

          f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
          ezsurfc (f, [-3, 3]);

     See also: ezplot, ezmeshc, ezsurf, ezmesh.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Plots the surface and contour lines defined by a function.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
refresh
# name: <cell-element>
# type: string
# elements: 1
# length: 243
 -- Function File:  refresh ()
 -- Function File:  refresh (H)
     Refresh a figure, forcing it to be redrawn.  Called without an argument the current figure is redrawn, otherwise the figure pointed to by H is redrawn.  See also: drawnow.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Refresh a figure, forcing it to be redrawn.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
caxis
# name: <cell-element>
# type: string
# elements: 1
# length: 669
 -- Function File:  caxis (LIMITS)
 -- Function File:  caxis (H, ...)
     Set color axis limits for plots.

     The argument LIMITS should be a 2 element vector specifying the lower and upper limits to assign to the first and last value in the colormap.  Values outside this range are clamped to the first and last colormap entries.

     If LIMITS is 'auto', then automatic colormap scaling is applied, whereas if LIMITS is 'manual' the colormap scaling is set to manual.

     Called without any arguments to current color axis limits are returned.

     If an axes handle is passed as the first argument, then operate on this axes rather than the current axes.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Set color axis limits for plots.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
quiver
# name: <cell-element>
# type: string
# elements: 1
# length: 1332
 -- Function File:  quiver (U, V)
 -- Function File:  quiver (X, Y, U, V)
 -- Function File:  quiver (..., S)
 -- Function File:  quiver (..., STYLE)
 -- Function File:  quiver (..., 'filled')
 -- Function File:  quiver (H, ...)
 -- Function File: H = quiver (...)
     Plot the `(U, V)' components of a vector field in an `(X, Y)' meshgrid.  If the grid is uniform, you can specify X and Y as vectors.

     If X and Y are undefined they are assumed to be `(1:M, 1:N)' where `[M, N] = size(U)'.

     The variable S is a scalar defining a scaling factor to use for  the arrows of the field relative to the mesh spacing.  A value of 0 disables all scaling.  The default value is 1.

     The style to use for the plot can be defined with a line style STYLE in a similar manner to the line styles used with the `plot' command.  If a marker is specified then markers at the grid points of the vectors are printed rather than arrows.  If the argument 'filled' is given then the markers as filled.

     The optional return value H provides a quiver group that regroups the components of the quiver plot (body, arrow and marker), and allows them to be changed together

          [x, y] = meshgrid (1:2:20);
          h = quiver (x, y, sin (2*pi*x/10), sin (2*pi*y/10));
          set (h, "maxheadsize", 0.33);

     See also: plot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Plot the `(U, V)' components of a vector field in an `(X, Y)' meshgrid.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
plot
# name: <cell-element>
# type: string
# elements: 1
# length: 3989
 -- Function File:  plot (Y)
 -- Function File:  plot (X, Y)
 -- Function File:  plot (X, Y, PROPERTY, VALUE, ...)
 -- Function File:  plot (X, Y, FMT)
 -- Function File:  plot (H, ...)
     Produces two-dimensional plots.  Many different combinations of arguments are possible.  The simplest form is

          plot (Y)

     where the argument is taken as the set of Y coordinates and the X coordinates are taken to be the indices of the elements, starting with 1.

     To save a plot, in one of several image formats such as PostScript or PNG, use the `print' command.

     If more than one argument is given, they are interpreted as

          plot (Y, PROPERTY, VALUE, ...)

     or

          plot (X, Y, PROPERTY, VALUE, ...)

     or

          plot (X, Y, FMT, ...)

     and so on.  Any number of argument sets may appear.  The X and Y values are interpreted as follows:

        * If a single data argument is supplied, it is taken as the set of Y coordinates and the X coordinates are taken to be the indices of the elements, starting with 1.

        * If the X is a vector and Y is a matrix, then the columns (or rows) of Y are plotted versus X.  (using whichever combination matches, with columns tried first.)

        * If the X is a matrix and Y is a vector, Y is plotted versus the columns (or rows) of X.  (using whichever combination matches, with columns tried first.)

        * If both arguments are vectors, the elements of Y are plotted versus the elements of X.

        * If both arguments are matrices, the columns of Y are plotted versus the columns of X.  In this case, both matrices must have the same number of rows and columns and no attempt is made to transpose the arguments to make the number of rows match.

          If both arguments are scalars, a single point is plotted.

     Multiple property-value pairs may be specified, but they must appear in pairs.  These arguments are applied to the lines drawn by `plot'.

     If the FMT argument is supplied, it is interpreted as follows.  If FMT is missing, the default gnuplot line style is assumed.

    `-'
          Set lines plot style (default).

    `.'
          Set dots plot style.

    `N'
          Interpreted as the plot color if N is an integer in the range 1 to 6.

    `NM'
          If NM is a two digit integer and M is an integer in the range 1 to 6, M is interpreted as the point style.  This is only valid in combination with the `@' or `-@' specifiers.

    `C'
          If C is one of `"k"' (black), `"r"' (red), `"g"' (green), `"b"' (blue), `"m"' (magenta), `"c"' (cyan), or `"w"' (white), it is interpreted as the line plot color.

    `";title;"'
          Here `"title"' is the label for the key.

    `+'
    `*'
    `o'
    `x'
    `^'
          Used in combination with the points or linespoints styles, set the point style.

     The FMT argument may also be used to assign key titles.  To do so, include the desired title between semi-colons after the formatting sequence described above, e.g., "+3;Key Title;" Note that the last semi-colon is required and will generate an error if it is left out.

     Here are some plot examples:

          plot (x, y, "@12", x, y2, x, y3, "4", x, y4, "+")

     This command will plot `y' with points of type 2 (displayed as `+') and color 1 (red), `y2' with lines, `y3' with lines of color 4 (magenta) and `y4' with points displayed as `+'.

          plot (b, "*", "markersize", 3)

     This command will plot the data in the variable `b', with points displayed as `*' with a marker size of 3.

          t = 0:0.1:6.3;
          plot (t, cos(t), "-;cos(t);", t, sin(t), "+3;sin(t);");

     This will plot the cosine and sine functions and label them accordingly in the key.

     If the first argument is an axis handle, then plot into these axes, rather than the current axis handle returned by `gca'.  See also: semilogx, semilogy, loglog, polar, mesh, contour, bar, stairs, errorbar, xlabel, ylabel, title, print.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Produces two-dimensional plots.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
scatter
# name: <cell-element>
# type: string
# elements: 1
# length: 1399
 -- Function File:  scatter (X, Y, S, C)
 -- Function File:  scatter (..., 'filled')
 -- Function File:  scatter (..., STYLE)
 -- Function File:  scatter (..., PROP, VAL)
 -- Function File:  scatter (H, ...)
 -- Function File: H = scatter (...)
     Plot a scatter plot of the data.  A marker is plotted at each point defined by the points in the vectors X and Y.  The size of the markers used is determined by the S, which can be a scalar, a vector of the same length of X and Y.  If S is not given or is an empty matrix, then the default value of 8 points is used.

     The color of the markers is determined by C, which can be a string defining a fixed color, a 3 element vector giving the red, green and blue components of the color, a vector of the same length as X that gives a scaled index into the current colormap, or a N-by-3 matrix defining the colors of each of the markers individually.

     The marker to use can be changed with the STYLE argument, that is a string defining a marker in the same manner as the `plot' command.  If the argument 'filled' is given then the markers as filled.  All additional arguments are passed to the underlying patch command.

     The optional return value H provides a handle to the patch object

          x = randn (100, 1);
          y = randn (100, 1);
          scatter (x, y, [], sqrt(x.^2 + y.^2));

     See also: plot, patch, scatter3.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Plot a scatter plot of the data.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
surf
# name: <cell-element>
# type: string
# elements: 1
# length: 366
 -- Function File:  surf (X, Y, Z)
     Plot a surface given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.  If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)).  Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.  See also: mesh, surface.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 123
Plot a surface given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
feather
# name: <cell-element>
# type: string
# elements: 1
# length: 760
 -- Function File:  feather (U, V)
 -- Function File:  feather (Z)
 -- Function File:  feather (..., STYLE)
 -- Function File:  feather (H, ...)
 -- Function File: H = feather (...)
     Plot the `(U, V)' components of a vector field emanating from equidistant points on the x-axis.  If a single complex argument Z is given, then `U = real (Z)' and `V = imag (Z)'.

     The style to use for the plot can be defined with a line style STYLE in a similar manner to the line styles used with the `plot' command.

     The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).

          phi = [0 : 15 : 360] * pi / 180;
          feather (sin (phi), cos (phi))

     See also: plot, quiver, compass.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 95
Plot the `(U, V)' components of a vector field emanating from equidistant points on the x-axis.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
newplot
# name: <cell-element>
# type: string
# elements: 1
# length: 173
 -- Function File:  newplot ()
     Prepare graphics engine to produce a new plot.  This function should be called at the beginning of all high-level plotting functions.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Prepare graphics engine to produce a new plot.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
polar
# name: <cell-element>
# type: string
# elements: 1
# length: 199
 -- Function File:  polar (THETA, RHO, FMT)
     Make a two-dimensional plot given the polar coordinates THETA and RHO.

     The optional third argument specifies the line type.  See also: plot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 70
Make a two-dimensional plot given the polar coordinates THETA and RHO.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
closereq
# name: <cell-element>
# type: string
# elements: 1
# length: 143
 -- Function File:  closereq ()
     Close the current figure and delete all graphics objects associated with it.  See also: close, delete.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Close the current figure and delete all graphics objects associated with it.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
area
# name: <cell-element>
# type: string
# elements: 1
# length: 836
 -- Function File:  area (X, Y)
 -- Function File:  area (X, Y, LVL)
 -- Function File:  area (..., PROP, VAL, ...)
 -- Function File:  area (Y, ...)
 -- Function File:  area (H, ...)
 -- Function File: H = area (...)
     Area plot of cumulative sum of the columns of Y.  This shows the contributions of a value to a sum, and is functionally similar to `plot (X, cumsum (Y, 2))', except that the area under the curve is shaded.

     If the X argument is omitted it is assumed to be given by `1 : rows (Y)'.  A value LVL can be defined that determines where the base level of the shading under the curve should be defined.

     Additional arguments to the `area' function are passed to the `patch'.  The optional return value H provides a handle to area series object representing the patches of the areas.  See also: plot, patch.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Area plot of cumulative sum of the columns of Y.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
xlim
# name: <cell-element>
# type: string
# elements: 1
# length: 771
 -- Function File: XL = xlim ()
 -- Function File:  xlim (XL)
 -- Function File: M = xlim ('mode')
 -- Function File:  xlim (M)
 -- Function File:  xlim (H, ...)
     Get or set the limits of the x-axis of the current plot.  Called without arguments `xlim' returns the x-axis limits of the current plot.  If passed a two element vector XL, the limits of the x-axis are set to this value.

     The current mode for calculation of the x-axis can be returned with a call `xlim ('mode')', and can be either 'auto' or 'manual'.  The current plotting mode can be set by passing either 'auto' or 'manual' as the argument.

     If passed an handle as the first argument, then operate on this handle rather than the current axes handle.  See also: ylim, zlim, set, get, gca.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Get or set the limits of the x-axis of the current plot.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
ancestor
# name: <cell-element>
# type: string
# elements: 1
# length: 570
 -- Function File: PARENT = ancestor (H, TYPE)
 -- Function File: PARENT = ancestor (H, TYPE, 'toplevel')
     Return the first ancestor of handle object H whose type matches TYPE, where TYPE is a character string.  If TYPE is a cell array of strings, return the first parent whose type matches any of the given type strings.

     If the handle object H is of type TYPE, return H.

     If `"toplevel"' is given as a 3rd argument, return the highest parent in the object hierarchy that matches the condition, instead of the first (nearest) one.  See also: get, set.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 103
Return the first ancestor of handle object H whose type matches TYPE, where TYPE is a character string.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
gtext
# name: <cell-element>
# type: string
# elements: 1
# length: 399
 -- Function File:  gtext (S)
 -- Function File:  gtext ({S1; S2; ...})
 -- Function File:  gtext (..., PROP, VAL)
     Place text on the current figure using the mouse.  The text is defined by the string S.  If S is a cell array, each element of the cell array is written to a separate line.  Additional arguments are passed to the underlying text object as properties.  See also: ginput, text.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Place text on the current figure using the mouse.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
spinmap
# name: <cell-element>
# type: string
# elements: 1
# length: 302
 -- Function File:  spinmap (T, INC)
     Cycle the colormap for T seconds with an increment of INC.  Both parameters are optional.  The default cycle time is 5 seconds and the default increment is 2.

     A higher value of INC causes a faster cycle through the colormap.  See also: gca, colorbar.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Cycle the colormap for T seconds with an increment of INC.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
ishold
# name: <cell-element>
# type: string
# elements: 1
# length: 173
 -- Function File:  ishold
     Return true if the next line will be added to the current plot, or false if the plot device will be cleared before drawing the next line.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 137
Return true if the next line will be added to the current plot, or false if the plot device will be cleared before drawing the next line.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
diffuse
# name: <cell-element>
# type: string
# elements: 1
# length: 341
 -- Function File:  diffuse (SX, SY, SZ, L)
     Calculate diffuse reflection strength of a surface defined by the normal vector elements SX, SY, SZ.  The light vector can be specified using parameter L.  It can be given as 2-element vector [azimuth, elevation] in degrees or as 3-element vector [lx, ly, lz].  See also: specular, surfl.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 100
Calculate diffuse reflection strength of a surface defined by the normal vector elements SX, SY, SZ.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
semilogy
# name: <cell-element>
# type: string
# elements: 1
# length: 239
 -- Function File:  semilogy (ARGS)
     Produce a two-dimensional plot using a log scale for the Y axis.  See the description of `plot' for a description of the arguments that `semilogy' will accept.  See also: plot, semilogx, loglog.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Produce a two-dimensional plot using a log scale for the Y axis.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
figure
# name: <cell-element>
# type: string
# elements: 1
# length: 314
 -- Function File:  figure (N)
 -- Function File:  figure (N, PROPERTY, VALUE, ...)
     Set the current plot window to plot window N.  If no arguments are specified, the next available window number is chosen.

     Multiple property-value pairs may be specified for the figure, but they must appear in pairs.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Set the current plot window to plot window N.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
stem3
# name: <cell-element>
# type: string
# elements: 1
# length: 542
 -- Function File: H = stem3 (X, Y, Z, LINESPEC)
     Plot a three-dimensional stem graph and return the handles of the line and marker objects used to draw the stems as "stem series" object.  The default color is `"r"' (red).  The default line style is `"-"' and the default marker is `"o"'.

     For example,
          theta = 0:0.2:6;
          stem3 (cos (theta), sin (theta), theta)

     plots 31 stems with heights from 0 to 6 lying on a circle.  Color definitions with rgb-triples are not valid!  See also: bar, barh, stem, plot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 137
Plot a three-dimensional stem graph and return the handles of the line and marker objects used to draw the stems as "stem series" object.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
zlabel
# name: <cell-element>
# type: string
# elements: 1
# length: 102
 -- Function File:  zlabel (STRING)
 -- Function File:  zlabel (H, STRING)
     See also: xlabel..
   
# name: <cell-element>
# type: string
# elements: 1
# length: 17
See also: xlabel.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
print
# name: <cell-element>
# type: string
# elements: 1
# length: 4534
 -- Function File:  print ()
 -- Function File:  print (OPTIONS)
 -- Function File:  print (FILENAME, OPTIONS)
 -- Function File:  print (H, FILENAME, OPTIONS)
     Print a graph, or save it to a file

     FILENAME defines the file name of the output file.  If no filename is specified, the output is sent to the printer.

     H specifies the figure handle.  If no handle is specified the handle for the current figure is used.

     OPTIONS:
    `-PPRINTER'
          Set the PRINTER name to which the graph is sent if no FILENAME is specified.

    `-GGHOSTSCRIPT_COMMAND'
          Specify the command for calling Ghostscript.  For Unix and Windows, the defaults are 'gs' and 'gswin32c', respectively.

    `-color'
    `-mono'
          Monochrome or color lines.

    `-solid'
    `-dashed'
          Solid or dashed lines.

    `-portrait'
    `-landscape'
          Specify the orientation of the plot for printed output.

    `-dDEVICE'
          Output device, where DEVICE is one of:
         `ps'
         `ps2'
         `psc'
         `psc2'
               Postscript (level 1 and 2, mono and color)

         `eps'
         `eps2'
         `epsc'
         `epsc2'
               Encapsulated postscript (level 1 and 2, mono and color)

         `tex'
         `epslatex'
         `epslatexstandalone'
         `pstex'
         `pslatex'
               Generate a LaTeX (or TeX) file for labels, and eps/ps for graphics.  The file produced by `epslatexstandalone' can be processed directly by LaTeX.  The other formats are intended to be included in a LaTeX (or TeX) document.  The `tex' device is the same as the `epslatex' device.

         `ill'
         `aifm'
               Adobe Illustrator

         `cdr'
         `corel'
               CorelDraw

         `dxf'
               AutoCAD

         `emf'
         `meta'
               Microsoft Enhanced Metafile

         `fig'
               XFig.  If this format is selected the additional options `-textspecial' or `-textnormal' can be used to control     whether the special flag should be set for the text in     the figure (default is `-textnormal').

         `hpgl'
               HP plotter language

         `mf'
               Metafont

         `png'
               Portable network graphics

         `jpg'
         `jpeg'
               JPEG image

         `gif'
               GIF image

         `pbm'
               PBMplus

         `svg'
               Scalable vector graphics

         `pdf'
               Portable document format

          If the device is omitted, it is inferred from the file extension, or if there is no filename it is sent to the printer as postscript.

    `-dGS_DEVICE'
          Additional devices are supported by Ghostscript.  Some examples are;

         `ljet2p'
               HP LaserJet IIP

         `ljet3'
               HP LaserJet III

         `deskjet'
               HP DeskJet and DeskJet Plus

         `cdj550'
               HP DeskJet 550C

         `paintjet'
               HP PointJet

         `pcx24b'
               24-bit color PCX file format

         `ppm'
               Portable Pixel Map file format

          For a complete list, type `system ("gs -h")' to see what formats and devices are available.

          When the ghostscript is sent to a printer the size is determined by the figure's "papersize" property.  When the ghostscript output is sent to a file the size is determined by the figure's "paperposition" property.

    `-rNUM'
          Resolution of bitmaps in pixels per inch.  For both metafiles and SVG the default is the screen resolution, for other it is 150 dpi.  To specify screen resolution, use "-r0".

    `-tight'
          Forces a tight bounding box for eps-files.  Since the ghostscript devices are conversion of an eps-file, this option works the those devices as well.

    `-SXSIZE,YSIZE'
          Plot size in pixels for EMF, GIF, JPEG, PBM, PNG and SVG.  If using the command form of the print function, you must quote the XSIZE,YSIZE option.  For example, by writing `"-S640,480"'.  The size defaults to that specified by the figure's paperposition property.

    `-FFONTNAME'
    `-FFONTNAME:SIZE'
    `-F:SIZE'
          FONTNAME set the postscript font (for use with postscript, aifm, corel and fig).  By default, 'Helvetica' is set for PS/Aifm, and 'SwitzerlandLight' for Corel.  It can also be 'Times-Roman'.  SIZE is given in points.  FONTNAME is ignored for the fig device.

     The filename and options can be given in any order.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Print a graph, or save it to a file 

# name: <cell-element>
# type: string
# elements: 1
# length: 10
plotmatrix
# name: <cell-element>
# type: string
# elements: 1
# length: 1351
 -- Function File:  plotmatrix (X, Y)
 -- Function File:  plotmatrix (X)
 -- Function File:  plotmatrix (..., STYLE)
 -- Function File:  plotmatrix (H, ...)
 -- Function File: [H, AX, BIGAX, P, PAX] = plotmatrix (...)
     Scatter plot of the columns of one matrix against another.  Given the arguments X and Y, that have a matching number of rows, `plotmatrix' plots a set of axes corresponding to

          plot (X (:, i), Y (:, j)

     Given a single argument X, then this is equivalent to

          plotmatrix (X, X)

     except that the diagonal of the set of axes will be replaced with the histogram `hist (X (:, i))'.

     The marker to use can be changed with the STYLE argument, that is a string defining a marker in the same manner as the `plot' command.  If a leading axes handle H is passed to `plotmatrix', then this axis will be used for the plot.

     The optional return value H provides handles to the individual graphics objects in the scatter plots, whereas AX returns the handles to the scatter plot axis objects.  BIGAX is a hidden axis object that surrounds the other axes, such that the commands `xlabel', `title', etc., will be associated with this hidden axis.  Finally P returns the graphics objects associated with the histogram and PAX the corresponding axes objects.

          plotmatrix (randn (100, 3), 'g+')

   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Scatter plot of the columns of one matrix against another.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
fill
# name: <cell-element>
# type: string
# elements: 1
# length: 279
 -- Function File:  fill (X, Y, C)
 -- Function File:  fill (X1, Y1, C1, X2, Y2, C2)
 -- Function File:  fill (..., PROP, VAL)
 -- Function File:  fill (H, ...)
 -- Function File: H = fill (...)
     Create one or more filled patch objects, returning a patch object for each.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Create one or more filled patch objects, returning a patch object for each.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
cylinder
# name: <cell-element>
# type: string
# elements: 1
# length: 787
 -- Function File:  cylinder
 -- Function File:  cylinder (R)
 -- Function File:  cylinder (R, N)
 -- Function File: [X, Y, Z] = cylinder (...)
 -- Function File:  cylinder (AX, ...)
     Generates three matrices in `meshgrid' format, such that `surf (X, Y, Z)' generates a unit cylinder.  The matrices are of size `N+1'-by-`N+1'.  R is a vector containing the radius along the z-axis.  If N or R are omitted then default values of 20 or [1 1] are assumed.

     Called with no return arguments, `cylinder' calls directly `surf (X, Y, Z)'.  If an axes handle AX is passed as the first argument, the surface is plotted to this set of axes.

     Examples:
          disp ("plotting a cone")
          [x, y, z] = cylinder (10:-1:0,50);
          surf (x, y, z);
     See also: sphere.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 100
Generates three matrices in `meshgrid' format, such that `surf (X, Y, Z)' generates a unit cylinder.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
meshc
# name: <cell-element>
# type: string
# elements: 1
# length: 386
 -- Function File:  meshc (X, Y, Z)
     Plot a mesh and contour given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.  If X and Y are vectors, then a typical vertex is (X(j), Y(i), Z(i,j)).  Thus, columns of Z correspond to different X values and rows of Z correspond to different Y values.  See also: meshgrid, mesh, contour.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 132
Plot a mesh and contour given matrices X, and Y from `meshgrid' and a matrix Z corresponding to the X and Y coordinates of the mesh.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
box
# name: <cell-element>
# type: string
# elements: 1
# length: 237
 -- Function File:  box (ARG)
 -- Function File:  box (H, ...)
     Control the display of a border around the plot.  The argument may be either `"on"' or `"off"'.  If it is omitted, the current box state is toggled.  See also: grid.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Control the display of a border around the plot.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
gcbf
# name: <cell-element>
# type: string
# elements: 1
# length: 323
 -- Function File: FIG = gcbf ()
     Return a handle to the figure containing the object whose callback is currently executing.  If no callback is executing, this function returns the empty matrix.  The handle returned by this function is the same as the second output argument of gcbo.

     See also: gcf, gca, gcbo.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 90
Return a handle to the figure containing the object whose callback is currently executing.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
compass
# name: <cell-element>
# type: string
# elements: 1
# length: 760
 -- Function File:  compass (U, V)
 -- Function File:  compass (Z)
 -- Function File:  compass (..., STYLE)
 -- Function File:  compass (H, ...)
 -- Function File: H = compass (...)
     Plot the `(U, V)' components of a vector field emanating from the origin of a polar plot.  If a single complex argument Z is given, then `U = real (Z)' and `V = imag (Z)'.

     The style to use for the plot can be defined with a line style STYLE in a similar manner to the line styles used with the `plot' command.

     The optional return value H provides a list of handles to the the parts of the vector field (body, arrow and marker).

          a = toeplitz([1;randn(9,1)],[1,randn(1,9)]);
          compass (eig (a))

     See also: plot, polar, quiver, feather.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 89
Plot the `(U, V)' components of a vector field emanating from the origin of a polar plot.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
loglog
# name: <cell-element>
# type: string
# elements: 1
# length: 235
 -- Function File:  loglog (ARGS)
     Produce a two-dimensional plot using log scales for both axes.  See the description of `plot' for a description of the arguments that `loglog' will accept.  See also: plot, semilogx, semilogy.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Produce a two-dimensional plot using log scales for both axes.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
meshgrid
# name: <cell-element>
# type: string
# elements: 1
# length: 599
 -- Function File: [XX, YY, ZZ] = meshgrid (X, Y, Z)
 -- Function File: [XX, YY] = meshgrid (X, Y)
 -- Function File: [XX, YY] = meshgrid (X)
     Given vectors of X and Y and Z coordinates, and returning 3 arguments, return three-dimensional arrays corresponding to the X, Y, and Z coordinates of a mesh.  When returning only 2 arguments, return matrices corresponding to the X and Y coordinates of a mesh.  The rows of XX are copies of X, and the columns of YY are copies of Y.  If Y is omitted, then it is assumed to be the same as X, and Z is assumed the same as Y.  See also: mesh, contour.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 158
Given vectors of X and Y and Z coordinates, and returning 3 arguments, return three-dimensional arrays corresponding to the X, Y, and Z coordinates of a mesh.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
ndgrid
# name: <cell-element>
# type: string
# elements: 1
# length: 522
 -- Function File: [Y1, Y2, ...,  Yn] = ndgrid (X1, X2, ..., Xn)
 -- Function File: [Y1, Y2, ...,  Yn] = ndgrid (X)
     Given n vectors X1, ... Xn, `ndgrid' returns n arrays of dimension n. The elements of the i-th output argument contains the elements of the vector Xi repeated over all dimensions different from the i-th dimension.  Calling ndgrid with only one input argument X is equivalent of calling ndgrid with all n input arguments equal to X:

     [Y1, Y2, ...,  Yn] = ndgrid (X, ..., X) See also: meshgrid.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 21
Given n vectors X1, .

# name: <cell-element>
# type: string
# elements: 1
# length: 4
hist
# name: <cell-element>
# type: string
# elements: 1
# length: 859
 -- Function File:  hist (Y, X, NORM)
     Produce histogram counts or plots.

     With one vector input argument, plot a histogram of the values with 10 bins.  The range of the histogram bins is determined by the range of the data.  With one matrix input argument, plot a histogram where each bin contains a bar per input column.

     Given a second scalar argument, use that as the number of bins.

     Given a second vector argument, use that as the centers of the bins, with the width of the bins determined from the adjacent values in the vector.

     If third argument is provided, the histogram is normalized such that the sum of the bars is equal to NORM.

     Extreme values are lumped in the first and last bins.

     With two output arguments, produce the values NN and XX such that `bar (XX, NN)' will plot the histogram.  See also: bar.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Produce histogram counts or plots.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
errorbar
# name: <cell-element>
# type: string
# elements: 1
# length: 2097
 -- Function File:  errorbar (ARGS)
     This function produces two-dimensional plots with errorbars.  Many different combinations of arguments are possible.  The simplest form is

          errorbar (Y, EY)

     where the first argument is taken as the set of Y coordinates and the second argument EY is taken as the errors of the Y values.  X coordinates are taken to be the indices of the elements, starting with 1.

     If more than two arguments are given, they are interpreted as

          errorbar (X, Y, ..., FMT, ...)

     where after X and Y there can be up to four error parameters such as EY, EX, LY, UY, etc., depending on the plot type.  Any number of argument sets may appear, as long as they are separated with a format string FMT.

     If Y is a matrix, X and error parameters must also be matrices having same dimensions.  The columns of Y are plotted versus the corresponding columns of X and errorbars are drawn from the corresponding columns of error parameters.

     If FMT is missing, yerrorbars ("~") plot style is assumed.

     If the FMT argument is supplied, it is interpreted as in normal plots.  In addition the following plot styles are supported by errorbar:

    `~'
          Set yerrorbars plot style (default).

    `>'
          Set xerrorbars plot style.

    `~>'
          Set xyerrorbars plot style.

    `#'
          Set boxes plot style.

    `#~'
          Set boxerrorbars plot style.

    `#~>'
          Set boxxyerrorbars plot style.

     Examples:

          errorbar (X, Y, EX, ">")

     produces an xerrorbar plot of Y versus X with X errorbars drawn from X-EX to X+EX.

          errorbar (X, Y1, EY, "~",
                    X, Y2, LY, UY)

     produces yerrorbar plots with Y1 and Y2 versus X.  Errorbars for Y1 are drawn from Y1-EY to Y1+EY, errorbars for Y2 from Y2-LY to Y2+UY.

          errorbar (X, Y, LX, UX,
                    LY, UY, "~>")

     produces an xyerrorbar plot of Y versus X in which X errorbars are drawn from X-LX to X+UX and Y errorbars from Y-LY to Y+UY.  See also: semilogxerr, semilogyerr, loglogerr.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 60
This function produces two-dimensional plots with errorbars.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
zlim
# name: <cell-element>
# type: string
# elements: 1
# length: 771
 -- Function File: XL = zlim ()
 -- Function File:  zlim (XL)
 -- Function File: M = zlim ('mode')
 -- Function File:  zlim (M)
 -- Function File:  zlim (H, ...)
     Get or set the limits of the z-axis of the current plot.  Called without arguments `zlim' returns the z-axis limits of the current plot.  If passed a two element vector XL, the limits of the z-axis are set to this value.

     The current mode for calculation of the z-axis can be returned with a call `zlim ('mode')', and can be either 'auto' or 'manual'.  The current plotting mode can be set by passing either 'auto' or 'manual' as the argument.

     If passed an handle as the first argument, then operate on this handle rather than the current axes handle.  See also: xlim, ylim, set, get, gca.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Get or set the limits of the z-axis of the current plot.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
ishghandle
# name: <cell-element>
# type: string
# elements: 1
# length: 102
 -- Function File:  ishghandle (H)
     Return true if H is a graphics handle and false otherwise.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Return true if H is a graphics handle and false otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
contour3
# name: <cell-element>
# type: string
# elements: 1
# length: 1119
 -- Function File:  contour3 (Z)
 -- Function File:  contour3 (Z, VN)
 -- Function File:  contour3 (X, Y, Z)
 -- Function File:  contour3 (X, Y, Z, VN)
 -- Function File:  contour3 (..., STYLE)
 -- Function File:  contour3 (H, ...)
 -- Function File: [C, H] = contour3 (...)
     Plot level curves (contour lines) of the matrix Z, using the contour matrix C computed by `contourc' from the same arguments; see the latter for their interpretation.  The contours are plotted at the Z level corresponding to their contour.  The set of contour levels, C, is only returned if requested.  For example:

          contour3 (peaks (19));
          hold on
          surface (peaks (19), "facecolor", "none", "EdgeColor", "black")
          colormap hot

     The style to use for the plot can be defined with a line style STYLE in a similar manner to the line styles used with the `plot' command.  Any markers defined by STYLE are ignored.

     The optional input and output argument H allows an axis handle to be passed to `contour' and the handles to the contour objects to be returned.  See also: contourc, patch, plot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 166
Plot level curves (contour lines) of the matrix Z, using the contour matrix C computed by `contourc' from the same arguments; see the latter for their interpretation.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
stairs
# name: <cell-element>
# type: string
# elements: 1
# length: 721
 -- Function File:  stairs (X, Y)
 -- Function File:  stairs (..., STYLE)
 -- Function File:  stairs (..., PROP, VAL)
 -- Function File:  stairs (H, ...)
 -- Function File: H = stairs (...)
     Produce a stairstep plot.  The arguments may be vectors or matrices.

     If only one argument is given, it is taken as a vector of y-values and the x coordinates are taken to be the indices of the elements.

     If two output arguments are specified, the data are generated but not plotted.  For example,

          stairs (x, y);

     and

          [xs, ys] = stairs (x, y);
          plot (xs, ys);

     are equivalent.  See also: plot, semilogx, semilogy, loglog, polar, mesh, contour, bar, xlabel, ylabel, title.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 25
Produce a stairstep plot.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
close
# name: <cell-element>
# type: string
# elements: 1
# length: 284
 -- Command:  close
 -- Command:  close (N)
 -- Command:  close all
 -- Command:  close all hidden
     Close figure window(s) by calling the function specified by the `"closerequestfcn"' property for each figure.  By default, the function `closereq' is used.  See also: closereq.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Close figure window(s) by calling the function specified by the `"closerequestfcn"' property for each figure.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
axes
# name: <cell-element>
# type: string
# elements: 1
# length: 162
 -- Function File:  axes ()
 -- Function File:  axes (PROPERTY, VALUE, ...)
 -- Function File:  axes (H)
     Create an axes object and return a handle to it.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Create an axes object and return a handle to it.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
colorbar
# name: <cell-element>
# type: string
# elements: 1
# length: 933
 -- Function File:  colorbar (S)
 -- Function File:  colorbar ("peer", H, ...)
     Adds a colorbar to the current axes.  Valid values for S are

    "EastOutside"
          Place the colorbar outside the plot to the right.  This is the default.

    "East"
          Place the colorbar inside the plot to the right.

    "WestOutside"
          Place the colorbar outside the plot to the left.

    "West"
          Place the colorbar inside the plot to the left.

    "NorthOutside"
          Place the colorbar above the plot.

    "North"
          Place the colorbar at the top of the plot.

    "SouthOutside"
          Place the colorbar under the plot.

    "South"
          Place the colorbar at the bottom of the plot.

    "Off", "None"
          Remove any existing colorbar from the plot.

     If the argument "peer" is given, then the following argument is treated as the axes handle on which to add the colorbar.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Adds a colorbar to the current axes.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
shading
# name: <cell-element>
# type: string
# elements: 1
# length: 494
 -- Function File:  shading (TYPE)
 -- Function File:  shading (AX, ...)
     Set the shading of surface or patch graphic objects.  Valid arguments for TYPE are

    `"flat"'
          Single colored patches with invisible edges.

    `"faceted"'
          Single colored patches with visible edges.

    `"interp"'
          Color between patch vertices are interpolated and the patch edges are invisible.

     If AX is given the shading is applied to axis AX instead of the current axis.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Set the shading of surface or patch graphic objects.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
contourf
# name: <cell-element>
# type: string
# elements: 1
# length: 1326
 -- Function File: [C, H] = contourf (X, Y, Z, LVL)
 -- Function File: [C, H] = contourf (X, Y, Z, N)
 -- Function File: [C, H] = contourf (X, Y, Z)
 -- Function File: [C, H] = contourf (Z, N)
 -- Function File: [C, H] = contourf (Z, LVL)
 -- Function File: [C, H] = contourf (Z)
 -- Function File: [C, H] = contourf (AX, ...)
 -- Function File: [C, H] = contourf (..., "PROPERTY", VAL)
     Compute and plot filled contours of the matrix Z.  Parameters X, Y and N or LVL are optional.

     The return value C is a 2xn matrix containing the contour lines as described in the help to the contourc function.

     The return value H is handle-vector to the patch objects creating the filled contours.

     If X and Y are omitted they are taken as the row/column index of Z.  N is a scalar denoting the number of lines to compute.  Alternatively LVL is a vector containing the contour levels.  If only one value (e.g., lvl0) is wanted, set LVL to [lvl0, lvl0].  If both N or LVL are omitted a default value of 10 contour level is assumed.

     If provided, the filled contours are added to the axes object AX instead of the current axis.

     The following example plots filled contours of the `peaks' function.
          [x, y, z] = peaks (50);
          contourf (x, y, z, -7:9)
     See also: contour, contourc, patch.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Compute and plot filled contours of the matrix Z.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
replot
# name: <cell-element>
# type: string
# elements: 1
# length: 63
 -- Function File:  replot ()
     Refresh the plot window.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 24
Refresh the plot window.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
hold
# name: <cell-element>
# type: string
# elements: 1
# length: 757
 -- Function File:  hold
 -- Function File:  hold STATE
 -- Function File:  hold (HAX, ...)
     Toggle or set the 'hold' state of the plotting engine which determines whether new graphic objects are added to the plot or replace the existing objects.

    `hold on'
          Retain plot data and settings so that subsequent plot commands are displayed on a single graph.

    `hold off'
          Clear plot and restore default graphics settings before each new plot command.  (default).

    `hold'
          Toggle the current 'hold' state.

     When given the additional argument HAX, the hold state is modified only for the given axis handle.

     To query the current 'hold' state use the `ishold' function.  See also: ishold, cla, newplot, clf.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 153
Toggle or set the 'hold' state of the plotting engine which determines whether new graphic objects are added to the plot or replace the existing objects.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
slice
# name: <cell-element>
# type: string
# elements: 1
# length: 1741
 -- Function File:  slice (X, Y, Z, V, SX, SY, SZ)
 -- Function File:  slice (X, Y, Z, V, XI, YI, ZI)
 -- Function File:  slice (V, SX, SY, SZ)
 -- Function File:  slice (V, XI, YI, ZI)
 -- Function File: H = slice (...)
 -- Function File: H = slice (..., METHOD)
     Plot slices of 3D data/scalar fields.  Each element of the 3-dimensional array V represents a scalar value at a location given by the parameters X, Y, and Z.  The parameters X, X, and Z are either 3-dimensional arrays of the same size as the array V in the "meshgrid" format or vectors.  The parameters XI, etc. respect a similar format to X, etc., and they represent the points at which the array VI is interpolated using interp3.  The vectors SX, SY, and SZ contain points of orthogonal slices of the respective axes.

     If X, Y, Z are omitted, they are assumed to be `x = 1:size (V, 2)', `y = 1:size (V, 1)' and `z = 1:size (V, 3)'.

     METHOD is one of:

    `"nearest"'
          Return the nearest neighbor.

    `"linear"'
          Linear interpolation from nearest neighbors.

    `"cubic"'
          Cubic interpolation from four nearest neighbors (not implemented yet).

    `"spline"'
          Cubic spline interpolation--smooth first and second derivatives throughout the curve.

     The default method is `"linear"'.  The optional return value H is a vector of handles to the surface graphic objects.

     Examples:
          [x, y, z] = meshgrid (linspace (-8, 8, 32));
          v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
          slice (x, y, z, v, [], 0, []);
          [xi, yi] = meshgrid (linspace (-7, 7));
          zi = xi + yi;
          slice (x, y, z, v, xi, yi, zi);
     See also: interp3, surface, pcolor.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Plot slices of 3D data/scalar fields.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
linkprop
# name: <cell-element>
# type: string
# elements: 1
# length: 620
 -- Function File: HLINK = linkprop (H, PROP)
     Links graphics object properties, such that a change in one is propagated to the others.  The properties to link are given as a string of cell string array by PROP and the objects containing these properties by the handle array H.

     An example of the use of linkprops is

          x = 0:0.1:10;
          subplot (1, 2, 1);
          h1 = plot (x, sin (x));
          subplot (1, 2, 2);
          h2 = plot (x, cos (x));
          hlink = linkprop ([h1, h2], {"color","linestyle"});
          set (h1, "color", "green");
          set (h2, "linestyle", "--");

   
# name: <cell-element>
# type: string
# elements: 1
# length: 88
Links graphics object properties, such that a change in one is propagated to the others.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
unpack
# name: <cell-element>
# type: string
# elements: 1
# length: 558
 -- Function File: FILES = unpack (FILE, DIR)
 -- Function File: FILES = unpack (FILE, DIR, FILETYPE)
     Unpack the archive FILE based on its extension to the directory DIR.  If FILE is a cellstr, then all files will be handled individually.  If DIR is not specified, it defaults to the current directory.  It returns a list of FILES unpacked.  If a directory is in the file list, then the FILETYPE to unpack must also be specified.

     The FILES includes the entire path to the output files.  See also: bunzip2, tar, untar, gzip, gunzip, zip, unzip.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Unpack the archive FILE based on its extension to the directory DIR.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
orderfields
# name: <cell-element>
# type: string
# elements: 1
# length: 484
 -- Function File: [T, P] = orderfields (S1, S2)
     Return a struct with fields arranged alphabetically or as specified by S2 and a corresponding permutation vector.

     Given one struct, arrange field names in S1 alphabetically.

     Given two structs, arrange field names in S1 as they appear in S2.  The second argument may also specify the order in a permutation vector or a cell array of strings.

     See also: getfield, rmfield, isfield, isstruct, fieldnames, struct.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 113
Return a struct with fields arranged alphabetically or as specified by S2 and a corresponding permutation vector.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
movefile
# name: <cell-element>
# type: string
# elements: 1
# length: 438
 -- Function File: [STATUS, MSG, MSGID] = movefile (F1, F2)
     Move the file F1 to the new name F2.  The name F1 may contain globbing patterns.  If F1 expands to multiple file names, F2 must be a directory.

     If successful, STATUS is 1, with MSG and MSGID empty\n\ character strings.  Otherwise, STATUS is 0, MSG contains a\n\ system-dependent error message, and MSGID contains a unique\n\ message identifier.\n\ See also: glob.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Move the file F1 to the new name F2.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
tempname
# name: <cell-element>
# type: string
# elements: 1
# length: 90
 -- Function File: filename = tempname ()
     This function is an alias for `tmpnam'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
This function is an alias for `tmpnam'.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
unzip
# name: <cell-element>
# type: string
# elements: 1
# length: 225
 -- Function File:  unzip (ZIPFILE, DIR)
     Unpack the ZIP archive ZIPFILE to the directory DIR.  If DIR is not specified, it defaults to the current directory.  See also: unpack, bunzip2, tar, untar, gzip, gunzip, zip.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Unpack the ZIP archive ZIPFILE to the directory DIR.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
perl
# name: <cell-element>
# type: string
# elements: 1
# length: 292
 -- Function File: [OUTPUT, STATUS] = perl (SCRIPTFILE)
 -- Function File: [OUTPUT, STATUS] = perl (SCRIPTFILE, ARGUMENT1, ARGUMENT2, ...)
     Invoke perl script SCRIPTFILE with possibly a list of command line arguments.  Returns output in OUTPUT and status in STATUS.  See also: system.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Invoke perl script SCRIPTFILE with possibly a list of command line arguments.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
ispc
# name: <cell-element>
# type: string
# elements: 1
# length: 129
 -- Function File:  ispc ()
     Return 1 if Octave is running on a Windows system and 0 otherwise.  See also: ismac, isunix.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Return 1 if Octave is running on a Windows system and 0 otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
debug
# name: <cell-element>
# type: string
# elements: 1
# length: 1567
 -- Function File:  debug ()
     Summary of the debugging commands.  The debugging commands that are available in Octave are

    `keyboard'
          Force entry into debug mode.

    `dbstop'
          Add a breakpoint.

    `dbclear'
          Remove a breakpoint.

    `dbstatus'
          List all breakpoints.

    `dbcont'
          Continue execution from the debug prompt.

    `dbstack'
          Print a backtrace of the execution stack.

    `dbstep'
          Execute one or more lines and re-enter debug mode

    `dbtype'
          List the function where execution is currently stopped, enumerating the lines.

    `dbup'
          The workspace up the execution stack.

    `dbdown'
          The workspace down the execution stack.

    `dbquit'
          Quit debugging mode and return to the main prompt.

    `debug_on_error'
          Flag whether to enter debug mode in case Octave encounters an error.

    `debug_on_warning'
          Flag whether to enter debug mode in case Octave encounters a warning.

