1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
|
@c DO NOT EDIT! Generated automatically by munge-texi.
@c Copyright (C) 1996, 1997, 2007, 2008, 2009 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
@c for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <http://www.gnu.org/licenses/>.
@node Linear Algebra
@chapter Linear Algebra
This chapter documents the linear algebra functions of Octave.
Reference material for many of these functions may be found in
Golub and Van Loan, @cite{Matrix Computations, 2nd Ed.}, Johns Hopkins,
1989, and in the @cite{@sc{lapack} Users' Guide}, SIAM, 1992.
@menu
* Techniques used for Linear Algebra::
* Basic Matrix Functions::
* Matrix Factorizations::
* Functions of a Matrix::
* Specialized Solvers::
@end menu
@node Techniques used for Linear Algebra
@section Techniques used for Linear Algebra
Octave includes a polymorphic solver, that selects an appropriate
matrix factorization depending on the properties of the matrix itself.
Generally, the cost of determining the matrix type is small relative to
the cost of factorizing the matrix itself, but in any case the matrix
type is cached once it is calculated, so that it is not re-determined
each time it is used in a linear equation.
The selection tree for how the linear equation is solve or a matrix
inverse is form is given by
@enumerate 1
@item If the matrix is upper or lower triangular sparse a forward or
backward substitution using the @sc{lapack} xTRTRS function, and goto 4.
@c Permuted triangular matrices currently disabled in the code
@c
@c @item If the matrix is a upper triangular matrix with column permutations
@c or lower triangular matrix with row permutations, perform a forward or
@c backward substitution, and goto 5.
@item If the matrix is square, hermitian with a real positive diagonal,
attempt Cholesky factorization using the @sc{lapack} xPOTRF function.
@item If the Cholesky factorization failed or the matrix is not
hermitian with a real positive diagonal, and the matrix is square, factorize
using the @sc{lapack} xGETRF function.
@item If the matrix is not square, or any of the previous solvers flags
a singular or near singular matrix, find a least squares solution using
the @sc{lapack} xGELSD function.
@end enumerate
The user can force the type of the matrix with the @code{matrix_type}
function. This overcomes the cost of discovering the type of the matrix.
However, it should be noted that identifying the type of the matrix incorrectly
will lead to unpredictable results, and so @code{matrix_type} should be
used with care.
It should be noted that the test for whether a matrix is a candidate for
Cholesky factorization, performed above and by the @code{matrix_type}
function, does not give a certainty that the matrix is
Hermitian. However, the attempt to factorize the matrix will quickly
flag a non-Hermitian matrix.
@node Basic Matrix Functions
@section Basic Matrix Functions
@c ./DLD-FUNCTIONS/balance.cc
@anchor{doc-balance}
@deftypefn {Loadable Function} {@var{aa} =} balance (@var{a}, @var{opt})
@deftypefnx {Loadable Function} {[@var{dd}, @var{aa}] =} balance (@var{a}, @var{opt})
@deftypefnx {Loadable Function} {[@var{d}, @var{p}, @var{aa}] =} balance (@var{a}, @var{opt})
@deftypefnx {Loadable Function} {[@var{cc}, @var{dd}, @var{aa}, @var{bb}] =} balance (@var{a}, @var{b}, @var{opt})
Compute @code{aa = dd \ a * dd} in which @code{aa