    `debug_on_interrupt'
          Flag whether to enter debug mode in case Octave encounters an interupt.


     when Octave encounters a breakpoint or other reason to enter debug mode, the prompt changes to `"debug>"'.  The workspace of the function where the breakpoint was encountered becomes available and any Octave command that works within that workspace may be executed.

     See also: dbstop, dbclear, dbstatus, dbcont, dbstack, dbstep, dbtype, dbup, dbdown, dbquit, debug_on_error, debug_on_warning, debug_on_interrupt.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Summary of the debugging commands.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
tar
# name: <cell-element>
# type: string
# elements: 1
# length: 413
 -- Function File: ENTRIES = tar (TARFILE, FILES, ROOT)
     Pack FILES FILES into the TAR archive TARFILE.  The list of files must be a string or a cell array of strings.

     The optional argument ROOT changes the relative path of FILES from the current directory.

     If an output argument is requested the entries in the archive are returned in a cell array.  See also: untar, gzip, gunzip, zip, unzip.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Pack FILES FILES into the TAR archive TARFILE.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
dir
# name: <cell-element>
# type: string
# elements: 1
# length: 864
 -- Function File:  dir (DIRECTORY)
 -- Function File: [LIST] = dir (DIRECTORY)
     Display file listing for directory DIRECTORY.  If a return value is requested, return a structure array with the fields

          name
          bytes
          date
          isdir
          statinfo

     in which `statinfo' is the structure returned from `stat'.

     If DIRECTORY is not a directory, return information about the named FILENAME.  DIRECTORY may be a list of directories specified either by name or with wildcard characters (like * and ?)  which will be expanded with glob.

     Note that for symbolic links, `dir' returns information about the file that a symbolic link points to instead of the link itself.  However, if the link points to a nonexistent file, `dir' returns information about the link.  See also: ls, stat, lstat, readdir, glob, filesep.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Display file listing for directory DIRECTORY.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
license
# name: <cell-element>
# type: string
# elements: 1
# length: 1080
 -- Function File:  license
     Display the license of Octave.

 -- Function File:  license ("inuse")
     Display a list of packages currently being used.

 -- Function File: RETVAL = license ("inuse")
     Return a structure containing the fields `feature' and `user'.

 -- Function File: RETVAL = license ("test", FEATURE)
     Return 1 if a license exists for the product identified by the string FEATURE and 0 otherwise.  The argument FEATURE is case insensitive and only the first 27 characters are checked.

 -- Function File:  license ("test", FEATURE, TOGGLE)
     Enable or disable license testing for FEATURE, depending on TOGGLE, which may be one of:

    `"enable"'
          Future tests for the specified license of FEATURE are conducted as usual.

    `"disable"'
          Future tests for the specified license of FEATURE return 0.

 -- Function File: RETVAL = license ("checkout", FEATURE)
     Check out a license for FEATURE, returning 1 on success and 0 on failure.

     This function is provided for compatibility with MATLAB.  See also: ver, version.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 73
Check out a license for FEATURE, returning 1 on success and 0 on failure.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
xor
# name: <cell-element>
# type: string
# elements: 1
# length: 215
 -- Mapping Function:  xor (X, Y)
     Return the `exclusive or' of the entries of X and Y.  For boolean expressions X and Y, `xor (X, Y)' is true if and only if X or Y is true, but not if both X and Y are true.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return the `exclusive or' of the entries of X and Y.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
menu
# name: <cell-element>
# type: string
# elements: 1
# length: 450
 -- Function File:  menu (TITLE, OPT1, ...)
     Print a title string followed by a series of options.  Each option will be printed along with a number.  The return value is the number of the option selected by the user.  This function is useful for interactive programs.  There is no limit to the number of options that may be passed in, but it may be confusing to present more than will fit easily on one screen.  See also: disp, printf, input.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Print a title string followed by a series of options.

# name: <cell-element>
# type: string
# elements: 1
# length: 16
compare_versions
# name: <cell-element>
# type: string
# elements: 1
# length: 1140
 -- Function File:  compare_versions (V1, V2, OPERATOR)
     Compares to version strings using the given OPERATOR.

     This function assumes that versions V1 and V2 are arbitrarily long strings made of numeric and period characters possibly followed by an arbitrary string (e.g., "1.2.3", "0.3", "0.1.2+", or "1.2.3.4-test1").

     The version is first split into the numeric and the character parts then the parts are padded to be the same length (i.e., "1.1" would be padded to be like "1.1.0" when being compared with "1.1.1", and separately, the character parts of the strings are padded with nulls).

     The operator can be any logical operator from the set

        * "==" equal

        * "<" less than

        * "<=" less than or equal to

        * ">" greater than

        * ">=" greater than or equal to

        * "!=" not equal

        * "~=" not equal

     Note that version "1.1-test2" would compare as greater than "1.1-test10".  Also, since the numeric part is compared first, "a" compares less than "1a" because the second string starts with a numeric part even though double("a") is greater than double("1").
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Compares to version strings using the given OPERATOR.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
bincoeff
# name: <cell-element>
# type: string
# elements: 1
# length: 505
 -- Mapping Function:  bincoeff (N, K)
     Return the binomial coefficient of N and K, defined as

           /   \
           | n |    n (n-1) (n-2) ... (n-k+1)
           |   |  = -------------------------
           | k |               k!
           \   /

     For example,

          bincoeff (5, 2)
               => 10

     In most cases, the `nchoosek' function is faster for small scalar integer arguments.  It also warns about loss of precision for big arguments.

     See also: nchoosek.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Return the binomial coefficient of N and K, defined as 

# name: <cell-element>
# type: string
# elements: 1
# length: 6
delete
# name: <cell-element>
# type: string
# elements: 1
# length: 258
 -- Function File:  delete (FILE)
 -- Function File:  delete (HANDLE)
     Delete the named file or graphics handle.

     Deleting graphics objects is the proper way to remove features from a plot without clearing the entire figure.  See also: clf, cla.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Delete the named file or graphics handle.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
ans
# name: <cell-element>
# type: string
# elements: 1
# length: 229
 -- Automatic Variable: ans
     The most recently computed result that was not explicitly assigned to a variable.  For example, after the expression

          3^2 + 4^2

     is evaluated, the value returned by `ans' is 25.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 81
The most recently computed result that was not explicitly assigned to a variable.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
list_primes
# name: <cell-element>
# type: string
# elements: 1
# length: 209
 -- Function File:  list_primes (N)
     List the first N primes.  If N is unspecified, the first 25 primes are listed.

     The algorithm used is from page 218 of the TeXbook.  See also: primes, isprime.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 24
List the first N primes.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
comma
# name: <cell-element>
# type: string
# elements: 1
# length: 100
 -- Operator: ,
     Array index, function argument, or command separator.  See also: semicolon.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Array index, function argument, or command separator.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
mkoctfile
# name: <cell-element>
# type: string
# elements: 1
# length: 3026
 -- Function File:  mkoctfile [-options] file ...
     The `mkoctfile' function compiles source code written in C, C++, or Fortran.  Depending on the options used with `mkoctfile', the compiled code can be called within Octave or can be used as a stand-alone application.

     `mkoctfile' can be called from the shell prompt or from the Octave prompt.

     `mkoctfile' accepts the following options, all of which are optional except for the file name of the code you wish to compile:

    `-I DIR'
          Add the include directory DIR to compile commands.

    `-D DEF'
          Add the definition DEF to the compiler call.

    `-l LIB'
          Add the library LIB to the link command.

    `-L DIR'
          Add the library directory DIR to the link command.

    `-M'
    `--depend'
          Generate dependency files (.d) for C and C++ source files.

    `-c'
          Compile but do not link.

    `-g'
          Enable debugging options for compilers.

    `-o FILE'
    `--output FILE'
          Output file name.  Default extension is .oct (or .mex if -mex is specified) unless linking a stand-alone executable.

    `-p VAR'
    `--print VAR'
          Print the configuration variable VAR.  Recognized variables are:

                  ALL_CFLAGS                FFTW_LIBS
                  ALL_CXXFLAGS              FLIBS
                  ALL_FFLAGS                FPICFLAG
                  ALL_LDFLAGS               INCFLAGS
                  BLAS_LIBS                 LDFLAGS
                  CC                        LD_CXX
                  CFLAGS                    LD_STATIC_FLAG
                  CPICFLAG                  LFLAGS
                  CPPFLAGS                  LIBCRUFT
                  CXX                       LIBOCTAVE
                  CXXFLAGS                  LIBOCTINTERP
                  CXXPICFLAG                LIBREADLINE
                  DEPEND_EXTRA_SED_PATTERN  LIBS
                  DEPEND_FLAGS              OCTAVE_LIBS
                  DL_LD                     RDYNAMIC_FLAG
                  DL_LDFLAGS                RLD_FLAG
                  F2C                       SED
                  F2CFLAGS                  XTRA_CFLAGS
                  F77                       XTRA_CXXFLAGS
                  FFLAGS

    `--link-stand-alone'
          Link a stand-alone executable file.

    `--mex'
          Assume we are creating a MEX file.  Set the default output extension to ".mex".

    `-s'
    `--strip'
          Strip the output file.

    `-v'
    `--verbose'
          Echo commands as they are executed.

    `file'
          The file to compile or link.  Recognized file types are

                                 .c    C source
                                 .cc   C++ source
                                 .C    C++ source
                                 .cpp  C++ source
                                 .f    Fortran source
                                 .F    Fortran source
                                 .o    object file


# name: <cell-element>
# type: string
# elements: 1
# length: 76
The `mkoctfile' function compiles source code written in C, C++, or Fortran.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
dump_prefs
# name: <cell-element>
# type: string
# elements: 1
# length: 216
 -- Function File:  dump_prefs (FILE)
     Have Octave dump all the current user preference variables to FILE in a format that can be parsed by Octave later.  If FILE is omitted, the listing is printed to stdout.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 114
Have Octave dump all the current user preference variables to FILE in a format that can be parsed by Octave later.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
untar
# name: <cell-element>
# type: string
# elements: 1
# length: 225
 -- Function File:  untar (TARFILE, DIR)
     Unpack the TAR archive TARFILE to the directory DIR.  If DIR is not specified, it defaults to the current directory.  See also: unpack, bunzip2, tar, gzip, gunzip, zip, unzip.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Unpack the TAR archive TARFILE to the directory DIR.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
fullfile
# name: <cell-element>
# type: string
# elements: 1
# length: 159
 -- Function File: FILENAME = fullfile (DIR1, DIR2, ..., FILE)
     Return a complete filename constructed from the given components.  See also: fileparts.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 65
Return a complete filename constructed from the given components.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
fileattrib
# name: <cell-element>
# type: string
# elements: 1
# length: 1167
 -- Function File: [STATUS, MSG, MSGID] = fileattrib (FILE)
     Return information about FILE.

     If successful, STATUS is 1, with RESULT containing a structure with the following fields:

    `Name'
          Full name of FILE.

    `archive'
          True if FILE is an archive (Windows).

    `system'
          True if FILE is a system file (Windows).

    `hidden'
          True if FILE is a hidden file (Windows).

    `directory'
          True if FILE is a directory.

    `UserRead'
    `GroupRead'
    `OtherRead'
          True if the user (group; other users) has read permission for FILE.

    `UserWrite'
    `GroupWrite'
    `OtherWrite'
          True if the user (group; other users) has write permission for FILE.

    `UserExecute'
    `GroupExecute'
    `OtherExecute'
          True if the user (group; other users) has execute permission for FILE.
     If an attribute does not apply (i.e., archive on a Unix system) then the field is set to NaN.

     With no input arguments, return information about the current directory.

     If FILE contains globbing characters, return information about all the matching files.  See also: glob.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Return information about FILE.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
setfield
# name: <cell-element>
# type: string
# elements: 1
# length: 455
 -- Function File: [K1, ..., V1] = setfield (S, K1, V1, ...)
     Set field members in a structure.

          oo(1,1).f0 = 1;
          oo = setfield (oo, {1,2}, "fd", {3}, "b", 6);
          oo(1,2).fd(3).b == 6
          => ans = 1

     Note that this function could be written

          i1 = {1,2}; i2 = "fd"; i3 = {3}; i4 = "b";
          oo(i1{:}).(i2)(i3{:}).(i4) == 6;
     See also: getfield, rmfield, isfield, isstruct, fieldnames, struct.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Set field members in a structure.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
what
# name: <cell-element>
# type: string
# elements: 1
# length: 325
 -- Command:  what
 -- Command:  what DIR
 -- Function File: w = what (DIR)
     List the Octave specific files in a directory.  If the variable DIR is given then check that directory rather than the current directory.  If a return argument is requested, the files found are returned in the structure W.  See also: which.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
List the Octave specific files in a directory.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
computer
# name: <cell-element>
# type: string
# elements: 1
# length: 657
 -- Function File: [C, MAXSIZE, ENDIAN] = computer ()
     Print or return a string of the form CPU-VENDOR-OS that identifies the kind of computer Octave is running on.  If invoked with an output argument, the value is returned instead of printed.  For example,

          computer ()
               -| i586-pc-linux-gnu

          x = computer ()
               => x = "i586-pc-linux-gnu"

     If two output arguments are requested, also return the maximum number of elements for an array.

     If three output arguments are requested, also return the byte order of the current system as a character (`"B"' for big-endian or `"L"' for little-endian).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Print or return a string of the form CPU-VENDOR-OS that identifies the kind of computer Octave is running on.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
ls_command
# name: <cell-element>
# type: string
# elements: 1
# length: 233
 -- Function File: [OLD_CMD = ls_command (CMD)
     Set or return the shell command used by Octave's `ls' command.  The value of CMD must be a character string.  With no arguments, simply return the previous value.  See also: ls.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Set or return the shell command used by Octave's `ls' command.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
flops
# name: <cell-element>
# type: string
# elements: 1
# length: 126
 -- Function File:  flops ()
     This function is provided for MATLAB compatibility, but it doesn't actually do anything.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 88
This function is provided for MATLAB compatibility, but it doesn't actually do anything.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
copyfile
# name: <cell-element>
# type: string
# elements: 1
# length: 535
 -- Function File: [STATUS, MSG, MSGID] = copyfile (F1, F2, FORCE)
     Copy the file F1 to the new name F2.  The name F1 may contain globbing patterns.  If F1 expands to multiple file names, F2 must be a directory.  If FORCE is given and equals the string "f" the copy operation will be forced.

     If successful, STATUS is 1, with MSG and MSGID empty\n\ character strings.  Otherwise, STATUS is 0, MSG contains a\n\ system-dependent error message, and MSGID contains a unique\n\ message identifier.\n\ See also: glob, movefile.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Copy the file F1 to the new name F2.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
zip
# name: <cell-element>
# type: string
# elements: 1
# length: 350
 -- Function File: ENTRIES = zip (ZIPFILE, FILES)
 -- Function File: ENTRIES = zip (ZIPFILE, FILES, ROOTDIR)
     Compress the list of files and/or directories specified in FILES into the archive ZIPFILES in the same directory.  If ROOTDIR is defined the FILES is located relative to ROOTDIR rather than the current directory See also: unzip,tar.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 113
Compress the list of files and/or directories specified in FILES into the archive ZIPFILES in the same directory.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
tempdir
# name: <cell-element>
# type: string
# elements: 1
# length: 107
 -- Function File: DIR = tempdir ()
     Return the name of the system's directory for temporary files.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Return the name of the system's directory for temporary files.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
intwarning
# name: <cell-element>
# type: string
# elements: 1
# length: 1533
 -- Function File:  intwarning (ACTION)
 -- Function File:  intwarning (S)
 -- Function File: S = intwarning (...)
     Control the state of the warning for integer conversions and math operations.

    "query"
          The state of the Octave integer conversion and math warnings is queried.  If there is no output argument, then the state is printed.  Otherwise it is returned in a structure with the fields "identifier" and "state".

               intwarning ("query")
               The state of warning "Octave:int-convert-nan" is "off"
               The state of warning "Octave:int-convert-non-int-val" is "off"
               The state of warning "Octave:int-convert-overflow" is "off"
               The state of warning "Octave:int-math-overflow" is "off"

    "on"
          Turn integer conversion and math warnings "on".  If there is no output argument, then nothing is printed.  Otherwise the original state of the state of the integer conversion and math warnings is returned in a structure array.

    "off"
          Turn integer conversion and math warnings "on".  If there is no output argument, then nothing is printed.  Otherwise the original state of the state of the integer conversion and math warnings is returned in a structure array.

     The original state of the integer warnings can be restored by passing the structure array returned by `intwarning' to a later call to `intwarning'.  For example

          s = intwarning ("off");
          ...
          intwarning (s);
     See also: warning.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Control the state of the warning for integer conversions and math operations.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
semicolon
# name: <cell-element>
# type: string
# elements: 1
# length: 74
 -- Operator: ;
     Array row or command separator.  See also: comma.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Array row or command separator.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
pack
# name: <cell-element>
# type: string
# elements: 1
# length: 130
 -- Function File:  pack ()
     This function is provided for compatibility with MATLAB, but it doesn't actually do anything.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 93
This function is provided for compatibility with MATLAB, but it doesn't actually do anything.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
version
# name: <cell-element>
# type: string
# elements: 1
# length: 150
 -- Function File:  version ()
     Return Octave's version number as a string.  This is also the value of the built-in variable `OCTAVE_VERSION'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Return Octave's version number as a string.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
cast
# name: <cell-element>
# type: string
# elements: 1
# length: 153
 -- Function File:  cast (VAL, TYPE)
     Convert VAL to data type TYPE.  See also: int8, uint8, int16, uint16, int32, uint32, int64, uint64, double.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Convert VAL to data type TYPE.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
bunzip2
# name: <cell-element>
# type: string
# elements: 1
# length: 232
 -- Function File:  bunzip2 (BZFILE, DIR)
     Unpack the bzip2 archive BZFILE to the directory DIR.  If DIR is not specified, it defaults to the current directory.  See also: unpack, bzip2, tar, untar, gzip, gunzip, zip, unzip.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Unpack the bzip2 archive BZFILE to the directory DIR.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
bug_report
# name: <cell-element>
# type: string
# elements: 1
# length: 202
 -- Function File:  bug_report ()
     Have Octave create a bug report template file, invoke your favorite editor, and submit the report to the bug-octave mailing list when you are finished editing.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 159
Have Octave create a bug report template file, invoke your favorite editor, and submit the report to the bug-octave mailing list when you are finished editing.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
isunix
# name: <cell-element>
# type: string
# elements: 1
# length: 131
 -- Function File:  isunix ()
     Return 1 if Octave is running on a Unix-like system and 0 otherwise.  See also: ismac, ispc.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Return 1 if Octave is running on a Unix-like system and 0 otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
getfield
# name: <cell-element>
# type: string
# elements: 1
# length: 461
 -- Function File: [V1, ...] = getfield (S, KEY, ...)
     Extract fields from a structure.  For example

          ss(1,2).fd(3).b = 5;
          getfield (ss, {1,2}, "fd", {3}, "b")
          => ans = 5

     Note that the function call in the previous example is equivalent to the expression

          i1 = {1,2}; i2 = "fd"; i3 = {3}; i4= "b";
          ss(i1{:}).(i2)(i3{:}).(i4)
     See also: setfield, rmfield, isfield, isstruct, fieldnames, struct.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Extract fields from a structure.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
ver
# name: <cell-element>
# type: string
# elements: 1
# length: 788
 -- Function File:  ver ()
     Display a header containing the current Octave version number, license string and operating system, followed by the installed package names, versions, and installation directories.

 -- Function File: v = ver ()
     Return a vector of structures, respecting Octave and each installed package.  The structure includes the following fields.

    `Name'
          Package name.

    `Version'
          Version of the package.

    `Revision'
          Revision of the package.

    `Date'
          Date respecting the version/revision.

 -- Function File: v = ver (`"Octave"')
     Return version information for Octave only..

 -- Function File: v = ver (PKG)
     Return version information for the specified package PKG.  See also: license, version.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Return version information for the specified package PKG.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
news
# name: <cell-element>
# type: string
# elements: 1
# length: 78
 -- Function File:  news ()
     Display the current NEWS file for Octave.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Display the current NEWS file for Octave.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
gzip
# name: <cell-element>
# type: string
# elements: 1
# length: 467
 -- Function File: ENTRIES = gzip (FILES)
 -- Function File: ENTRIES = gzip (FILES, OUTDIR)
     Compress the list of files and/or directories specified in FILES.  Each file is compressed separately and a new file with a '.gz' extension is created.  The original files are not touched.  Existing compressed files are silently overwritten.  If OUTDIR is defined the compressed versions of the files are placed in this directory.  See also: gunzip, bzip2, zip, tar.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 65
Compress the list of files and/or directories specified in FILES.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
parseparams
# name: <cell-element>
# type: string
# elements: 1
# length: 643
 -- Function File: [REG, PROP] = parseparams (PARAMS)
     Return in REG the cell elements of PARAM up to the first string element and in PROP all remaining elements beginning with the first string element.  For example

          [reg, prop] = parseparams ({1, 2, "linewidth", 10})
          reg =
          {
            [1,1] = 1
            [1,2] = 2
          }
          prop =
          {
            [1,1] = linewidth
            [1,2] = 10
          }

     The parseparams function may be used to separate 'regular' arguments and additional arguments given as property/value pairs of the VARARGIN cell array.  See also: varargin.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 147
Return in REG the cell elements of PARAM up to the first string element and in PROP all remaining elements beginning with the first string element.

# name: <cell-element>
# type: string
# elements: 1
# length: 2
ls
# name: <cell-element>
# type: string
# elements: 1
# length: 470
 -- Command: ls options
     List directory contents.  For example,

          ls -l
               -| total 12
               -| -rw-r--r--   1 jwe  users  4488 Aug 19 04:02 foo.m
               -| -rw-r--r--   1 jwe  users  1315 Aug 17 23:14 bar.m

     The `dir' and `ls' commands are implemented by calling your system's directory listing command, so the available options may vary from system to system.  See also: dir, stat, readdir, glob, filesep, ls_command.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 24
List directory contents.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
ismac
# name: <cell-element>
# type: string
# elements: 1
# length: 130
 -- Function File:  ismac ()
     Return 1 if Octave is running on a Mac OS X system and 0 otherwise.  See also: ispc, isunix.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 67
Return 1 if Octave is running on a Mac OS X system and 0 otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
unix
# name: <cell-element>
# type: string
# elements: 1
# length: 463
 -- Function File: [STATUS, TEXT] unix (COMMAND)
 -- Function File: [STATUS, TEXT] unix (COMMAND, "-echo")
     Execute a system command if running under a Unix-like operating system, otherwise do nothing.  Return the exit status of the program in STATUS and any output sent to the standard output in TEXT.  If the optional second argument `"-echo"' is given, then also send the output from the command to the standard output.  See also: isunix, ispc, system.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 93
Execute a system command if running under a Unix-like operating system, otherwise do nothing.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
inputname
# name: <cell-element>
# type: string
# elements: 1
# length: 95
 -- Function File:  inputname (N)
     Return the text defining N-th input to the function.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return the text defining N-th input to the function.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
fileparts
# name: <cell-element>
# type: string
# elements: 1
# length: 168
 -- Function File: [DIR, NAME, EXT, VER] = fileparts (FILENAME)
     Return the directory, name, extension, and version components of FILENAME.  See also: fullfile.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Return the directory, name, extension, and version components of FILENAME.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
substruct
# name: <cell-element>
# type: string
# elements: 1
# length: 153
 -- Function File:  substruct (TYPE, SUBS, ...)
     Create a subscript structure for use with `subsref' or `subsasgn'.  See also: subsref, subsasgn.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Create a subscript structure for use with `subsref' or `subsasgn'.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
info
# name: <cell-element>
# type: string
# elements: 1
# length: 94
 -- Function File:  info ()
     Display contact information for the GNU Octave community.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Display contact information for the GNU Octave community.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
bzip2
# name: <cell-element>
# type: string
# elements: 1
# length: 449
 -- Function File: ENTRIES = bzip2 (FILES)
 -- Function File: ENTRIES = bzip2 (FILES, OUTDIR)
     Compress the list of files specified in FILES.  Each file is compressed separately and a new file with a '.bz2' extension is created.  The original files are not touched.  Existing compressed files are silently overwritten.If OUTDIR is defined the compressed versions of the files are placed in this directory.  See also: bunzip2, gzip, zip, tar.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Compress the list of files specified in FILES.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
swapbytes
# name: <cell-element>
# type: string
# elements: 1
# length: 255
 -- Function File:  swapbytes (X)
     Swaps the byte order on values, converting from little endian to big endian and vice versa.  For example

          swapbytes (uint16 (1:4))
          => [   256   512   768  1024]

     See also: typecast, cast.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 91
Swaps the byte order on values, converting from little endian to big endian and vice versa.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
mexext
# name: <cell-element>
# type: string
# elements: 1
# length: 88
 -- Function File:  mexext ()
     Return the filename extension used for MEX files.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Return the filename extension used for MEX files.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
paren
# name: <cell-element>
# type: string
# elements: 1
# length: 84
 -- Operator: (
 -- Operator: )
     Array index or function argument delimeter.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Array index or function argument delimeter.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
dos
# name: <cell-element>
# type: string
# elements: 1
# length: 474
 -- Function File: [STATUS, TEXT] = dos (COMMAND)
 -- Function File: [STATUS, TEXT] = dos (COMMAND, "-echo")
     Execute a system command if running under a Windows-like operating system, otherwise do nothing.  Return the exit status of the program in STATUS and any output sent to the standard output in TEXT.  If the optional second argument `"-echo"' is given, then also send the output from the command to the standard output.  See also: unix, isunix, ispc, system.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 96
Execute a system command if running under a Windows-like operating system, otherwise do nothing.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
run
# name: <cell-element>
# type: string
# elements: 1
# length: 337
 -- Function File:  run (F)
 -- Command:  run F
     Run scripts in the current workspace that are not necessarily on the path.  If F is the script to run, including its path, then `run' change the directory to the directory where F is found.  `run' then executes the script, and returns to the original directory.  See also: system.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Run scripts in the current workspace that are not necessarily on the path.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
texas_lotto
# name: <cell-element>
# type: string
# elements: 1
# length: 143
 -- Function File:  texas_lotto ()
     Pick 6 unique numbers between 1 and 50 that are guaranteed to win the Texas Lotto.  See also: rand.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 82
Pick 6 unique numbers between 1 and 50 that are guaranteed to win the Texas Lotto.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
mex
# name: <cell-element>
# type: string
# elements: 1
# length: 196
 -- Function File:  mex [options] file ...
     Compile source code written in C, C++, or Fortran, to a MEX file.  This is equivalent to `mkoctfile --mex [options] file'.  See also: mkoctfile.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 65
Compile source code written in C, C++, or Fortran, to a MEX file.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
gunzip
# name: <cell-element>
# type: string
# elements: 1
# length: 321
 -- Function File:  gunzip (GZFILE, DIR)
     Unpack the gzip archive GZFILE to the directory DIR.  If DIR is not specified, it defaults to the current directory.  If the GZFILE is a directory, all files in the directory will be recursively gunzipped.  See also: unpack, bunzip2, tar, untar, gzip, gunzip, zip, unzip.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Unpack the gzip archive GZFILE to the directory DIR.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
namelengthmax
# name: <cell-element>
# type: string
# elements: 1
# length: 423
 -- Function File:  namelengthmax ()
     Returns the MATLAB compatible maximum variable name length.  Octave is capable of storing strings up to `2 ^ 31 - 1' in length.  However for MATLAB compatibility all variable, function and structure field names should be shorter than the length supplied by `namelengthmax'.  In particular variables stored to a MATLAB file format will have their names truncated to this length.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Returns the MATLAB compatible maximum variable name length.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
symvar
# name: <cell-element>
# type: string
# elements: 1
# length: 325
 -- Function File:  symvar (S)
     Identifies the argument names in the function defined by a string.  Common constant names such as `pi', `NaN', `Inf', `eps', `i' or `j' are ignored.  The arguments that are found are returned in a cell array of strings.  If no variables are found then the returned cell array is empty.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Identifies the argument names in the function defined by a string.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
edit
# name: <cell-element>
# type: string
# elements: 1
# length: 4371
 -- Command: edit NAME
 -- Command: edit FIELD VALUE
 -- Command: VALUE = edit get FIELD
     Edit the named function, or change editor settings.

     If `edit' is called with the name of a file or function as its argument it will be opened in a text editor.

        * If the function NAME is available in a file on your path and that file is modifiable, then it will be edited in place.  If it is a system function, then it will first be copied to the directory `HOME' (see further down) and then edited.  If no file is found, then the m-file variant, ending with ".m", will be considered.  If still no file is found, then variants with a leading "@" and then with both a leading "@" and trailing ".m" will be considered.

        * If NAME is the name of a function defined in the interpreter but not in an m-file, then an m-file will be created in `HOME' to contain that function along with its current definition.

        * If `name.cc' is specified, then it will search for `name.cc' in the path and try to modify it, otherwise it will create a new `.cc' file in `HOME'.  If NAME happens to be an m-file or interpreter defined function, then the text of that function will be inserted into the .cc file as a comment.

        * If NAME.EXT is on your path then it will be edited, otherwise the editor will be started with `HOME/name.ext' as the filename.  If `name.ext' is not modifiable, it will be copied to `HOME' before editing.

          *WARNING!* You may need to clear name before the new definition is available.  If you are editing a .cc file, you will need to mkoctfile `name.cc' before the definition will be available.

     If `edit' is called with FIELD and VALUE variables, the value of the control field FIELD will be VALUE.  If an output argument is requested and the first argument is `get' then `edit' will return the value of the control field FIELD.  If the control field does not exist, edit will return a structure containing all fields and values.  Thus, `edit get all' returns a complete control structure.  The following control fields are used:

    `editor'
          This is the editor to use to modify the functions.  By default it uses Octave's `EDITOR' built-in function, which comes from `getenv("EDITOR")' and defaults to `emacs'.  Use `%s' In place of the function name.  For example,
         `[EDITOR, " %s"]'
               Use the editor which Octave uses for `bug_report'.

         `"xedit %s &"'
               pop up simple X11 editor in a separate window

         `"gnudoit -q \"(find-file \\\"%s\\\")\""'
               Send it to current Emacs; must have `(gnuserv-start)' in `.emacs'.

          See also field 'mode', which controls how the editor is run by Octave.

          On Cygwin, you will need to convert the Cygwin path to a Windows path if you are using a native Windows editor.  For example
               '"C:/Program Files/Good Editor/Editor.exe" "$(cygpath -wa %s)"'

    `home'
          This is the location of user local m-files.  Be be sure it is in your path.  The default is `~/octave'.

    `author'
          This is the name to put after the "## Author:" field of new functions.  By default it guesses from the `gecos' field of password database.

    `email'
          This is the e-mail address to list after the name in the author field.  By default it guesses `<$LOGNAME@$HOSTNAME>', and if `$HOSTNAME' is not defined it uses `uname -n'.  You probably want to override this.  Be sure to use `<user@host>' as your format.

    `license'

         `gpl'
               GNU General Public License (default).

         `bsd'
               BSD-style license without advertising clause.

         `pd'
               Public domain.

         `"text"'
               Your own default copyright and license.

          Unless you specify `pd', edit will prepend the copyright statement with "Copyright (C) yyyy Function Author".

    `mode'
          This value determines whether the editor should be started in async mode (editor is started in the background and Octave continues) or sync mode (Octave waits until the editor exits).  Set it to "async" to start the editor in async mode.  The default is "sync" (see also "system").

    `editinplace'
          Determines whether files should be edited in place, without regard to whether they are modifiable or not.  The default is `false'.

# name: <cell-element>
# type: string
# elements: 1
# length: 51
Edit the named function, or change editor settings.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
pkg
# name: <cell-element>
# type: string
# elements: 1
# length: 5938
 -- Command: pkg COMMAND PKG_NAME
 -- Command: pkg COMMAND OPTION PKG_NAME
     This command interacts with the package manager.  Different actions will be taken depending on the value of COMMAND.

    `install'
          Install named packages.  For example,
               pkg install image-1.0.0.tar.gz
          installs the package found in the file `image-1.0.0.tar.gz'.

          The OPTION variable can contain options that affect the manner in which a package is installed.  These options can be one or more of

         `-nodeps'
               The package manager will disable the dependency checking.  That way it is possible to install a package even if it depends on another package that's not installed on the system.  *Use this option with care.*

         `-noauto'
               The package manager will not automatically load the installed package when starting Octave, even if the package requests that it is.

         `-auto'
               The package manager will automatically load the installed package when starting Octave, even if the package requests that it isn't.

         `-local'
               A local installation is forced, even if the user has system privileges.

         `-global'
               A global installation is forced, even if the user doesn't normally have system privileges

         `-verbose'
               The package manager will print the output of all of the commands that are performed.

    `uninstall'
          Uninstall named packages.  For example,
               pkg uninstall image
          removes the `image' package from the system.  If another installed package depends on the `image' package an error will be issued.  The package can be uninstalled anyway by using the `-nodeps' option.

    `load'
          Add named packages to the path.  After loading a package it is possible to use the functions provided by the package.  For example,
               pkg load image
          adds the `image' package to the path.  It is possible to load all installed packages at once with the command
               pkg load all

    `unload'
          Removes named packages from the path.  After unloading a package it is no longer possible to use the functions provided by the package.  This command behaves like the `load' command.

    `list'
          Show a list of the currently installed packages.  By requesting one or two output argument it is possible to get a list of the currently installed packages.  For example,
               installed_packages = pkg list;
          returns a cell array containing a structure for each installed package.  The command
               [USER_PACKAGES, SYSTEM_PACKAGES] = pkg list
          splits the list of installed packages into those who are installed by the current user, and those installed by the system administrator.

    `describe'
          Show a short description of the named installed packages, with the option '-verbose' also list functions provided by the package, e.g.:
                pkg describe -verbose all
          will describe all installed packages and the functions they provide.  If one output is requested a cell of structure containing the description and list of functions of each package is returned as output rather than printed on screen:
                desc = pkg ("describe", "secs1d", "image")
          If any of the requested packages is not installed, pkg returns an error, unless a second output is requested:
                [ desc, flag] = pkg ("describe", "secs1d", "image")
          FLAG will take one of the values "Not installed", "Loaded" or "Not loaded" for each of the named packages.

    `prefix'
          Set the installation prefix directory.  For example,
               pkg prefix ~/my_octave_packages
          sets the installation prefix to `~/my_octave_packages'.  Packages will be installed in this directory.

          It is possible to get the current installation prefix by requesting an output argument.  For example,
               p = pkg prefix

          The location in which to install the architecture dependent files can be independent specified with an addition argument.  For example

               pkg prefix ~/my_octave_packages ~/my_arch_dep_pkgs

    `local_list'
          Set the file in which to look for information on the locally installed packages.  Locally installed packages are those that are typically available only to the current user.  For example
               pkg local_list ~/.octave_packages
          It is possible to get the current value of local_list with the following
               pkg local_list

    `global_list'
          Set the file in which to look for, for information on the globally installed packages.  Globally installed packages are those that are typically available to all users.  For example
               pkg global_list /usr/share/octave/octave_packages
          It is possible to get the current value of global_list with the following
               pkg global_list

    `rebuild'
          Rebuilds the package database from the installed directories.  This can be used in cases where for some reason the package database is corrupted.  It can also take the `-auto' and `-noauto' options to allow the autoloading state of a package to be changed.  For example

               pkg rebuild -noauto image

          will remove the autoloading status of the image package.

    `build'
          Builds a binary form of a package or packages.  The binary file produced will itself be an Octave package that can be installed normally with `pkg'.  The form of the command to build a binary package is

               pkg build builddir image-1.0.0.tar.gz ...

          where `builddir' is the name of a directory where the temporary installation will be produced and the binary packages will be found.  The options `-verbose' and `-nodeps' are respected, while the other options are ignored.

# name: <cell-element>
# type: string
# elements: 1
# length: 48
This command interacts with the package manager.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
csvread
# name: <cell-element>
# type: string
# elements: 1
# length: 203
 -- Function File: X = csvread (FILENAME)
     Read the matrix X from a file.

     This function is equivalent to
          dlmread (FILENAME, "," , ...)

     See also: dlmread, dlmwrite, csvwrite.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Read the matrix X from a file.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
beep
# name: <cell-element>
# type: string
# elements: 1
# length: 127
 -- Function File:  beep ()
     Produce a beep from the speaker (or visual bell).  See also: puts, fputs, printf, fprintf.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Produce a beep from the speaker (or visual bell).

# name: <cell-element>
# type: string
# elements: 1
# length: 8
dlmwrite
# name: <cell-element>
# type: string
# elements: 1
# length: 1504
 -- Function File:  dlmwrite (FILE, A)
 -- Function File:  dlmwrite (FILE, A, DELIM, R, C)
 -- Function File:  dlmwrite (FILE, A, KEY, VAL ...)
 -- Function File:  dlmwrite (FILE, A, "-append", ...)
     Write the matrix A to the named file using delimiters.

     The parameter DELIM specifies the delimiter to use to separate values on a row.

     The value of R specifies the number of delimiter-only lines to add to the start of the file.

     The value of C specifies the number of delimiters to prepend to each line of data.

     If the argument `"-append"' is given, append to the end of the FILE.

     In addition, the following keyword value pairs may appear at the end of the argument list:
    `"append"'
          Either `"on"' or `"off"'.  See `"-append"' above.

    `"delimiter"'
          See DELIM above.

    `"newline"'
          The character(s) to use to separate each row.  Three special cases exist for this option.  `"unix"' is changed into '\n', `"pc"' is changed into '\r\n', and `"mac"' is changed into '\r'.  Other values for this option are kept as is.

    `"roffset"'
          See R above.

    `"coffset"'
          See C above.

    `"precision"'
          The precision to use when writing the file.  It can either be a format string (as used by fprintf) or a number of significant digits.

          dlmwrite ("file.csv", reshape (1:16, 4, 4));

          dlmwrite ("file.tex", a, "delimiter", "&", "newline", "\\n")

     See also: dlmread, csvread, csvwrite.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Write the matrix A to the named file using delimiters.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
csvwrite
# name: <cell-element>
# type: string
# elements: 1
# length: 208
 -- Function File: X = csvwrite (FILENAME, X)
     Write the matrix X to a file.

     This function is equivalent to
          dlmwrite (FILENAME, X, ",", ...)

     See also: dlmread, dlmwrite, csvread.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 29
Write the matrix X to a file.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
magic
# name: <cell-element>
# type: string
# elements: 1
# length: 145
 -- Function File:  magic (N)
     Create an N-by-N magic square.  Note that `magic (2)' is undefined since there is no 2-by-2 magic square.

   
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Create an N-by-N magic square.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
hankel
# name: <cell-element>
# type: string
# elements: 1
# length: 571
 -- Function File:  hankel (C, R)
     Return the Hankel matrix constructed given the first column C, and (optionally) the last row R.  If the last element of C is not the same as the first element of R, the last element of C is used.  If the second argument is omitted, it is assumed to be a vector of zeros with the same size as C.

     A Hankel matrix formed from an m-vector C, and an n-vector R, has the elements

          H(i,j) = c(i+j-1),  i+j-1 <= m;
          H(i,j) = r(i+j-m),  otherwise
     See also: vander, sylvester_matrix, hilb, invhilb, toeplitz.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 95
Return the Hankel matrix constructed given the first column C, and (optionally) the last row R.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
hilb
# name: <cell-element>
# type: string
# elements: 1
# length: 233
 -- Function File:  hilb (N)
     Return the Hilbert matrix of order N.  The i, j element of a Hilbert matrix is defined as

          H (i, j) = 1 / (i + j - 1)
     See also: hankel, vander, sylvester_matrix, invhilb, toeplitz.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Return the Hilbert matrix of order N.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
pascal
# name: <cell-element>
# type: string
# elements: 1
# length: 646
 -- Function File:  pascal (N, T)
     Return the Pascal matrix of order N if `T = 0'.  T defaults to 0. Return lower triangular Cholesky factor of the Pascal matrix if `T = 1'.  This matrix is its own inverse, that is `pascal (N, 1) ^ 2 == eye (N)'.  If `T = -1', return its absolute value.  This is the standard pascal triangle as a lower-triangular matrix.  If `T = 2', return a transposed and permuted version of `pascal (N, 1)', which is the cube-root of the identity matrix.  That is `pascal (N, 2) ^ 3 == eye (N)'.

     See also: hankel, vander, sylvester_matrix, hilb, invhilb, toeplitz           hadamard, wilkinson, compan, rosser.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Return the Pascal matrix of order N if `T = 0'.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
vander
# name: <cell-element>
# type: string
# elements: 1
# length: 569
 -- Function File:  vander (C, N)
     Return the Vandermonde matrix whose next to last column is C.  If N is specified, it determines the number of columns; otherwise, N is taken to be equal to the length of C.

     A Vandermonde matrix has the form:

          c(1)^(n-1) ... c(1)^2  c(1)  1
          c(2)^(n-1) ... c(2)^2  c(2)  1
              .     .      .      .    .
              .       .    .      .    .
              .         .  .      .    .
          c(n)^(n-1) ... c(n)^2  c(n)  1
     See also: hankel, sylvester_matrix, hilb, invhilb, toeplitz.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Return the Vandermonde matrix whose next to last column is C.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
wilkinson
# name: <cell-element>
# type: string
# elements: 1
# length: 200
 -- Function File:  wilkinson (N)
     Return the Wilkinson matrix of order N.

     See also: hankel, vander, sylvester_matrix, hilb, invhilb, toeplitz           hadamard, rosser, compan, pascal.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Return the Wilkinson matrix of order N.

# name: <cell-element>
# type: string
# elements: 1
# length: 16
sylvester_matrix
# name: <cell-element>
# type: string
# elements: 1
# length: 147
 -- Function File:  sylvester_matrix (K)
     Return the Sylvester matrix of order n = 2^k.  See also: hankel, vander, hilb, invhilb, toeplitz.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Return the Sylvester matrix of order n = 2^k.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
invhilb
# name: <cell-element>
# type: string
# elements: 1
# length: 1020
 -- Function File:  invhilb (N)
     Return the inverse of a Hilbert matrix of order N.  This can be computed exactly using

                      (i+j)         /n+i-1\  /n+j-1\   /i+j-2\ 2
           A(i,j) = -1      (i+j-1)(       )(       ) (       )
                                    \ n-j /  \ n-i /   \ i-2 /

                  = p(i) p(j) / (i+j-1)
     where
                       k  /k+n-1\   /n\
              p(k) = -1  (       ) (   )
                          \ k-1 /   \k/

     The validity of this formula can easily be checked by expanding the binomial coefficients in both formulas as factorials.  It can be derived more directly via the theory of Cauchy matrices: see J. W. Demmel, Applied Numerical Linear Algebra, page 92.

     Compare this with the numerical calculation of `inverse (hilb (n))', which suffers from the ill-conditioning of the Hilbert matrix, and the finite precision of your computer's floating point arithmetic.  See also: hankel, vander, sylvester_matrix, hilb, toeplitz.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Return the inverse of a Hilbert matrix of order N.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
hadamard
# name: <cell-element>
# type: string
# elements: 1
# length: 602
 -- Function File:  hadamard (N)
     Construct a Hadamard matrix HN of size N-by-N.  The size N must be of the form `2 ^ K * P' in which P is one of 1, 12, 20 or 28.  The returned matrix is normalized, meaning `Hn(:,1) == 1' and `H(1,:) == 1'.

     Some of the properties of Hadamard matrices are:

        * `kron (HM, HN)' is a Hadamard matrix of size M-by-N.

        * `Hn * Hn' == N * eye (N)'.

        * The rows of HN are orthogonal.

        * `det (A) <= abs(det (HN))' for all A with `abs (A (I, J)) <= 1'.

        * Multiply any row or column by -1 and still have a Hadamard matrix.

   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Construct a Hadamard matrix HN of size N-by-N.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
rosser
# name: <cell-element>
# type: string
# elements: 1
# length: 253
 -- Function File:  rosser ()
     Returns the Rosser matrix.  This is a difficult test case used to test eigenvalue algorithms.

     See also: hankel, vander, sylvester_matrix, hilb, invhilb, toeplitz           hadamard, wilkinson, compan, pascal.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Returns the Rosser matrix.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
toeplitz
# name: <cell-element>
# type: string
# elements: 1
# length: 719
 -- Function File:  toeplitz (C, R)
     Return the Toeplitz matrix constructed given the first column C, and (optionally) the first row R.  If the first element of C is not the same as the first element of R, the first element of C is used.  If the second argument is omitted, the first row is taken to be the same as the first column.

     A square Toeplitz matrix has the form:

          c(0)  r(1)   r(2)  ...  r(n)
          c(1)  c(0)   r(1)  ... r(n-1)
          c(2)  c(1)   c(0)  ... r(n-2)
           .     ,      ,   .      .
           .     ,      ,     .    .
           .     ,      ,       .  .
          c(n) c(n-1) c(n-2) ...  c(0)
     See also: hankel, vander, sylvester_matrix, hilb, invhilb.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 98
Return the Toeplitz matrix constructed given the first column C, and (optionally) the first row R.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
logm
# name: <cell-element>
# type: string
# elements: 1
# length: 211
 -- Function File:  logm (A)
     Compute the matrix logarithm of the square matrix A.  Note that this is currently implemented in terms of an eigenvalue expansion and needs to be improved to be more robust.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Compute the matrix logarithm of the square matrix A.

# name: <cell-element>
# type: string
# elements: 1
# length: 18
commutation_matrix
# name: <cell-element>
# type: string
# elements: 1
# length: 375
 -- Function File:  commutation_matrix (M, N)
     Return the commutation matrix  K(m,n)  which is the unique M*N by M*N  matrix such that K(m,n) * vec(A) = vec(A')  for all m by n  matrices A.

     If only one argument M is given, K(m,m)  is returned.

     See Magnus and Neudecker (1988), Matrix differential calculus with applications in statistics and econometrics.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 137
Return the commutation matrix K(m,n) which is the unique M*N by M*N matrix such that K(m,n) * vec(A) = vec(A') for all m by n matrices A.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
expm
# name: <cell-element>
# type: string
# elements: 1
# length: 842
 -- Function File:  expm (A)
     Return the exponential of a matrix, defined as the infinite Taylor series

          expm(a) = I + a + a^2/2! + a^3/3! + ...

     The Taylor series is _not_ the way to compute the matrix exponential; see Moler and Van Loan, `Nineteen Dubious Ways to Compute the Exponential of a Matrix', SIAM Review, 1978.  This routine uses Ward's diagonal Pade' approximation method with three step preconditioning (SIAM Journal on Numerical Analysis, 1977).  Diagonal Pade'  approximations are rational polynomials of matrices

               -1
          D (a)   N (a)

     whose Taylor series matches the first `2q+1' terms of the Taylor series above; direct evaluation of the Taylor series (with the same preconditioning steps) may be desirable in lieu of the Pade' approximation when `Dq(a)' is ill-conditioned.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Return the exponential of a matrix, defined as the infinite Taylor series 

# name: <cell-element>
# type: string
# elements: 1
# length: 3
dot
# name: <cell-element>
# type: string
# elements: 1
# length: 266
 -- Function File:  dot (X, Y, DIM)
     Computes the dot product of two vectors.  If X and Y are matrices, calculate the dot-product along the first non-singleton dimension.  If the optional argument DIM is given, calculate the dot-product along this dimension.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Computes the dot product of two vectors.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
cross
# name: <cell-element>
# type: string
# elements: 1
# length: 436
 -- Function File:  cross (X, Y)
 -- Function File:  cross (X, Y, DIM)
     Compute the vector cross product of two 3-dimensional vectors X and Y.

          cross ([1,1,0], [0,1,1])
               => [ 1; -1; 1 ]

     If X and Y are matrices, the cross product is applied along the first dimension with 3 elements.  The optional argument DIM forces the cross product to be calculated along the specified dimension.  See also: dot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 70
Compute the vector cross product of two 3-dimensional vectors X and Y.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
cond
# name: <cell-element>
# type: string
# elements: 1
# length: 367
 -- Function File:  cond (A,P)
     Compute the P-norm condition number of a matrix.  `cond (A)' is defined as `norm (A, P) * norm (inv (A), P)'.  By default `P=2' is used which implies a (relatively slow) singular value decomposition.  Other possible selections are `P= 1, Inf, inf, 'Inf', 'fro'' which are generally faster.  See also: condest, rcond, norm, svd.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Compute the P-norm condition number of a matrix.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
planerot
# name: <cell-element>
# type: string
# elements: 1
# length: 180
 -- Function File: [G, Y] = planerot (X)
     Given a two-element column vector, returns the 2 by 2 orthogonal matrix G such that `Y = G * X' and `Y(2) = 0'.  See also: givens.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Given a two-element column vector, returns the 2 by 2 orthogonal matrix G such that `Y = G * X' and `Y(2) = 0'.

# name: <cell-element>
# type: string
# elements: 1
# length: 18
duplication_matrix
# name: <cell-element>
# type: string
# elements: 1
# length: 319
 -- Function File:  duplication_matrix (N)
     Return the duplication matrix Dn  which is the unique n^2 by n*(n+1)/2  matrix such that Dn vech (A) = vec (A)  for all symmetric n by n  matrices A.

     See Magnus and Neudecker (1988), Matrix differential calculus with applications in statistics and econometrics.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 145
Return the duplication matrix Dn which is the unique n^2 by n*(n+1)/2 matrix such that Dn vech (A) = vec (A) for all symmetric n by n matrices A.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
onenormest
# name: <cell-element>
# type: string
# elements: 1
# length: 1270
 -- Function File: [EST, V, W, ITER] = onenormest (A, T)
 -- Function File: [EST, V, W, ITER] = onenormest (APPLY, APPLY_T, N, T)
     Apply Higham and Tisseur's randomized block 1-norm estimator to matrix A using T test vectors.  If T exceeds 5, then only 5 test vectors are used.

     If the matrix is not explicit, e.g., when estimating the norm of `inv (A)' given an LU factorization, `onenormest' applies A and its conjugate transpose through a pair of functions APPLY and APPLY_T, respectively, to a dense matrix of size N by T.  The implicit version requires an explicit dimension N.

     Returns the norm estimate EST, two vectors V and W related by norm `(W, 1) = EST * norm (V, 1)', and the number of iterations ITER.  The number of iterations is limited to 10 and is at least 2.

     References:
        * Nicholas J. Higham and Françoise Tisseur, "A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra." SIMAX vol 21, no 4, pp 1185-1201.  `http://dx.doi.org/10.1137/S0895479899356080'

        * Nicholas J. Higham and Françoise Tisseur, "A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra." `http://citeseer.ist.psu.edu/223007.html'

     See also: condest, norm, cond.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 94
Apply Higham and Tisseur's randomized block 1-norm estimator to matrix A using T test vectors.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
housh
# name: <cell-element>
# type: string
# elements: 1
# length: 593
 -- Function File: [HOUSV, BETA, ZER] = housh (X, J, Z)
     Compute Householder reflection vector HOUSV to reflect X to be the j-th column of identity, i.e.,

          (I - beta*housv*housv')x =  norm(x)*e(j) if x(1) < 0,
          (I - beta*housv*housv')x = -norm(x)*e(j) if x(1) >= 0

     Inputs

    X
          vector

    J
          index into vector

    Z
          threshold for zero  (usually should be the number 0)

     Outputs (see Golub and Van Loan):

    BETA
          If beta = 0, then no reflection need be applied (zer set to 0)

    HOUSV
          householder vector

# name: <cell-element>
# type: string
# elements: 1
# length: 94
Compute Householder reflection vector HOUSV to reflect X to be the j-th column of identity, i.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
rref
# name: <cell-element>
# type: string
# elements: 1
# length: 299
 -- Function File: [R, K] = rref (A, TOL)
     Returns the reduced row echelon form of A.  TOL defaults to `eps * max (size (A)) * norm (A, inf)'.

     Called with two return arguments, K returns the vector of "bound variables", which are those columns on which elimination has been performed.

   
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Returns the reduced row echelon form of A.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
krylov
# name: <cell-element>
# type: string
# elements: 1
# length: 1133
 -- Function File: [U, H, NU] = krylov (A, V, K, EPS1, PFLG)
     Construct an orthogonal basis U of block Krylov subspace

          [v a*v a^2*v ... a^(k+1)*v]

     Using Householder reflections to guard against loss of orthogonality.

     If V is a vector, then H contains the Hessenberg matrix such that `a*u == u*h+rk*ek'', in which `rk = a*u(:,k)-u*h(:,k)', and `ek'' is the vector `[0, 0, ..., 1]' of length `k'.  Otherwise, H is meaningless.

     If V is a vector and K is greater than `length(A)-1', then H contains the Hessenberg matrix such that `a*u == u*h'.

     The value of NU is the dimension of the span of the krylov subspace (based on EPS1).

     If B is a vector and K is greater than M-1, then H contains the Hessenberg decomposition of A.

     The optional parameter EPS1 is the threshold for zero.  The default value is 1e-12.

     If the optional parameter PFLG is nonzero, row pivoting is used to improve numerical behavior.  The default value is 0.

     Reference: Hodel and Misra, "Partial Pivoting in the Computation of Krylov Subspaces", to be submitted to Linear Algebra and its Applications
   
# name: <cell-element>
# type: string
# elements: 1
# length: 57
Construct an orthogonal basis U of block Krylov subspace 

# name: <cell-element>
# type: string
# elements: 1
# length: 6
qzhess
# name: <cell-element>
# type: string
# elements: 1
# length: 720
 -- Function File: [AA, BB, Q, Z] = qzhess (A, B)
     Compute the Hessenberg-triangular decomposition of the matrix pencil `(A, B)', returning `AA = Q * A * Z', `BB = Q * B * Z', with Q and Z orthogonal.  For example,

          [aa, bb, q, z] = qzhess ([1, 2; 3, 4], [5, 6; 7, 8])
               => aa = [ -3.02244, -4.41741;  0.92998,  0.69749 ]
               => bb = [ -8.60233, -9.99730;  0.00000, -0.23250 ]
               =>  q = [ -0.58124, -0.81373; -0.81373,  0.58124 ]
               =>  z = [ 1, 0; 0, 1 ]

     The Hessenberg-triangular decomposition is the first step in Moler and Stewart's QZ decomposition algorithm.

     Algorithm taken from Golub and Van Loan, `Matrix Computations, 2nd edition'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 149
Compute the Hessenberg-triangular decomposition of the matrix pencil `(A, B)', returning `AA = Q * A * Z', `BB = Q * B * Z', with Q and Z orthogonal.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
subspace
# name: <cell-element>
# type: string
# elements: 1
# length: 151
 -- Function File: ANGLE = subspace (A, B)
     Determine the largest principal angle between two subspaces spanned by columns of matrices A and B.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 99
Determine the largest principal angle between two subspaces spanned by columns of matrices A and B.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
vech
# name: <cell-element>
# type: string
# elements: 1
# length: 181
 -- Function File:  vech (X)
     Return the vector obtained by eliminating all supradiagonal elements of the square matrix X and stacking the result one column above the other.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 143
Return the vector obtained by eliminating all supradiagonal elements of the square matrix X and stacking the result one column above the other.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
krylovb
# name: <cell-element>
# type: string
# elements: 1
# length: 84
 -- Function File: [U, UCOLS] = krylovb (A, V, K, EPS1, PFLG)
     See `krylov'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 13
See `krylov'.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
condest
# name: <cell-element>
# type: string
# elements: 1
# length: 1554
 -- Function File: [EST, V] = condest (A, T)
 -- Function File: [EST, V] = condest (A, SOLVE, SOLVE_T, T)
 -- Function File: [EST, V] = condest (APPLY, APPLY_T, SOLVE, SOLVE_T, N, T)
     Estimate the 1-norm condition number of a matrix A using T test vectors using a randomized 1-norm estimator.  If T exceeds 5, then only 5 test vectors are used.

     If the matrix is not explicit, e.g., when estimating the condition number of A given an LU factorization, `condest' uses the following functions:

    APPLY
          `A*x' for a matrix `x' of size N by T.

    APPLY_T
          `A'*x' for a matrix `x' of size N by T.

    SOLVE
          `A \ b' for a matrix `b' of size N by T.

    SOLVE_T
          `A' \ b' for a matrix `b' of size N by T.

     The implicit version requires an explicit dimension N.

     `condest' uses a randomized algorithm to approximate the 1-norms.

     `condest' returns the 1-norm condition estimate EST and a vector V satisfying `norm (A*v, 1) == norm (A, 1) * norm (V, 1) / EST'.  When EST is large, V is an approximate null vector.

     References:
        * Nicholas J. Higham and Françoise Tisseur, "A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra." SIMAX vol 21, no 4, pp 1185-1201.  `http://dx.doi.org/10.1137/S0895479899356080'

        * Nicholas J. Higham and Françoise Tisseur, "A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra." `http://citeseer.ist.psu.edu/223007.html'

     See also: cond, norm, onenormest.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 108
Estimate the 1-norm condition number of a matrix A using T test vectors using a randomized 1-norm estimator.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
rank
# name: <cell-element>
# type: string
# elements: 1
# length: 410
 -- Function File:  rank (A, TOL)
     Compute the rank of A, using the singular value decomposition.  The rank is taken to be the number of singular values of A that are greater than the specified tolerance TOL.  If the second argument is omitted, it is taken to be

          tol = max (size (A)) * sigma(1) * eps;

     where `eps' is machine precision and `sigma(1)' is the largest singular value of A.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Compute the rank of A, using the singular value decomposition.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
trace
# name: <cell-element>
# type: string
# elements: 1
# length: 80
 -- Function File:  trace (A)
     Compute the trace of A, `sum (diag (A))'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 41
Compute the trace of A, `sum (diag (A))'.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
null
# name: <cell-element>
# type: string
# elements: 1
# length: 297
 -- Function File:  null (A, TOL)
     Return an orthonormal basis of the null space of A.

     The dimension of the null space is taken as the number of singular values of A not greater than TOL.  If the argument TOL is missing, it is computed as

          max (size (A)) * max (svd (A)) * eps

# name: <cell-element>
# type: string
# elements: 1
# length: 51
Return an orthonormal basis of the null space of A.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
orth
# name: <cell-element>
# type: string
# elements: 1
# length: 295
 -- Function File:  orth (A, TOL)
     Return an orthonormal basis of the range space of A.

     The dimension of the range space is taken as the number of singular values of A greater than TOL.  If the argument TOL is missing, it is computed as

          max (size (A)) * max (svd (A)) * eps

# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return an orthonormal basis of the range space of A.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
vec
# name: <cell-element>
# type: string
# elements: 1
# length: 124
 -- Function File:  vec (X)
     Return the vector obtained by stacking the columns of the matrix X one above the other.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 87
Return the vector obtained by stacking the columns of the matrix X one above the other.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
findstr
# name: <cell-element>
# type: string
# elements: 1
# length: 523
 -- Function File:  findstr (S, T, OVERLAP)
     Return the vector of all positions in the longer of the two strings S and T where an occurrence of the shorter of the two starts.  If the optional argument OVERLAP is nonzero, the returned vector can include overlapping positions (this is the default).  For example,

          findstr ("ababab", "a")
               => [1, 3, 5]
          findstr ("abababa", "aba", 0)
               => [1, 5]
     See also: strfind, strmatch, strcmp, strncmp, strcmpi, strncmpi, find.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 129
Return the vector of all positions in the longer of the two strings S and T where an occurrence of the shorter of the two starts.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
strtrunc
# name: <cell-element>
# type: string
# elements: 1
# length: 275
 -- Function File:  strtrunc (S, N)
     Truncate the character string S to length N.  If S is a char matrix, then the number of columns is adjusted.

     If S is a cell array of strings, then the operation is performed on its members and the new cell array is returned.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Truncate the character string S to length N.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
isstrprop
# name: <cell-element>
# type: string
# elements: 1
# length: 1385
 -- Function File:  isstrprop (STR, PRED)
     Test character string properties.  For example,

          isstrprop ("abc123", "alpha")
          => [1, 1, 1, 0, 0, 0]

     If STR is a cell array, `isstrpop' is applied recursively to each element of the cell array.

     Numeric arrays are converted to character strings.

     The second argument PRED may be one of

    `"alpha"'
          True for characters that are alphabetic

    `"alnum"'
    `"alphanum"'
          True for characters that are alphabetic or digits.

    `"ascii"'
          True for characters that are in the range of ASCII encoding.

    `"cntrl"'
          True for control characters.

    `"digit"'
          True for decimal digits.

    `"graph"'
    `"graphic"'
          True for printing characters except space.

    `"lower"'
          True for lower-case letters.

    `"print"'
          True for printing characters including space.

    `"punct"'
          True for printing characters except space or letter or digit.

    `"space"'
    `"wspace"'
          True for whitespace characters (space, formfeed, newline, carriage return, tab, vertical tab).

    `"upper"'
          True for upper-case letters.

    `"xdigit"'
          True for hexadecimal digits.

     See also: isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper, isxdigit.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Test character string properties.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
bin2dec
# name: <cell-element>
# type: string
# elements: 1
# length: 372
 -- Function File:  bin2dec (S)
     Return the decimal number corresponding to the binary number stored in the string S.  For example,

          bin2dec ("1110")
               => 14

     If S is a string matrix, returns a column vector of converted numbers, one per row of S.  Invalid rows evaluate to NaN.  See also: dec2hex, base2dec, dec2base, hex2dec, dec2bin.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 84
Return the decimal number corresponding to the binary number stored in the string S.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
strcmpi
# name: <cell-element>
# type: string
# elements: 1
# length: 705
 -- Function File:  strcmpi (S1, S2)
     Ignoring case, return 1 if the character strings (or character arrays) S1 and S2 are the same, and 0 otherwise.

     If either S1 or S2 is a cell array of strings, then an array of the same size is returned, containing the values described above for every member of the cell array.  The other argument may also be a cell array of strings (of the same size or with only one element), char matrix or character string.

     *Caution:* For compatibility with MATLAB, Octave's strcmpi function returns 1 if the character strings are equal, and 0 otherwise.  This is just the opposite of the corresponding C library function.  See also: strcmp, strncmp, strncmpi.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Ignoring case, return 1 if the character strings (or character arrays) S1 and S2 are the same, and 0 otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
isletter
# name: <cell-element>
# type: string
# elements: 1
# length: 109
 -- Function File:  isletter (S)
     Returns true if S is a letter, false otherwise.  See also: isalpha.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Returns true if S is a letter, false otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
strsplit
# name: <cell-element>
# type: string
# elements: 1
# length: 320
 -- Function File: [S] = strsplit (P, SEP, STRIP_EMPTY)
     Split a single string using one or more delimiters and return a cell array of strings.  Consecutive delimiters and delimiters at boundaries result in empty strings, unless STRIP_EMPTY is true.  The default value of STRIP_EMPTY is false.  See also: strtok.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Split a single string using one or more delimiters and return a cell array of strings.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
cstrcat
# name: <cell-element>
# type: string
# elements: 1
# length: 417
 -- Function File:  cstrcat (S1, S2, ...)
     Return a string containing all the arguments concatenated horizontally.  Trailing white space is preserved.  For example,

          cstrcat ("ab   ", "cd")
               => "ab   cd"

          s = [ "ab"; "cde" ];
          cstrcat (s, s, s)
               => ans =
                  "ab ab ab "
                  "cdecdecde"
     See also: strcat, char, strvcat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Return a string containing all the arguments concatenated horizontally.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
mat2str
# name: <cell-element>
# type: string
# elements: 1
# length: 1032
 -- Function File: S = mat2str (X, N)
 -- Function File: S = mat2str (..., 'class')
     Format real/complex numerical matrices as strings.  This function returns values that are suitable for the use of the `eval' function.

     The precision of the values is given by N.  If N is a scalar then both real and imaginary parts of the matrix are printed to the same precision.  Otherwise `N (1)' defines the precision of the real part and `N (2)' defines the precision of the imaginary part.  The default for N is 17.

     If the argument 'class' is given, then the class of X is included in the string in such a way that the eval will result in the construction of a matrix of the same class.

          mat2str ([ -1/3 + i/7; 1/3 - i/7 ], [4 2])
               => "[-0.3333+0.14i;0.3333-0.14i]"

          mat2str ([ -1/3 +i/7; 1/3 -i/7 ], [4 2])
               => "[-0.3333+0i,0+0.14i;0.3333+0i,-0-0.14i]"

          mat2str (int16([1 -1]), 'class')
               => "int16([1,-1])"

     See also: sprintf, num2str, int2str.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Format real/complex numerical matrices as strings.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
base2dec
# name: <cell-element>
# type: string
# elements: 1
# length: 646
 -- Function File:  base2dec (S, B)
     Convert S from a string of digits of base B into an integer.

          base2dec ("11120", 3)
               => 123

     If S is a matrix, returns a column vector with one value per row of S.  If a row contains invalid symbols then the corresponding value will be NaN.  Rows are right-justified before converting so that trailing spaces are ignored.

     If B is a string, the characters of B are used as the symbols for the digits of S.  Space (' ') may not be used as a symbol.

          base2dec ("yyyzx", "xyz")
               => 123
     See also: dec2base, dec2bin, bin2dec, hex2dec, dec2hex.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Convert S from a string of digits of base B into an integer.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
strmatch
# name: <cell-element>
# type: string
# elements: 1
# length: 700
 -- Function File:  strmatch (S, A, "exact")
     Return indices of entries of A that match the string S.  The second argument A may be a string matrix or a cell array of strings.  If the third argument `"exact"' is not given, then S only needs to match A up to the length of S.  Nul characters match blanks.  Results are returned as a column vector.  For example:

          strmatch ("apple", "apple juice")
               => 1

          strmatch ("apple", ["apple pie"; "apple juice"; "an apple"])
               => [1; 2]

          strmatch ("apple", {"apple pie"; "apple juice"; "tomato"})
               => [1; 2]
     See also: strfind, findstr, strcmp, strncmp, strcmpi, strncmpi, find.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Return indices of entries of A that match the string S.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
strncmpi
# name: <cell-element>
# type: string
# elements: 1
# length: 731
 -- Function File:  strncmpi (S1, S2, N)
     Ignoring case, return 1 if the first N characters of character strings (or character arrays) S1 and S2 are the same, and 0 otherwise.

     If either S1 or S2 is a cell array of strings, then an array of the same size is returned, containing the values described above for every member of the cell array.  The other argument may also be a cell array of strings (of the same size or with only one element), char matrix or character string.

     *Caution:* For compatibility with MATLAB, Octave's strncmpi function returns 1 if the character strings are equal, and 0 otherwise.  This is just the opposite of the corresponding C library function.  See also: strcmp, strcmpi, strncmp.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 133
Ignoring case, return 1 if the first N characters of character strings (or character arrays) S1 and S2 are the same, and 0 otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
strfind
# name: <cell-element>
# type: string
# elements: 1
# length: 868
 -- Function File: IDX = strfind (STR, PATTERN)
 -- Function File: IDX = strfind (CELLSTR, PATTERN)
     Search for PATTERN in the string STR and return the starting index of every such occurrence in the vector IDX.  If there is no such occurrence, or if PATTERN is longer than STR, then IDX is the empty array `[]'.

     If the cell array of strings CELLSTR is specified instead of the string STR, then IDX is a cell array of vectors, as specified above.  Examples:

          strfind ("abababa", "aba")
               => [1, 3, 5]

          strfind ({"abababa", "bebebe", "ab"}, "aba")
               => ans =
                  {
                    [1,1] =

                       1   3   5

                    [1,2] = [](1x0)
                    [1,3] = [](1x0)
                  }
     See also: findstr, strmatch, strcmp, strncmp, strcmpi, strncmpi, find.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 110
Search for PATTERN in the string STR and return the starting index of every such occurrence in the vector IDX.

# name: <cell-element>
# type: string
# elements: 1
# length: 14
validatestring
# name: <cell-element>
# type: string
# elements: 1
# length: 855
 -- Function File: VALIDSTR = validatestring (STR, STRARRAY)
 -- Function File: VALIDSTR = validatestring (STR, STRARRAY, FUNCNAME)
 -- Function File: VALIDSTR = validatestring (STR, STRARRAY, FUNCNAME, VARNAME)
 -- Function File: VALIDSTR = validatestring (..., POSITION)
     Verify that STR is a string or substring of an element of STRARRAY.

     STR is a character string to be tested, and STRARRAY is a cellstr of valid values.  VALIDSTR will be the validated form of STR where validation is defined as STR being a member or substring of VALIDSTR.  If STR is a substring of VALIDSTR and there are multiple matches, the shortest match will be returned if all matches are substrings of each other, and an error will be raised if the matches are not substrings of each other.

     All comparisons are case insensitive.  See also: strcmp, strcmpi.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 67
Verify that STR is a string or substring of an element of STRARRAY.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
strtok
# name: <cell-element>
# type: string
# elements: 1
# length: 567
 -- Function File: [TOK, REM] = strtok (STR, DELIM)
     Find all characters up to but not including the first character which is in the string delim.  If REM is requested, it contains the remainder of the string, starting at the first delimiter.  Leading delimiters are ignored.  If DELIM is not specified, space is assumed.  For example:

          strtok ("this is the life")
               => "this"

          [tok, rem] = strtok ("14*27+31", "+-*/")
               =>
                  tok = 14
                  rem = *27+31
     See also: index, strsplit.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 93
Find all characters up to but not including the first character which is in the string delim.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
strrep
# name: <cell-element>
# type: string
# elements: 1
# length: 304
 -- Function File:  strrep (S, X, Y)
     Replace all occurrences of the substring X of the string S with the string Y and return the result.  For example,

          strrep ("This is a test string", "is", "&%$")
               => "Th&%$ &%$ a test string"
     See also: regexprep, strfind, findstr.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 99
Replace all occurrences of the substring X of the string S with the string Y and return the result.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
dec2base
# name: <cell-element>
# type: string
# elements: 1
# length: 663
 -- Function File:  dec2base (N, B, LEN)
     Return a string of symbols in base B corresponding to the non-negative integer N.

          dec2base (123, 3)
               => "11120"

     If N is a vector, return a string matrix with one row per value, padded with leading zeros to the width of the largest value.

     If B is a string then the characters of B are used as the symbols for the digits of N.  Space (' ') may not be used as a symbol.

          dec2base (123, "aei")
               => "eeeia"

     The optional third argument, LEN, specifies the minimum number of digits in the result.  See also: base2dec, dec2bin, bin2dec, hex2dec, dec2hex.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 81
Return a string of symbols in base B corresponding to the non-negative integer N.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
dec2hex
# name: <cell-element>
# type: string
# elements: 1
# length: 466
 -- Function File:  dec2hex (N, LEN)
     Return the hexadecimal string corresponding to the non-negative integer N.  For example,

          dec2hex (2748)
               => "ABC"

     If N is a vector, returns a string matrix, one row per value, padded with leading zeros to the width of the largest value.

     The optional second argument, LEN, specifies the minimum number of digits in the result.  See also: hex2dec, dec2base, base2dec, bin2dec, dec2bin.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Return the hexadecimal string corresponding to the non-negative integer N.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
str2double
# name: <cell-element>
# type: string
# elements: 1
# length: 1962
 -- Function File: [NUM, STATUS, STRARRAY] = str2double (STR, CDELIM, RDELIM, DDELIM)
     Convert strings into numeric values.

     `str2double' can replace `str2num', but avoids the use of `eval' on unknown data.

     STR can be the form `[+-]d[.]dd[[eE][+-]ddd]' in which `d' can be any of digit from 0 to 9, and `[]' indicate optional elements.

     NUM is the corresponding numeric value.  If the conversion fails, status is -1 and NUM is NaN.

     STATUS is 0 if the conversion was successful and -1 otherwise.

     STRARRAY is a cell array of strings.

     Elements which are not defined or not valid return NaN and the STATUS becomes -1.

     If STR is a character array or a cell array of strings, then NUM and STATUS return matrices of appropriate size.

     STR can also contain multiple elements separated by row and column delimiters (CDELIM and RDELIM).

     The parameters CDELIM, RDELIM, and DDELIM are optional column, row, and decimal delimiters.

     The default row-delimiters are newline, carriage return and semicolon (ASCII 10, 13 and 59).  The default column-delimiters are tab, space and comma (ASCII 9, 32, and 44).  The default decimal delimiter is `.' (ASCII 46).

     CDELIM, RDELIM, and DDELIM must contain only nul, newline, carriage return, semicolon, colon, slash, tab, space, comma, or `()[]{}' (ASCII 0, 9, 10, 11, 12, 13, 14, 32, 33, 34, 40, 41, 44, 47, 58, 59, 91, 93, 123, 124, 125).

     Examples:

          str2double ("-.1e-5")
          => -1.0000e-006

          str2double (".314e1, 44.44e-1, .7; -1e+1")
          =>
             3.1400    4.4440    0.7000
           -10.0000       NaN       NaN

          line = "200, 300, NaN, -inf, yes, no, 999, maybe, NaN";
          [x, status] = str2double (line)
          => x =
              200   300   NaN  -Inf   NaN   NaN   999   NaN   NaN
          => status =
                0     0     0     0    -1    -1     0    -1     0
     See also: str2num.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Convert strings into numeric values.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
strtrim
# name: <cell-element>
# type: string
# elements: 1
# length: 397
 -- Function File:  strtrim (S)
     Remove leading and trailing blanks and nulls from S.  If S is a matrix, STRTRIM trims each row to the length of longest string.  If S is a cell array, operate recursively on each element of the cell array.  For example:

          strtrim ("    abc  ")
               => "abc"

          strtrim ([" abc   "; "   def   "])
               => ["abc  "; "  def"]

# name: <cell-element>
# type: string
# elements: 1
# length: 52
Remove leading and trailing blanks and nulls from S.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
substr
# name: <cell-element>
# type: string
# elements: 1
# length: 498
 -- Function File:  substr (S, OFFSET, LEN)
     Return the substring of S which starts at character number OFFSET and is LEN characters long.

     If OFFSET is negative, extraction starts that far from the end of the string.  If LEN is omitted, the substring extends to the end of S.

     For example,

          substr ("This is a test string", 6, 9)
               => "is a test"

     This function is patterned after AWK.  You can get the same result by `S(OFFSET : (OFFSET + LEN - 1))'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 93
Return the substring of S which starts at character number OFFSET and is LEN characters long.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
deblank
# name: <cell-element>
# type: string
# elements: 1
# length: 234
 -- Function File:  deblank (S)
     Remove trailing blanks and nulls from S.  If S is a matrix, DEBLANK trims each row to the length of longest string.  If S is a cell array, operate recursively on each element of the cell array.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Remove trailing blanks and nulls from S.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
dec2bin
# name: <cell-element>
# type: string
# elements: 1
# length: 496
 -- Function File:  dec2bin (N, LEN)
     Return a binary number corresponding to the non-negative decimal number N, as a string of ones and zeros.  For example,

          dec2bin (14)
               => "1110"

     If N is a vector, returns a string matrix, one row per value, padded with leading zeros to the width of the largest value.

     The optional second argument, LEN, specifies the minimum number of digits in the result.  See also: bin2dec, dec2base, base2dec, hex2dec, dec2hex.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 105
Return a binary number corresponding to the non-negative decimal number N, as a string of ones and zeros.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
blanks
# name: <cell-element>
# type: string
# elements: 1
# length: 377
 -- Function File:  blanks (N)
     Return a string of N blanks, for example:

          blanks(10);
          whos ans;
               =>
                Attr Name        Size                     Bytes  Class
                ==== ====        ====                     =====  =====
                     ans         1x10                        10  char
     See also: repmat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Return a string of N blanks, for example: 

# name: <cell-element>
# type: string
# elements: 1
# length: 7
str2num
# name: <cell-element>
# type: string
# elements: 1
# length: 529
 -- Function File:  str2num (S)
     Convert the string (or character array) S to a number (or an array).  Examples:

          str2num("3.141596")
               => 3.141596

          str2num(["1, 2, 3"; "4, 5, 6"]);
               => ans =
                  1  2  3
                  4  5  6

     *Caution:* As `str2num' uses the `eval' function to do the conversion, `str2num' will execute any code contained in the string S.  Use `str2double' instead if you want to avoid the use of `eval'.  See also: str2double, eval.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 68
Convert the string (or character array) S to a number (or an array).

# name: <cell-element>
# type: string
# elements: 1
# length: 7
hex2dec
# name: <cell-element>
# type: string
# elements: 1
# length: 418
 -- Function File:  hex2dec (S)
     Return the integer corresponding to the hexadecimal number stored in the string S.  For example,

          hex2dec ("12B")
               => 299
          hex2dec ("12b")
               => 299

     If S is a string matrix, returns a column vector of converted numbers, one per row of S.  Invalid rows evaluate to NaN.  See also: dec2hex, base2dec, dec2base, bin2dec, dec2bin.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 82
Return the integer corresponding to the hexadecimal number stored in the string S.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
strcat
# name: <cell-element>
# type: string
# elements: 1
# length: 746
 -- Function File:  strcat (S1, S2, ...)
     Return a string containing all the arguments concatenated horizontally.  If the arguments are cells strings,  `strcat' returns a cell string with the individual cells concatenated.  For numerical input, each element is converted to the corresponding ASCII character.  Trailing white space is eliminated.  For example,

          s = [ "ab"; "cde" ];
          strcat (s, s, s)
               => ans =
                  "ab ab ab "
                  "cdecdecde"

          s = { "ab"; "cde" };
          strcat (s, s, s)
               => ans =
                  {
                    [1,1] = ababab
                    [2,1] = cdecdecde
                  }

     See also: cstrcat, char, strvcat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Return a string containing all the arguments concatenated horizontally.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
index
# name: <cell-element>
# type: string
# elements: 1
# length: 572
 -- Function File:  index (S, T)
 -- Function File:  index (S, T, DIRECTION)
     Return the position of the first occurrence of the string T in the string S, or 0 if no occurrence is found.  For example,

          index ("Teststring", "t")
               => 4

     If DIRECTION is `"first"', return the first element found.  If DIRECTION is `"last"', return the last element found.  The `rindex' function is equivalent to `index' with DIRECTION set to `"last"'.

     *Caution:*  This function does not work for arrays of character strings.  See also: find, rindex.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 108
Return the position of the first occurrence of the string T in the string S, or 0 if no occurrence is found.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
strjust
# name: <cell-element>
# type: string
# elements: 1
# length: 486
 -- Function File:  strjust (S, ["left"|"right"|"center"])
     Shift the non-blank text of S to the left, right or center of the string.  If S is a string array, justify each string in the array.  Null characters are replaced by blanks.  If no justification is specified, then all rows are right-justified.  For example:

          strjust (["a"; "ab"; "abc"; "abcd"])
               => ans =
                     a
                    ab
                   abc
                  abcd

# name: <cell-element>
# type: string
# elements: 1
# length: 73
Shift the non-blank text of S to the left, right or center of the string.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
strchr
# name: <cell-element>
# type: string
# elements: 1
# length: 410
 -- Function File: IDX = strchr (STR, CHARS)
 -- Function File: IDX = strchr (STR, CHARS, N)
 -- Function File: IDX = strchr (STR, CHARS, N, DIRECTION)
     Search for the string STR for occurrences of characters from the set CHARS.  The return value, as well as the N and DIRECTION arguments behave identically as in `find'.

     This will be faster than using regexp in most cases.

     See also: find.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 75
Search for the string STR for occurrences of characters from the set CHARS.

# name: <cell-element>
# type: string
# elements: 1
# length: 15
regexptranslate
# name: <cell-element>
# type: string
# elements: 1
# length: 772
 -- Function File:  regexptranslate (OP, S)
     Translate a string for use in a regular expression.  This might include either wildcard replacement or special character escaping.  The behavior can be controlled by the OP that can have the values

    "wildcard"
          The wildcard characters `.', `*' and `?' are replaced with wildcards that are appropriate for a regular expression.  For example:
               regexptranslate ("wildcard", "*.m")
                    => ".*\.m"

    "escape"
          The characters `$.?[]', that have special meaning for regular expressions are escaped so that they are treated literally.  For example:
               regexptranslate ("escape", "12.5")
                    => "12\.5"
     See also: regexp, regexpi, regexprep.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Translate a string for use in a regular expression.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
rindex
# name: <cell-element>
# type: string
# elements: 1
# length: 345
 -- Function File:  rindex (S, T)
     Return the position of the last occurrence of the character string T in the character string S, or 0 if no occurrence is found.  For example,

          rindex ("Teststring", "t")
               => 6

     *Caution:*  This function does not work for arrays of character strings.  See also: find, index.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 127
Return the position of the last occurrence of the character string T in the character string S, or 0 if no occurrence is found.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
glpk
# name: <cell-element>
# type: string
# elements: 1
# length: 11571
 -- Function File: [XOPT, FMIN, STATUS, EXTRA] = glpk (C, A, B, LB, UB, CTYPE, VARTYPE, SENSE, PARAM)
     Solve a linear program using the GNU GLPK library.  Given three arguments, `glpk' solves the following standard LP:

          min C'*x

     subject to

          A*x  = b
            x >= 0

     but may also solve problems of the form

          [ min | max ] C'*x

     subject to

          A*x [ "=" | "<=" | ">=" ] b
            x >= LB
            x <= UB

     Input arguments:

    C
          A column array containing the objective function coefficients.

    A
          A matrix containing the constraints coefficients.

    B
          A column array containing the right-hand side value for each constraint in the constraint matrix.

    LB
          An array containing the lower bound on each of the variables.  If LB is not supplied, the default lower bound for the variables is zero.

    UB
          An array containing the upper bound on each of the variables.  If UB is not supplied, the default upper bound is assumed to be infinite.

    CTYPE
          An array of characters containing the sense of each constraint in the constraint matrix.  Each element of the array may be one of the following values
         `"F"'
               A free (unbounded) constraint (the constraint is ignored).

         `"U"'
               An inequality constraint with an upper bound (`A(i,:)*x <= b(i)').

         `"S"'
               An equality constraint (`A(i,:)*x = b(i)').

         `"L"'
               An inequality with a lower bound (`A(i,:)*x >= b(i)').

         `"D"'
               An inequality constraint with both upper and lower bounds (`A(i,:)*x >= -b(i)' _and_ (`A(i,:)*x <= b(i)').

    VARTYPE
          A column array containing the types of the variables.
         `"C"'
               A continuous variable.

         `"I"'
               An integer variable.

    SENSE
          If SENSE is 1, the problem is a minimization.  If SENSE is -1, the problem is a maximization.  The default value is 1.

    PARAM
          A structure containing the following parameters used to define the behavior of solver.  Missing elements in the structure take on default values, so you only need to set the elements that you wish to change from the default.

          Integer parameters:

         `msglev (`LPX_K_MSGLEV', default: 1)'
               Level of messages output by solver routines:
              0
                    No output.

              1
                    Error messages only.

              2
                    Normal output .

              3
                    Full output (includes informational messages).

         `scale (`LPX_K_SCALE', default: 1)'
               Scaling option:
              0
                    No scaling.

              1
                    Equilibration scaling.

              2
                    Geometric mean scaling, then equilibration scaling.

         `dual	 (`LPX_K_DUAL', default: 0)'
               Dual simplex option:
              0
                    Do not use the dual simplex.

              1
                    If initial basic solution is dual feasible, use the dual simplex.

         `price	 (`LPX_K_PRICE', default: 1)'
               Pricing option (for both primal and dual simplex):
              0
                    Textbook pricing.

              1
                    Steepest edge pricing.

         `round	 (`LPX_K_ROUND', default: 0)'
               Solution rounding option:
              0
                    Report all primal and dual values "as is".

              1
                    Replace tiny primal and dual values by exact zero.

         `itlim	 (`LPX_K_ITLIM', default: -1)'
               Simplex iterations limit.  If this value is positive, it is decreased by one each time when one simplex iteration has been performed, and reaching zero value signals the solver to stop the search.  Negative value means no iterations limit.

         `itcnt (`LPX_K_OUTFRQ', default: 200)'
               Output frequency, in iterations.  This parameter specifies how frequently the solver sends information about the solution to the standard output.

         `branch (`LPX_K_BRANCH', default: 2)'
               Branching heuristic option (for MIP only):
              0
                    Branch on the first variable.

              1
                    Branch on the last variable.

              2
                    Branch using a heuristic by Driebeck and Tomlin.

         `btrack (`LPX_K_BTRACK', default: 2)'
               Backtracking heuristic option (for MIP only):
              0
                    Depth first search.

              1
                    Breadth first search.

              2
                    Backtrack using the best projection heuristic.

         `presol (`LPX_K_PRESOL', default: 1)'
               If this flag is set, the routine lpx_simplex solves the problem using the built-in LP presolver.  Otherwise the LP presolver is not used.

         `lpsolver (default: 1)'
               Select which solver to use.  If the problem is a MIP problem this flag will be ignored.
              1
                    Revised simplex method.

              2
                    Interior point method.

         `save (default: 0)'
               If this parameter is nonzero, save a copy of the problem in CPLEX LP format to the file `"outpb.lp"'.  There is currently no way to change the name of the output file.

          Real parameters:

         `relax (`LPX_K_RELAX', default: 0.07)'
               Relaxation parameter used in the ratio test.  If it is zero, the textbook ratio test is used.  If it is non-zero (should be positive), Harris' two-pass ratio test is used.  In the latter case on the first pass of the ratio test basic variables (in the case of primal simplex) or reduced costs of non-basic variables (in the case of dual simplex) are allowed to slightly violate their bounds, but not more than `relax*tolbnd' or `relax*toldj (thus, `relax' is a percentage of `tolbnd' or `toldj''.

         `tolbnd (`LPX_K_TOLBND', default: 10e-7)'
               Relative tolerance used to check if the current basic solution is primal feasible.  It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.

         `toldj (`LPX_K_TOLDJ', default: 10e-7)'
               Absolute tolerance used to check if the current basic solution is dual feasible.  It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.

         `tolpiv (`LPX_K_TOLPIV', default: 10e-9)'
               Relative tolerance used to choose eligible pivotal elements of the simplex table.  It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.

         `objll (`LPX_K_OBJLL', default: -DBL_MAX)'
               Lower limit of the objective function.  If on the phase II the objective function reaches this limit and continues decreasing, the solver stops the search.  This parameter is used in the dual simplex method only.

         `objul (`LPX_K_OBJUL', default: +DBL_MAX)'
               Upper limit of the objective function.  If on the phase II the objective function reaches this limit and continues increasing, the solver stops the search.  This parameter is used in the dual simplex only.

         `tmlim (`LPX_K_TMLIM', default: -1.0)'
               Searching time limit, in seconds.  If this value is positive, it is decreased each time when one simplex iteration has been performed by the amount of time spent for the iteration, and reaching zero value signals the solver to stop the search.  Negative value means no time limit.

         `outdly (`LPX_K_OUTDLY', default: 0.0)'
               Output delay, in seconds.  This parameter specifies how long the solver should delay sending information about the solution to the standard output.  Non-positive value means no delay.

         `tolint (`LPX_K_TOLINT', default: 10e-5)'
               Relative tolerance used to check if the current basic solution is integer feasible.  It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.

         `tolobj (`LPX_K_TOLOBJ', default: 10e-7)'
               Relative tolerance used to check if the value of the objective function is not better than in the best known integer feasible solution.  It is not recommended that you change this parameter unless you have a detailed understanding of its purpose.

     Output values:

    XOPT
          The optimizer (the value of the decision variables at the optimum).

    FOPT
          The optimum value of the objective function.

    STATUS
          Status of the optimization.

          Simplex Method:
         180 (`LPX_OPT')
               Solution is optimal.

         181 (`LPX_FEAS')
               Solution is feasible.

         182 (`LPX_INFEAS')
               Solution is infeasible.

         183 (`LPX_NOFEAS')
               Problem has no feasible solution.

         184 (`LPX_UNBND')
               Problem has no unbounded solution.

         185 (`LPX_UNDEF')
               Solution status is undefined.
          Interior Point Method:
         150 (`LPX_T_UNDEF')
               The interior point method is undefined.

         151 (`LPX_T_OPT')
               The interior point method is optimal.
          Mixed Integer Method:
         170 (`LPX_I_UNDEF')
               The status is undefined.

         171 (`LPX_I_OPT')
               The solution is integer optimal.

         172 (`LPX_I_FEAS')
               Solution integer feasible but its optimality has not been proven

         173 (`LPX_I_NOFEAS')
               No integer feasible solution.
          If an error occurs, STATUS will contain one of the following codes:

         204 (`LPX_E_FAULT')
               Unable to start the search.

         205 (`LPX_E_OBJLL')
               Objective function lower limit reached.

         206 (`LPX_E_OBJUL')
               Objective function upper limit reached.

         207 (`LPX_E_ITLIM')
               Iterations limit exhausted.

         208 (`LPX_E_TMLIM')
               Time limit exhausted.

         209 (`LPX_E_NOFEAS')
               No feasible solution.

         210 (`LPX_E_INSTAB')
               Numerical instability.

         211 (`LPX_E_SING')
               Problems with basis matrix.

         212 (`LPX_E_NOCONV')
               No convergence (interior).

         213 (`LPX_E_NOPFS')
               No primal feasible solution (LP presolver).

         214 (`LPX_E_NODFS')
               No dual feasible solution (LP presolver).

    EXTRA
          A data structure containing the following fields:
         `lambda'
               Dual variables.

         `redcosts'
               Reduced Costs.

         `time'
               Time (in seconds) used for solving LP/MIP problem.

         `mem'
               Memory (in bytes) used for solving LP/MIP problem (this is not available if the version of GLPK is 4.15 or later).

     Example:

          c = [10, 6, 4]';
          a = [ 1, 1, 1;
               10, 4, 5;
                2, 2, 6];
          b = [100, 600, 300]';
          lb = [0, 0, 0]';
          ub = [];
          ctype = "UUU";
          vartype = "CCC";
          s = -1;

          param.msglev = 1;
          param.itlim = 100;

          [xmin, fmin, status, extra] = ...
             glpk (c, a, b, lb, ub, ctype, vartype, s, param);

# name: <cell-element>
# type: string
# elements: 1
# length: 50
Solve a linear program using the GNU GLPK library.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
lsqnonneg
# name: <cell-element>
# type: string
# elements: 1
# length: 1204
 -- Function File: X = lsqnonneg (C, D)
 -- Function File: X = lsqnonneg (C, D, X0)
 -- Function File: [X, RESNORM] = lsqnonneg (...)
 -- Function File: [X, RESNORM, RESIDUAL] = lsqnonneg (...)
 -- Function File: [X, RESNORM, RESIDUAL, EXITFLAG] = lsqnonneg (...)
 -- Function File: [X, RESNORM, RESIDUAL, EXITFLAG, OUTPUT] = lsqnonneg (...)
 -- Function File: [X, RESNORM, RESIDUAL, EXITFLAG, OUTPUT, LAMBDA] = lsqnonneg (...)
     Minimize `norm (C*X-d)' subject to `X >= 0'.  C and D must be real.  X0 is an optional initial guess for X.

     Outputs:
        * resnorm

          The squared 2-norm of the residual: norm(C*X-D)^2

        * residual

          The residual: D-C*X

        * exitflag

          An indicator of convergence.  0 indicates that the iteration count was exceeded, and therefore convergence was not reached; >0 indicates that the algorithm converged.  (The algorithm is stable and will converge given enough iterations.)

        * output

          A structure with two fields:
             * "algorithm": The algorithm used ("nnls")

             * "iterations": The number of iterations taken.

        * lambda

          Not implemented.
     See also: optimset.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Minimize `norm (C*X-d)' subject to `X >= 0'.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
fsolve
# name: <cell-element>
# type: string
# elements: 1
# length: 4012
 -- Function File:  fsolve (FCN, X0, OPTIONS)
 -- Function File: [X, FVEC, INFO, OUTPUT, FJAC] = fsolve (FCN, ...)
     Solve a system of nonlinear equations defined by the function FCN.  FCN should accepts a vector (array) defining the unknown variables, and return a vector of left-hand sides of the equations.  Right-hand sides are defined to be zeros.  In other words, this function attempts to determine a vector X such that `FCN (X)' gives (approximately) all zeros.  X0 determines a starting guess.  The shape of X0 is preserved in all calls to FCN, but otherwise it is treated as a column vector.  OPTIONS is a structure specifying additional options.  Currently, `fsolve' recognizes these options: `"FunValCheck"', `"OutputFcn"', `"TolX"', `"TolFun"', `"MaxIter"', `"MaxFunEvals"', `"Jacobian"', `"Updating"' and `"ComplexEqn"'.

     If `"Jacobian"' is `"on"', it specifies that FCN, called with 2 output arguments, also returns the Jacobian matrix of right-hand sides at the requested point.  `"TolX"' specifies the termination tolerance in the unknown variables, while `"TolFun"' is a tolerance for equations.  Default is `1e-7' for both `"TolX"' and `"TolFun"'.  If `"Updating"' is "on", the function will attempt to use Broyden updates to update the Jacobian, in order to reduce the amount of jacobian calculations.  If your user function always calculates the Jacobian (regardless of number of output arguments), this option provides no advantage and should be set to false.

     `"ComplexEqn"' is `"on"', `fsolve' will attempt to solve complex equations in complex variables, assuming that the equations possess a complex derivative (i.e., are holomorphic).  If this is not what you want, should unpack the real and imaginary parts of the system to get a real system.

     For description of the other options, see `optimset'.

     On return, FVAL contains the value of the function FCN evaluated at X, and INFO may be one of the following values:

    1
          Converged to a solution point.  Relative residual error is less than specified by TolFun.

    2
          Last relative step size was less that TolX.

    3
          Last relative decrease in residual was less than TolF.

    0
          Iteration limit exceeded.

    -3
          The trust region radius became excessively small.

     Note: If you only have a single nonlinear equation of one variable, using `fzero' is usually a much better idea.  See also: fzero, optimset.

     Note about user-supplied jacobians: As an inherent property of the algorithm, jacobian is always requested for a solution vector whose residual vector is already known, and it is the last accepted successful step.  Often this will be one of the last two calls, but not always.  If the savings by reusing intermediate results from residual calculation in jacobian calculation are significant, the best strategy is to employ OutputFcn: After a vector is evaluated for residuals, if OutputFcn is called with that vector, then the intermediate results should be saved for future jacobian evaluation, and should be kept until a jacobian evaluation is requested or until outputfcn is called with a different vector, in which case they should be dropped in favor of this most recent vector.  A short example how this can be achieved follows:

          function [fvec, fjac] = user_func (x, optimvalues, state)
          persistent sav = [], sav0 = [];
          if (nargin == 1)
            ## evaluation call
            if (nargout == 1)
              sav0.x = x; # mark saved vector
              ## calculate fvec, save results to sav0.
            elseif (nargout == 2)
              ## calculate fjac using sav.
            endif
          else
            ## outputfcn call.
            if (all (x == sav0.x))
              sav = sav0;
            endif
            ## maybe output iteration status, etc.
          endif
          endfunction

           ....

          fsolve (@user_func, x0, optimset ("OutputFcn", @user_func, ...))

   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Solve a system of nonlinear equations defined by the function FCN.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
optimget
# name: <cell-element>
# type: string
# elements: 1
# length: 293
 -- Function File:  optimget (OPTIONS, PARNAME)
 -- Function File:  optimget (OPTIONS, PARNAME, DEFAULT)
     Return a specific option from a structure created by `optimset'.  If PARNAME is not a field of the OPTIONS structure, return DEFAULT if supplied, otherwise return an empty matrix.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return a specific option from a structure created by `optimset'.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
fzero
# name: <cell-element>
# type: string
# elements: 1
# length: 962
 -- Function File: [X, FVAL, INFO, OUTPUT] = fzero (FUN, X0, OPTIONS)
     Find a zero point of a univariate function.  FUN should be a function handle or name.  X0 specifies a starting point.  OPTIONS is a structure specifying additional options.  Currently, `fzero' recognizes these options: `"FunValCheck"', `"OutputFcn"', `"TolX"', `"MaxIter"', `"MaxFunEvals"'.  For description of these options, see *note optimset: doc-optimset.

     On exit, the function returns X, the approximate zero point and FVAL, the function value thereof.  INFO is an exit flag that can have these values:
        * 1 The algorithm converged to a solution.

        * 0 Maximum number of iterations or function evaluations has been exhausted.

        * -1 The algorithm has been terminated from user output function.

        * -2 A general unexpected error.

        * -3 A non-real value encountered.

        * -4 A NaN value encountered.
     See also: optimset, fsolve.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Find a zero point of a univariate function.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
glpkmex
# name: <cell-element>
# type: string
# elements: 1
# length: 293
 -- Function File: [XOPT, FMIN, STATUS, EXTRA] = glpkmex (SENSE, C, A, B, CTYPE, LB, UB, VARTYPE, PARAM, LPSOLVER, SAVE_PB)
     This function is provided for compatibility with the old MATLAB interface to the GNU GLPK library.  For Octave code, you should use the `glpk' function instead.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 98
This function is provided for compatibility with the old MATLAB interface to the GNU GLPK library.

# name: <cell-element>
# type: string
# elements: 1
# length: 2
qp
# name: <cell-element>
# type: string
# elements: 1
# length: 1066
 -- Function File: [X, OBJ, INFO, LAMBDA] = qp (X0, H, Q, A, B, LB, UB, A_LB, A_IN, A_UB)
     Solve the quadratic program

               min 0.5 x'*H*x + x'*q
                x

     subject to

               A*x = b
               lb <= x <= ub
               A_lb <= A_in*x <= A_ub

     using a null-space active-set method.

     Any bound (A, B, LB, UB, A_LB, A_UB) may be set to the empty matrix (`[]') if not present.  If the initial guess is feasible the algorithm is faster.

     The value INFO is a structure with the following fields:
    `solveiter'
          The number of iterations required to find the solution.

    `info'
          An integer indicating the status of the solution, as follows:
         0
               The problem is feasible and convex.  Global solution found.

         1
               The problem is not convex.  Local solution found.

         2
               The problem is not convex and unbounded.

         3
               Maximum number of iterations reached.

         6
               The problem is infeasible.

# name: <cell-element>
# type: string
# elements: 1
# length: 28
Solve the quadratic program 

# name: <cell-element>
# type: string
# elements: 1
# length: 7
fminunc
# name: <cell-element>
# type: string
# elements: 1
# length: 1805
 -- Function File:  fminunc (FCN, X0, OPTIONS)
 -- Function File: [X, FVEC, INFO, OUTPUT, FJAC] = fminunc (FCN, ...)
     Solve a unconstrained optimization problem defined by the function FCN.  FCN should accepts a vector (array) defining the unknown variables, and return the objective function value, optionally with gradient.  In other words, this function attempts to determine a vector X such that `FCN (X)' is a local minimum.  X0 determines a starting guess. The shape of X0 is preserved in all calls to FCN, but otherwise it is treated as a column vector.  OPTIONS is a structure specifying additional options.  Currently, `fminunc' recognizes these options: `"FunValCheck"', `"OutputFcn"', `"TolX"', `"TolFun"', `"MaxIter"', `"MaxFunEvals"', `"GradObj"', `"FinDiffType"'.

     If `"GradObj"' is `"on"', it specifies that FCN, called with 2 output arguments, also returns the Jacobian matrix of right-hand sides at the requested point.  `"TolX"' specifies the termination tolerance in the unknown variables, while `"TolFun"' is a tolerance for equations. Default is `1e-7' for both `"TolX"' and `"TolFun"'.

     For description of the other options, see `optimset'.

     On return, FVAL contains the value of the function FCN evaluated at X, and INFO may be one of the following values:

    1
          Converged to a solution point. Relative gradient error is less than specified by TolFun.

    2
          Last relative step size was less that TolX.

    3
          Last relative decrease in func value was less than TolF.

    0
          Iteration limit exceeded.

    -3
          The trust region radius became excessively small.

     Note: If you only have a single nonlinear equation of one variable, using `fminbnd' is usually a much better idea.  See also: fminbnd, optimset.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Solve a unconstrained optimization problem defined by the function FCN.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
sqp
# name: <cell-element>
# type: string
# elements: 1
# length: 3958
 -- Function File: [X, OBJ, INFO, ITER, NF, LAMBDA] = sqp (X, PHI, G, H, LB, UB, MAXITER, TOLERANCE)
     Solve the nonlinear program

               min phi (x)
                x

     subject to

               g(x)  = 0
               h(x) >= 0
               lb <= x <= ub

     using a successive quadratic programming method.

     The first argument is the initial guess for the vector X.

     The second argument is a function handle pointing to the objective function.  The objective function must be of the form

               y = phi (x)

     in which X is a vector and Y is a scalar.

     The second argument may also be a 2- or 3-element cell array of function handles.  The first element should point to the objective function, the second should point to a function that computes the gradient of the objective function, and the third should point to a function to compute the hessian of the objective function.  If the gradient function is not supplied, the gradient is computed by finite differences.  If the hessian function is not supplied, a BFGS update formula is used to approximate the hessian.

     If supplied, the gradient function must be of the form

          g = gradient (x)

     in which X is a vector and G is a vector.

     If supplied, the hessian function must be of the form

          h = hessian (x)

     in which X is a vector and H is a matrix.

     The third and fourth arguments are function handles pointing to functions that compute the equality constraints and the inequality constraints, respectively.

     If your problem does not have equality (or inequality) constraints, you may pass an empty matrix for CEF (or CIF).

     If supplied, the equality and inequality constraint functions must be of the form

          r = f (x)

     in which X is a vector and R is a vector.

     The third and fourth arguments may also be 2-element cell arrays of function handles.  The first element should point to the constraint function and the second should point to a function that computes the gradient of the constraint function:

                          [ d f(x)   d f(x)        d f(x) ]
              transpose ( [ ------   -----   ...   ------ ] )
                          [  dx_1     dx_2          dx_N  ]

     The fifth and sixth arguments are vectors containing lower and upper bounds on X.  These must be consistent with equality and inequality constraints G and H.  If the bounds are not specified, or are empty, they are set to -REALMAX and REALMAX by default.

     The seventh argument is max. number of iterations.  If not specified, the default value is 100.

     The eighth argument is tolerance for stopping criteria.  If not specified, the default value is EPS.

     Here is an example of calling `sqp':

          function r = g (x)
            r = [ sumsq(x)-10;
                  x(2)*x(3)-5*x(4)*x(5);
                  x(1)^3+x(2)^3+1 ];
          endfunction

          function obj = phi (x)
            obj = exp(prod(x)) - 0.5*(x(1)^3+x(2)^3+1)^2;
          endfunction

          x0 = [-1.8; 1.7; 1.9; -0.8; -0.8];

          [x, obj, info, iter, nf, lambda] = sqp (x0, @phi, @g, [])

          x =

            -1.71714
             1.59571
             1.82725
            -0.76364
            -0.76364

          obj = 0.053950
          info = 101
          iter = 8
          nf = 10
          lambda =

            -0.0401627
             0.0379578
            -0.0052227

     The value returned in INFO may be one of the following:
    101
          The algorithm terminated because the norm of the last step was less than `tol * norm (x))' (the value of tol is currently fixed at `sqrt (eps)'--edit `sqp.m' to modify this value.

    102
          The BFGS update failed.

    103
          The maximum number of iterations was reached (the maximum number of allowed iterations is currently fixed at 100--edit `sqp.m' to increase this value).
     See also: qp.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 28
Solve the nonlinear program 

# name: <cell-element>
# type: string
# elements: 1
# length: 8
optimset
# name: <cell-element>
# type: string
# elements: 1
# length: 225
 -- Function File:  optimset ()
 -- Function File:  optimset (PAR, VAL, ...)
 -- Function File:  optimset (OLD, PAR, VAL, ...)
 -- Function File:  optimset (OLD, NEW)
     Create options struct for optimization functions.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Create options struct for optimization functions.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
acoth
# name: <cell-element>
# type: string
# elements: 1
# length: 121
 -- Mapping Function:  acoth (X)
     Compute the inverse hyperbolic cotangent of each element of X.  See also: coth.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Compute the inverse hyperbolic cotangent of each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
acotd
# name: <cell-element>
# type: string
# elements: 1
# length: 125
 -- Function File:  acotd (X)
     Compute the inverse cotangent in degrees for each element of X.  See also: cotd, acot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Compute the inverse cotangent in degrees for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
tand
# name: <cell-element>
# type: string
# elements: 1
# length: 226
 -- Function File:  tand (X)
     Compute the tangent for each element of X in degrees.  Returns zero for elements where `X/180' is an integer and `Inf' for elements where `(X-90)/180' is an integer.  See also: atand, tan.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Compute the tangent for each element of X in degrees.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
acot
# name: <cell-element>
# type: string
# elements: 1
# length: 127
 -- Mapping Function:  acot (X)
     Compute the inverse cotangent in radians for each element of X.  See also: cot, acotd.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Compute the inverse cotangent in radians for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
coth
# name: <cell-element>
# type: string
# elements: 1
# length: 113
 -- Mapping Function:  coth (X)
     Compute the hyperbolic cotangent of each element of X.  See also: acoth.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Compute the hyperbolic cotangent of each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
sec
# name: <cell-element>
# type: string
# elements: 1
# length: 121
 -- Mapping Function:  sec (X)
     Compute the secant for each element of X in radians.  See also: asec, secd, sech.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Compute the secant for each element of X in radians.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
atand
# name: <cell-element>
# type: string
# elements: 1
# length: 123
 -- Function File:  atand (X)
     Compute the inverse tangent in degrees for each element of X.  See also: tand, atan.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Compute the inverse tangent in degrees for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
lcm
# name: <cell-element>
# type: string
# elements: 1
# length: 336
 -- Mapping Function:  lcm (X)
 -- Mapping Function:  lcm (X, ...)
     Compute the least common multiple of the elements of X, or of the list of all arguments.  For example,

          lcm (a1, ..., ak)

     is the same as

          lcm ([a1, ..., ak]).

     All elements must be the same size or scalar.  See also: factor, gcd.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 88
Compute the least common multiple of the elements of X, or of the list of all arguments.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
secd
# name: <cell-element>
# type: string
# elements: 1
# length: 113
 -- Function File:  secd (X)
     Compute the secant for each element of X in degrees.  See also: asecd, sec.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Compute the secant for each element of X in degrees.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
cotd
# name: <cell-element>
# type: string
# elements: 1
# length: 116
 -- Function File:  cotd (X)
     Compute the cotangent for each element of X in degrees.  See also: acotd, cot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Compute the cotangent for each element of X in degrees.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
csch
# name: <cell-element>
# type: string
# elements: 1
# length: 112
 -- Mapping Function:  csch (X)
     Compute the hyperbolic cosecant of each element of X.  See also: acsch.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Compute the hyperbolic cosecant of each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
asind
# name: <cell-element>
# type: string
# elements: 1
# length: 120
 -- Function File:  asind (X)
     Compute the inverse sine in degrees for each element of X.  See also: sind, asin.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Compute the inverse sine in degrees for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
asec
# name: <cell-element>
# type: string
# elements: 1
# length: 124
 -- Mapping Function:  asec (X)
     Compute the inverse secant in radians for each element of X.  See also: sec, asecd.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Compute the inverse secant in radians for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
acosd
# name: <cell-element>
# type: string
# elements: 1
# length: 122
 -- Function File:  acosd (X)
     Compute the inverse cosine in degrees for each element of X.  See also: cosd, acos.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Compute the inverse cosine in degrees for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
acsc
# name: <cell-element>
# type: string
# elements: 1
# length: 126
 -- Mapping Function:  acsc (X)
     Compute the inverse cosecant in radians for each element of X.  See also: csc, acscd.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Compute the inverse cosecant in radians for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
csc
# name: <cell-element>
# type: string
# elements: 1
# length: 123
 -- Mapping Function:  csc (X)
     Compute the cosecant for each element of X in radians.  See also: acsc, cscd, csch.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Compute the cosecant for each element of X in radians.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
cot
# name: <cell-element>
# type: string
# elements: 1
# length: 124
 -- Mapping Function:  cot (X)
     Compute the cotangent for each element of X in radians.  See also: acot, cotd, coth.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Compute the cotangent for each element of X in radians.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
sind
# name: <cell-element>
# type: string
# elements: 1
# length: 167
 -- Function File:  sind (X)
     Compute the sine for each element of X in degrees.  Returns zero for elements where `X/180' is an integer.  See also: asind, sin.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Compute the sine for each element of X in degrees.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
sech
# name: <cell-element>
# type: string
# elements: 1
# length: 110
 -- Mapping Function:  sech (X)
     Compute the hyperbolic secant of each element of X.  See also: asech.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Compute the hyperbolic secant of each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
asech
# name: <cell-element>
# type: string
# elements: 1
# length: 118
 -- Mapping Function:  asech (X)
     Compute the inverse hyperbolic secant of each element of X.  See also: sech.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Compute the inverse hyperbolic secant of each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
asecd
# name: <cell-element>
# type: string
# elements: 1
# length: 122
 -- Function File:  asecd (X)
     Compute the inverse secant in degrees for each element of X.  See also: secd, asec.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Compute the inverse secant in degrees for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
cosd
# name: <cell-element>
# type: string
# elements: 1
# length: 174
 -- Function File:  cosd (X)
     Compute the cosine for each element of X in degrees.  Returns zero for elements where `(X-90)/180' is an integer.  See also: acosd, cos.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Compute the cosine for each element of X in degrees.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
cscd
# name: <cell-element>
# type: string
# elements: 1
# length: 115
 -- Function File:  cscd (X)
     Compute the cosecant for each element of X in degrees.  See also: acscd, csc.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Compute the cosecant for each element of X in degrees.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
acscd
# name: <cell-element>
# type: string
# elements: 1
# length: 124
 -- Function File:  acscd (X)
     Compute the inverse cosecant in degrees for each element of X.  See also: cscd, acsc.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Compute the inverse cosecant in degrees for each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
acsch
# name: <cell-element>
# type: string
# elements: 1
# length: 120
 -- Mapping Function:  acsch (X)
     Compute the inverse hyperbolic cosecant of each element of X.  See also: csch.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Compute the inverse hyperbolic cosecant of each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
etreeplot
# name: <cell-element>
# type: string
# elements: 1
# length: 286
 -- Function File:  etreeplot (TREE)
 -- Function File:  etreeplot (TREE, NODE_STYLE, EDGE_STYLE)
     Plot the elimination tree of the matrix S or `S+S''  if S in non-symmetric.  The optional parameters LINE_STYLE and EDGE_STYLE define the output style.  See also: treeplot, gplot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Plot the elimination tree of the matrix S or `S+S'' if S in non-symmetric.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
gplot
# name: <cell-element>
# type: string
# elements: 1
# length: 564
 -- Function File:  gplot (A, XY)
 -- Function File:  gplot (A, XY, LINE_STYLE)
 -- Function File: [X, Y] = gplot (A, XY)
     Plot a graph defined by A and XY in the graph theory sense.  A is the adjacency matrix of the array to be plotted and XY is an N-by-2 matrix containing the coordinates of the nodes of the graph.

     The optional parameter LINE_STYLE defines the output style for the plot.  Called with no output arguments the graph is plotted directly.  Otherwise, return the coordinates of the plot in X and Y.  See also: treeplot, etreeplot, spy.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Plot a graph defined by A and XY in the graph theory sense.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
spstats
# name: <cell-element>
# type: string
# elements: 1
# length: 570
 -- Function File: [COUNT, MEAN, VAR] = spstats (S)
 -- Function File: [COUNT, MEAN, VAR] = spstats (S, J)
     Return the stats for the non-zero elements of the sparse matrix S.  COUNT is the number of non-zeros in each column, MEAN is the mean of the non-zeros in each column, and VAR is the variance of the non-zeros in each column.

     Called with two input arguments, if S is the data and J is the bin number for the data, compute the stats for each bin.  In this case, bins can contain data values of zero, whereas with `spstats (S)' the zeros may disappear.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Return the stats for the non-zero elements of the sparse matrix S.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
treeplot
# name: <cell-element>
# type: string
# elements: 1
# length: 373
 -- Function File:  treeplot (TREE)
 -- Function File:  treeplot (TREE, LINE_STYLE, EDGE_STYLE)
     Produces a graph of tree or forest.  The first argument is vector of predecessors, optional parameters LINE_STYLE and EDGE_STYLE define the output style.  The complexity of the algorithm is O(n) in terms of is time and memory requirements.  See also: etreeplot, gplot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Produces a graph of tree or forest.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
spones
# name: <cell-element>
# type: string
# elements: 1
# length: 147
 -- Function File: Y = spones (X)
     Replace the non-zero entries of X with ones.  This creates a sparse matrix with the same structure as X.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Replace the non-zero entries of X with ones.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
nonzeros
# name: <cell-element>
# type: string
# elements: 1
# length: 105
 -- Function File:  nonzeros (S)
     Returns a vector of the non-zero values of the sparse matrix S.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Returns a vector of the non-zero values of the sparse matrix S.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
bicgstab
# name: <cell-element>
# type: string
# elements: 1
# length: 1097
 -- Function File:  bicgstab (A, B)
 -- Function File:  bicgstab (A, B, TOL, MAXIT, M1, M2, X0)
     This procedure attempts to solve a system of linear equations A*x = b for x.  The A must be square, symmetric and positive definite real matrix N*N.  The B must be a one column vector with a length of N.  The TOL specifies the tolerance of the method, the default value is 1e-6.  The MAXIT specifies the maximum number of iterations, the default value is min(20,N).  The M1 specifies a preconditioner, can also be a function handler which returns M\X.  The M2 combined with M1 defines preconditioner as preconditioner=M1*M2.  The X0 is the initial guess, the default value is zeros(N,1).

     The value X is a computed result of this procedure.  The value FLAG can be 0 when we reach tolerance in MAXIT iterations, 1 when we don't reach tolerance in MAXIT iterations and 3 when the procedure stagnates.  The value RELRES is a relative residual - norm(b-A*x)/norm(b).  The value ITER is an iteration number in which x was computed.  The value RESVEC is a vector of RELRES for each iteration.

   
# name: <cell-element>
# type: string
# elements: 1
# length: 76
This procedure attempts to solve a system of linear equations A*x = b for x.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
treelayout
# name: <cell-element>
# type: string
# elements: 1
# length: 381
 -- Function File:  treelayout (TREE)
 -- Function File:  treelayout (TREE, PERMUTATION)
     treelayout lays out a tree or a forest.  The first argument TREE is a vector of predecessors, optional parameter PERMUTATION is an optional postorder permutation.  The complexity of the algorithm is O(n) in terms of time and memory requirements.  See also: etreeplot, gplot,treeplot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
treelayout lays out a tree or a forest.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
sphcat
# name: <cell-element>
# type: string
# elements: 1
# length: 211
 -- Function File: Y = sphcat (A1, A2, ..., AN)
     Return the horizontal concatenation of sparse matrices.  This function is obselete and `horzcat' should be used.  See also: spvcat, vertcat, horzcat, cat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Return the horizontal concatenation of sparse matrices.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
sprandsym
# name: <cell-element>
# type: string
# elements: 1
# length: 606
 -- Function File:  sprandsym (N, D)
 -- Function File:  sprandsym (S)
     Generate a symmetric random sparse matrix.  The size of the matrix will be N by N, with a density of values given by D.  D should be between 0 and 1. Values will be normally distributed with mean of zero and variance 1.

     Note: sometimes the actual density may be a bit smaller than D.  This is unlikely to happen for large really sparse matrices.

     If called with a single matrix argument, a random sparse matrix is generated wherever the matrix S is non-zero in its lower triangular part.  See also: sprand, sprandn.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Generate a symmetric random sparse matrix.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
cgs
# name: <cell-element>
# type: string
# elements: 1
# length: 666
 -- Function File:  cgs (A, B)
 -- Function File:  cgs (A, B, TOL, MAXIT, M1, M2, X0)
     This procedure attempts to solve a system of linear equations A*x = b for x.  The A must be square, symmetric and positive definite real matrix N*N.  The B must be a one column vector with a length of N.  The TOL specifies the tolerance of the method, default value is 1e-6.  The MAXIT specifies the maximum number of iteration, default value is MIN(20,N).  The M1 specifies a preconditioner, can also be a function handler which returns M\X.  The M2 combined with M1 defines preconditioner as preconditioner=M1*M2.  The X0 is initial guess, default value is zeros(N,1).

   
# name: <cell-element>
# type: string
# elements: 1
# length: 76
This procedure attempts to solve a system of linear equations A*x = b for x.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
pcg
# name: <cell-element>
# type: string
# elements: 1
# length: 5631
 -- Function File: X = pcg (A, B, TOL, MAXIT, M1, M2, X0, ...)
 -- Function File: [X, FLAG, RELRES, ITER, RESVEC, EIGEST] = pcg (...)
     Solves the linear system of equations `A * X = B' by means of the Preconditioned Conjugate Gradient iterative method.  The input arguments are

        * A can be either a square (preferably sparse) matrix or a function handle, inline function or string containing the name of a function which computes `A * X'.  In principle A should be symmetric and positive definite; if `pcg' finds A to not be positive definite, you will get a warning message and the FLAG output parameter will be set.

        * B is the right hand side vector.

        * TOL is the required relative tolerance for the residual error, `B - A * X'.  The iteration stops if `norm (B - A * X) <= TOL * norm (B - A * X0)'.  If TOL is empty or is omitted, the function sets `TOL = 1e-6' by default.

        * MAXIT is the maximum allowable number of iterations; if `[]' is supplied for `maxit', or `pcg' has less arguments, a default value equal to 20 is used.

        * M = M1 * M2 is the (left) preconditioning matrix, so that the iteration is (theoretically) equivalent to solving by `pcg' `P * X = M \ B', with `P = M \ A'.  Note that a proper choice of the preconditioner may dramatically improve the overall performance of the method.  Instead of matrices M1 and M2, the user may pass two functions which return the results of applying the inverse of M1 and M2 to a vector (usually this is the preferred way of using the preconditioner).  If `[]' is supplied for M1, or M1 is omitted, no preconditioning is applied.  If M2 is omitted, M = M1 will be used as preconditioner.

        * X0 is the initial guess.  If X0 is empty or omitted, the function sets X0 to a zero vector by default.

     The arguments which follow X0 are treated as parameters, and passed in a proper way to any of the functions (A or M) which are passed to `pcg'.  See the examples below for further details.  The output arguments are

        * X is the computed approximation to the solution of `A * X = B'.

        * FLAG reports on the convergence.  `FLAG = 0' means the solution converged and the tolerance criterion given by TOL is satisfied.  `FLAG = 1' means that the MAXIT limit for the iteration count was reached.  `FLAG = 3' reports that the (preconditioned) matrix was found not positive definite.

        * RELRES is the ratio of the final residual to its initial value, measured in the Euclidean norm.

        * ITER is the actual number of iterations performed.

        * RESVEC describes the convergence history of the method.  `RESVEC (i,1)' is the Euclidean norm of the residual, and `RESVEC (i,2)' is the preconditioned residual norm, after the (I-1)-th iteration, `I = 1, 2, ..., ITER+1'.  The preconditioned residual norm is defined as `norm (R) ^ 2 = R' * (M \ R)' where `R = B - A * X', see also the description of M.  If EIGEST is not required, only `RESVEC (:,1)' is returned.

        * EIGEST returns the estimate for the smallest `EIGEST (1)' and largest `EIGEST (2)' eigenvalues of the preconditioned matrix `P = M \ A'.  In particular, if no preconditioning is used, the estimates for the extreme eigenvalues of A are returned.  `EIGEST (1)' is an overestimate and `EIGEST (2)' is an underestimate, so that `EIGEST (2) / EIGEST (1)' is a lower bound for `cond (P, 2)', which nevertheless in the limit should theoretically be equal to the actual value of the condition number.  The method which computes EIGEST works only for symmetric positive definite A and M, and the user is responsible for verifying this assumption.

     Let us consider a trivial problem with a diagonal matrix (we exploit the sparsity of A)

          	n = 10;
          	a = diag (sparse (1:n));
          	b = rand (n, 1);
               [l, u, p, q] = luinc (a, 1.e-3);

     EXAMPLE 1: Simplest use of `pcg'

            x = pcg(A,b)

     EXAMPLE 2: `pcg' with a function which computes `A * X'

            function y = apply_a (x)
              y = [1:N]'.*x;
            endfunction

            x = pcg ("apply_a", b)

     EXAMPLE 3: `pcg' with a preconditioner: L * U

          x = pcg (a, b, 1.e-6, 500, l*u);

     EXAMPLE 4: `pcg' with a preconditioner: L * U.  Faster than EXAMPLE 3 since lower and upper triangular matrices are easier to invert

          x = pcg (a, b, 1.e-6, 500, l, u);

     EXAMPLE 5: Preconditioned iteration, with full diagnostics.  The preconditioner (quite strange, because even the original matrix A is trivial) is defined as a function

            function y = apply_m (x)
              k = floor (length (x) - 2);
              y = x;
              y(1:k) = x(1:k)./[1:k]';
            endfunction

            [x, flag, relres, iter, resvec, eigest] = ...
                               pcg (a, b, [], [], "apply_m");
            semilogy (1:iter+1, resvec);

     EXAMPLE 6: Finally, a preconditioner which depends on a parameter K.

            function y = apply_M (x, varargin)
            K = varargin{1};
            y = x;
            y(1:K) = x(1:K)./[1:K]';
            endfunction

            [x, flag, relres, iter, resvec, eigest] = ...
                 pcg (A, b, [], [], "apply_m", [], [], 3)

     REFERENCES

     	[1] C.T.Kelley, 'Iterative methods for linear and nonlinear equations', 	SIAM, 1995 (the base PCG algorithm)

     	[2] Y.Saad, 'Iterative methods for sparse linear systems', PWS 1996 	(condition number estimate from PCG) Revised version of this book is 	available online at http://www-users.cs.umn.edu/~saad/books.html

     See also: sparse, pcr.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 117
Solves the linear system of equations `A * X = B' by means of the Preconditioned Conjugate Gradient iterative method.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
spvcat
# name: <cell-element>
# type: string
# elements: 1
# length: 207
 -- Function File: Y = spvcat (A1, A2, ..., AN)
     Return the vertical concatenation of sparse matrices.  This function is obselete and `vertcat' should be used See also: sphcat, vertcat, horzcat, cat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Return the vertical concatenation of sparse matrices.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
normest
# name: <cell-element>
# type: string
# elements: 1
# length: 431
 -- Function File: [N, C] = normest (A, TOL)
     Estimate the 2-norm of the matrix A using a power series analysis.  This is typically used for large matrices, where the cost of calculating the `norm (A)' is prohibitive and an approximation to the 2-norm is acceptable.

     TOL is the tolerance to which the 2-norm is calculated.  By default TOL is 1e-6.  C returns the number of iterations needed for `normest' to converge.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Estimate the 2-norm of the matrix A using a power series analysis.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
pcr
# name: <cell-element>
# type: string
# elements: 1
# length: 4058
 -- Function File: X = pcr (A, B, TOL, MAXIT, M, X0, ...)
 -- Function File: [X, FLAG, RELRES, ITER, RESVEC] = pcr (...)
     Solves the linear system of equations `A * X = B' by means of the Preconditioned Conjugate Residuals iterative method.  The input arguments are

        * A can be either a square (preferably sparse) matrix or a function handle, inline function or string containing the name of a function which computes `A * X'.  In principle A should be symmetric and non-singular; if `pcr' finds A to be numerically singular, you will get a warning message and the FLAG output parameter will be set.

        * B is the right hand side vector.

        * TOL is the required relative tolerance for the residual error, `B - A * X'.  The iteration stops if `norm (B - A * X) <= TOL * norm (B - A * X0)'.  If TOL is empty or is omitted, the function sets `TOL = 1e-6' by default.

        * MAXIT is the maximum allowable number of iterations; if `[]' is supplied for `maxit', or `pcr' has less arguments, a default value equal to 20 is used.

        * M is the (left) preconditioning matrix, so that the iteration is (theoretically) equivalent to solving by `pcr' `P * X = M \ B', with `P = M \ A'.  Note that a proper choice of the preconditioner may dramatically improve the overall performance of the method.  Instead of matrix M, the user may pass a function which returns the results of applying the inverse of M to a vector (usually this is the preferred way of using the preconditioner).  If `[]' is supplied for M, or M is omitted, no preconditioning is applied.

        * X0 is the initial guess.  If X0 is empty or omitted, the function sets X0 to a zero vector by default.

     The arguments which follow X0 are treated as parameters, and passed in a proper way to any of the functions (A or M) which are passed to `pcr'.  See the examples below for further details.  The output arguments are

        * X is the computed approximation to the solution of `A * X = B'.

        * FLAG reports on the convergence.  `FLAG = 0' means the solution converged and the tolerance criterion given by TOL is satisfied.  `FLAG = 1' means that the MAXIT limit for the iteration count was reached.  `FLAG = 3' reports t `pcr' breakdown, see [1] for details.

        * RELRES is the ratio of the final residual to its initial value, measured in the Euclidean norm.

        * ITER is the actual number of iterations performed.

        * RESVEC describes the convergence history of the method, so that `RESVEC (i)' contains the Euclidean norms of the residual after the (I-1)-th iteration, `I = 1,2, ..., ITER+1'.

     Let us consider a trivial problem with a diagonal matrix (we exploit the sparsity of A)

          	n = 10;
          	a = sparse (diag (1:n));
          	b = rand (N, 1);

     EXAMPLE 1: Simplest use of `pcr'

            x = pcr(A, b)

     EXAMPLE 2: `pcr' with a function which computes `A * X'.

            function y = apply_a (x)
              y = [1:10]'.*x;
            endfunction

            x = pcr ("apply_a", b)

     EXAMPLE 3:  Preconditioned iteration, with full diagnostics.  The preconditioner (quite strange, because even the original matrix A is trivial) is defined as a function

            function y = apply_m (x)
              k = floor (length(x)-2);
              y = x;
              y(1:k) = x(1:k)./[1:k]';
            endfunction

            [x, flag, relres, iter, resvec] = ...
                               pcr (a, b, [], [], "apply_m")
            semilogy([1:iter+1], resvec);

     EXAMPLE 4: Finally, a preconditioner which depends on a parameter K.

            function y = apply_m (x, varargin)
              k = varargin{1};
              y = x; y(1:k) = x(1:k)./[1:k]';
            endfunction

            [x, flag, relres, iter, resvec] = ...
                               pcr (a, b, [], [], "apply_m"', [], 3)

     REFERENCES

     	[1] W. Hackbusch, "Iterative Solution of Large Sparse Systems of  	Equations", section 9.5.4; Springer, 1994

     See also: sparse, pcg.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 118
Solves the linear system of equations `A * X = B' by means of the Preconditioned Conjugate Residuals iterative method.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
spy
# name: <cell-element>
# type: string
# elements: 1
# length: 395
 -- Function File:  spy (X)
 -- Function File:  spy (..., MARKERSIZE)
 -- Function File:  spy (..., LINE_SPEC)
     Plot the sparsity pattern of the sparse matrix X.  If the argument MARKERSIZE is given as an scalar value, it is used to determine the point size in the plot.  If the string LINE_SPEC is given it is passed to `plot' and determines the appearance of the plot.  See also: plot.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Plot the sparsity pattern of the sparse matrix X.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
spconvert
# name: <cell-element>
# type: string
# elements: 1
# length: 412
 -- Function File: X = spconvert (M)
     This function converts for a simple sparse matrix format easily produced by other programs into Octave's internal sparse format.  The input X is either a 3 or 4 column real matrix, containing the row, column, real and imaginary parts of the elements of the sparse matrix.  An element with a zero real and imaginary part can be used to force a particular matrix size.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 128
This function converts for a simple sparse matrix format easily produced by other programs into Octave's internal sparse format.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
spalloc
# name: <cell-element>
# type: string
# elements: 1
# length: 703
 -- Function File: S = spalloc (R, C, NZ)
     Returns an empty sparse matrix of size R-by-C.  As Octave resizes sparse matrices at the first opportunity, so that no additional space is needed, the argument NZ is ignored.  This function is provided only for compatibility reasons.

     It should be noted that this means that code like

          k = 5;
          nz = r * k;
          s = spalloc (r, c, nz)
          for j = 1:c
            idx = randperm (r);
            s (:, j) = [zeros(r - k, 1); rand(k, 1)] (idx);
          endfor

     will reallocate memory at each step.  It is therefore vitally important that code like this is vectorized as much as possible.  See also: sparse, nzmax.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Returns an empty sparse matrix of size R-by-C.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
svds
# name: <cell-element>
# type: string
# elements: 1
# length: 1986
 -- Function File: S = svds (A)
 -- Function File: S = svds (A, K)
 -- Function File: S = svds (A, K, SIGMA)
 -- Function File: S = svds (A, K, SIGMA, OPTS)
 -- Function File: [U, S, V, FLAG] = svds (...)
     Find a few singular values of the matrix A.  The singular values are calculated using

          [M, N] = size(A)
          S = eigs([sparse(M, M), A; ...
                          A', sparse(N, N)])

     The eigenvalues returned by `eigs' correspond to the singular values of A.  The number of singular values to calculate is given by K, whose default value is 6.

     The argument SIGMA can be used to specify which singular values to find.  SIGMA can be either the string 'L', the default, in which case the largest singular values of A are found.  Otherwise SIGMA should be a real scalar, in which case the singular values closest to SIGMA are found.  Note that for relatively small values of SIGMA, there is the chance that the requested number of singular values are not returned.  In that case SIGMA should be increased.

     If OPTS is given, then it is a structure that defines options that `svds' will pass to EIGS.  The possible fields of this structure are therefore determined by `eigs'.  By default three fields of this structure are set by `svds'.

    `tol'
          The required convergence tolerance for the singular values.  `eigs' is passed TOL divided by `sqrt(2)'.  The default value is 1e-10.

    `maxit'
          The maximum number of iterations.  The default is 300.

    `disp'
          The level of diagnostic printout.  If `disp' is 0 then there is no printout.  The default value is 0.

     If more than one output argument is given, then `svds' also calculates the left and right singular vectors of A.  FLAG is used to signal the convergence of `svds'.  If `svds' converges to the desired tolerance, then FLAG given by

          norm (A * V - U * S, 1) <= ...
                  TOL * norm (A, 1)

     will be zero.
   See also: eigs.  
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Find a few singular values of the matrix A.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
spdiags
# name: <cell-element>
# type: string
# elements: 1
# length: 1036
 -- Function File: [B, C] = spdiags (A)
 -- Function File: B = spdiags (A, C)
 -- Function File: B = spdiags (V, C, A)
 -- Function File: B = spdiags (V, C, M, N)
     A generalization of the function `diag'.  Called with a single input argument, the non-zero diagonals C of A are extracted.  With two arguments the diagonals to extract are given by the vector C.

     The other two forms of `spdiags' modify the input matrix by replacing the diagonals.  They use the columns of V to replace the columns represented by the vector C.  If the sparse matrix A is defined then the diagonals of this matrix are replaced.  Otherwise a matrix of M by N is created with the diagonals given by V.

     Negative values of C represent diagonals below the main diagonal, and positive values of C diagonals above the main diagonal.

     For example

          spdiags (reshape (1:12, 4, 3), [-1 0 1], 5, 4)
          =>    5 10  0  0
                1  6 11  0
                0  2  7 12
                0  0  3  8
                0  0  0  4

   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
A generalization of the function `diag'.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
spfun
# name: <cell-element>
# type: string
# elements: 1
# length: 235
 -- Function File: Y = spfun (F,X)
     Compute `f(X)' for the non-zero values of X.  This results in a sparse matrix with the same structure as X.  The function F can be passed as a string, a function handle or an inline function.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Compute `f(X)' for the non-zero values of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
colperm
# name: <cell-element>
# type: string
# elements: 1
# length: 305
 -- Function File: P = colperm (S)
     Returns the column permutations such that the columns of `S (:, P)' are ordered in terms of increase number of non-zero elements.  If S is symmetric, then P is chosen such that `S (P, P)' orders the rows and columns with increasing number of non zeros elements.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 129
Returns the column permutations such that the columns of `S (:, P)' are ordered in terms of increase number of non-zero elements.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
sprand
# name: <cell-element>
# type: string
# elements: 1
# length: 540
 -- Function File:  sprand (M, N, D)
 -- Function File:  sprand (S)
     Generate a random sparse matrix.  The size of the matrix will be M by N, with a density of values given by D.  D should be between 0 and 1. Values will be uniformly distributed between 0 and 1.

     Note: sometimes the actual density may be a bit smaller than D.  This is unlikely to happen for large really sparse matrices.

     If called with a single matrix argument, a random sparse matrix is generated wherever the matrix S is non-zero.  See also: sprandn.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Generate a random sparse matrix.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
spaugment
# name: <cell-element>
# type: string
# elements: 1
# length: 1264
 -- Function File: S = spaugment (A, C)
     Creates the augmented matrix of A.  This is given by

          [C * eye(M, M),A; A', zeros(N,
          N)]

     This is related to the least squares solution of `A \\ B', by

          S * [ R / C; x] = [B, zeros(N,
          columns(B)]

     where R is the residual error

          R = B - A * X

     As the matrix S is symmetric indefinite it can be factorized with `lu', and the minimum norm solution can therefore be found without the need for a `qr' factorization.  As the residual error will be `zeros (M, M)' for under determined problems, and example can be

          m = 11; n = 10; mn = max(m ,n);
          a = spdiags ([ones(mn,1), 10*ones(mn,1), -ones(mn,1)],
                       [-1, 0, 1], m, n);
          x0 = a \ ones (m,1);
          s = spaugment (a);
          [L, U, P, Q] = lu (s);
          x1 = Q * (U \ (L \ (P  * [ones(m,1); zeros(n,1)])));
          x1 = x1(end - n + 1 : end);

     To find the solution of an overdetermined problem needs an estimate of the residual error R and so it is more complex to formulate a minimum norm solution using the `spaugment' function.

     In general the left division operator is more stable and faster than using the `spaugment' function.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Creates the augmented matrix of A.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
speye
# name: <cell-element>
# type: string
# elements: 1
# length: 472
 -- Function File: Y = speye (M)
 -- Function File: Y = speye (M, N)
 -- Function File: Y = speye (SZ)
     Returns a sparse identity matrix.  This is significantly more efficient than `sparse (eye (M))' as the full matrix is not constructed.

     Called with a single argument a square matrix of size M by M is created.  Otherwise a matrix of M by N is created.  If called with a single vector argument, this argument is taken to be the size of the matrix to create.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 33
Returns a sparse identity matrix.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
sprandn
# name: <cell-element>
# type: string
# elements: 1
# length: 557
 -- Function File:  sprandn (M, N, D)
 -- Function File:  sprandn (S)
     Generate a random sparse matrix.  The size of the matrix will be M by N, with a density of values given by D.  D should be between 0 and 1. Values will be normally distributed with mean of zero and variance 1.

     Note: sometimes the actual density may be a bit smaller than D.  This is unlikely to happen for large really sparse matrices.

     If called with a single matrix argument, a random sparse matrix is generated wherever the matrix S is non-zero.  See also: sprand.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Generate a random sparse matrix.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
assert
# name: <cell-element>
# type: string
# elements: 1
# length: 1302
 -- Function File:  assert (COND)
 -- Function File:  assert (COND, ERRMSG, ...)
 -- Function File:  assert (COND, MSG_ID, ERRMSG, ...)
 -- Function File:  assert (OBSERVED,EXPECTED)
 -- Function File:  assert (OBSERVED,EXPECTED,TOL)
     Produces an error if the condition is not met.  `assert' can be called in three different ways.

    `assert (COND)'
    `assert (COND, ERRMSG, ...)'
    `assert (COND, MSG_ID, ERRMSG, ...)'
          Called with a single argument COND, `assert' produces an error if COND is zero.  If called with a single argument a generic error message.  With more than one argument, the additional arguments are passed to the `error' function.

    `assert (OBSERVED, EXPECTED)'
          Produce an error if observed is not the same as expected.  Note that observed and expected can be strings, scalars, vectors, matrices, lists or structures.

    `assert(OBSERVED, EXPECTED, TOL)'
          Accept a tolerance when comparing numbers.  If TOL is positive use it as an absolute tolerance, will produce an error if `abs(OBSERVED - EXPECTED) > abs(TOL)'.  If TOL is negative use it as a relative tolerance, will produce an error if `abs(OBSERVED - EXPECTED) > abs(TOL * EXPECTED)'.  If EXPECTED is zero TOL will always be used as an absolute tolerance.
     See also: test.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Produces an error if the condition is not met.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
rundemos
# name: <cell-element>
# type: string
# elements: 1
# length: 44
 -- Function File:  rundemos (DIRECTORY)
   
# name: <cell-element>
# type: string
# elements: 0

# name: <cell-element>
# type: string
# elements: 1
# length: 7
example
# name: <cell-element>
# type: string
# elements: 1
# length: 453
 -- Function File:  example ('NAME',N)
 -- Function File: [X, IDX] = example ('NAME',N)
     Display the code for example N associated with the function 'NAME', but do not run it.  If N is not given, all examples are displayed.

     Called with output arguments, the examples are returned in the form of a string X, with IDX indicating the ending position of the various examples.

     See `demo' for a complete explanation.  See also: demo, test.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Display the code for example N associated with the function 'NAME', but do not run it.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
speed
# name: <cell-element>
# type: string
# elements: 1
# length: 4706
 -- Function File:  speed (F, INIT, MAX_N, F2, TOL)
 -- Function File: [ORDER, N, T_F, T_F2] = speed (...)
     Determine the execution time of an expression for various N.  The N are log-spaced from 1 to MAX_N.  For each N, an initialization expression is computed to create whatever data are needed for the test.  If a second expression is given, the execution times of the two expressions will be compared.  Called without output arguments the results are presented graphically.

    `F'
          The expression to evaluate.

    `MAX_N'
          The maximum test length to run.  Default value is 100.  Alternatively, use `[min_n,max_n]' or for complete control, `[n1,n2,...,nk]'.

    `INIT'
          Initialization expression for function argument values.  Use K for the test number and N for the size of the test.  This should compute values for all variables listed in args.  Note that init will be evaluated first for k = 0, so things which are constant throughout the test can be computed then.  The default value is `X = randn (N, 1);'.

    `F2'
          An alternative expression to evaluate, so the speed of the two can be compared.  Default is `[]'.

    `TOL'
          If TOL is `Inf', then no comparison will be made between the results of expression F and expression F2.  Otherwise, expression F should produce a value V and expression F2 should produce a value V2, and these shall be compared using `assert(V,V2,TOL)'.  If TOL is positive, the tolerance is assumed to be absolute.  If TOL is negative, the tolerance is assumed to be relative.  The default is `eps'.

    `ORDER'
          The time complexity of the expression `O(a n^p)'.  This is a structure with fields `a' and `p'.

    `N'
          The values N for which the expression was calculated and the execution time was greater than zero.

    `T_F'
          The nonzero execution times recorded for the expression F in seconds.

    `T_F2'
          The nonzero execution times recorded for the expression F2 in seconds.  If it is needed, the mean time ratio is just `mean(T_f./T_f2)'.


     The slope of the execution time graph shows the approximate power of the asymptotic running time `O(n^p)'.  This power is plotted for the region over which it is approximated (the latter half of the graph).  The estimated power is not very accurate, but should be sufficient to determine the general order of your algorithm.  It should indicate if for example your implementation is unexpectedly `O(n^2)' rather than `O(n)' because it extends a vector each time through the loop rather than preallocating one which is big enough.  For example, in the current version of Octave, the following is not the expected `O(n)':

          speed ("for i = 1:n, y{i} = x(i); end", "", [1000,10000])

     but it is if you preallocate the cell array `y':

          speed ("for i = 1:n, y{i} = x(i); end", ...
                 "x = rand (n, 1); y = cell (size (x));", [1000, 10000])

     An attempt is made to approximate the cost of the individual operations, but it is wildly inaccurate.  You can improve the stability somewhat by doing more work for each `n'.  For example:

          speed ("airy(x)", "x = rand (n, 10)", [10000, 100000])

     When comparing a new and original expression, the line on the speedup ratio graph should be larger than 1 if the new expression is faster.  Better algorithms have a shallow slope.  Generally, vectorizing an algorithm will not change the slope of the execution time graph, but it will shift it relative to the original.  For example:

          speed ("v = sum (x)", "", [10000, 100000], ...
                 "v = 0; for i = 1:length (x), v += x(i); end")

     A more complex example, if you had an original version of `xcorr' using for loops and another version using an FFT, you could compare the run speed for various lags as follows, or for a fixed lag with varying vector lengths as follows:

          speed ("v = xcorr (x, n)", "x = rand (128, 1);", 100,
                 "v2 = xcorr_orig (x, n)", -100*eps)
          speed ("v = xcorr (x, 15)", "x = rand (20+n, 1);", 100,
                 "v2 = xcorr_orig (x, n)", -100*eps)

     Assuming one of the two versions is in XCORR_ORIG, this would compare their speed and their output values.  Note that the FFT version is not exact, so we specify an acceptable tolerance on the comparison `100*eps', and the errors should be computed relatively, as `abs((X - Y)./Y)' rather than absolutely as `abs(X - Y)'.

     Type `example('speed')' to see some real examples.  Note for obscure reasons, you can't run examples 1 and 2 directly using `demo('speed')'.  Instead use, `eval(example('speed',1))' and `eval(example('speed',2))'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Determine the execution time of an expression for various N.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
test
# name: <cell-element>
# type: string
# elements: 1
# length: 2033
 -- Function File:  test NAME
 -- Function File:  test NAME quiet|normal|verbose
 -- Function File:  test ('NAME', 'quiet|normal|verbose', FID)
 -- Function File:  test ([], 'explain', FID)
 -- Function File: SUCCESS = test (...)
 -- Function File: [N, MAX] = test (...)
 -- Function File: [CODE, IDX] = test ('NAME','grabdemo')
     Perform tests from the first file in the loadpath matching NAME.  `test' can be called as a command or as a function.  Called with a single argument NAME, the tests are run interactively and stop after the first error is encountered.

     With a second argument the tests which are performed and the amount of output is selected.

    'quiet'
          Don't report all the tests as they happen, just the errors.

    'normal'
          Report all tests as they happen, but don't do tests which require user interaction.

    'verbose'
          Do tests which require user interaction.

     The argument FID can be used to allow batch processing.  Errors can be written to the already open file defined by FID, and hopefully when Octave crashes this file will tell you what was happening when it did.  You can use `stdout' if you want to see the results as they happen.  You can also give a file name rather than an FID, in which case the contents of the file will be replaced with the log from the current test.

     Called with a single output argument SUCCESS, `test' returns true if all of the tests were successful.  Called with two output arguments N and MAX, the number of successful tests and the total number of tests in the file NAME are returned.

     If the second argument is the string 'grabdemo', the contents of the demo blocks are extracted but not executed.  Code for all code blocks is concatenated and returned as CODE with IDX being a vector of positions of the ends of the demo blocks.

     If the second argument is 'explain', then NAME is ignored and an explanation of the line markers used is written to the file FID.  See also: error, assert, fail, demo, example.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Perform tests from the first file in the loadpath matching NAME.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
fail
# name: <cell-element>
# type: string
# elements: 1
# length: 715
 -- Function File:  fail (CODE,PATTERN)
 -- Function File:  fail (CODE,'warning',PATTERN)
     Return true if CODE fails with an error message matching PATTERN, otherwise produce an error.  Note that CODE is a string and if CODE runs successfully, the error produced is:

                    expected error but got none

     If the code fails with a different error, the message produced is:

                    expected <pattern>
                    but got <text of actual error>

     The angle brackets are not part of the output.

     Called with three arguments, the behavior is similar to `fail(CODE, PATTERN)', but produces an error if no warning is given during code execution or if the code fails.

   
# name: <cell-element>
# type: string
# elements: 1
# length: 93
Return true if CODE fails with an error message matching PATTERN, otherwise produce an error.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
demo
# name: <cell-element>
# type: string
# elements: 1
# length: 1935
 -- Function File:  demo ('NAME',N)
     Runs any examples associated with the function 'NAME'.  Examples are stored in the script file, or in a file with the same name but no extension somewhere on your path.  To keep them separate from the usual script code, all lines are prefixed by `%!'.  Each example is introduced by the keyword 'demo' flush left to the prefix, with no intervening spaces.  The remainder of the example can contain arbitrary Octave code.  For example:

             %!demo
             %! t=0:0.01:2*pi; x = sin(t);
             %! plot(t,x)
             %! %-------------------------------------------------
             %! % the figure window shows one cycle of a sine wave

     Note that the code is displayed before it is executed, so a simple comment at the end suffices.  It is generally not necessary to use disp or printf within the demo.

     Demos are run in a function environment with no access to external variables.  This means that all demos in your function must use separate initialization code.  Alternatively, you can combine your demos into one huge demo, with the code:

             %! input("Press <enter> to continue: ","s");

     between the sections, but this is discouraged.  Other techniques include using multiple plots by saying figure between each, or using subplot to put multiple plots in the same window.

     Also, since demo evaluates inside a function context, you cannot define new functions inside a demo.  Instead you will have to use `eval(example('function',n))' to see them.  Because eval only evaluates one line, or one statement if the statement crosses multiple lines, you must wrap your demo in "if 1 <demo stuff> endif" with the 'if' on the same line as 'demo'.  For example,

            %!demo if 1
            %!  function y=f(x)
            %!    y=x;
            %!  endfunction
            %!  f(3)
            %! endif
     See also: test, example.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Runs any examples associated with the function 'NAME'.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
setdiff
# name: <cell-element>
# type: string
# elements: 1
# length: 522
 -- Function File:  setdiff (A, B)
 -- Function File:  setdiff (A, B, "rows")
 -- Function File: [C, I] = setdiff (A, B)
     Return the elements in A that are not in B, sorted in ascending order.  If A and B are both column vectors return a column vector, otherwise return a row vector.

     Given the optional third argument `"rows"', return the rows in A that are not in B, sorted in ascending order by rows.

     If requested, return I such that `c = a(i)'.  See also: unique, union, intersect, setxor, ismember.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 70
Return the elements in A that are not in B, sorted in ascending order.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
intersect
# name: <cell-element>
# type: string
# elements: 1
# length: 378
 -- Function File:  intersect (A, B)
 -- Function File: [C, IA, IB] = intersect (A, B)
     Return the elements in both A and B, sorted in ascending order.  If A and B are both column vectors return a column vector, otherwise return a row vector.

     Return index vectors IA and IB such that `a(ia)==c' and `b(ib)==c'.

   See also: unique, union, setxor, setdiff, ismember.  
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return the elements in both A and B, sorted in ascending order.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
complement
# name: <cell-element>
# type: string
# elements: 1
# length: 222
 -- Function File:  complement (X, Y)
     Return the elements of set Y that are not in set X.  For example,

          complement ([ 1, 2, 3 ], [ 2, 3, 5 ])
               => 5
     See also: union, intersect, unique.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Return the elements of set Y that are not in set X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
union
# name: <cell-element>
# type: string
# elements: 1
# length: 675
 -- Function File:  union (A, B)
 -- Function File:  union (A, B, "rows")
     Return the set of elements that are in either of the sets A and B.  For example,

          union ([1, 2, 4], [2, 3, 5])
               => [1, 2, 3, 4, 5]

     If the optional third input argument is the string "rows" each row of the matrices A and B will be considered an element of sets.  For example,
          union([1, 2; 2, 3], [1, 2; 3, 4], "rows")
               =>  1   2
              2   3
              3   4

 -- Function File: [C, IA, IB] = union (A, B)
     Return index vectors IA and IB such that `a == c(ia)' and `b == c(ib)'.

     See also: intersect, complement, unique.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Return index vectors IA and IB such that `a == c(ia)' and `b == c(ib)'.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
unique
# name: <cell-element>
# type: string
# elements: 1
# length: 852
 -- Function File:  unique (X)
 -- Function File:  unique (X, "rows")
 -- Function File:  unique (..., "first")
 -- Function File:  unique (..., "last")
 -- Function File: [Y, I, J] = unique (...)
     Return the unique elements of X, sorted in ascending order.  If X is a row vector, return a row vector, but if X is a column vector or a matrix return a column vector.

     If the optional argument `"rows"' is supplied, return the unique rows of X, sorted in ascending order.

     If requested, return index vectors I and J such that `x(i)==y' and `y(j)==x'.

     Additionally, one of `"first"' or `"last"' may be given as an argument.  If `"last"' is specified, return the highest possible indices in I, otherwise, if `"first"' is specified, return the lowest.  The default is `"last"'.  See also: union, intersect, setdiff, setxor, ismember.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Return the unique elements of X, sorted in ascending order.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
ismember
# name: <cell-element>
# type: string
# elements: 1
# length: 1133
 -- Function File: [TF = ismember (A, S)
 -- Function File: [TF, S_IDX] = ismember (A, S)
 -- Function File: [TF, S_IDX] = ismember (A, S, "rows")
     Return a matrix TF with the same shape as A which has a 1 if `A(i,j)' is in S and 0 if it is not.  If a second output argument is requested, the index into S of each of the matching elements is also returned.

          a = [3, 10, 1];
          s = [0:9];
          [tf, s_idx] = ismember (a, s);
               => tf = [1, 0, 1]
               => s_idx = [4, 0, 2]

     The inputs, A and S, may also be cell arrays.

          a = {'abc'};
          s = {'abc', 'def'};
          [tf, s_idx] = ismember (a, s);
               => tf = [1, 0]
               => s_idx = [1, 0]

     With the optional third argument `"rows"', and matrices A and S with the same number of columns, compare rows in A with the rows in S.

          a = [1:3; 5:7; 4:6];
          s = [0:2; 1:3; 2:4; 3:5; 4:6];
          [tf, s_idx] = ismember(a, s, 'rows');
               => tf = logical ([1; 0; 1])
               => s_idx = [2; 0; 5];

     See also: unique, union, intersect, setxor, setdiff.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 97
Return a matrix TF with the same shape as A which has a 1 if `A(i,j)' is in S and 0 if it is not.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
setxor
# name: <cell-element>
# type: string
# elements: 1
# length: 429
 -- Function File:  setxor (A, B)
 -- Function File:  setxor (A, B, 'rows')
     Return the elements exclusive to A or B, sorted in ascending order.  If A and B are both column vectors return a column vector, otherwise return a row vector.

 -- Function File: [C, IA, IB] = setxor (A, B)
     Return index vectors IA and IB such that `a == c(ia)' and `b == c(ib)'.

     See also: unique, union, intersect, setdiff, ismember.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Return index vectors IA and IB such that `a == c(ia)' and `b == c(ib)'.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
imfinfo
# name: <cell-element>
# type: string
# elements: 1
# length: 2213
 -- Function File: INFO = imfinfo (FILENAME)
 -- Function File: INFO = imfinfo (URL)
     Read image information from a file.

     `imfinfo' returns a structure containing information about the image stored in the file FILENAME.  The output structure contains the following fields.

    `Filename'
          The full name of the image file.

    `FileSize'
          Number of bytes of the image on disk

    `FileModDate'
          Date of last modification to the file.

    `Height'
          Image height in pixels.

    `Width'
          Image Width in pixels.

    `BitDepth'
          Number of bits per channel per pixel.

    `Format'
          Image format (e.g., `"jpeg"').

    `LongFormat'
          Long form image format description.

    `XResolution'
          X resolution of the image.

    `YResolution'
          Y resolution of the image.

    `TotalColors'
          Number of unique colors in the image.

    `TileName'
          Tile name.

    `AnimationDelay'
          Time in 1/100ths of a second (0 to 65535) which must expire before displaying the next image in an animated sequence.

    `AnimationIterations'
          Number of iterations to loop an animation (e.g., Netscape loop extension) for.

    `ByteOrder'
          Endian option for formats that support it.  Is either `"little-endian"', `"big-endian"', or `"undefined"'.

    `Gamma'
          Gamma level of the image.  The same color image displayed on two different workstations may look different due to differences in the display monitor.

    `Matte'
          `true' if the image has transparency.

    `ModulusDepth'
          Image modulus depth (minimum number of bits required to support red/green/blue components without loss of accuracy).

    `Quality'
          JPEG/MIFF/PNG compression level.

    `QuantizeColors'
          Preferred number of colors in the image.

    `ResolutionUnits'
          Units of image resolution.  Is either `"pixels per inch"', `"pixels per centimeter"', or `"undefined"'.

    `ColorType'
          Image type.  Is either `"grayscale"', `"indexed"', `"truecolor"', or `"undefined"'.

    `View'
          FlashPix viewing parameters.

     See also: imread, imwrite.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Read image information from a file.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
imread
# name: <cell-element>
# type: string
# elements: 1
# length: 473
 -- Function File: [IMG, MAP, ALPHA] = imread (FILENAME)
     Read images from various file formats.

     The size and numeric class of the output depends on the format of the image.  A color image is returned as an MxNx3 matrix.  Grey-level and black-and-white images are of size MxN.  The color depth of the image determines the numeric class of the output: "uint8" or "uint16" for grey and color, and "logical" for black and white.

     See also: imwrite, imfinfo.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 38
Read images from various file formats.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
brighten
# name: <cell-element>
# type: string
# elements: 1
# length: 677
 -- Function File: MAP_OUT = brighten (MAP, BETA)
 -- Function File: MAP_OUT = brighten (H, BETA)
 -- Function File: MAP_OUT = brighten (BETA)
     Darkens or brightens the given colormap.  If the MAP argument is omitted, the function is applied to the current colormap.  The first argument can also be a valid graphics handle H, in which case `brighten' is applied to the colormap associated with this handle.

     Should the resulting colormap MAP_OUT not be assigned, it will be written to the current colormap.

     The argument BETA should be a scalar between -1 and 1, where a negative value darkens and a positive value brightens the colormap.  See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Darkens or brightens the given colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
gmap40
# name: <cell-element>
# type: string
# elements: 1
# length: 444
 -- Function File:  gmap40 (N)
     Create a color colormap.  The colormap is red, green, blue, yellow, magenta and cyan.  These are the colors that are allowed with patch objects using gnuplot 4.0, and so this colormap function is specially designed for users of gnuplot 4.0.  The argument N should be a scalar.  If it is omitted, a length of 6 is assumed.  Larger values of N result in a repetition of the above colors See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 24
Create a color colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
imshow
# name: <cell-element>
# type: string
# elements: 1
# length: 1061
 -- Function File:  imshow (IM)
 -- Function File:  imshow (IM, LIMITS)
 -- Function File:  imshow (IM, MAP)
 -- Function File:  imshow (RGB, ...)
 -- Function File:  imshow (FILENAME)
 -- Function File:  imshow (..., STRING_PARAM1, VALUE1, ...)
     Display the image IM, where IM can be a 2-dimensional (gray-scale image) or a 3-dimensional (RGB image) matrix.

     If LIMITS is a 2-element vector `[LOW, HIGH]', the image is shown using a display range between LOW and HIGH.  If an empty matrix is passed for LIMITS, the display range is computed as the range between the minimal and the maximal value in the image.

     If MAP is a valid color map, the image will be shown as an indexed image using the supplied color map.

     If a file name is given instead of an image, the file will be read and shown.

     If given, the parameter STRING_PARAM1 has value VALUE1.  STRING_PARAM1 can be any of the following:
    `"displayrange"'
          VALUE1 is the display range as described above.
     See also: image, imagesc, colormap, gray2ind, rgb2ind.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Display the image IM, where IM can be a 2-dimensional (gray-scale image) or a 3-dimensional (RGB image) matrix.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
gray2ind
# name: <cell-element>
# type: string
# elements: 1
# length: 222
 -- Function File: [IMG, MAP] = gray2ind (I, N)
     Convert a gray scale intensity image to an Octave indexed image.  The indexed image will consist of N different intensity values.  If not given N will default to 64.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Convert a gray scale intensity image to an Octave indexed image.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
spring
# name: <cell-element>
# type: string
# elements: 1
# length: 228
 -- Function File:  spring (N)
     Create color colormap.  This colormap is magenta to yellow.  The argument N should be a scalar.  If it is omitted, the length of the current colormap or 64 is assumed.  See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
winter
# name: <cell-element>
# type: string
# elements: 1
# length: 224
 -- Function File:  winter (N)
     Create color colormap.  This colormap is blue to green.  The argument N should be a scalar.  If it is omitted, the length of the current colormap or 64 is assumed.  See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
prism
# name: <cell-element>
# type: string
# elements: 1
# length: 264
 -- Function File:  prism (N)
     Create color colormap.  This colormap cycles trough red, orange, yellow, green, blue and violet.  The argument N should be a scalar.  If it is omitted, the length of the current colormap or 64 is assumed.  See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
gray
# name: <cell-element>
# type: string
# elements: 1
# length: 222
 -- Function File:  gray (N)
     Return a gray colormap with N entries corresponding to values from 0 to N-1.  The argument N should be a scalar.  If it is omitted, the length of the current colormap or 64 is assumed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Return a gray colormap with N entries corresponding to values from 0 to N-1.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
autumn
# name: <cell-element>
# type: string
# elements: 1
# length: 239
 -- Function File:  autumn (N)
     Create color colormap.  This colormap is red through orange to yellow.  The argument N should be a scalar.  If it is omitted, the length of the current colormap or 64 is assumed.  See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
ind2gray
# name: <cell-element>
# type: string
# elements: 1
# length: 238
 -- Function File:  ind2gray (X, MAP)
     Convert an Octave indexed image to a gray scale intensity image.  If MAP is omitted, the current colormap is used to determine the intensities.  See also: gray2ind, rgb2ntsc, image, colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Convert an Octave indexed image to a gray scale intensity image.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
flag
# name: <cell-element>
# type: string
# elements: 1
# length: 247
 -- Function File:  flag (N)
     Create color colormap.  This colormap cycles through red, white, blue and black.  The argument N should be a scalar.  If it is omitted, the length of the current colormap or 64 is assumed.  See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
saveimage
# name: <cell-element>
# type: string
# elements: 1
# length: 891
 -- Function File:  saveimage (FILE, X, FMT, MAP)
     Save the matrix X to FILE in image format FMT.  Valid values for FMT are

    `"img"'
          Octave's image format.  The current colormap is also saved in the file.

    `"ppm"'
          Portable pixmap format.

    `"ps"'
          PostScript format.  Note that images saved in PostScript format cannot be read back into Octave with loadimage.

     If the fourth argument is supplied, the specified colormap will also be saved along with the image.

     Note: if the colormap contains only two entries and these entries are black and white, the bitmap ppm and PostScript formats are used.  If the image is a gray scale image (the entries within each row of the colormap are equal) the gray scale ppm and PostScript image formats are used, otherwise the full color formats are used.  See also: loadimage, save, load, colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
Save the matrix X to FILE in image format FMT.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
ntsc2rgb
# name: <cell-element>
# type: string
# elements: 1
# length: 112
 -- Function File:  ntsc2rgb (YIQ)
     Transform a colormap or image from NTSC to RGB.  See also: rgb2ntsc.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Transform a colormap or image from NTSC to RGB.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
ind2rgb
# name: <cell-element>
# type: string
# elements: 1
# length: 376
 -- Function File: RGB = ind2rgb (X, MAP)
 -- Function File: [R, G, B] = ind2rgb (X, MAP)
     Convert an indexed image to red, green, and blue color components.  If the colormap doesn't contain enough colors, pad it with the last color in the map.  If MAP is omitted, the current colormap is used for the conversion.  See also: rgb2ind, image, imshow, ind2gray, gray2ind.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Convert an indexed image to red, green, and blue color components.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
rgb2ind
# name: <cell-element>
# type: string
# elements: 1
# length: 179
 -- Function File: [X, MAP] = rgb2ind (RGB)
 -- Function File: [X, MAP] = rgb2ind (R, G, B)
     Convert an RGB image to an Octave indexed image.  See also: ind2rgb, rgb2ntsc.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Convert an RGB image to an Octave indexed image.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
jet
# name: <cell-element>
# type: string
# elements: 1
# length: 268
 -- Function File:  jet (N)
     Create color colormap.  This colormap is dark blue through blue, cyan, green, yellow, red to dark red.  The argument N should be a scalar.  If it is omitted, the length of the current colormap or 64 is assumed.  See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
hot
# name: <cell-element>
# type: string
# elements: 1
# length: 260
 -- Function File:  hot (N)
     Create color colormap.  This colormap is black through dark red, red, orange, yellow to white.  The argument N should be a scalar.  If it is omitted, the length of the current colormap or 64 is assumed.  See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
colormap
# name: <cell-element>
# type: string
# elements: 1
# length: 580
 -- Function File:  colormap (MAP)
 -- Function File:  colormap ("default")
     Set the current colormap.

     `colormap (MAP)' sets the current colormap to MAP.  The color map should be an N row by 3 column matrix.  The columns contain red, green, and blue intensities respectively.  All entries should be between 0 and 1 inclusive.  The new colormap is returned.

     `colormap ("default")' restores the default colormap (the `jet' map with 64 entries).  The default colormap is returned.

     With no arguments, `colormap' returns the current color map.  See also: jet.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 25
Set the current colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
ocean
# name: <cell-element>
# type: string
# elements: 1
# length: 169
 -- Function File:  ocean (N)
     Create color colormap.  The argument N should be a scalar.  If it is omitted, the length of the current colormap or 64 is assumed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
bone
# name: <cell-element>
# type: string
# elements: 1
# length: 247
 -- Function File:  bone (N)
     Create color colormap.  This colormap is a gray colormap with a light blue tone.  The argument N should be a scalar.  If it is omitted, the length of the current colormap or 64 is assumed.  See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
rgb2hsv
# name: <cell-element>
# type: string
# elements: 1
# length: 461
 -- Function File: HSV_MAP = rgb2hsv (RGB_MAP)
     Transform a colormap or image from the rgb space to the hsv space.

     A color n the RGB space consists of the red, green and blue intensities.

     In the HSV space each color is represented by their hue, saturation and value (brightness).  Value gives the amount of light in the color.  Hue describes the dominant wavelength.  Saturation is the amount of Hue mixed into the color.  See also: hsv2rgb.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Transform a colormap or image from the rgb space to the hsv space.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
cool
# name: <cell-element>
# type: string
# elements: 1
# length: 223
 -- Function File:  cool (N)
     Create color colormap.  The colormap is cyan to magenta.  The argument N should be a scalar.  If it is omitted, the length of the current colormap or 64 is assumed.  See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
rainbow
# name: <cell-element>
# type: string
# elements: 1
# length: 261
 -- Function File:  rainbow (N)
     Create color colormap.  This colormap is red through orange, yellow, green, blue to violet.  The argument N should be a scalar.  If it is omitted, the length of the current colormap or 64 is assumed.  See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
imagesc
# name: <cell-element>
# type: string
# elements: 1
# length: 686
 -- Function File:  imagesc (A)
 -- Function File:  imagesc (X, Y, A)
 -- Function File:  imagesc (..., LIMITS)
 -- Function File:  imagesc (H, ...)
 -- Function File: H = imagesc (...)
     Display a scaled version of the matrix A as a color image.  The colormap is scaled so that the entries of the matrix occupy the entire colormap.  If LIMITS = [LO, HI] are given, then that range is set to the 'clim' of the current axes.

     The axis values corresponding to the matrix elements are specified in X and Y, either as pairs giving the minimum and maximum values for the respective axes, or as values for each row and column of the matrix A.

     See also: image, imshow, caxis.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Display a scaled version of the matrix A as a color image.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
summer
# name: <cell-element>
# type: string
# elements: 1
# length: 226
 -- Function File:  summer (N)
     Create color colormap.  This colormap is green to yellow.  The argument N should be a scalar.  If it is omitted, the length of the current colormap or 64 is assumed.  See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
hsv
# name: <cell-element>
# type: string
# elements: 1
# length: 454
 -- Function File:  hsv (N)
     Create color colormap.  This colormap is red through yellow, green, cyan, blue, magenta to red.  It is obtained by linearly varying the hue through all possible values while keeping constant maximum saturation and value and is equivalent to `hsv2rgb ([linspace(0,1,N)', ones(N,2)])'.

     The argument N should be a scalar.  If it is omitted, the length of the current colormap or 64 is assumed.  See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
image
# name: <cell-element>
# type: string
# elements: 1
# length: 665
 -- Function File:  image (IMG)
 -- Function File:  image (X, Y, IMG)
     Display a matrix as a color image.  The elements of X are indices into the current colormap, and the colormap will be scaled so that the extremes of X are mapped to the extremes of the colormap.

     It first tries to use `gnuplot', then `display' from `ImageMagick', then `xv', and then `xloadimage'.  The actual program used can be changed using the `image_viewer' function.

     The axis values corresponding to the matrix elements are specified in X and Y.  If you're not using gnuplot 4.2 or later, these variables are ignored.  See also: imshow, imagesc, colormap, image_viewer.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Display a matrix as a color image.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
white
# name: <cell-element>
# type: string
# elements: 1
# length: 226
 -- Function File:  white (N)
     Create color colormap.  This colormap is completely white.  The argument N should be a scalar.  If it is omitted, the length of the current colormap or 64 is assumed.  See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
image_viewer
# name: <cell-element>
# type: string
# elements: 1
# length: 1707
 -- Function File: [FCN, DEFAULT_ZOOM] = image_viewer (FCN, DEFAULT_ZOOM)
     Change the program or function used for viewing images and return the previous values.

     When the `image' or `imshow' function is called it will launch an external program to display the image.  The default behavior is to use gnuplot if the installed version supports image viewing, and otherwise try the programs `display', `xv', and `xloadimage'.  Using this function it is possible to change that behavior.

     When called with one input argument images will be displayed by saving the image to a file and the system command COMMAND will be called to view the image.  The COMMAND must be a string containing `%s' and possibly `%f'.  The `%s' will be replaced by the filename of the image, and the `%f' will (if present) be replaced by the zoom factor given to the `image' function.  For example,
          image_viewer ("eog %s");
     changes the image viewer to the `eog' program.

     With two input arguments, images will be displayed by calling the function FUNCTION_HANDLE.  For example,
          image_viewer (data, @my_image_viewer);
     sets the image viewer function to `my_image_viewer'.  The image viewer function is called with
          my_image_viewer (X, Y, IM, ZOOM, DATA)
     where X and Y are the axis of the image, IM is the image variable, and DATA is extra user-supplied data to be passed to the viewer function.

     With three input arguments it is possible to change the zooming.  Some programs (like `xloadimage') require the zoom factor to be between 0 and 100, and not 0 and 1 like Octave assumes.  This is solved by setting the third argument to 100.

     See also: image, imshow.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Change the program or function used for viewing images and return the previous values.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
hsv2rgb
# name: <cell-element>
# type: string
# elements: 1
# length: 142
 -- Function File: RGB_MAP = hsv2rgb (HSV_MAP)
     Transform a colormap or image from the hsv space to the rgb space.  See also: rgb2hsv.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Transform a colormap or image from the hsv space to the rgb space.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
imwrite
# name: <cell-element>
# type: string
# elements: 1
# length: 627
 -- Function File:  imwrite (IMG, FILENAME, FMT, P1, V1, ...)
 -- Function File:  imwrite (IMG, MAP, FILENAME, FMT, P1, V1, ...)
     Write images in various file formats.

     If FMT is missing, the file extension (if any) of FILENAME is used to determine the format.

     The parameter-value pairs (P1, V1, ...) are optional.  Currently the following options are supported for JPEG images

    `Quality'
          Sets the quality of the compression.  The corresponding value should be an integer between 0 and 100, with larger values meaning higher visual quality and less compression.

     See also: imread, imfinfo.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Write images in various file formats.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
contrast
# name: <cell-element>
# type: string
# elements: 1
# length: 246
 -- Function File:  contrast (X, N)
     Return a gray colormap that maximizes the contrast in an image.  The returned colormap will have N rows.  If N is not defined then the size of the current colormap is used instead.  See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return a gray colormap that maximizes the contrast in an image.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
rgb2ntsc
# name: <cell-element>
# type: string
# elements: 1
# length: 112
 -- Function File:  rgb2ntsc (RGB)
     Transform a colormap or image from RGB to NTSC.  See also: ntsc2rgb.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Transform a colormap or image from RGB to NTSC.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
pink
# name: <cell-element>
# type: string
# elements: 1
# length: 250
 -- Function File:  pink (N)
     Create color colormap.  This colormap gives a sepia tone on black and white images.  The argument N should be a scalar.  If it is omitted, the length of the current colormap or 64 is assumed.  See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
copper
# name: <cell-element>
# type: string
# elements: 1
# length: 239
 -- Function File:  copper (N)
     Create color colormap.  This colormap is black to a light copper tone.  The argument N should be a scalar.  If it is omitted, the length of the current colormap or 64 is assumed.  See also: colormap.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Create color colormap.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
reallog
# name: <cell-element>
# type: string
# elements: 1
# length: 205
 -- Function File:  reallog (X)
     Return the real-valued natural logarithm of each element of X.  Report an error if any element results in a complex return value.  See also: log, realpow, realsqrt.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Return the real-valued natural logarithm of each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
factor
# name: <cell-element>
# type: string
# elements: 1
# length: 346
 -- Function File: P = factor (Q)
 -- Function File: [P, N] = factor (Q)
     Return prime factorization of Q.  That is, `prod (P) == Q' and every element of P is a prime number.  If `Q == 1', returns 1.

     With two output arguments, return the unique primes P and their multiplicities.  That is, `prod (P .^ N) == Q'.  See also: gcd, lcm.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Return prime factorization of Q.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
legendre
# name: <cell-element>
# type: string
# elements: 1
# length: 2244
 -- Function File: L = legendre (N, X)
 -- Function File: L = legendre (N, X, NORMALIZATION)
     Compute the Legendre function of degree N and order M = 0 ... N.  The optional argument, NORMALIZATION, may be one of `"unnorm"', `"sch"', or `"norm"'.  The default is `"unnorm"'.  The value of N must be a non-negative scalar integer.

     If the optional argument NORMALIZATION is missing or is `"unnorm"', compute the Legendre function of degree N and order M and return all values for M = 0 ... N.  The return value has one dimension more than X.

     The Legendre Function of degree N and order M:

           m        m       2  m/2   d^m
          P(x) = (-1) * (1-x  )    * ----  P (x)
           n                         dx^m   n

     with Legendre polynomial of degree N:

                    1     d^n   2    n
          P (x) = ------ [----(x - 1)  ]
           n      2^n n!  dx^n

     `legendre (3, [-1.0, -0.9, -0.8])' returns the matrix:

           x  |   -1.0   |   -0.9   |  -0.8
          ------------------------------------
          m=0 | -1.00000 | -0.47250 | -0.08000
          m=1 |  0.00000 | -1.99420 | -1.98000
          m=2 |  0.00000 | -2.56500 | -4.32000
          m=3 |  0.00000 | -1.24229 | -3.24000

     If the optional argument `normalization' is `"sch"', compute the Schmidt semi-normalized associated Legendre function.  The Schmidt semi-normalized associated Legendre function is related to the unnormalized Legendre functions by the following:

     For Legendre functions of degree n and order 0:

            0       0
          SP (x) = P (x)
            n       n

     For Legendre functions of degree n and order m:

            m       m          m    2(n-m)! 0.5
          SP (x) = P (x) * (-1)  * [-------]
            n       n               (n+m)!

     If the optional argument NORMALIZATION is `"norm"', compute the fully normalized associated Legendre function.  The fully normalized associated Legendre function is related to the unnormalized Legendre functions by the following:

     For Legendre functions of degree N and order M

            m       m          m    (n+0.5)(n-m)! 0.5
          NP (x) = P (x) * (-1)  * [-------------]
            n       n                   (n+m)!

# name: <cell-element>
# type: string
# elements: 1
# length: 59
Compute the Legendre function of degree N and order M = 0 .

# name: <cell-element>
# type: string
# elements: 1
# length: 5
betai
# name: <cell-element>
# type: string
# elements: 1
# length: 221
 -- Function File:  betai (A, B, X)
     This function is provided for compatibility with older versions of Octave.  New programs should use betainc instead.

     `betai (A, B, X)' is the same as `betainc (X, A, B)'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 74
This function is provided for compatibility with older versions of Octave.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
perms
# name: <cell-element>
# type: string
# elements: 1
# length: 353
 -- Function File:  perms (V)
     Generate all permutations of V, one row per permutation.  The result has size `factorial (N) * N', where N is the length of V.

     As an example, `perms([1, 2, 3])' returns the matrix
            1   2   3
            2   1   3
            1   3   2
            2   3   1
            3   1   2
            3   2   1

# name: <cell-element>
# type: string
# elements: 1
# length: 56
Generate all permutations of V, one row per permutation.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
realsqrt
# name: <cell-element>
# type: string
# elements: 1
# length: 200
 -- Function File:  realsqrt (X)
     Return the real-valued square root of each element of X.  Report an error if any element results in a complex return value.  See also: sqrt, realpow, reallog.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Return the real-valued square root of each element of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
isprime
# name: <cell-element>
# type: string
# elements: 1
# length: 375
 -- Function File:  isprime (N)
     Return true if N is a prime number, false otherwise.

     Something like the following is much faster if you need to test a lot of small numbers:

             T = ismember (N, primes (max (N (:))));

     If max(n) is very large, then you should be using special purpose factorization code.

     See also: primes, factor, gcd, lcm.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Return true if N is a prime number, false otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
factorial
# name: <cell-element>
# type: string
# elements: 1
# length: 328
 -- Function File:  factorial (N)
     Return the factorial of N where N is a positive integer.  If N is a scalar, this is equivalent to `prod (1:N)'.  For vector or matrix arguments, return the factorial of each element in the array.  For non-integers see the generalized factorial function `gamma'.  See also: prod, gamma.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Return the factorial of N where N is a positive integer.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
erfinv
# name: <cell-element>
# type: string
# elements: 1
# length: 108
 -- Mapping Function:  erfinv (Z)
     Computes the inverse of the error function.  See also: erf, erfc.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Computes the inverse of the error function.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
betaln
# name: <cell-element>
# type: string
# elements: 1
# length: 192
 -- Mapping Function:  betaln (A, B)
     Return the log of the Beta function,

          betaln (a, b) = gammaln (a) + gammaln (b) - gammaln (a + b)
     See also: beta, betainc, gammaln.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Return the log of the Beta function, 

# name: <cell-element>
# type: string
# elements: 1
# length: 7
realpow
# name: <cell-element>
# type: string
# elements: 1
# length: 237
 -- Function File:  realpow (X, Y)
     Compute the real-valued, element-by-element power operator.  This is equivalent to `X .^ Y', except that `realpow' reports an error if any return value is complex.  See also: reallog, realsqrt.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 59
Compute the real-valued, element-by-element power operator.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
bessel
# name: <cell-element>
# type: string
# elements: 1
# length: 2013
 -- Loadable Function: [J, IERR] = besselj (ALPHA, X, OPT)
 -- Loadable Function: [Y, IERR] = bessely (ALPHA, X, OPT)
 -- Loadable Function: [I, IERR] = besseli (ALPHA, X, OPT)
 -- Loadable Function: [K, IERR] = besselk (ALPHA, X, OPT)
 -- Loadable Function: [H, IERR] = besselh (ALPHA, K, X, OPT)
     Compute Bessel or Hankel functions of various kinds:

    `besselj'
          Bessel functions of the first kind.  If the argument OPT is supplied, the result is multiplied by `exp(-abs(imag(x)))'.

    `bessely'
          Bessel functions of the second kind.  If the argument OPT is supplied, the result is multiplied by `exp(-abs(imag(x)))'.

    `besseli'
          Modified Bessel functions of the first kind.  If the argument OPT is supplied, the result is multiplied by `exp(-abs(real(x)))'.

    `besselk'
          Modified Bessel functions of the second kind.  If the argument OPT is supplied, the result is multiplied by `exp(x)'.

    `besselh'
          Compute Hankel functions of the first (K = 1) or second (K = 2) kind.  If the argument OPT is supplied, the result is multiplied by `exp (-I*X)' for K = 1 or `exp (I*X)' for K = 2.

     If ALPHA is a scalar, the result is the same size as X.  If X is a scalar, the result is the same size as ALPHA.  If ALPHA is a row vector and X is a column vector, the result is a matrix with `length (X)' rows and `length (ALPHA)' columns.  Otherwise, ALPHA and X must conform and the result will be the same size.

     The value of ALPHA must be real.  The value of X may be complex.

     If requested, IERR contains the following status information and is the same size as the result.

       0. Normal return.

       1. Input error, return `NaN'.

       2. Overflow, return `Inf'.

       3. Loss of significance by argument reduction results in less than half of machine accuracy.

       4. Complete loss of significance by argument reduction, return `NaN'.

       5. Error--no computation, algorithm termination condition not met, return `NaN'.

# name: <cell-element>
# type: string
# elements: 1
# length: 53
Compute Bessel or Hankel functions of various kinds: 

# name: <cell-element>
# type: string
# elements: 1
# length: 6
gammai
# name: <cell-element>
# type: string
# elements: 1
# length: 218
 -- Function File:  gammai (A, X)
     This function is provided for compatibility with older versions of Octave.  New programs should use `gammainc' instead.

     `gammai (A, X)' is the same as `gammainc (X, A)'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 74
This function is provided for compatibility with older versions of Octave.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
primes
# name: <cell-element>
# type: string
# elements: 1
# length: 407
 -- Function File:  primes (N)
     Return all primes up to N.

     The algorithm used is the Sieve of Erastothenes.

     Note that if you need a specific number of primes you can use the fact the distance from one prime to the next is, on average, proportional to the logarithm of the prime.  Integrating, one finds that there are about k primes less than k*log(5*k).  See also: list_primes, isprime.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Return all primes up to N.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
pow2
# name: <cell-element>
# type: string
# elements: 1
# length: 209
 -- Mapping Function:  pow2 (X)
 -- Mapping Function:  pow2 (F, E)
     With one argument, computes 2 .^ x for each element of X.

     With two arguments, returns f .* (2 .^ e).  See also: log2, nextpow2.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 31
With one argument, computes 2 .

# name: <cell-element>
# type: string
# elements: 1
# length: 4
beta
# name: <cell-element>
# type: string
# elements: 1
# length: 147
 -- Mapping Function:  beta (A, B)
     For real inputs, return the Beta function,

          beta (a, b) = gamma (a) * gamma (b) / gamma (a + b).

# name: <cell-element>
# type: string
# elements: 1
# length: 43
For real inputs, return the Beta function, 

# name: <cell-element>
# type: string
# elements: 1
# length: 8
nchoosek
# name: <cell-element>
# type: string
# elements: 1
# length: 777
 -- Function File: C = nchoosek (N, K)
     Compute the binomial coefficient or all combinations of N.  If N is a scalar then, calculate the binomial coefficient of N and K, defined as

           /   \
           | n |    n (n-1) (n-2) ... (n-k+1)       n!
           |   |  = ------------------------- =  ---------
           | k |               k!                k! (n-k)!
           \   /

     If N is a vector generate all combinations of the elements of N, taken K at a time, one row per combination.  The resulting C has size `[nchoosek (length (N), K), K]'.

     `nchoosek' works only for non-negative integer arguments; use `bincoeff' for non-integer scalar arguments and for using vector arguments to compute many coefficients at once.

     See also: bincoeff.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Compute the binomial coefficient or all combinations of N.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
wavread
# name: <cell-element>
# type: string
# elements: 1
# length: 765
 -- Function File: Y = wavread (FILENAME)
     Load the RIFF/WAVE sound file FILENAME, and return the samples in vector Y.  If the file contains multichannel data, then Y is a matrix with the channels represented as columns.

 -- Function File: [Y, FS, BITS] = wavread (FILENAME)
     Additionally return the sample rate (FS) in Hz and the number of bits per sample (BITS).

 -- Function File: [...] = wavread (FILENAME, N)
     Read only the first N samples from each channel.

 -- Function File: [...] = wavread (FILENAME,[N1 N2])
     Read only samples N1 through N2 from each channel.

 -- Function File: [SAMPLES, CHANNELS] = wavread (FILENAME, "size")
     Return the number of samples (N) and channels (CH) instead of the audio data.  See also: wavwrite.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Return the number of samples (N) and channels (CH) instead of the audio data.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
lin2mu
# name: <cell-element>
# type: string
# elements: 1
# length: 383
 -- Function File:  lin2mu (X, N)
     Converts audio data from linear to mu-law.  Mu-law values use 8-bit unsigned integers.  Linear values use N-bit signed integers or floating point values in the range -1<=X<=1 if N is 0.  If N is not specified it defaults to 0, 8 or 16 depending on the range values in X.  See also: mu2lin, loadaudio, saveaudio, playaudio, setaudio, record.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Converts audio data from linear to mu-law.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
setaudio
# name: <cell-element>
# type: string
# elements: 1
# length: 111
 -- Function File:  setaudio ([W_TYPE [, VALUE]])
     Execute the shell command `mixer [W_TYPE [, VALUE]]'
   
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Execute the shell command `mixer [W_TYPE [, VALUE]]'  

# name: <cell-element>
# type: string
# elements: 1
# length: 6
record
# name: <cell-element>
# type: string
# elements: 1
# length: 339
 -- Function File:  record (SEC, SAMPLING_RATE)
     Records SEC seconds of audio input into the vector X.  The default value for SAMPLING_RATE is 8000 samples per second, or 8kHz.  The program waits until the user types <RET> and then immediately starts to record.  See also: lin2mu, mu2lin, loadaudio, saveaudio, playaudio, setaudio.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Records SEC seconds of audio input into the vector X.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
mu2lin
# name: <cell-element>
# type: string
# elements: 1
# length: 341
 -- Function File:  mu2lin (X, BPS)
     Converts audio data from linear to mu-law.  Mu-law values are 8-bit unsigned integers.  Linear values use N-bit signed integers or floating point values in the range -1<=y<=1 if N is 0.  If N is not specified it defaults to 8.  See also: lin2mu, loadaudio, saveaudio, playaudio, setaudio, record.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Converts audio data from linear to mu-law.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
saveaudio
# name: <cell-element>
# type: string
# elements: 1
# length: 357
 -- Function File:  saveaudio (NAME, X, EXT, BPS)
     Saves a vector X of audio data to the file `NAME.EXT'.  The optional parameters EXT and BPS determine the encoding and the number of bits per sample used in the audio file (see `loadaudio');  defaults are `lin' and 8, respectively.  See also: lin2mu, mu2lin, loadaudio, playaudio, setaudio, record.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Saves a vector X of audio data to the file `NAME.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
wavwrite
# name: <cell-element>
# type: string
# elements: 1
# length: 389
 -- Function File:  wavwrite (Y, FILENAME)
 -- Function File:  wavwrite (Y, FS, FILENAME)
 -- Function File:  wavwrite (Y, FS, BITS, FILENAME)
     Write Y to the canonical RIFF/WAVE sound file FILENAME with sample rate FS and bits per sample BITS.  The default sample rate is 8000 Hz with 16-bits per sample.  Each column of the data represents a separate channel.  See also: wavread.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 100
Write Y to the canonical RIFF/WAVE sound file FILENAME with sample rate FS and bits per sample BITS.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
playaudio
# name: <cell-element>
# type: string
# elements: 1
# length: 225
 -- Function File:  playaudio (NAME, EXT)
 -- Function File:  playaudio (X)
     Plays the audio file `NAME.EXT' or the audio data stored in the vector X.  See also: lin2mu, mu2lin, loadaudio, saveaudio, setaudio, record.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 27
Plays the audio file `NAME.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
loadaudio
# name: <cell-element>
# type: string
# elements: 1
# length: 509
 -- Function File:  loadaudio (NAME, EXT, BPS)
     Loads audio data from the file `NAME.EXT' into the vector X.

     The extension EXT determines how the data in the audio file is interpreted;  the extensions `lin' (default) and `raw' correspond to linear, the extensions `au', `mu', or `snd' to mu-law encoding.

     The argument BPS can be either 8 (default) or 16, and specifies the number of bits per sample used in the audio file.  See also: lin2mu, mu2lin, saveaudio, playaudio, setaudio, record.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Loads audio data from the file `NAME.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
lookfor
# name: <cell-element>
# type: string
# elements: 1
# length: 1152
 -- Command: lookfor STR
 -- Command: lookfor -all STR
 -- Function: [FUNC, HELPSTRING] = lookfor (STR)
 -- Function: [FUNC, HELPSTRING] = lookfor ('-all', STR)
     Search for the string STR in all functions found in the current function search path.  By default, `lookfor' searches for STR in the first sentence of the help string of each function found.  The entire help text of each function can be searched if the '-all' argument is supplied.  All searches are case insensitive.

     Called with no output arguments, `lookfor' prints the list of matching functions to the terminal.  Otherwise, the output arguments FUNC and HELPSTRING define the matching functions and the first sentence of each of their help strings.

     The ability of `lookfor' to correctly identify the first sentence of the help text is dependent on the format of the function's help.  All Octave core functions are correctly formatted, but the same can not be guaranteed for external packages and user-supplied functions.  Therefore, the use of the '-all' argument may be necessary to find related functions that are not a part of Octave.  See also: help, doc, which.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 85
Search for the string STR in all functions found in the current function search path.

# name: <cell-element>
# type: string
# elements: 1
# length: 13
gen_doc_cache
# name: <cell-element>
# type: string
# elements: 1
# length: 441
 -- Function File: gen_doc_cache (OUT_FILE, DIRECTORY)
     Generate documentation caches for all functions in a given directory.

     A documentation cache is generated for all functions in DIRECTORY.  The resulting cache is saved in the file OUT_FILE.  The cache is used to speed up `lookfor'.

     If no directory is given (or it is the empty matrix), a cache for builtin operators, etc. is generated.

     See also: lookfor, path.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Generate documentation caches for all functions in a given directory.

# name: <cell-element>
# type: string
# elements: 1
# length: 23
get_first_help_sentence
# name: <cell-element>
# type: string
# elements: 1
# length: 837
 -- Function File: [RETVAL, STATUS] = get_first_help_sentence (NAME, MAX_LEN)
     Return the first sentence of a function help text.

     The function reads the first sentence of the help text of the function NAME.  The first sentence is defined as the text after the function declaration until either the first period (".") or the first appearance of two consecutive end-lines ("\n\n").  The text is truncated to a maximum length of MAX_LEN, which defaults to 80.

     The optional output argument STATUS returns the status reported by `makeinfo'.  If only one output argument is requested, and STATUS is non-zero, a warning is displayed.

     As an example, the first sentence of this help text is

          get_first_help_sentence ("get_first_help_sentence")
          -| ans = Return the first sentence of a function help text.

# name: <cell-element>
# type: string
# elements: 1
# length: 50
Return the first sentence of a function help text.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
help
# name: <cell-element>
# type: string
# elements: 1
# length: 501
 -- Command: help NAME
     Display the help text for NAME.  If invoked without any arguments, `help' prints a list of all the available operators and functions.

     For example, the command `help help' prints a short message describing the `help' command.

     The help command can give you information about operators, but not the comma and semicolons that are used as command separators.  To get help for those, you must type `help comma' or `help semicolon'.  See also: doc, lookfor, which.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Display the help text for NAME.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
type
# name: <cell-element>
# type: string
# elements: 1
# length: 411
 -- Command: type options name ...
     Display the definition of each NAME that refers to a function.

     Normally also displays whether each NAME is user-defined or built-in; the `-q' option suppresses this behavior.

     If an output argument is requested nothing is displayed.  Instead, a cell array of strings is returned, where each element corresponds to the definition of each requested function.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 62
Display the definition of each NAME that refers to a function.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
which
# name: <cell-element>
# type: string
# elements: 1
# length: 180
 -- Command: which name ...
     Display the type of each NAME.  If NAME is defined from a function file, the full name of the file is also displayed.  See also: help, lookfor.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Display the type of each NAME.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
print_usage
# name: <cell-element>
# type: string
# elements: 1
# length: 267
 -- Function File:  print_usage ()
 -- Function File:  print_usage (NAME)
     Print the usage message for a function.  When called with no input arguments the `print_usage' function displays the usage message of the currently executing function.  See also: help.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Print the usage message for a function.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
doc
# name: <cell-element>
# type: string
# elements: 1
# length: 495
 -- Command: doc FUNCTION_NAME
     Display documentation for the function FUNCTION_NAME directly from an on-line version of the printed manual, using the GNU Info browser.  If invoked without any arguments, the manual is shown from the beginning.

     For example, the command `doc rand' starts the GNU Info browser at the `rand' node in the on-line version of the manual.

     Once the GNU Info browser is running, help for using it is available using the command `C-h'.  See also: help.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 136
Display documentation for the function FUNCTION_NAME directly from an on-line version of the printed manual, using the GNU Info browser.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
savepath
# name: <cell-element>
# type: string
# elements: 1
# length: 306
 -- Function File:  savepath (FILE)
     Save the portion of the current function search path, that is not set during Octave's initialization process, to FILE.  If FILE is omitted, `~/.octaverc' is used.  If successful, `savepath' returns 0.  See also: path, addpath, rmpath, genpath, pathdef, pathsep.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 118
Save the portion of the current function search path, that is not set during Octave's initialization process, to FILE.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
pathdef
# name: <cell-element>
# type: string
# elements: 1
# length: 393
 -- Function File: VAL = pathdef ()
     Return the default path for Octave.  The path information is extracted from one of three sources.  In order of preference, those are;

       1. `~/.octaverc'

       2. `<octave-home>/.../<version>/m/startup/octaverc'

       3. Octave's path prior to changes by any octaverc.
          See also: path, addpath, rmpath, genpath, savepath, pathsep.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Return the default path for Octave.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
matlabroot
# name: <cell-element>
# type: string
# elements: 1
# length: 109
 -- Function File: VAL = matlabroot ()
     Return the location of Octave's home.  See also: OCTAVE_HOME.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Return the location of Octave's home.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
ind2sub
# name: <cell-element>
# type: string
# elements: 1
# length: 414
 -- Function File: [S1, S2, ..., SN] = ind2sub (DIMS, IND)
     Convert a linear index into subscripts.

     The following example shows how to convert the linear index `8' in a 3-by-3 matrix into a subscript.  The matrix is linearly indexed moving from one column to next, filling up all rows in each column.
          [r, c] = ind2sub ([3, 3], 8)
          => r =  2
          c =  3
     See also: sub2ind.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Convert a linear index into subscripts.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
celldisp
# name: <cell-element>
# type: string
# elements: 1
# length: 244
 -- Function File:  celldisp (C, NAME)
     Recursively display the contents of a cell array.  By default the values are displayed with the name of the variable C.  However, this name can be replaced with the variable NAME.  See also: disp.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Recursively display the contents of a cell array.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
sub2ind
# name: <cell-element>
# type: string
# elements: 1
# length: 460
 -- Function File: IND = sub2ind (DIMS, I, J)
 -- Function File: IND = sub2ind (DIMS, S1, S2, ..., SN)
     Convert subscripts into a linear index.

     The following example shows how to convert the two-dimensional index `(2,3)' of a 3-by-3 matrix to a linear index.  The matrix is linearly indexed moving from one column to next, filling up all rows in each column.

          linear_index = sub2ind ([3, 3], 2, 3)
          => 8
     See also: ind2sub.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Convert subscripts into a linear index.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
pol2cart
# name: <cell-element>
# type: string
# elements: 1
# length: 365
 -- Function File: [X, Y] = pol2cart (THETA, R)
 -- Function File: [X, Y, Z] = pol2cart (THETA, R, Z)
     Transform polar or cylindrical to Cartesian coordinates.  THETA, R (and Z) must be the same shape, or scalar.  THETA describes the angle relative to the positive x-axis.  R is the distance to the z-axis (0, 0, z).  See also: cart2pol, cart2sph, sph2cart.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Transform polar or cylindrical to Cartesian coordinates.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
issymmetric
# name: <cell-element>
# type: string
# elements: 1
# length: 390
 -- Function File:  issymmetric (X, TOL)
     If X is symmetric within the tolerance specified by TOL, then return the dimension of X.  Otherwise, return 0.  If TOL is omitted, use a tolerance equal to the machine precision.  Matrix X is considered symmetric if `norm (X - X.', inf) / norm (X, inf) < TOL'.  See also: size, rows, columns, length, ismatrix, isscalar, issquare, isvector.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 88
If X is symmetric within the tolerance specified by TOL, then return the dimension of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
runlength
# name: <cell-element>
# type: string
# elements: 1
# length: 241
 -- Function File:  runlength (X)
     Find the lengths of all sequences of common values.  Return the vector of lengths and the value that was repeated.

          runlength ([2, 2, 0, 4, 4, 4, 0, 1, 1, 1, 1])
          =>  [2, 1, 3, 1, 4]

# name: <cell-element>
# type: string
# elements: 1
# length: 51
Find the lengths of all sequences of common values.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
circshift
# name: <cell-element>
# type: string
# elements: 1
# length: 766
 -- Function File: Y = circshift (X, N)
     Circularly shifts the values of the array X.  N must be a vector of integers no longer than the number of dimensions in X.  The values of N can be either positive or negative, which determines the direction in which the values or X are shifted.  If an element of N is zero, then the corresponding dimension of X will not be shifted.  For example

          x = [1, 2, 3; 4, 5, 6; 7, 8, 9];
          circshift (x, 1)
          =>  7, 8, 9
              1, 2, 3
              4, 5, 6
          circshift (x, -2)
          =>  7, 8, 9
              1, 2, 3
              4, 5, 6
          circshift (x, [0,1])
          =>  3, 1, 2
              6, 4, 5
              9, 7, 8
     See also: permute, ipermute, shiftdim.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Circularly shifts the values of the array X.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
common_size
# name: <cell-element>
# type: string
# elements: 1
# length: 626
 -- Function File: [ERR, Y1, ...] = common_size (X1, ...)
     Determine if all input arguments are either scalar or of common size.  If so, ERR is zero, and YI is a matrix of the common size with all entries equal to XI if this is a scalar or XI otherwise.  If the inputs cannot be brought to a common size, errorcode is 1, and YI is XI.  For example,

          [errorcode, a, b] = common_size ([1 2; 3 4], 5)
               => errorcode = 0
               => a = [ 1, 2; 3, 4 ]
               => b = [ 5, 5; 5, 5 ]

     This is useful for implementing functions where arguments can either be scalars or of common size.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Determine if all input arguments are either scalar or of common size.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
shift
# name: <cell-element>
# type: string
# elements: 1
# length: 283
 -- Function File:  shift (X, B)
 -- Function File:  shift (X, B, DIM)
     If X is a vector, perform a circular shift of length B of the elements of X.

     If X is a matrix, do the same for each column of X.  If the optional DIM argument is given, operate along this dimension
   
# name: <cell-element>
# type: string
# elements: 1
# length: 76
If X is a vector, perform a circular shift of length B of the elements of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
cumtrapz
# name: <cell-element>
# type: string
# elements: 1
# length: 452
 -- Function File: Z = cumtrapz (Y)
 -- Function File: Z = cumtrapz (X, Y)
 -- Function File: Z = cumtrapz (..., DIM)
     Cumulative numerical integration using trapezoidal method.  `cumtrapz (Y)' computes the cumulative integral of the Y along the first non-singleton dimension.  If the argument X is omitted a equally spaced vector is assumed.  `cumtrapz (X, Y)' evaluates the cumulative integral with respect to X.

     See also: trapz,cumsum.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Cumulative numerical integration using trapezoidal method.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
gradient
# name: <cell-element>
# type: string
# elements: 1
# length: 1783
 -- Function File: DX = gradient (M)
 -- Function File: [DX, DY, DZ, ...] = gradient (M)
 -- Function File: [...] = gradient (M, S)
 -- Function File: [...] = gradient (M, X, Y, Z, ...)
 -- Function File: [...] = gradient (F, X0)
 -- Function File: [...] = gradient (F, X0, S)
 -- Function File: [...] = gradient (F, X0, X, Y, ...)
     Calculate the gradient of sampled data or a function.  If M is a vector, calculate the one-dimensional gradient of M.  If M is a matrix the gradient is calculated for each dimension.

     `[DX, DY] = gradient (M)' calculates the one dimensional gradient for X and Y direction if M is a matrix.  Additional return arguments can be use for multi-dimensional matrices.

     A constant spacing between two points can be provided by the S parameter.  If S is a scalar, it is assumed to be the spacing for all dimensions.  Otherwise, separate values of the spacing can be supplied by the X, ... arguments.  Scalar values specify an equidistant spacing.  Vector values for the X, ... arguments specify the coordinate for that dimension.  The length must match their respective dimension of M.

     At boundary points a linear extrapolation is applied.  Interior points are calculated with the first approximation of the numerical gradient

          y'(i) = 1/(x(i+1)-x(i-1)) * (y(i-1)-y(i+1)).

     If the first argument F is a function handle, the gradient of the function at the points in X0 is approximated using central difference.  For example, `gradient (@cos, 0)' approximates the gradient of the cosine function in the point x0 = 0.  As with sampled data, the spacing values between the points from which the gradient is estimated can be set via the S or DX, DY, ... arguments.  By default a spacing of 1 is used.  See also: diff, del2.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Calculate the gradient of sampled data or a function.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
triplequad
# name: <cell-element>
# type: string
# elements: 1
# length: 636
 -- Function File:  triplequad (F, XA, XB, YA, YB, ZA, ZB, TOL, QUADF, ...)
     Numerically evaluate a triple integral.  The function over which to integrate is defined by `F', and the interval for the integration is defined by `[XA, XB, YA, YB, ZA, ZB]'.  The function F must accept a vector X and a scalar Y, and return a vector of the same length as X.

     If defined, TOL defines the absolute tolerance to which to which to integrate each sub-integral.

     Additional arguments, are passed directly to F.  To use the default value for TOL one may pass an empty matrix.  See also: dblquad, quad, quadv, quadl, quadgk, trapz.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Numerically evaluate a triple integral.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
prepad
# name: <cell-element>
# type: string
# elements: 1
# length: 517
 -- Function File:  prepad (X, L, C)
 -- Function File:  prepad (X, L, C, DIM)
     Prepend (append) the scalar value C to the vector X until it is of length L.  If the third argument is not supplied, a value of 0 is used.

     If `length (X) > L', elements from the beginning (end) of X are removed until a vector of length L is obtained.

     If X is a matrix, elements are prepended or removed from each row.

     If the optional DIM argument is given, then operate along this dimension.  See also: postpad.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Prepend (append) the scalar value C to the vector X until it is of length L.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
cellidx
# name: <cell-element>
# type: string
# elements: 1
# length: 602
 -- Function File: [IDXVEC, ERRMSG] = cellidx (LISTVAR, STRLIST)
     Return indices of string entries in LISTVAR that match strings in STRLIST.

     Both LISTVAR and STRLIST may be passed as strings or string matrices.  If they are passed as string matrices, each entry is processed by `deblank' prior to searching for the entries.

     The first output is the vector of indices in LISTVAR.

     If STRLIST contains a string not in LISTVAR, then an error message is returned in ERRMSG.  If only one output argument is requested, then CELLIDX prints ERRMSG to the screen and exits with an error.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Return indices of string entries in LISTVAR that match strings in STRLIST.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
bitget
# name: <cell-element>
# type: string
# elements: 1
# length: 277
 -- Function File: X = bitget (A,N)
     Return the status of bit(s) N of unsigned integers in A the lowest significant bit is N = 1.

          bitget (100, 8:-1:1)
          => 0  1  1  0  0  1  0  0
     See also: bitand, bitor, bitxor, bitset, bitcmp, bitshift, bitmax.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Return the status of bit(s) N of unsigned integers in A the lowest significant bit is N = 1.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
tril
# name: <cell-element>
# type: string
# elements: 1
# length: 988
 -- Function File:  tril (A, K)
 -- Function File:  triu (A, K)
     Return a new matrix formed by extracting the lower (`tril') or upper (`triu') triangular part of the matrix A, and setting all other elements to zero.  The second argument is optional, and specifies how many diagonals above or below the main diagonal should also be set to zero.

     The default value of K is zero, so that `triu' and `tril' normally include the main diagonal as part of the result matrix.

     If the value of K is negative, additional elements above (for `tril') or below (for `triu') the main diagonal are also selected.

     The absolute value of K must not be greater than the number of sub- or super-diagonals.

     For example,

          tril (ones (3), -1)
               =>  0  0  0
                   1  0  0
                   1  1  0

     and

          tril (ones (3), 1)
               =>  1  1  0
                   1  1  1
                   1  1  1
     See also: triu, diag.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 150
Return a new matrix formed by extracting the lower (`tril') or upper (`triu') triangular part of the matrix A, and setting all other elements to zero.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
num2str
# name: <cell-element>
# type: string
# elements: 1
# length: 1331
 -- Function File:  num2str (X)
 -- Function File:  num2str (X, PRECISION)
 -- Function File:  num2str (X, FORMAT)
     Convert a number (or array) to a string (or a character array).  The optional second argument may either give the number of significant digits (PRECISION) to be used in the output or a format template string (FORMAT) as in `sprintf' (*note Formatted Output::).  `num2str' can also handle complex numbers.  For example:

          num2str (123.456)
               => "123.46"

          num2str (123.456, 4)
               => "123.5"

          s = num2str ([1, 1.34; 3, 3.56], "%5.1f")
               => s =
                  1.0  1.3
                  3.0  3.6
          whos s
               =>
                Attr Name        Size                     Bytes  Class
                ==== ====        ====                     =====  =====
                     s           2x8                         16  char

          num2str (1.234 + 27.3i)
               => "1.234+27.3i"

     The `num2str' function is not very flexible.  For better control over the results, use `sprintf' (*note Formatted Output::).  Note that for complex X, the format string may only contain one output conversion specification and nothing else.  Otherwise, you will get unpredictable results.  See also: sprintf, int2str, mat2str.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Convert a number (or array) to a string (or a character array).

# name: <cell-element>
# type: string
# elements: 1
# length: 6
bitcmp
# name: <cell-element>
# type: string
# elements: 1
# length: 352
 -- Function File:  bitcmp (A, K)
     Return the K-bit complement of integers in A.  If K is omitted `k = log2 (bitmax) + 1' is assumed.

          bitcmp(7,4)
          => 8
          dec2bin(11)
          => 1011
          dec2bin(bitcmp(11, 6))
          => 110100
     See also: bitand, bitor, bitxor, bitset, bitget, bitcmp, bitshift, bitmax.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Return the K-bit complement of integers in A.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
rem
# name: <cell-element>
# type: string
# elements: 1
# length: 298
 -- Mapping Function:  rem (X, Y)
     Return the remainder of the division `X / Y', computed using the expression

          x - y .* fix (x ./ y)

     An error message is printed if the dimensions of the arguments do not agree, or if either of the arguments is complex.  See also: mod, fmod.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Return the remainder of the division `X / Y', computed using the expression 

# name: <cell-element>
# type: string
# elements: 1
# length: 8
interp1q
# name: <cell-element>
# type: string
# elements: 1
# length: 714
 -- Function File: YI = interp1q (X, Y, XI)
     One-dimensional linear interpolation without error checking.  Interpolates Y, defined at the points X, at the points XI.  The sample points X must be a strictly monotonically increasing column vector.  If Y is an array, treat the columns of Y separately.  If Y is a vector, it must be a column vector of the same length as X.

     Values of XI beyond the endpoints of the interpolation result in NA being returned.

     Note that the error checking is only a significant portion of the execution time of this `interp1' if the size of the input arguments is relatively small.  Therefore, the benefit of using `interp1q' is relatively small.  See also: interp1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 60
One-dimensional linear interpolation without error checking.

# name: <cell-element>
# type: string
# elements: 1
# length: 18
is_duplicate_entry
# name: <cell-element>
# type: string
# elements: 1
# length: 118
 -- Function File:  is_duplicate_entry (X)
     Return non-zero if any entries in X are duplicates of one another.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Return non-zero if any entries in X are duplicates of one another.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
polyarea
# name: <cell-element>
# type: string
# elements: 1
# length: 475
 -- Function File:  polyarea (X, Y)
 -- Function File:  polyarea (X, Y, DIM)
     Determines area of a polygon by triangle method.  The variables X and Y define the vertex pairs, and must therefore have the same shape.  They can be either vectors or arrays.  If they are arrays then the columns of X and Y are treated separately and an area returned for each.

     If the optional DIM argument is given, then `polyarea' works along this dimension of the arrays X and Y.

   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Determines area of a polygon by triangle method.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
structfun
# name: <cell-element>
# type: string
# elements: 1
# length: 1710
 -- Function File:  structfun (FUNC, S)
 -- Function File: [A, B] = structfun (...)
 -- Function File:  structfun (..., "ErrorHandler", ERRFUNC)
 -- Function File:  structfun (..., "UniformOutput", VAL)
     Evaluate the function named NAME on the fields of the structure S.  The fields of S are passed to the function FUNC individually.

     `structfun' accepts an arbitrary function FUNC in the form of an inline function, function handle, or the name of a function (in a character string).  In the case of a character string argument, the function must accept a single argument named X, and it must return a string value.  If the function returns more than one argument, they are returned as separate output variables.

     If the parameter "UniformOutput" is set to true (the default), then the function must return a single element which will be concatenated into the return value.  If "UniformOutput" is false, the outputs placed in a structure with the same fieldnames as the input structure.

          s.name1 = "John Smith";
          s.name2 = "Jill Jones";
          structfun (@(x) regexp (x, '(\w+)$', "matches"){1}, s,
                     "UniformOutput", false)

     Given the parameter "ErrorHandler", then ERRFUNC defines a function to call in case FUNC generates an error.  The form of the function is

          function [...] = errfunc (SE, ...)

     where there is an additional input argument to ERRFUNC relative to FUNC, given by SE.  This is a structure with the elements "identifier", "message" and "index", giving respectively the error identifier, the error message, and the index into the input arguments of the element that caused the error.  See also: cellfun, arrayfun.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Evaluate the function named NAME on the fields of the structure S.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
isa
# name: <cell-element>
# type: string
# elements: 1
# length: 93
 -- Function File:  isa (X, CLASS)
     Return true if X is a value from the class CLASS.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Return true if X is a value from the class CLASS.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
del2
# name: <cell-element>
# type: string
# elements: 1
# length: 1132
 -- Function File: D = del2 (M)
 -- Function File: D = del2 (M, H)
 -- Function File: D = del2 (M, DX, DY, ...)
     Calculate the discrete Laplace operator.  For a 2-dimensional matrix M this is defined as

                1    / d^2            d^2         \
          D  = --- * | ---  M(x,y) +  ---  M(x,y) |
                4    \ dx^2           dy^2        /

     For N-dimensional arrays the sum in parentheses is expanded to include second derivatives over the additional higher dimensions.

     The spacing between evaluation points may be defined by H, which is a scalar defining the equidistant spacing in all dimensions.  Alternatively, the spacing in each dimension may be defined separately by DX, DY, etc.  A scalar spacing argument defines equidistant spacing, whereas a vector argument can be used to specify variable spacing.  The length of the spacing vectors must match the respective dimension of M.  The default spacing value is 1.

     At least 3 data points are needed for each dimension.  Boundary points are calculated from the linear extrapolation of interior points.

     See also: gradient, diff.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 40
Calculate the discrete Laplace operator.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
logspace
# name: <cell-element>
# type: string
# elements: 1
# length: 431
 -- Function File:  logspace (BASE, LIMIT, N)
     Similar to `linspace' except that the values are logarithmically spaced from 10^base to 10^limit.

     If LIMIT is equal to pi, the points are between 10^base and pi, _not_ 10^base and 10^pi, in order to be compatible with the corresponding MATLAB function.

     Also for compatibility, return the second argument if fewer than two values are requested.  See also: linspace.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 97
Similar to `linspace' except that the values are logarithmically spaced from 10^base to 10^limit.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
bicubic
# name: <cell-element>
# type: string
# elements: 1
# length: 335
 -- Function File: ZI = bicubic (X, Y, Z, XI, YI, EXTRAPVAL)
     Return a matrix ZI corresponding to the bicubic interpolations at XI and YI of the data supplied as X, Y and Z.  Points outside the grid are set to EXTRAPVAL.

     See `http://wiki.woodpecker.org.cn/moin/Octave/Bicubic' for further information.  See also: interp2.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 111
Return a matrix ZI corresponding to the bicubic interpolations at XI and YI of the data supplied as X, Y and Z.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
sortrows
# name: <cell-element>
# type: string
# elements: 1
# length: 313
 -- Function File:  sortrows (A, C)
     Sort the rows of the matrix A according to the order of the columns specified in C.  If C is omitted, a lexicographical sort is used.  By default ascending order is used however if elements of C are negative then the corresponding column is sorted in descending order.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Sort the rows of the matrix A according to the order of the columns specified in C.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
subsindex
# name: <cell-element>
# type: string
# elements: 1
# length: 824
 -- Function File: IDX = subsindex (A)
     Convert an object to an index vector.  When A is a class object defined with a class constructor, then `subsindex' is the overloading method that allows the conversion of this class object to a valid indexing vector.  It is important to note that `subsindex' must return a zero-based real integer vector of the class "double".  For example, if the class constructor

          function b = myclass (a)
           b = myclass (struct ("a", a), "myclass");
          endfunction

     then the `subsindex' function

          function idx = subsindex (a)
           idx = double (a.a) - 1.0;
          endfunction

     can then be used as follows

          a = myclass (1:4);
          b = 1:10;
          b(a)
          => 1  2  3  4

     See also: class, subsref, subsasgn.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 37
Convert an object to an index vector.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
interp2
# name: <cell-element>
# type: string
# elements: 1
# length: 1759
 -- Function File: ZI = interp2 (X, Y, Z, XI, YI)
 -- Function File: ZI = interp2 (Z, XI, YI)
 -- Function File: ZI = interp2 (Z, N)
 -- Function File: ZI = interp2 (..., METHOD)
 -- Function File: ZI = interp2 (..., METHOD, EXTRAPVAL)
     Two-dimensional interpolation.  X, Y and Z describe a surface function.  If X and Y are vectors their length must correspondent to the size of Z.  X and Y must be monotonic.  If they are matrices they must have the `meshgrid' format.

    `interp2 (X, Y, Z, XI, YI, ...)'
          Returns a matrix corresponding to the points described by the matrices XI, YI.

          If the last argument is a string, the interpolation method can be specified.  The method can be 'linear', 'nearest' or 'cubic'.  If it is omitted 'linear' interpolation is assumed.

    `interp2 (Z, XI, YI)'
          Assumes `X = 1:rows (Z)' and `Y = 1:columns (Z)'

    `interp2 (Z, N)'
          Interleaves the matrix Z n-times.  If N is omitted a value of `N = 1' is assumed.

     The variable METHOD defines the method to use for the interpolation.  It can take one of the following values

    'nearest'
          Return the nearest neighbor.

    'linear'
          Linear interpolation from nearest neighbors.

    'pchip'
          Piece-wise cubic hermite interpolating polynomial (not implemented yet).

    'cubic'
          Cubic interpolation from four nearest neighbors.

    'spline'
          Cubic spline interpolation-smooth first and second derivatives throughout the curve.

     If a scalar value EXTRAPVAL is defined as the final value, then values outside the mesh as set to this value.  Note that in this case METHOD must be defined as well.  If EXTRAPVAL is not defined then NA is assumed.

     See also: interp1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Two-dimensional interpolation.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
repmat
# name: <cell-element>
# type: string
# elements: 1
# length: 257
 -- Function File:  repmat (A, M, N)
 -- Function File:  repmat (A, [M N])
 -- Function File:  repmat (A, [M N P ...])
     Form a block matrix of size M by N, with a copy of matrix A as each element.  If N is not specified, form an M by M block matrix.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Form a block matrix of size M by N, with a copy of matrix A as each element.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
isequal
# name: <cell-element>
# type: string
# elements: 1
# length: 128
 -- Function File:  isequal (X1, X2, ...)
     Return true if all of X1, X2, ... are equal.  See also: isequalwithequalnans.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 31
Return true if all of X1, X2, .

# name: <cell-element>
# type: string
# elements: 1
# length: 4
deal
# name: <cell-element>
# type: string
# elements: 1
# length: 494
 -- Function File: [R1, R2, ..., RN] = deal (A)
 -- Function File: [R1, R2, ..., RN] = deal (A1, A2, ..., AN)
     Copy the input parameters into the corresponding output parameters.  If only one input parameter is supplied, its value is copied to each of the outputs.

     For example,

          [a, b, c] = deal (x, y, z);

     is equivalent to

          a = x;
          b = y;
          c = z;

     and

          [a, b, c] = deal (x);

     is equivalent to

          a = b = c = x;

# name: <cell-element>
# type: string
# elements: 1
# length: 67
Copy the input parameters into the corresponding output parameters.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
quadv
# name: <cell-element>
# type: string
# elements: 1
# length: 1075
 -- Function File: Q = quadv (F, A, B)
 -- Function File: Q = quadl (F, A, B, TOL)
 -- Function File: Q = quadl (F, A, B, TOL, TRACE)
 -- Function File: Q = quadl (F, A, B, TOL, TRACE, P1, P2, ...)
 -- Function File: [Q, FCNT] = quadl (...)
     Numerically evaluate integral using adaptive Simpson's rule.  `quadv (F, A, B)' approximates the integral of `F(X)' to the default absolute tolerance of `1e-6'.  F is either a function handle, inline function or string containing the name of the function to evaluate.  The function F must accept a string, and can return a vector representing the approximation to N different sub-functions.

     If defined, TOL defines the absolute tolerance to which to which to integrate each sub-interval of `F(X)'.  While if TRACE is defined, displays the left end point of the current interval, the interval length, and the partial integral.

     Additional arguments P1, etc., are passed directly to F.  To use default values for TOL and TRACE, one may pass empty matrices.  See also: triplequad, dblquad, quad, quadl, quadgk, trapz.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 60
Numerically evaluate integral using adaptive Simpson's rule.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
randperm
# name: <cell-element>
# type: string
# elements: 1
# length: 122
 -- Function File:  randperm (N)
     Return a row vector containing a random permutation of the integers from 1 to N.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 80
Return a row vector containing a random permutation of the integers from 1 to N.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
interpn
# name: <cell-element>
# type: string
# elements: 1
# length: 1600
 -- Function File: VI = interpn (X1, X2, ..., V, Y1, Y2, ...)
 -- Function File: VI = interpn (V, Y1, Y2, ...)
 -- Function File: VI = interpn (V, M)
 -- Function File: VI = interpn (V)
 -- Function File: VI = interpn (..., METHOD)
 -- Function File: VI = interpn (..., METHOD, EXTRAPVAL)
     Perform N-dimensional interpolation, where N is at least two.  Each element of the N-dimensional array V represents a value at a location given by the parameters X1, X2, ..., XN.  The parameters X1, X2, ..., XN are either N-dimensional arrays of the same size as the array V in the 'ndgrid' format or vectors.  The parameters Y1, etc. respect a similar format to X1, etc., and they represent the points at which the array VI is interpolated.

     If X1, ..., XN are omitted, they are assumed to be `x1 = 1 : size (V, 1)', etc.  If M is specified, then the interpolation adds a point half way between each of the interpolation points.  This process is performed M times.  If only V is specified, then M is assumed to be `1'.

     Method is one of:

    'nearest'
          Return the nearest neighbor.

    'linear'
          Linear interpolation from nearest neighbors.

    'cubic'
          Cubic interpolation from four nearest neighbors (not implemented yet).

    'spline'
          Cubic spline interpolation-smooth first and second derivatives throughout the curve.

     The default method is 'linear'.

     If EXTRAPVAL is the scalar value, use it to replace the values beyond the endpoints with that number.  If EXTRAPVAL is missing, assume NA.  See also: interp1, interp2, spline, ndgrid.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Perform N-dimensional interpolation, where N is at least two.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
fliplr
# name: <cell-element>
# type: string
# elements: 1
# length: 331
 -- Function File:  fliplr (X)
     Return a copy of X with the order of the columns reversed.  For example,

          fliplr ([1, 2; 3, 4])
               =>  2  1
                   4  3

     Note that `fliplr' only work with 2-D arrays.  To flip N-d arrays use `flipdim' instead.  See also: flipud, flipdim, rot90, rotdim.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Return a copy of X with the order of the columns reversed.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
blkdiag
# name: <cell-element>
# type: string
# elements: 1
# length: 215
 -- Function File:  blkdiag (A, B, C, ...)
     Build a block diagonal matrix from A, B, C, ....  All the arguments must be numeric and are two-dimensional matrices or scalars.  See also: diag, horzcat, vertcat.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Build a block diagonal matrix from A, B, C, .

# name: <cell-element>
# type: string
# elements: 1
# length: 8
cell2mat
# name: <cell-element>
# type: string
# elements: 1
# length: 274
 -- Function File: M = cell2mat (C)
     Convert the cell array C into a matrix by concatenating all elements of C into a hyperrectangle.  Elements of C must be numeric, logical or char, and `cat' must be able to concatenate them together.  See also: mat2cell, num2cell.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 96
Convert the cell array C into a matrix by concatenating all elements of C into a hyperrectangle.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
interpft
# name: <cell-element>
# type: string
# elements: 1
# length: 510
 -- Function File:  interpft (X, N)
 -- Function File:  interpft (X, N, DIM)
     Fourier interpolation.  If X is a vector, then X is resampled with N points.  The data in X is assumed to be equispaced.  If X is an array, then operate along each column of the array separately.  If DIM is specified, then interpolate along the dimension DIM.

     `interpft' assumes that the interpolated function is periodic, and so assumptions are made about the end points of the interpolation.

     See also: interp1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Fourier interpolation.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
triu
# name: <cell-element>
# type: string
# elements: 1
# length: 50
 -- Function File:  triu (A, K)
     See tril.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 9
See tril.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
strerror
# name: <cell-element>
# type: string
# elements: 1
# length: 264
 -- Function File:  strerror (NAME, NUM)
     Return the text of an error message for function NAME corresponding to the error number NUM.  This function is intended to be used to print useful error messages for those functions that return numeric error codes.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 92
Return the text of an error message for function NAME corresponding to the error number NUM.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
nargoutchk
# name: <cell-element>
# type: string
# elements: 1
# length: 506
 -- Function File: MSGSTR = nargoutchk (MINARGS, MAXARGS, NARGS)
 -- Function File: MSGSTR = nargoutchk (MINARGS, MAXARGS, NARGS, "string")
 -- Function File: MSGSTRUCT = nargoutchk (MINARGS, MAXARGS, NARGS, "struct")
     Return an appropriate error message string (or structure) if the number of outputs requested is invalid.

     This is useful for checking to see that the number of output arguments supplied to a function is within an acceptable range.  See also: nargchk, error, nargout, nargin.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 104
Return an appropriate error message string (or structure) if the number of outputs requested is invalid.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
trapz
# name: <cell-element>
# type: string
# elements: 1
# length: 400
 -- Function File: Z = trapz (Y)
 -- Function File: Z = trapz (X, Y)
 -- Function File: Z = trapz (..., DIM)
     Numerical integration using trapezoidal method.  `trapz (Y)' computes the integral of the Y along the first non-singleton dimension.  If the argument X is omitted a equally spaced vector is assumed.  `trapz (X, Y)' evaluates the integral with respect to X.

     See also: cumtrapz.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Numerical integration using trapezoidal method.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
dblquad
# name: <cell-element>
# type: string
# elements: 1
# length: 619
 -- Function File:  dblquad (F, XA, XB, YA, YB, TOL, QUADF, ...)
     Numerically evaluate a double integral.  The function over with to integrate is defined by `F', and the interval for the integration is defined by `[XA, XB, YA, YB]'.  The function F must accept a vector X and a scalar Y, and return a vector of the same length as X.

     If defined, TOL defines the absolute tolerance to which to which to integrate each sub-integral.

     Additional arguments, are passed directly to F.  To use the default value for TOL one may pass an empty matrix.  See also: triplequad, quad, quadv, quadl, quadgk, trapz.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 39
Numerically evaluate a double integral.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
isdir
# name: <cell-element>
# type: string
# elements: 1
# length: 71
 -- Function File:  isdir (F)
     Return true if F is a directory.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Return true if F is a directory.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
isvector
# name: <cell-element>
# type: string
# elements: 1
# length: 150
 -- Function File:  isvector (A)
     Return 1 if A is a vector.  Otherwise, return 0.  See also: size, rows, columns, length, isscalar, ismatrix.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Return 1 if A is a vector.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
cart2pol
# name: <cell-element>
# type: string
# elements: 1
# length: 361
 -- Function File: [THETA, R] = cart2pol (X, Y)
 -- Function File: [THETA, R, Z] = cart2pol (X, Y, Z)
     Transform Cartesian to polar or cylindrical coordinates.  X, Y (and Z) must be the same shape, or scalar.  THETA describes the angle relative to the positive x-axis.  R is the distance to the z-axis (0, 0, z).  See also: pol2cart, cart2sph, sph2cart.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Transform Cartesian to polar or cylindrical coordinates.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
idivide
# name: <cell-element>
# type: string
# elements: 1
# length: 1283
 -- Function File:  idivide (X, Y, OP)
     Integer division with different round rules.  The standard behavior of the an integer division such as `A ./ B' is to round the result to the nearest integer.  This is not always the desired behavior and `idivide' permits integer element-by-element division to be performed with different treatment for the fractional part of the division as determined by the OP flag.  OP is a string with one of the values:

    "fix"
          Calculate `A ./ B' with the fractional part rounded towards zero.

    "round"
          Calculate `A ./ B' with the fractional part rounded towards the nearest integer.

    "floor"
          Calculate `A ./ B' with the fractional part rounded downwards.

    "ceil"
          Calculate `A ./ B' with the fractional part rounded upwards.

     If OP is not given it is assumed that it is `"fix"'.  An example demonstrating these rounding rules is

          idivide (int8 ([-3, 3]), int8 (4), "fix")
          => int8 ([0, 0])
          idivide (int8 ([-3, 3]), int8 (4), "round")
          => int8 ([-1, 1])
          idivide (int8 ([-3, 3]), int8 (4), "ceil")
          => int8 ([0, 1])
          idivide (int8 ([-3, 3]), int8 (4), "floor")
          => int8 ([-1, 0])

     See also: ldivide, rdivide.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 44
Integer division with different round rules.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
diff
# name: <cell-element>
# type: string
# elements: 1
# length: 852
 -- Function File:  diff (X, K, DIM)
     If X is a vector of length N, `diff (X)' is the vector of first differences X(2) - X(1), ..., X(n) - X(n-1).

     If X is a matrix, `diff (X)' is the matrix of column differences along the first non-singleton dimension.

     The second argument is optional.  If supplied, `diff (X, K)', where K is a non-negative integer, returns the K-th differences.  It is possible that K is larger than then first non-singleton dimension of the matrix.  In this case, `diff' continues to take the differences along the next non-singleton dimension.

     The dimension along which to take the difference can be explicitly stated with the optional variable DIM.  In this case the K-th order differences are calculated along this dimension.  In the case where K exceeds `size (X, DIM)' then an empty matrix is returned.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 90
If X is a vector of length N, `diff (X)' is the vector of first differences X(2) - X(1), .

# name: <cell-element>
# type: string
# elements: 1
# length: 7
loadobj
# name: <cell-element>
# type: string
# elements: 1
# length: 479
 -- Function File: B = loadobj (A)
     Method of a class to manipulate an object after loading it from a file.  The function `loadobj' is called when the object A is loaded using the `load' function.  An example of the use of `saveobj' might be to add fields to an object that don't make sense to be saved.  For example

          function b = loadobj (a)
            b = a;
            b.addmissingfield = addfield (b);
          endfunction

     See also: saveobj, class.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Method of a class to manipulate an object after loading it from a file.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
sph2cart
# name: <cell-element>
# type: string
# elements: 1
# length: 346
 -- Function File: [X, Y, Z] = sph2cart (THETA, PHI, R)
     Transform spherical to Cartesian coordinates.  X, Y and Z must be the same shape, or scalar.  THETA describes the angle relative to the positive x-axis.  PHI is the angle relative to the xy-plane.  R is the distance to the origin (0, 0, 0).  See also: pol2cart, cart2pol, cart2sph.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Transform spherical to Cartesian coordinates.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
cart2sph
# name: <cell-element>
# type: string
# elements: 1
# length: 346
 -- Function File: [THETA, PHI, R] = cart2sph (X, Y, Z)
     Transform Cartesian to spherical coordinates.  X, Y and Z must be the same shape, or scalar.  THETA describes the angle relative to the positive x-axis.  PHI is the angle relative to the xy-plane.  R is the distance to the origin (0, 0, 0).  See also: pol2cart, cart2pol, sph2cart.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 45
Transform Cartesian to spherical coordinates.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
flipdim
# name: <cell-element>
# type: string
# elements: 1
# length: 241
 -- Function File:  flipdim (X, DIM)
     Return a copy of X flipped about the dimension DIM.  For example

          flipdim ([1, 2; 3, 4], 2)
               =>  2  1
                   4  3
     See also: fliplr, flipud, rot90, rotdim.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Return a copy of X flipped about the dimension DIM.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
quadgk
# name: <cell-element>
# type: string
# elements: 1
# length: 3565
 -- Function File:  quadgk (F, A, B, ABSTOL, TRACE)
 -- Function File:  quadgk (F, A, B, PROP, VAL, ...)
 -- Function File: [Q, ERR] = quadgk (...)
     Numerically evaluate integral using adaptive Gauss-Konrod quadrature.  The formulation is based on a proposal by L.F. Shampine, `"Vectorized adaptive quadrature in MATLAB", Journal of Computational and Applied Mathematics, pp131-140, Vol 211, Issue 2, Feb 2008' where all function evaluations at an iteration are calculated with a single call to F.  Therefore the function F must be of the form `F (X)' and accept vector values of X and return a vector of the same length representing the function evaluations at the given values of X.  The function F can be defined in terms of a function handle, inline function or string.

     The bounds of the quadrature `[A, B]' can be finite or infinite and contain weak end singularities.  Variable transformation will be used to treat infinite intervals and weaken the singularities.  For example

          quadgk(@(x) 1 ./ (sqrt (x) .* (x + 1)), 0, Inf)

     Note that the formulation of the integrand uses the element-by-element operator `./' and all user functions to `quadgk' should do the same.

     The absolute tolerance can be passed as a fourth argument in a manner compatible with `quadv'.  Equally the user can request that information on the convergence can be printed is the fifth argument is logically true.

     Alternatively, certain properties of `quadgk' can be passed as pairs `PROP, VAL'.  Valid properties are

    `AbsTol'
          Defines the absolute error tolerance for the quadrature.  The default absolute tolerance is 1e-10.

    `RelTol'
          Defines the relative error tolerance for the quadrature.  The default relative tolerance is 1e-5.

    `MaxIntervalCount'
          `quadgk' initially subdivides the interval on which to perform the quadrature into 10 intervals.  Sub-intervals that have an unacceptable error are sub-divided and re-evaluated.  If the number of sub-intervals exceeds at any point 650 sub-intervals then a poor convergence is signaled and the current estimate of the integral is returned.  The property 'MaxIntervalCount' can be used to alter the number of sub-intervals that can exist before exiting.

    `WayPoints'
          If there exists discontinuities in the first derivative of the function to integrate, then these can be flagged with the `"WayPoints"' property.  This forces the ends of a sub-interval to fall on the breakpoints of the function and can result in significantly improved estimation of the error in the integral, faster computation or both.  For example,

               quadgk (@(x) abs (1 - x .^ 2), 0, 2, 'Waypoints', 1)

          signals the breakpoint in the integrand at `X = 1'.

    `Trace'
          If logically true, then `quadgk' prints information on the convergence of the quadrature at each iteration.

     If any of A, B or WAYPOINTS is complex, then the quadrature is treated as a contour integral along a piecewise continuous path defined by the above.  In this case the integral is assumed to have no edge singularities.  For example

          quadgk (@(z) log (z), 1+1i, 1+1i, "WayPoints",
                  [1-1i, -1,-1i, -1+1i])

     integrates `log (z)' along the square defined by `[1+1i,  1-1i, -1-1i, -1+1i]'

     If two output arguments are requested, then ERR returns the approximate bounds on the error in the integral `abs (Q - I)', where I is the exact value of the integral.

     See also: triplequad, dblquad, quad, quadl, quadv, trapz.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Numerically evaluate integral using adaptive Gauss-Konrod quadrature.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
perror
# name: <cell-element>
# type: string
# elements: 1
# length: 271
 -- Function File:  perror (NAME, NUM)
     Print the error message for function NAME corresponding to the error number NUM.  This function is intended to be used to print useful error messages for those functions that return numeric error codes.  See also: strerror.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 80
Print the error message for function NAME corresponding to the error number NUM.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
saveobj
# name: <cell-element>
# type: string
# elements: 1
# length: 635
 -- Function File: B = saveobj (A)
     Method of a class to manipulate an object prior to saving it to a file.  The function `saveobj' is called when the object A is saved using the `save' function.  An example of the use of `saveobj' might be to remove fields of the object that don't make sense to be saved or it might be used to ensure that certain fields of the object are initialized before the object is saved.  For example

          function b = saveobj (a)
            b = a;
            if (isempty (b.field))
               b.field = initfield(b);
            endif
          endfunction

     See also: loadobj, class.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Method of a class to manipulate an object prior to saving it to a file.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
interp3
# name: <cell-element>
# type: string
# elements: 1
# length: 1656
 -- Function File: VI = interp3 (X, Y,Z, V, XI, YI, ZI)
 -- Function File: VI = interp3 (V, XI, YI, ZI)
 -- Function File: VI = interp3 (V, M)
 -- Function File: VI = interp3 (V)
 -- Function File: VI = interp3 (..., METHOD)
 -- Function File: VI = interp3 (..., METHOD, EXTRAPVAL)
     Perform 3-dimensional interpolation.  Each element of the 3-dimensional array V represents a value at a location given by the parameters X, Y, and Z.  The parameters X, X, and Z are either 3-dimensional arrays of the same size as the array V in the 'meshgrid' format or vectors.  The parameters XI, etc.  respect a similar format to X, etc., and they represent the points at which the array VI is interpolated.

     If X, Y, Z are omitted, they are assumed to be `x = 1 : size (V, 2)', `y = 1 : size (V, 1)' and `z = 1 : size (V, 3)'.  If M is specified, then the interpolation adds a point half way between each of the interpolation points.  This process is performed M times.  If only V is specified, then M is assumed to be `1'.

     Method is one of:

    'nearest'
          Return the nearest neighbor.

    'linear'
          Linear interpolation from nearest neighbors.

    'cubic'
          Cubic interpolation from four nearest neighbors (not implemented yet).

    'spline'
          Cubic spline interpolation-smooth first and second derivatives throughout the curve.

     The default method is 'linear'.

     If EXTRAP is the string 'extrap', then extrapolate values beyond the endpoints.  If EXTRAP is a number, replace values beyond the endpoints with that number.  If EXTRAP is missing, assume NA.  See also: interp1, interp2, spline, meshgrid.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 36
Perform 3-dimensional interpolation.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
isscalar
# name: <cell-element>
# type: string
# elements: 1
# length: 150
 -- Function File:  isscalar (A)
     Return 1 if A is a scalar.  Otherwise, return 0.  See also: size, rows, columns, length, isscalar, ismatrix.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 26
Return 1 if A is a scalar.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
shiftdim
# name: <cell-element>
# type: string
# elements: 1
# length: 890
 -- Function File: Y = shiftdim (X, N)
 -- Function File: [Y, NS] = shiftdim (X)
     Shifts the dimension of X by N, where N must be an integer scalar.  When N is positive, the dimensions of X are shifted to the left, with the leading dimensions circulated to the end.  If N is negative, then the dimensions of X are shifted to the right, with N leading singleton dimensions added.

     Called with a single argument, `shiftdim', removes the leading singleton dimensions, returning the number of dimensions removed in the second output argument NS.

     For example

          x = ones (1, 2, 3);
          size (shiftdim (x, -1))
               => [1, 1, 2, 3]
          size (shiftdim (x, 1))
               => [2, 3]
          [b, ns] = shiftdim (x);
               => b =  [1, 1, 1; 1, 1, 1]
               => ns = 1
     See also: reshape, permute, ipermute, circshift, squeeze.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 66
Shifts the dimension of X by N, where N must be an integer scalar.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
rat
# name: <cell-element>
# type: string
# elements: 1
# length: 463
 -- Function File: S = rat (X, TOL)
 -- Function File: [N, D] = rat (X, TOL)
     Find a rational approximation to X within the tolerance defined by TOL using a continued fraction expansion.  For example,

          rat(pi) = 3 + 1/(7 + 1/16) = 355/113
          rat(e) = 3 + 1/(-4 + 1/(2 + 1/(5 + 1/(-2 + 1/(-7)))))
                 = 1457/536

     Called with two arguments returns the numerator and denominator separately as two matrices.
   See also: rats.  
# name: <cell-element>
# type: string
# elements: 1
# length: 108
Find a rational approximation to X within the tolerance defined by TOL using a continued fraction expansion.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
isdefinite
# name: <cell-element>
# type: string
# elements: 1
# length: 302
 -- Function File:  isdefinite (X, TOL)
     Return 1 if X is symmetric positive definite within the tolerance specified by TOL or 0 if X is symmetric positive semidefinite.  Otherwise, return -1.  If TOL is omitted, use a tolerance equal to 100 times the machine precision.  See also: issymmetric.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 128
Return 1 if X is symmetric positive definite within the tolerance specified by TOL or 0 if X is symmetric positive semidefinite.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
nthroot
# name: <cell-element>
# type: string
# elements: 1
# length: 234
 -- Function File:  nthroot (X, N)
     Compute the n-th root of X, returning real results for real components of X.  For example

          nthroot (-1, 3)
          => -1
          (-1) ^ (1 / 3)
          => 0.50000 - 0.86603i

   
# name: <cell-element>
# type: string
# elements: 1
# length: 76
Compute the n-th root of X, returning real results for real components of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
flipud
# name: <cell-element>
# type: string
# elements: 1
# length: 394
 -- Function File:  flipud (X)
     Return a copy of X with the order of the rows reversed.  For example,

          flipud ([1, 2; 3, 4])
               =>  3  4
                   1  2

     Due to the difficulty of defining which axis about which to flip the matrix `flipud' only work with 2-d arrays.  To flip N-d arrays use `flipdim' instead.  See also: fliplr, flipdim, rot90, rotdim.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Return a copy of X with the order of the rows reversed.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
postpad
# name: <cell-element>
# type: string
# elements: 1
# length: 115
 -- Function File:  postpad (X, L, C)
 -- Function File:  postpad (X, L, C, DIM)
     See also: prepad, resize.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 25
See also: prepad, resize.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
nextpow2
# name: <cell-element>
# type: string
# elements: 1
# length: 191
 -- Function File:  nextpow2 (X)
     If X is a scalar, return the first integer N such that 2^n >= abs (x).

     If X is a vector, return `nextpow2 (length (X))'.  See also: pow2, log2.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 70
If X is a scalar, return the first integer N such that 2^n >= abs (x).

# name: <cell-element>
# type: string
# elements: 1
# length: 10
accumarray
# name: <cell-element>
# type: string
# elements: 1
# length: 1419
 -- Function File:  accumarray (SUBS, VALS, SZ, FUNC, FILLVAL, ISSPARSE)
 -- Function File:  accumarray (CSUBS, VALS, ...)
     Create an array by accumulating the elements of a vector into the positions defined by their subscripts.  The subscripts are defined by the rows of the matrix SUBS and the values by VALS.  Each row of SUBS corresponds to one of the values in VALS.

     The size of the matrix will be determined by the subscripts themselves.  However, if SZ is defined it determines the matrix size.  The length of SZ must correspond to the number of columns in SUBS.

     The default action of `accumarray' is to sum the elements with the same subscripts.  This behavior can be modified by defining the FUNC function.  This should be a function or function handle that accepts a column vector and returns a scalar.  The result of the function should not depend on the order of the subscripts.

     The elements of the returned array that have no subscripts associated with them are set to zero.  Defining FILLVAL to some other value allows these values to be defined.

     By default `accumarray' returns a full matrix.  If ISSPARSE is logically true, then a sparse matrix is returned instead.

     An example of the use of `accumarray' is:

          accumarray ([1,1,1;2,1,2;2,3,2;2,1,2;2,3,2], 101:105)
          => ans(:,:,1) = [101, 0, 0; 0, 0, 0]
             ans(:,:,2) = [0, 0, 0; 206, 0, 208]

# name: <cell-element>
# type: string
# elements: 1
# length: 104
Create an array by accumulating the elements of a vector into the positions defined by their subscripts.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
colon
# name: <cell-element>
# type: string
# elements: 1
# length: 278
 -- Function File: R = colon (A, B)
 -- Function File: R = colon (A, B, C)
     Method of a class to construct a range with the `:' operator.  For example.

          a = myclass (...)
          b = myclass (...)
          c = a : b

     See also: class, subsref, subsasgn.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 61
Method of a class to construct a range with the `:' operator.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
display
# name: <cell-element>
# type: string
# elements: 1
# length: 317
 -- Function File:  display (A)
     Display the contents of an object.  If A is an object of the class "myclass", then `display' is called in a case like

          myclass (...)

     where Octave is required to display the contents of a variable of the type "myclass".

     See also: class, subsref, subsasgn.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 34
Display the contents of an object.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
rotdim
# name: <cell-element>
# type: string
# elements: 1
# length: 964
 -- Function File:  rotdim (X, N, PLANE)
     Return a copy of X with the elements rotated counterclockwise in 90-degree increments.  The second argument is optional, and specifies how many 90-degree rotations are to be applied (the default value is 1).  The third argument is also optional and defines the plane of the rotation.  As such PLANE is a two element vector containing two different valid dimensions of the matrix.  If PLANE is not given Then the first two non-singleton dimensions are used.

     Negative values of N rotate the matrix in a clockwise direction.  For example,

          rotdim ([1, 2; 3, 4], -1, [1, 2])
               =>  3  1
                   4  2

     rotates the given matrix clockwise by 90 degrees.  The following are all equivalent statements:

          rotdim ([1, 2; 3, 4], -1, [1, 2])
          rotdim ([1, 2; 3, 4], 3, [1, 2])
          rotdim ([1, 2; 3, 4], 7, [1, 2])
     See also: rot90, flipud, fliplr, flipdim.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Return a copy of X with the elements rotated counterclockwise in 90-degree increments.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
issquare
# name: <cell-element>
# type: string
# elements: 1
# length: 190
 -- Function File:  issquare (X)
     If X is a square matrix, then return the dimension of X.  Otherwise, return 0.  See also: size, rows, columns, length, ismatrix, isscalar, isvector.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 56
If X is a square matrix, then return the dimension of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
logical
# name: <cell-element>
# type: string
# elements: 1
# length: 167
 -- Function File:  logical (ARG)
     Convert ARG to a logical value.  For example,

          logical ([-1, 0, 1])

     is equivalent to

          [-1, 0, 1] != 0

# name: <cell-element>
# type: string
# elements: 1
# length: 31
Convert ARG to a logical value.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
bitset
# name: <cell-element>
# type: string
# elements: 1
# length: 337
 -- Function File: X = bitset (A, N)
 -- Function File: X = bitset (A, N, V)
     Set or reset bit(s) N of unsigned integers in A.  V = 0 resets and V = 1 sets the bits.  The lowest significant bit is: N = 1

          dec2bin (bitset (10, 1))
          => 1011
     See also: bitand, bitor, bitxor, bitget, bitcmp, bitshift, bitmax.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Set or reset bit(s) N of unsigned integers in A.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
arrayfun
# name: <cell-element>
# type: string
# elements: 1
# length: 3319
 -- Function File:  arrayfun (FUNC, A)
 -- Function File: X = arrayfun (FUNC, A)
 -- Function File: X = arrayfun (FUNC, A, B, ...)
 -- Function File: [X, Y, ...] = arrayfun (FUNC, A, ...)
 -- Function File:  arrayfun (..., "UniformOutput", VAL)
 -- Function File:  arrayfun (..., "ErrorHandler", ERRFUNC)
     Execute a function on each element of an array.  This is useful for functions that do not accept array arguments.  If the function does accept array arguments it is better to call the function directly.

     The first input argument FUNC can be a string, a function handle, an inline function or an anonymous function.  The input argument A can be a logic array, a numeric array, a string array, a structure array or a cell array.  By a call of the function `arrayfun' all elements of A are passed on to the named function FUNC individually.

     The named function can also take more than two input arguments, with the input arguments given as third input argument B, fourth input argument C, ...  If given more than one array input argument then all input arguments must have the same sizes, for example

          arrayfun (@atan2, [1, 0], [0, 1])
          => ans = [1.5708   0.0000]

     If the parameter VAL after a further string input argument "UniformOutput" is set `true' (the default), then the named function FUNC must return a single element which then will be concatenated into the return value and is of type matrix.  Otherwise, if that parameter is set to `false', then the outputs are concatenated in a cell array.  For example

          arrayfun (@(x,y) x:y, "abc", "def", "UniformOutput", false)
          => ans =
          {
            [1,1] = abcd
            [1,2] = bcde
            [1,3] = cdef
          }

     If more than one output arguments are given then the named function must return the number of return values that also are expected, for example

          [A, B, C] = arrayfun (@find, [10; 0], "UniformOutput", false)
          =>
          A =
          {
            [1,1] =  1
            [2,1] = [](0x0)
          }
          B =
          {
            [1,1] =  1
            [2,1] = [](0x0)
          }
          C =
          {
            [1,1] =  10
            [2,1] = [](0x0)
          }

     If the parameter ERRFUNC after a further string input argument "ErrorHandler" is another string, a function handle, an inline function or an anonymous function, then ERRFUNC defines a function to call in the case that FUNC generates an error.  The definition of the function must be of the form

          function [...] = errfunc (S, ...)

     where there is an additional input argument to ERRFUNC relative to FUNC, given by S.  This is a structure with the elements "identifier", "message" and "index", giving respectively the error identifier, the error message and the index of the array elements that caused the error.  The size of the output argument of ERRFUNC must have the same size as the output argument of FUNC, otherwise a real error is thrown.  For example

          function y = ferr (s, x), y = "MyString"; endfunction
          arrayfun (@str2num, [1234], \
                    "UniformOutput", false, "ErrorHandler", @ferr)
          => ans =
          {
           [1,1] = MyString
          }

     See also: cellfun, spfun, structfun.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 47
Execute a function on each element of an array.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
nargchk
# name: <cell-element>
# type: string
# elements: 1
# length: 498
 -- Function File: MSGSTR = nargchk (MINARGS, MAXARGS, NARGS)
 -- Function File: MSGSTR = nargchk (MINARGS, MAXARGS, NARGS, "string")
 -- Function File: MSGSTRUCT = nargchk (MINARGS, MAXARGS, NARGS, "struct")
     Return an appropriate error message string (or structure) if the number of inputs requested is invalid.

     This is useful for checking to see that the number of input arguments supplied to a function is within an acceptable range.  See also: nargoutchk, error, nargin, nargout.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 103
Return an appropriate error message string (or structure) if the number of inputs requested is invalid.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
int2str
# name: <cell-element>
# type: string
# elements: 1
# length: 698
 -- Function File:  int2str (N)
     Convert an integer (or array of integers) to a string (or a character array).


          int2str (123)
               => "123"

          s = int2str ([1, 2, 3; 4, 5, 6])
               => s =
                  1  2  3
                  4  5  6

          whos s
               => s =
                Attr Name        Size                     Bytes  Class
                ==== ====        ====                     =====  =====
                     s           2x7                         14  char

     This function is not very flexible.  For better control over the results, use `sprintf' (*note Formatted Output::).  See also: sprintf, num2str, mat2str.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Convert an integer (or array of integers) to a string (or a character array).

# name: <cell-element>
# type: string
# elements: 1
# length: 3
mod
# name: <cell-element>
# type: string
# elements: 1
# length: 496
 -- Mapping Function:  mod (X, Y)
     Compute the modulo of X and Y.  Conceptually this is given by

          x - y .* floor (x ./ y)

     and is written such that the correct modulus is returned for integer types.  This function handles negative values correctly.  That is, `mod (-1, 3)' is 2, not -1, as `rem (-1, 3)' returns.  `mod (X, 0)' returns X.

     An error results if the dimensions of the arguments do not agree, or if either of the arguments is complex.  See also: rem, fmod.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 30
Compute the modulo of X and Y.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
rot90
# name: <cell-element>
# type: string
# elements: 1
# length: 823
 -- Function File:  rot90 (X, N)
     Return a copy of X with the elements rotated counterclockwise in 90-degree increments.  The second argument is optional, and specifies how many 90-degree rotations are to be applied (the default value is 1).  Negative values of N rotate the matrix in a clockwise direction.  For example,

          rot90 ([1, 2; 3, 4], -1)
               =>  3  1
                   4  2

     rotates the given matrix clockwise by 90 degrees.  The following are all equivalent statements:

          rot90 ([1, 2; 3, 4], -1)
          rot90 ([1, 2; 3, 4], 3)
          rot90 ([1, 2; 3, 4], 7)

     Due to the difficulty of defining an axis about which to rotate the matrix `rot90' only work with 2-D arrays.  To rotate N-d arrays use `rotdim' instead.  See also: rotdim, flipud, fliplr, flipdim.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 86
Return a copy of X with the elements rotated counterclockwise in 90-degree increments.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
quadl
# name: <cell-element>
# type: string
# elements: 1
# length: 1059
 -- Function File: Q = quadl (F, A, B)
 -- Function File: Q = quadl (F, A, B, TOL)
 -- Function File: Q = quadl (F, A, B, TOL, TRACE)
 -- Function File: Q = quadl (F, A, B, TOL, TRACE, P1, P2, ...)
     Numerically evaluate integral using adaptive Lobatto rule.  `quadl (F, A, B)' approximates the integral of `F(X)' to machine precision.  F is either a function handle, inline function or string containing the name of the function to evaluate.  The function F must return a vector of output values if given a vector of input values.

     If defined, TOL defines the relative tolerance to which to which to integrate `F(X)'.  While if TRACE is defined, displays the left end point of the current interval, the interval length, and the partial integral.

     Additional arguments P1, etc., are passed directly to F.  To use default values for TOL and TRACE, one may pass empty matrices.

     Reference: W. Gander and W. Gautschi, 'Adaptive Quadrature - Revisited', BIT Vol. 40, No. 1, March 2000, pp. 84-101.  `http://www.inf.ethz.ch/personal/gander/'

   
# name: <cell-element>
# type: string
# elements: 1
# length: 58
Numerically evaluate integral using adaptive Lobatto rule.

# name: <cell-element>
# type: string
# elements: 1
# length: 20
isequalwithequalnans
# name: <cell-element>
# type: string
# elements: 1
# length: 150
 -- Function File:  isequalwithequalnans (X1, X2, ...)
     Assuming NaN == NaN, return true if all of X1, X2, ...  are equal.  See also: isequal.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 52
Assuming NaN == NaN, return true if all of X1, X2, .

# name: <cell-element>
# type: string
# elements: 1
# length: 7
interp1
# name: <cell-element>
# type: string
# elements: 1
# length: 2078
 -- Function File: YI = interp1 (X, Y, XI)
 -- Function File: YI = interp1 (..., METHOD)
 -- Function File: YI = interp1 (..., EXTRAP)
 -- Function File: PP = interp1 (..., 'pp')
     One-dimensional interpolation.  Interpolate Y, defined at the points X, at the points XI.  The sample points X must be strictly monotonic.  If Y is an array, treat the columns of Y separately.

     Method is one of:

    'nearest'
          Return the nearest neighbor.

    'linear'
          Linear interpolation from nearest neighbors

    'pchip'
          Piece-wise cubic hermite interpolating polynomial

    'cubic'
          Cubic interpolation from four nearest neighbors

    'spline'
          Cubic spline interpolation-smooth first and second derivatives throughout the curve

     Appending '*' to the start of the above method forces `interp1' to assume that X is uniformly spaced, and only `X (1)' and `X (2)' are referenced.  This is usually faster, and is never slower.  The default method is 'linear'.

     If EXTRAP is the string 'extrap', then extrapolate values beyond the endpoints.  If EXTRAP is a number, replace values beyond the endpoints with that number.  If EXTRAP is missing, assume NA.

     If the string argument 'pp' is specified, then XI should not be supplied and `interp1' returns the piece-wise polynomial that can later be used with `ppval' to evaluate the interpolation.  There is an equivalence, such that `ppval (interp1 (X, Y, METHOD, 'pp'), XI) == interp1 (X, Y, XI, METHOD, 'extrap')'.

     An example of the use of `interp1' is

          xf = [0:0.05:10];
          yf = sin (2*pi*xf/5);
          xp = [0:10];
          yp = sin (2*pi*xp/5);
          lin = interp1 (xp, yp, xf);
          spl = interp1 (xp, yp, xf, "spline");
          cub = interp1 (xp, yp, xf, "cubic");
          near = interp1 (xp, yp, xf, "nearest");
          plot (xf, yf, "r", xf, lin, "g", xf, spl, "b",
                xf, cub, "c", xf, near, "m", xp, yp, "r*");
          legend ("original", "linear", "spline", "cubic", "nearest")

     See also: interpft.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 30
One-dimensional interpolation.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
cplxpair
# name: <cell-element>
# type: string
# elements: 1
# length: 920
 -- Function File:  cplxpair (Z)
 -- Function File:  cplxpair (Z, TOL)
 -- Function File:  cplxpair (Z, TOL, DIM)
     Sort the numbers Z into complex conjugate pairs ordered by increasing real part.  Place the negative imaginary complex number first within each pair.  Place all the real numbers (those with `abs (imag (Z) / Z) < TOL)') after the complex pairs.

     If TOL is unspecified the default value is 100*`eps'.

     By default the complex pairs are sorted along the first non-singleton dimension of Z.  If DIM is specified, then the complex pairs are sorted along this dimension.

     Signal an error if some complex numbers could not be paired.  Signal an error if all complex numbers are not exact conjugates (to within TOL).  Note that there is no defined order for pairs with identical real parts but differing imaginary parts.

          cplxpair (exp(2i*pi*[0:4]'/5)) == exp(2i*pi*[3; 2; 4; 1; 0]/5)

# name: <cell-element>
# type: string
# elements: 1
# length: 80
Sort the numbers Z into complex conjugate pairs ordered by increasing real part.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
genvarname
# name: <cell-element>
# type: string
# elements: 1
# length: 2030
 -- Function File: VARNAME = genvarname (STR)
 -- Function File: VARNAME = genvarname (STR, EXCLUSIONS)
     Create unique variable(s) from STR.  If EXCLUSIONS is given, then the variable(s) will be unique to each other and to EXCLUSIONS (EXCLUSIONS may be either a string or a cellstr).

     If STR is a cellstr, then a unique variable is created for each cell in STR.

          x = 3.141;
          genvarname ("x", who ())
          => x1

     If WANTED is a cell array, genvarname will make sure the returned strings are distinct:

          genvarname ({"foo", "foo"})
          =>
          {
            [1,1] = foo
            [1,2] = foo1
          }

     Note that the result is a char array/cell array of strings, not the variables themselves.  To define a variable, `eval()' can be used.  The following trivial example sets `x' to `42'.

          name = genvarname ("x");
          eval([name " = 42"]);
          => x =  42

     Also, this can be useful for creating unique struct field names.

          x = struct ();
          for i = 1:3
            x.(genvarname ("a", fieldnames (x))) = i;
          endfor
          =>
          x =
          {
            a =  1
            a1 =  2
            a2 =  3
          }

     Since variable names may only contain letters, digits and underscores, genvarname replaces any sequence of disallowed characters with an underscore.  Also, variables may not begin with a digit; in this case an underscore is added before the variable name.

     Variable names beginning and ending with two underscores "__" are valid but they are used internally by octave and should generally be avoided, therefore genvarname will not generate such names.

     genvarname will also make sure that returned names do not clash with keywords such as "for" and "if".  A number will be appended if necessary.  Note, however, that this does *not* include function names, such as "sin".  Such names should be included in AVOID if necessary.  See also: isvarname, exist, tmpnam, eval.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 35
Create unique variable(s) from STR.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
fractdiff
# name: <cell-element>
# type: string
# elements: 1
# length: 149
 -- Function File:  fractdiff (X, D)
     Compute the fractional differences (1-L)^d x where L denotes the lag-operator and d is greater than -1.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 103
Compute the fractional differences (1-L)^d x where L denotes the lag-operator and d is greater than -1.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
hanning
# name: <cell-element>
# type: string
# elements: 1
# length: 226
 -- Function File:  hanning (M)
     Return the filter coefficients of a Hanning window of length M.

     For a definition of this window type, see e.g., A. V. Oppenheim & R. W. Schafer, `Discrete-Time Signal Processing'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return the filter coefficients of a Hanning window of length M.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
fftshift
# name: <cell-element>
# type: string
# elements: 1
# length: 640
 -- Function File:  fftshift (V)
 -- Function File:  fftshift (V, DIM)
     Perform a shift of the vector V, for use with the `fft' and `ifft' functions, in order the move the frequency 0 to the center of the vector or matrix.

     If V is a vector of N elements corresponding to N time samples spaced of Dt each, then `fftshift (fft (V))' corresponds to frequencies

          f = ((1:N) - ceil(N/2)) / N / Dt

     If V is a matrix, the same holds for rows and columns.  If V is an array, then the same holds along each dimension.

     The optional DIM argument can be used to limit the dimension along which the permutation occurs.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 150
Perform a shift of the vector V, for use with the `fft' and `ifft' functions, in order the move the frequency 0 to the center of the vector or matrix.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
freqz_plot
# name: <cell-element>
# type: string
# elements: 1
# length: 101
 -- Function File:  freqz_plot (W, H)
     Plot the pass band, stop band and phase response of H.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Plot the pass band, stop band and phase response of H.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
sinewave
# name: <cell-element>
# type: string
# elements: 1
# length: 200
 -- Function File:  sinewave (M, N, D)
     Return an M-element vector with I-th element given by `sin (2 * pi * (I+D-1) / N)'.

     The default value for D is 0 and the default value for N is M.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Return an M-element vector with I-th element given by `sin (2 * pi * (I+D-1) / N)'.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
autocov
# name: <cell-element>
# type: string
# elements: 1
# length: 219
 -- Function File:  autocov (X, H)
     Return the autocovariances from lag 0 to H of vector X.  If H is omitted, all autocovariances are computed.  If X is a matrix, the autocovariances of each column are computed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 55
Return the autocovariances from lag 0 to H of vector X.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
freqz
# name: <cell-element>
# type: string
# elements: 1
# length: 1191
 -- Function File: [H, W] = freqz (B, A, N, "whole")
     Return the complex frequency response H of the rational IIR filter whose numerator and denominator coefficients are B and A, respectively.  The response is evaluated at N angular frequencies between 0 and  2*pi.

     The output value W is a vector of the frequencies.

     If the fourth argument is omitted, the response is evaluated at frequencies between 0 and  pi.

     If N is omitted, a value of 512 is assumed.

     If A is omitted, the denominator is assumed to be 1 (this corresponds to a simple FIR filter).

     For fastest computation, N should factor into a small number of small primes.

 -- Function File: H = freqz (B, A, W)
     Evaluate the response at the specific frequencies in the vector W.  The values for W are measured in radians.

 -- Function File: [...] = freqz (..., FS)
     Return frequencies in Hz instead of radians assuming a sampling rate FS.  If you are evaluating the response at specific frequencies W, those frequencies should be requested in Hz rather than radians.

 -- Function File:  freqz (...)
     Plot the pass band, stop band and phase response of H rather than returning them.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 81
Plot the pass band, stop band and phase response of H rather than returning them.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
periodogram
# name: <cell-element>
# type: string
# elements: 1
# length: 113
 -- Function File:  periodogram (X)
     For a data matrix X from a sample of size N, return the periodogram.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 68
For a data matrix X from a sample of size N, return the periodogram.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
arch_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 373
 -- Function File:  arch_rnd (A, B, T)
     Simulate an ARCH sequence of length T with AR coefficients B and CH coefficients A.  I.e., the result y(t) follows the model

          y(t) = b(1) + b(2) * y(t-1) + ... + b(lb) * y(t-lb+1) + e(t),

     where e(t), given Y up to time t-1, is N(0, h(t)), with

          h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(la) * e(t-la+1)^2

# name: <cell-element>
# type: string
# elements: 1
# length: 83
Simulate an ARCH sequence of length T with AR coefficients B and CH coefficients A.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
sinetone
# name: <cell-element>
# type: string
# elements: 1
# length: 286
 -- Function File:  sinetone (FREQ, RATE, SEC, AMPL)
     Return a sinetone of frequency FREQ with length of SEC seconds at sampling rate RATE and with amplitude AMPL.  The arguments FREQ and AMPL may be vectors of common size.

     Defaults are RATE = 8000, SEC = 1 and AMPL = 64.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Return a sinetone of frequency FREQ with length of SEC seconds at sampling rate RATE and with amplitude AMPL.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
triangle_sw
# name: <cell-element>
# type: string
# elements: 1
# length: 126
 -- Function File:  triangle_sw (N, B)
     Triangular spectral window.  Subfunction used for spectral density estimation.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 27
Triangular spectral window.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
hamming
# name: <cell-element>
# type: string
# elements: 1
# length: 228
 -- Function File:  hamming (M)
     Return the filter coefficients of a Hamming window of length M.

     For a definition of the Hamming window, see e.g., A. V. Oppenheim & R. W. Schafer, `Discrete-Time Signal Processing'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Return the filter coefficients of a Hamming window of length M.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
diffpara
# name: <cell-element>
# type: string
# elements: 1
# length: 703
 -- Function File: [D, DD] = diffpara (X, A, B)
     Return the estimator D for the differencing parameter of an integrated time series.

     The frequencies from [2*pi*a/t, 2*pi*b/T] are used for the estimation.  If B is omitted, the interval [2*pi/T, 2*pi*a/T] is used.  If both B and A are omitted then a = 0.5 * sqrt (T) and b = 1.5 * sqrt (T) is used, where T is the sample size.  If X is a matrix, the differencing parameter of each column is estimated.

     The estimators for all frequencies in the intervals described above is returned in DD.  The value of D is simply the mean of DD.

     Reference: Brockwell, Peter J. & Davis, Richard A. Time Series: Theory and Methods Springer 1987.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 83
Return the estimator D for the differencing parameter of an integrated time series.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
rectangle_lw
# name: <cell-element>
# type: string
# elements: 1
# length: 123
 -- Function File:  rectangle_lw (N, B)
     Rectangular lag window.  Subfunction used for spectral density estimation.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 23
Rectangular lag window.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
blackman
# name: <cell-element>
# type: string
# elements: 1
# length: 231
 -- Function File:  blackman (M)
     Return the filter coefficients of a Blackman window of length M.

     For a definition of the Blackman window, see e.g., A. V. Oppenheim & R. W. Schafer, `Discrete-Time Signal Processing'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 64
Return the filter coefficients of a Blackman window of length M.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
detrend
# name: <cell-element>
# type: string
# elements: 1
# length: 355
 -- Function File:  detrend (X, P)
     If X is a vector, `detrend (X, P)' removes the best fit of a polynomial of order P from the data X.

     If X is a matrix, `detrend (X, P)' does the same for each column in X.

     The second argument is optional.  If it is not specified, a value of 1 is assumed.  This corresponds to removing a linear trend.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 99
If X is a vector, `detrend (X, P)' removes the best fit of a polynomial of order P from the data X.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
stft
# name: <cell-element>
# type: string
# elements: 1
# length: 954
 -- Function File: [Y, C] = stft (X, WIN_SIZE, INC, NUM_COEF, W_TYPE)
     Compute the short-time Fourier transform of the vector X with NUM_COEF coefficients by applying a window of WIN_SIZE data points and an increment of INC points.

     Before computing the Fourier transform, one of the following windows is applied:

    hanning
          w_type = 1

    hamming
          w_type = 2

    rectangle
          w_type = 3

     The window names can be passed as strings or by the W_TYPE number.

     If not all arguments are specified, the following defaults are used: WIN_SIZE = 80, INC = 24, NUM_COEF = 64, and W_TYPE = 1.

     `Y = stft (X, ...)' returns the absolute values of the Fourier coefficients according to the NUM_COEF positive frequencies.

     `[Y, C] = stft (`x', ...)' returns the entire STFT-matrix Y and a 3-element vector C containing the window size, increment, and window type, which is needed by the synthesis function.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 160
Compute the short-time Fourier transform of the vector X with NUM_COEF coefficients by applying a window of WIN_SIZE data points and an increment of INC points.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
spectral_adf
# name: <cell-element>
# type: string
# elements: 1
# length: 377
 -- Function File:  spectral_adf (C, WIN, B)
     Return the spectral density estimator given a vector of autocovariances C, window name WIN, and bandwidth, B.

     The window name, e.g., `"triangle"' or `"rectangle"' is used to search for a function called `WIN_sw'.

     If WIN is omitted, the triangle window is used.  If B is omitted, `1 / sqrt (length (X))' is used.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Return the spectral density estimator given a vector of autocovariances C, window name WIN, and bandwidth, B.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
filter2
# name: <cell-element>
# type: string
# elements: 1
# length: 539
 -- Function File: Y = filter2 (B, X)
 -- Function File: Y = filter2 (B, X, SHAPE)
     Apply the 2-D FIR filter B to X.  If the argument SHAPE is specified, return an array of the desired shape.  Possible values are:

    'full'
          pad X with zeros on all sides before filtering.

    'same'
          unpadded X (default)

    'valid'
          trim X after filtering so edge effects are no included.

     Note this is just a variation on convolution, with the parameters reversed and B rotated 180 degrees.  See also: conv2.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 32
Apply the 2-D FIR filter B to X.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
fftfilt
# name: <cell-element>
# type: string
# elements: 1
# length: 304
 -- Function File:  fftfilt (B, X, N)
     With two arguments, `fftfilt' filters X with the FIR filter B using the FFT.

     Given the optional third argument, N, `fftfilt' uses the overlap-add method to filter X with B using an N-point FFT.

     If X is a matrix, filter each column of the matrix.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 76
With two arguments, `fftfilt' filters X with the FIR filter B using the FFT.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
fftconv
# name: <cell-element>
# type: string
# elements: 1
# length: 429
 -- Function File:  fftconv (A, B, N)
     Return the convolution of the vectors A and B, as a vector with length equal to the `length (a) + length (b) - 1'.  If A and B are the coefficient vectors of two polynomials, the returned value is the coefficient vector of the product polynomial.

     The computation uses the FFT by calling the function `fftfilt'.  If the optional argument N is specified, an N-point FFT is used.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 114
Return the convolution of the vectors A and B, as a vector with length equal to the `length (a) + length (b) - 1'.

# name: <cell-element>
# type: string
# elements: 1
# length: 11
triangle_lw
# name: <cell-element>
# type: string
# elements: 1
# length: 121
 -- Function File:  triangle_lw (N, B)
     Triangular lag window.  Subfunction used for spectral density estimation.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 22
Triangular lag window.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
ifftshift
# name: <cell-element>
# type: string
# elements: 1
# length: 209
 -- Function File:  ifftshift (V)
 -- Function File:  ifftshift (V, DIM)
     Undo the action of the `fftshift' function.  For even length V, `fftshift' is its own inverse, but odd lengths differ slightly.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Undo the action of the `fftshift' function.

# name: <cell-element>
# type: string
# elements: 1
# length: 14
durbinlevinson
# name: <cell-element>
# type: string
# elements: 1
# length: 390
 -- Function File:  durbinlevinson (C, OLDPHI, OLDV)
     Perform one step of the Durbin-Levinson algorithm.

     The vector C specifies the autocovariances `[gamma_0, ..., gamma_t]' from lag 0 to T, OLDPHI specifies the coefficients based on C(T-1) and OLDV specifies the corresponding error.

     If OLDPHI and OLDV are omitted, all steps from 1 to T of the algorithm are performed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Perform one step of the Durbin-Levinson algorithm.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
unwrap
# name: <cell-element>
# type: string
# elements: 1
# length: 347
 -- Function File: B = unwrap (A, TOL, DIM)
     Unwrap radian phases by adding multiples of 2*pi as appropriate to remove jumps greater than TOL.  TOL defaults to pi.

     Unwrap will unwrap along the first non-singleton dimension of A, unless the optional argument DIM is given, in which case the data will be unwrapped along this dimension
   
# name: <cell-element>
# type: string
# elements: 1
# length: 97
Unwrap radian phases by adding multiples of 2*pi as appropriate to remove jumps greater than TOL.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
arch_fit
# name: <cell-element>
# type: string
# elements: 1
# length: 859
 -- Function File: [A, B] = arch_fit (Y, X, P, ITER, GAMMA, A0, B0)
     Fit an ARCH regression model to the time series Y using the scoring algorithm in Engle's original ARCH paper.  The model is

          y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t),
          h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(p+1) * e(t-p)^2

     in which e(t) is N(0, h(t)), given a time-series vector Y up to time t-1 and a matrix of (ordinary) regressors X up to t.  The order of the regression of the residual variance is specified by P.

     If invoked as `arch_fit (Y, K, P)' with a positive integer K, fit an ARCH(K, P) process, i.e., do the above with the t-th row of X given by

          [1, y(t-1), ..., y(t-k)]

     Optionally, one can specify the number of iterations ITER, the updating factor GAMMA, and initial values a0 and b0 for the scoring algorithm.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Fit an ARCH regression model to the time series Y using the scoring algorithm in Engle's original ARCH paper.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
spectral_xdf
# name: <cell-element>
# type: string
# elements: 1
# length: 363
 -- Function File:  spectral_xdf (X, WIN, B)
     Return the spectral density estimator given a data vector X, window name WIN, and bandwidth, B.

     The window name, e.g., `"triangle"' or `"rectangle"' is used to search for a function called `WIN_sw'.

     If WIN is omitted, the triangle window is used.  If B is omitted, `1 / sqrt (length (X))' is used.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 95
Return the spectral density estimator given a data vector X, window name WIN, and bandwidth, B.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
synthesis
# name: <cell-element>
# type: string
# elements: 1
# length: 254
 -- Function File:  synthesis (Y, C)
     Compute a signal from its short-time Fourier transform Y and a 3-element vector C specifying window size, increment, and window type.

     The values Y and C can be derived by

          [Y, C] = stft (X , ...)

# name: <cell-element>
# type: string
# elements: 1
# length: 133
Compute a signal from its short-time Fourier transform Y and a 3-element vector C specifying window size, increment, and window type.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
rectangle_sw
# name: <cell-element>
# type: string
# elements: 1
# length: 128
 -- Function File:  rectangle_sw (N, B)
     Rectangular spectral window.  Subfunction used for spectral density estimation.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 28
Rectangular spectral window.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
yulewalker
# name: <cell-element>
# type: string
# elements: 1
# length: 235
 -- Function File: [A, V] = yulewalker (C)
     Fit an AR (p)-model with Yule-Walker estimates given a vector C of autocovariances `[gamma_0, ..., gamma_p]'.

     Returns the AR coefficients, A, and the variance of white noise, V.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 95
Fit an AR (p)-model with Yule-Walker estimates given a vector C of autocovariances `[gamma_0, .

# name: <cell-element>
# type: string
# elements: 1
# length: 9
arch_test
# name: <cell-element>
# type: string
# elements: 1
# length: 949
 -- Function File: [PVAL, LM] = arch_test (Y, X, P)
     For a linear regression model

          y = x * b + e

     perform a Lagrange Multiplier (LM) test of the null hypothesis of no conditional heteroscedascity against the alternative of CH(P).

     I.e., the model is

          y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t),

     given Y up to t-1 and X up to t, e(t) is N(0, h(t)) with

          h(t) = v + a(1) * e(t-1)^2 + ... + a(p) * e(t-p)^2,

     and the null is a(1) == ... == a(p) == 0.

     If the second argument is a scalar integer, k, perform the same test in a linear autoregression model of order k, i.e., with

          [1, y(t-1), ..., y(t-K)]

     as the t-th row of X.

     Under the null, LM approximately has a chisquare distribution with P degrees of freedom and PVAL is the p-value (1 minus the CDF of this distribution at LM) of the test.

     If no output argument is given, the p-value is displayed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 30
For a linear regression model 

# name: <cell-element>
# type: string
# elements: 1
# length: 8
arma_rnd
# name: <cell-element>
# type: string
# elements: 1
# length: 562
 -- Function File:  arma_rnd (A, B, V, T, N)
     Return a simulation of the ARMA model

          x(n) = a(1) * x(n-1) + ... + a(k) * x(n-k)
               + e(n) + b(1) * e(n-1) + ... + b(l) * e(n-l)

     in which K is the length of vector A, L is the length of vector B and E is Gaussian white noise with variance V.  The function returns a vector of length T.

     The optional parameter N gives the number of dummy X(I) used for initialization, i.e., a sequence of length T+N is generated and X(N+1:T+N) is returned.  If N is omitted, N = 100 is used.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 38
Return a simulation of the ARMA model 

# name: <cell-element>
# type: string
# elements: 1
# length: 4
sinc
# name: <cell-element>
# type: string
# elements: 1
# length: 63
 -- Function File:  sinc (X)
     Return  sin(pi*x)/(pi*x).
   
# name: <cell-element>
# type: string
# elements: 1
# length: 24
Return sin(pi*x)/(pi*x).

# name: <cell-element>
# type: string
# elements: 1
# length: 14
autoreg_matrix
# name: <cell-element>
# type: string
# elements: 1
# length: 337
 -- Function File:  autoreg_matrix (Y, K)
     Given a time series (vector) Y, return a matrix with ones in the first column and the first K lagged values of Y in the other columns.  I.e., for T > K, `[1, Y(T-1), ..., Y(T-K)]' is the t-th row of the result.  The resulting matrix may be used as a regressor matrix in autoregressions.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 134
Given a time series (vector) Y, return a matrix with ones in the first column and the first K lagged values of Y in the other columns.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
autocor
# name: <cell-element>
# type: string
# elements: 1
# length: 222
 -- Function File:  autocor (X, H)
     Return the autocorrelations from lag 0 to H of vector X.  If H is omitted, all autocorrelations are computed.  If X is a matrix, the autocorrelations of each column are computed.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 56
Return the autocorrelations from lag 0 to H of vector X.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
bartlett
# name: <cell-element>
# type: string
# elements: 1
# length: 244
 -- Function File:  bartlett (M)
     Return the filter coefficients of a Bartlett (triangular) window of length M.

     For a definition of the Bartlett window, see e.g., A. V. Oppenheim & R. W. Schafer, `Discrete-Time Signal Processing'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 77
Return the filter coefficients of a Bartlett (triangular) window of length M.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
hurst
# name: <cell-element>
# type: string
# elements: 1
# length: 184
 -- Function File:  hurst (X)
     Estimate the Hurst parameter of sample X via the rescaled range statistic.  If X is a matrix, the parameter is estimated for every single column.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 74
Estimate the Hurst parameter of sample X via the rescaled range statistic.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
spencer
# name: <cell-element>
# type: string
# elements: 1
# length: 110
 -- Function File:  spencer (X)
     Return Spencer's 15 point moving average of every single column of X.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 69
Return Spencer's 15 point moving average of every single column of X.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
conv
# name: <cell-element>
# type: string
# elements: 1
# length: 332
 -- Function File:  conv (A, B)
     Convolve two vectors.

     `y = conv (a, b)' returns a vector of length equal to `length (a) + length (b) - 1'.  If A and B are polynomial coefficient vectors, `conv' returns the coefficients of the product polynomial.  See also: deconv, poly, roots, residue, polyval, polyderiv, polyinteg.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 21
Convolve two vectors.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
roots
# name: <cell-element>
# type: string
# elements: 1
# length: 451
 -- Function File:  roots (V)
     For a vector V with N components, return the roots of the polynomial

          v(1) * z^(N-1) + ... + v(N-1) * z + v(N)

     As an example, the following code finds the roots of the quadratic polynomial
          p(x) = x^2 - 5.

          c = [1, 0, -5];
          roots(c)
          =>  2.2361
          => -2.2361
     Note that the true result is +/- sqrt(5) which is roughly +/- 2.2361.  See also: compan.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 69
For a vector V with N components, return the roots of the polynomial 

# name: <cell-element>
# type: string
# elements: 1
# length: 5
pchip
# name: <cell-element>
# type: string
# elements: 1
# length: 1061
 -- Function File: PP = pchip (X, Y)
 -- Function File: YI = pchip (X, Y, XI)
     Piecewise Cubic Hermite interpolating polynomial.  Called with two arguments, the piece-wise polynomial PP is returned, that may later be used with `ppval' to evaluate the polynomial at specific points.

     The variable X must be a strictly monotonic vector (either increasing or decreasing).  While Y can be either a vector or array.  In the case where Y is a vector, it must have a length of N.  If Y is an array, then the size of Y must have the form `[S1, S2, ..., SK, N]' The array is then reshaped internally to a matrix where the leading dimension is given by `S1 * S2 * ... * SK' and each row in this matrix is then treated separately.  Note that this is exactly the opposite treatment than `interp1' and is done for compatibility.

     Called with a third input argument, `pchip' evaluates the piece-wise polynomial at the points XI.  There is an equivalence between `ppval (pchip (X, Y), XI)' and `pchip (X, Y, XI)'.

     See also: spline, ppval, mkpp, unmkpp.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Piecewise Cubic Hermite interpolating polynomial.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
polyreduce
# name: <cell-element>
# type: string
# elements: 1
# length: 244
 -- Function File:  polyreduce (C)
     Reduces a polynomial coefficient vector to a minimum number of terms by stripping off any leading zeros.  See also: poly, roots, conv, deconv, residue, filter, polyval, polyvalm, polyderiv, polyinteg.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 104
Reduces a polynomial coefficient vector to a minimum number of terms by stripping off any leading zeros.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
compan
# name: <cell-element>
# type: string
# elements: 1
# length: 914
 -- Function File:  compan (C)
     Compute the companion matrix corresponding to polynomial coefficient vector C.

     The companion matrix is

               _                                                        _
              |  -c(2)/c(1)   -c(3)/c(1)  ...  -c(N)/c(1)  -c(N+1)/c(1)  |
              |       1            0      ...       0             0      |
              |       0            1      ...       0             0      |
          A = |       .            .   .            .             .      |
              |       .            .       .        .             .      |
              |       .            .           .    .             .      |
              |_      0            0      ...       1             0     _|

     The eigenvalues of the companion matrix are equal to the roots of the polynomial.  See also: poly, roots, residue, conv, deconv, polyval, polyderiv, polyinteg.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 78
Compute the companion matrix corresponding to polynomial coefficient vector C.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
residue
# name: <cell-element>
# type: string
# elements: 1
# length: 2331
 -- Function File: [R, P, K, E] = residue (B, A)
     Compute the partial fraction expansion for the quotient of the polynomials, B and A.

           B(s)    M       r(m)         N
           ---- = SUM -------------  + SUM k(i)*s^(N-i)
           A(s)   m=1 (s-p(m))^e(m)    i=1

     where M is the number of poles (the length of the R, P, and E), the K vector is a polynomial of order N-1 representing the direct contribution, and the E vector specifies the multiplicity of the m-th residue's pole.

     For example,

          b = [1, 1, 1];
          a = [1, -5, 8, -4];
          [r, p, k, e] = residue (b, a);
               => r = [-2; 7; 3]
               => p = [2; 2; 1]
               => k = [](0x0)
               => e = [1; 2; 1]

     which represents the following partial fraction expansion

                  s^2 + s + 1       -2        7        3
             ------------------- = ----- + ------- + -----
             s^3 - 5s^2 + 8s - 4   (s-2)   (s-2)^2   (s-1)

 -- Function File: [B, A] = residue (R, P, K)
 -- Function File: [B, A] = residue (R, P, K, E)
     Compute the reconstituted quotient of polynomials, B(s)/A(s), from the partial fraction expansion; represented by the residues, poles, and a direct polynomial specified by R, P and K, and the pole multiplicity E.

     If the multiplicity, E, is not explicitly specified the multiplicity is determined by the script mpoles.m.

     For example,

          r = [-2; 7; 3];
          p = [2; 2; 1];
          k = [1, 0];
          [b, a] = residue (r, p, k);
               => b = [1, -5, 9, -3, 1]
               => a = [1, -5, 8, -4]

          where mpoles.m is used to determine e = [1; 2; 1]

     Alternatively the multiplicity may be defined explicitly, for example,

          r = [7; 3; -2];
          p = [2; 1; 2];
          k = [1, 0];
          e = [2; 1; 1];
          [b, a] = residue (r, p, k, e);
               => b = [1, -5, 9, -3, 1]
               => a = [1, -5, 8, -4]

     which represents the following partial fraction expansion

              -2        7        3         s^4 - 5s^3 + 9s^2 - 3s + 1
             ----- + ------- + ----- + s = --------------------------
             (s-2)   (s-2)^2   (s-1)          s^3 - 5s^2 + 8s - 4
     See also: poly, roots, conv, deconv, mpoles, polyval, polyderiv, polyinteg.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 212
Compute the reconstituted quotient of polynomials, B(s)/A(s), from the partial fraction expansion; represented by the residues, poles, and a direct polynomial specified by R, P and K, and the pole multiplicity E.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
polyint
# name: <cell-element>
# type: string
# elements: 1
# length: 331
 -- Function File:  polyint (C, K)
     Return the coefficients of the integral of the polynomial whose coefficients are represented by the vector C.  The variable K is the constant of integration, which by default is set to zero.  See also: poly, polyderiv, polyreduce, roots, conv, deconv, residue, filter, polyval, polyvalm.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 109
Return the coefficients of the integral of the polynomial whose coefficients are represented by the vector C.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
ppval
# name: <cell-element>
# type: string
# elements: 1
# length: 269
 -- Function File: YI = ppval (PP, XI)
     Evaluate piece-wise polynomial PP at the points XI.  If `PP.d' is a scalar greater than 1, or an array, then the returned value YI will be an array that is `d1, d1, ..., dk, length (XI)]'.  See also: mkpp, unmkpp, spline.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 51
Evaluate piece-wise polynomial PP at the points XI.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
spline
# name: <cell-element>
# type: string
# elements: 1
# length: 1285
 -- Function File: PP = spline (X, Y)
 -- Function File: YI = spline (X, Y, XI)
     Return the cubic spline interpolant of Y at points X.  If called with two arguments, `spline' returns the piece-wise polynomial PP that may later be used with `ppval' to evaluate the polynomial at specific points.  If called with a third input argument, `spline' evaluates the spline at the points XI.  There is an equivalence between `ppval (spline (X, Y), XI)' and `spline (X, Y, XI)'.

     The variable X must be a vector of length N, and Y can be either a vector or array.  In the case where Y is a vector, it can have a length of either N or `N + 2'.  If the length of Y is N, then the 'not-a-knot' end condition is used.  If the length of Y is `N + 2', then the first and last values of the vector Y are the values of the first derivative of the cubic spline at the end-points.

     If Y is an array, then the size of Y must have the form `[S1, S2, ..., SK, N]' or `[S1, S2, ..., SK, N + 2]'.  The array is then reshaped internally to a matrix where the leading dimension is given by `S1 * S2 * ... * SK' and each row of this matrix is then treated separately.  Note that this is exactly the opposite treatment than `interp1' and is done for compatibility.  See also: ppval, mkpp, unmkpp.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 53
Return the cubic spline interpolant of Y at points X.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
polyfit
# name: <cell-element>
# type: string
# elements: 1
# length: 1013
 -- Function File: [P, S, MU] = polyfit (X, Y, N)
     Return the coefficients of a polynomial P(X) of degree N that minimizes the least-squares-error of the fit.

     The polynomial coefficients are returned in a row vector.

     The second output is a structure containing the following fields:

    `R'
          Triangular factor R from the QR decomposition.

    `X'
          The Vandermonde matrix used to compute the polynomial coefficients.

    `df'
          The degrees of freedom.

    `normr'
          The norm of the residuals.

    `yf'
          The values of the polynomial for each value of X.

     The second output may be used by `polyval' to calculate the statistical error limits of the predicted values.

     When the third output, MU, is present the coefficients, P, are associated with a polynomial in XHAT = (X-MU(1))/MU(2).  Where MU(1) = mean (X), and MU(2) = std (X).  This linear transformation of X improves the numerical stability of the fit.  See also: polyval, residue.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 107
Return the coefficients of a polynomial P(X) of degree N that minimizes the least-squares-error of the fit.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
polyder
# name: <cell-element>
# type: string
# elements: 1
# length: 138
 -- Function File:  polyder (C)
 -- Function File: [Q] = polyder (B, A)
 -- Function File: [Q, R] = polyder (B, A)
     See polyderiv.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 14
See polyderiv.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
polygcd
# name: <cell-element>
# type: string
# elements: 1
# length: 717
 -- Function File: Q = polygcd (B, A, TOL)
     Find greatest common divisor of two polynomials.  This is equivalent to the polynomial found by multiplying together all the common roots.  Together with deconv, you can reduce a ratio of two polynomials.  Tolerance defaults to
          sqrt(eps).
      Note that this is an unstable algorithm, so don't try it on large polynomials.

     Example
          polygcd (poly(1:8), poly(3:12)) - poly(3:8)
          => [ 0, 0, 0, 0, 0, 0, 0 ]
          deconv (poly(1:8), polygcd (poly(1:8), poly(3:12))) ...
            - poly(1:2)
          => [ 0, 0, 0 ]
     See also: poly, polyinteg, polyderiv, polyreduce, roots, conv, deconv, residue, filter, polyval, polyvalm.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 48
Find greatest common divisor of two polynomials.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
polyderiv
# name: <cell-element>
# type: string
# elements: 1
# length: 495
 -- Function File:  polyderiv (C)
 -- Function File: [Q] = polyderiv (B, A)
 -- Function File: [Q, R] = polyderiv (B, A)
     Return the coefficients of the derivative of the polynomial whose coefficients are given by vector C.  If a pair of polynomials is given B and A, the derivative of the product is returned in Q, or the quotient numerator in Q and the quotient denominator in R.  See also: poly, polyinteg, polyreduce, roots, conv, deconv, residue, filter, polygcd, polyval, polyvalm.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 101
Return the coefficients of the derivative of the polynomial whose coefficients are given by vector C.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
deconv
# name: <cell-element>
# type: string
# elements: 1
# length: 385
 -- Function File:  deconv (Y, A)
     Deconvolve two vectors.

     `[b, r] = deconv (y, a)' solves for B and R such that `y = conv (a, b) + r'.

     If Y and A are polynomial coefficient vectors, B will contain the coefficients of the polynomial quotient and R will be a remainder polynomial of lowest order.  See also: conv, poly, roots, residue, polyval, polyderiv, polyinteg.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 23
Deconvolve two vectors.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
mkpp
# name: <cell-element>
# type: string
# elements: 1
# length: 771
 -- Function File: PP = mkpp (X, P)
 -- Function File: PP = mkpp (X, P, D)
     Construct a piece-wise polynomial structure from sample points X and coefficients P.  The i-th row of P, `P (I,:)', contains the coefficients for the polynomial over the I-th interval, ordered from highest to lowest.  There must be one row for each interval in X, so `rows (P) == length (X) - 1'.

     You can concatenate multiple polynomials of the same order over the same set of intervals using `P = [ P1; P2; ...; PD ]'.  In this case, `rows (P) == D * (length (X) - 1)'.

     D specifies the shape of the matrix P for all except the last dimension.  If D is not specified it will be computed as `round (rows (P) / (length (X) - 1))' instead.

     See also: unmkpp, ppval, spline.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 84
Construct a piece-wise polynomial structure from sample points X and coefficients P.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
mpoles
# name: <cell-element>
# type: string
# elements: 1
# length: 873
 -- Function File: [MULTP, INDX] = mpoles (P)
 -- Function File: [MULTP, INDX] = mpoles (P, TOL)
 -- Function File: [MULTP, INDX] = mpoles (P, TOL, REORDER)
     Identify unique poles in P and associates their multiplicity, ordering them from largest to smallest.

     If the relative difference of the poles is less than TOL, then they are considered to be multiples.  The default value for TOL is 0.001.

     If the optional parameter REORDER is zero, poles are not sorted.

     The value MULTP is a vector specifying the multiplicity of the poles.  MULTP(:) refers to multiplicity of P(INDX(:)).

     For example,

          p = [2 3 1 1 2];
          [m, n] = mpoles(p);
            => m = [1; 1; 2; 1; 2]
            => n = [2; 5; 1; 4; 3]
            => p(n) = [3, 2, 2, 1, 1]

     See also: poly, roots, conv, deconv, polyval, polyderiv, polyinteg, residue.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 101
Identify unique poles in P and associates their multiplicity, ordering them from largest to smallest.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
polyval
# name: <cell-element>
# type: string
# elements: 1
# length: 775
 -- Function File: Y = polyval (P, X)
 -- Function File: Y = polyval (P, X, [], MU)
     Evaluate the polynomial at of the specified values for X.  When MU is present evaluate the polynomial for (X-MU(1))/MU(2).  If X is a vector or matrix, the polynomial is evaluated for each of the elements of X.

 -- Function File: [Y, DY] = polyval (P, X, S)
 -- Function File: [Y, DY] = polyval (P, X, S, MU)
     In addition to evaluating the polynomial, the second output represents the prediction interval, Y +/- DY, which contains at least 50% of the future predictions.  To calculate the prediction interval, the structured variable S, originating form `polyfit', must be present.  See also: polyfit, polyvalm, poly, roots, conv, deconv, residue, filter, polyderiv, polyinteg.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 160
In addition to evaluating the polynomial, the second output represents the prediction interval, Y +/- DY, which contains at least 50% of the future predictions.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
convn
# name: <cell-element>
# type: string
# elements: 1
# length: 651
 -- Function File: C = convn (A, B, SHAPE)
     N-dimensional convolution of matrices A and B.

     The size of the output is determined by the SHAPE argument.  This can be any of the following character strings:

    "full"
          The full convolution result is returned.  The size out of the output is `size (A) + size (B)-1'.  This is the default behavior.

    "same"
          The central part of the convolution result is returned.  The size out of the output is the same as A.

    "valid"
          The valid part of the convolution is returned.  The size of the result is `max (size (A) - size (B)+1, 0)'.

     See also: conv, conv2.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 46
N-dimensional convolution of matrices A and B.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
polyvalm
# name: <cell-element>
# type: string
# elements: 1
# length: 397
 -- Function File:  polyvalm (C, X)
     Evaluate a polynomial in the matrix sense.

     `polyvalm (C, X)' will evaluate the polynomial in the matrix sense, i.e., matrix multiplication is used instead of element by element multiplication as is used in polyval.

     The argument X must be a square matrix.  See also: polyval, poly, roots, conv, deconv, residue, filter, polyderiv, polyinteg.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 42
Evaluate a polynomial in the matrix sense.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
polyout
# name: <cell-element>
# type: string
# elements: 1
# length: 334
 -- Function File:  polyout (C, X)
     Write formatted polynomial
             c(x) = c(1) * x^n + ... + c(n) x + c(n+1)
      and return it as a string or write it to the screen (if NARGOUT is zero).  X defaults to the string `"s"'.  See also: polyval, polyvalm, poly, roots, conv, deconv, residue, filter, polyderiv, polyinteg.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 49
Write formatted polynomial  c(x) = c(1) * x^n + .

# name: <cell-element>
# type: string
# elements: 1
# length: 6
unmkpp
# name: <cell-element>
# type: string
# elements: 1
# length: 821
 -- Function File: [X, P, N, K, D] = unmkpp (PP)
     Extract the components of a piece-wise polynomial structure PP.  These are as follows:

    X
          Sample points.

    P
          Polynomial coefficients for points in sample interval.  `P (I, :)' contains the coefficients for the polynomial over interval I ordered from highest to lowest.  If `D > 1', `P (R, I, :)' contains the coefficients for the r-th polynomial defined on interval I.  However, this is stored as a 2-D array such that `C = reshape (P (:, J), N, D)' gives `C (I,  R)' is the j-th coefficient of the r-th polynomial over the i-th interval.

    N
          Number of polynomial pieces.

    K
          Order of the polynomial plus 1.

    D
          Number of polynomials defined for each interval.

     See also: mkpp, ppval, spline.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 63
Extract the components of a piece-wise polynomial structure PP.

# name: <cell-element>
# type: string
# elements: 1
# length: 10
polyaffine
# name: <cell-element>
# type: string
# elements: 1
# length: 330
 -- Function File:  polyaffine (F, MU)
     Return the coefficients of the polynomial whose coefficients are given by vector F after an affine tranformation. If F is the vector representing the polynomial f(x), then G = polytrans (F, MU) is the vector representing
          g(x) = f((x-MU(1))/MU(2)).

     See also: polyval.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 113
Return the coefficients of the polynomial whose coefficients are given by vector F after an affine tranformation.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
poly
# name: <cell-element>
# type: string
# elements: 1
# length: 811
 -- Function File:  poly (A)
     If A is a square N-by-N matrix, `poly (A)' is the row vector of the coefficients of `det (z * eye (N) - a)', the characteristic polynomial of A.  As an example we can use this to find the eigenvalues of A as the roots of `poly (A)'.
          roots(poly(eye(3)))
          => 1.00000 + 0.00000i
          => 1.00000 - 0.00000i
          => 1.00000 + 0.00000i
     In real-life examples you should, however, use the `eig' function for computing eigenvalues.

     If X is a vector, `poly (X)' is a vector of coefficients of the polynomial whose roots are the elements of X.  That is, of C is a polynomial, then the elements of `D = roots (poly (C))' are contained in C.  The vectors C and D are, however, not equal due to sorting and numerical errors.  See also: eig, roots.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 144
If A is a square N-by-N matrix, `poly (A)' is the row vector of the coefficients of `det (z * eye (N) - a)', the characteristic polynomial of A.

# name: <cell-element>
# type: string
# elements: 1
# length: 8
datetick
# name: <cell-element>
# type: string
# elements: 1
# length: 609
 -- Function File:  datetick (FORM)
 -- Function File:  datetick (AXIS, FORM)
 -- Function File:  datetick (..., "keeplimits")
 -- Function File:  datetick (..., "keepticks")
 -- Function File:  datetick (...ax, ...)
     Adds date formatted tick labels to an axis.  The axis the apply the ticks to is determined by AXIS that can take the values "x", "y" or "z".  The default value is "x".  The formatting of the labels is determined by the variable FORM, that can either be a string in the format needed by `dateform', or a positive integer that can be accepted by `datestr'.  See also: datenum, datestr.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 43
Adds date formatted tick labels to an axis.

# name: <cell-element>
# type: string
# elements: 1
# length: 12
is_leap_year
# name: <cell-element>
# type: string
# elements: 1
# length: 242
 -- Function File:  is_leap_year (YEAR)
     Return 1 if the given year is a leap year and 0 otherwise.  If no arguments are provided, `is_leap_year' will use the current year.  For example,

          is_leap_year (2000)
               => 1

# name: <cell-element>
# type: string
# elements: 1
# length: 58
Return 1 if the given year is a leap year and 0 otherwise.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
datenum
# name: <cell-element>
# type: string
# elements: 1
# length: 1408
 -- Function File:  datenum (YEAR, MONTH, DAY)
 -- Function File:  datenum (YEAR, MONTH, DAY, HOUR)
 -- Function File:  datenum (YEAR, MONTH, DAY, HOUR, MINUTE)
 -- Function File:  datenum (YEAR, MONTH, DAY, HOUR, MINUTE, SECOND)
 -- Function File:  datenum (`"date"')
 -- Function File:  datenum (`"date"', P)
     Returns the specified local time as a day number, with Jan 1, 0000 being day 1.  By this reckoning, Jan 1, 1970 is day number 719529.  The fractional portion, P, corresponds to the portion of the specified day.

     Notes:

        * Years can be negative and/or fractional.

        * Months below 1 are considered to be January.

        * Days of the month start at 1.

        * Days beyond the end of the month go into subsequent months.

        * Days before the beginning of the month go to the previous month.

        * Days can be fractional.

     *Warning:* this function does not attempt to handle Julian calendars so dates before Octave 15, 1582 are wrong by as much as eleven days.  Also be aware that only Roman Catholic countries adopted the calendar in 1582.  It took until 1924 for it to be adopted everywhere.  See the Wikipedia entry on the Gregorian calendar for more details.

     *Warning:* leap seconds are ignored.  A table of leap seconds is available on the Wikipedia entry for leap seconds.  See also: date, clock, now, datestr, datevec, calendar, weekday.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 79
Returns the specified local time as a day number, with Jan 1, 0000 being day 1.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
weekday
# name: <cell-element>
# type: string
# elements: 1
# length: 449
 -- Function File: [N, S] = weekday (D, [FORM])
     Return the day of week as a number in N and a string in S, for example `[1, "Sun"]', `[2, "Mon"]', ..., or `[7, "Sat"]'.

     D is a serial date number or a date string.

     If the string FORM is given and is `"long"', S will contain the full name of the weekday; otherwise (or if FORM is `"short"'), S will contain the abbreviated name of the weekday.  See also: datenum, datevec, eomday.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 100
Return the day of week as a number in N and a string in S, for example `[1, "Sun"]', `[2, "Mon"]', .

# name: <cell-element>
# type: string
# elements: 1
# length: 8
calendar
# name: <cell-element>
# type: string
# elements: 1
# length: 573
 -- Function File:  calendar (...)
 -- Function File: C = calendar ()
 -- Function File: C = calendar (D)
 -- Function File: C = calendar (Y, M)
     If called with no arguments, return the current monthly calendar in a 6x7 matrix.

     If D is specified, return the calendar for the month containing the day D, which must be a serial date number or a date string.

     If Y and M are specified, return the calendar for year Y and month M.

     If no output arguments are specified, print the calendar on the screen instead of returning a matrix.  See also: datenum.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 81
If called with no arguments, return the current monthly calendar in a 6x7 matrix.

# name: <cell-element>
# type: string
# elements: 1
# length: 4
date
# name: <cell-element>
# type: string
# elements: 1
# length: 157
 -- Function File:  date ()
     Return the date as a character string in the form DD-MMM-YY.  For example,

          date ()
               => "20-Aug-93"

# name: <cell-element>
# type: string
# elements: 1
# length: 60
Return the date as a character string in the form DD-MMM-YY.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
asctime
# name: <cell-element>
# type: string
# elements: 1
# length: 299
 -- Function File:  asctime (TM_STRUCT)
     Convert a time structure to a string using the following five-field format: Thu Mar 28 08:40:14 1996.  For example,

          asctime (localtime (time ()))
               => "Mon Feb 17 01:15:06 1997\n"

     This is equivalent to `ctime (time ())'.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 101
Convert a time structure to a string using the following five-field format: Thu Mar 28 08:40:14 1996.

# name: <cell-element>
# type: string
# elements: 1
# length: 9
addtodate
# name: <cell-element>
# type: string
# elements: 1
# length: 213
 -- Function File: D = addtodate (D, Q, F)
     Add Q amount of time (with units F) to the datenum, D.

     F must be one of "year", "month", "day", "hour", "minute", or "second".  See also: datenum, datevec.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 54
Add Q amount of time (with units F) to the datenum, D.

# name: <cell-element>
# type: string
# elements: 1
# length: 6
eomday
# name: <cell-element>
# type: string
# elements: 1
# length: 134
 -- Function File: E = eomday (Y, M)
     Return the last day of the month M for the year Y.  See also: datenum, datevec, weekday.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 50
Return the last day of the month M for the year Y.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
datevec
# name: <cell-element>
# type: string
# elements: 1
# length: 736
 -- Function File: V = datevec (DATE)
 -- Function File: V = datevec (DATE, F)
 -- Function File: V = datevec (DATE, P)
 -- Function File: V = datevec (DATE, F, P)
 -- Function File: [Y, M, D, H, MI, S] = datevec (...)
     Convert a serial date number (see `datenum') or date string (see `datestr') into a date vector.

     A date vector is a row vector with six members, representing the year, month, day, hour, minute, and seconds respectively.

     F is the format string used to interpret date strings (see `datestr').

     P is the year at the start of the century in which two-digit years are to be interpreted in.  If not specified, it defaults to the current year minus 50.  See also: datenum, datestr, date, clock, now.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 95
Convert a serial date number (see `datenum') or date string (see `datestr') into a date vector.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
clock
# name: <cell-element>
# type: string
# elements: 1
# length: 324
 -- Function File:  clock ()
     Return a vector containing the current year, month (1-12), day (1-31), hour (0-23), minute (0-59) and second (0-61).  For example,

          clock ()
               => [ 1993, 8, 20, 4, 56, 1 ]

     The function clock is more accurate on systems that have the `gettimeofday' function.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 116
Return a vector containing the current year, month (1-12), day (1-31), hour (0-23), minute (0-59) and second (0-61).

# name: <cell-element>
# type: string
# elements: 1
# length: 5
etime
# name: <cell-element>
# type: string
# elements: 1
# length: 388
 -- Function File:  etime (T1, T2)
     Return the difference (in seconds) between two time values returned from `clock'.  For example:

          t0 = clock ();
           many computations later...
          elapsed_time = etime (clock (), t0);

     will set the variable `elapsed_time' to the number of seconds since the variable `t0' was set.  See also: tic, toc, clock, cputime.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 81
Return the difference (in seconds) between two time values returned from `clock'.

# name: <cell-element>
# type: string
# elements: 1
# length: 5
ctime
# name: <cell-element>
# type: string
# elements: 1
# length: 342
 -- Function File:  ctime (T)
     Convert a value returned from `time' (or any other non-negative integer), to the local time and return a string of the same form as `asctime'.  The function `ctime (time)' is equivalent to `asctime (localtime (time))'.  For example,

          ctime (time ())
               => "Mon Feb 17 01:15:06 1997\n"

# name: <cell-element>
# type: string
# elements: 1
# length: 142
Convert a value returned from `time' (or any other non-negative integer), to the local time and return a string of the same form as `asctime'.

# name: <cell-element>
# type: string
# elements: 1
# length: 7
datestr
# name: <cell-element>
# type: string
# elements: 1
# length: 35322
 -- Function File: STR = datestr (DATE, [F, [P]])
     Format the given date/time according to the format `f' and return the result in STR.  DATE is a serial date number (see `datenum') or a date vector (see `datevec').  The value of DATE may also be a string or cell array of strings.

     F can be an integer which corresponds to one of the codes in the table below, or a date format string.

     P is the year at the start of the century in which two-digit years are to be interpreted in.  If not specified, it defaults to the current year minus 50.

     For example, the date 730736.65149 (2000-09-07 15:38:09.0934) would be formatted as follows:

     Code                                                                                                   Format                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Example
     --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
     0                                                                                                      dd-mmm-yyyy HH:MM:SS                                                                                                                                                                                                                                                                                                                                                                                                                                                        07-Sep-2000 15:38:09
     1                                                                                                      dd-mmm-yyyy                                                                                                                                                                                                                                                                                                                                                                                                                                                                 07-Sep-2000
     2                                                                                                      mm/dd/yy                                                                                                                                                                                                                                                                                                                                                                                                                                                                    09/07/00
     3                                                                                                      mmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Sep
     4                                                                                                      m                                                                                                                                                                                                                                                                                                                                                                                                                                                                           S
     5                                                                                                      mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                          09
     6                                                                                                      mm/dd                                                                                                                                                                                                                                                                                                                                                                                                                                                                       09/07
     7                                                                                                      dd                                                                                                                                                                                                                                                                                                                                                                                                                                                                          07
     8                                                                                                      ddd                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Thu
     9                                                                                                      d                                                                                                                                                                                                                                                                                                                                                                                                                                                                           T
     10                                                                                                     yyyy                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2000
     11                                                                                                     yy                                                                                                                                                                                                                                                                                                                                                                                                                                                                          00
     12                                                                                                     mmmyy                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Sep00
     13                                                                                                     HH:MM:SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                    15:38:09
     14                                                                                                     HH:MM:SS PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                 03:38:09 PM
     15                                                                                                     HH:MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                       15:38
     16                                                                                                     HH:MM PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                    03:38 PM
     17                                                                                                     QQ-YY                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Q3-00
     18                                                                                                     QQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Q3
     19                                                                                                     dd/mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                       13/03
     20                                                                                                     dd/mm/yy                                                                                                                                                                                                                                                                                                                                                                                                                                                                    13/03/95
     21                                                                                                     mmm.dd.yyyy HH:MM:SS                                                                                                                                                                                                                                                                                                                                                                                                                                                        Mar.03.1962 13:53:06
     22                                                                                                     mmm.dd.yyyy                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Mar.03.1962
     23                                                                                                     mm/dd/yyyy                                                                                                                                                                                                                                                                                                                                                                                                                                                                  03/13/1962
     24                                                                                                     dd/mm/yyyy                                                                                                                                                                                                                                                                                                                                                                                                                                                                  12/03/1962
     25                                                                                                     yy/mm/dd                                                                                                                                                                                                                                                                                                                                                                                                                                                                    95/03/13
     26                                                                                                     yyyy/mm/dd                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1995/03/13
     27                                                                                                     QQ-YYYY                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Q4-2132
     28                                                                                                     mmmyyyy                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Mar2047
     29                                                                                                     yyyymmdd                                                                                                                                                                                                                                                                                                                                                                                                                                                                    20470313
     30                                                                                                     yyyymmddTHHMMSS                                                                                                                                                                                                                                                                                                                                                                                                                                                             20470313T132603
     31                                                                                                     yyyy-mm-dd HH:MM:SS                                                                                                                                                                                                                                                                                                                                                                                                                                                         1047-03-13 13:26:03

     If F is a format string, the following symbols are recognized:

     Symbol                                                                                                 Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Example
     -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
     yyyy                                                                                                   Full year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2005
     yy                                                                                                     Two-digit year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2005
     mmmm                                                                                                   Full month name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           December
     mmm                                                                                                    Abbreviated month name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Dec
     mm                                                                                                     Numeric month number (padded with zeros)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  01, 08, 12
     m                                                                                                      First letter of month name (capitalized)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  D
     dddd                                                                                                   Full weekday name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Sunday
     ddd                                                                                                    Abbreviated weekday name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Sun
     dd                                                                                                     Numeric day of month (padded with zeros)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  11
     d                                                                                                      First letter of weekday name (capitalized)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                S
     HH                                                                                                     Hour of day, padded with zeros if PM is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               09:00
                                                                                                            and not padded with zeros otherwise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       9:00 AM
     MM                                                                                                     Minute of hour (padded with zeros)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        10:05
     SS                                                                                                     Second of minute (padded with zeros)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      10:05:03
     PM                                                                                                     Use 12-hour time format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   11:30 PM

     If F is not specified or is `-1', then use 0, 1 or 16, depending on whether the date portion or the time portion of DATE is empty.

     If P is nor specified, it defaults to the current year minus 50.

     If a matrix or cell array of dates is given, a vector of date strings is returned.

     See also: datenum, datevec, date, clock, now, datetick.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 84
Format the given date/time according to the format `f' and return the result in STR.

# name: <cell-element>
# type: string
# elements: 1
# length: 3
now
# name: <cell-element>
# type: string
# elements: 1
# length: 437
 -- Function File: t = now ()
     Returns the current local time as the number of days since Jan 1, 0000.  By this reckoning, Jan 1, 1970 is day number 719529.

     The integral part, `floor (now)' corresponds to 00:00:00 today.

     The fractional part, `rem (now, 1)' corresponds to the current time on Jan 1, 0000.

     The returned value is also called a "serial date number" (see `datenum').  See also: clock, date, datenum.
   
# name: <cell-element>
# type: string
# elements: 1
# length: 71
Returns the current local time as the number of days since Jan 1, 0000.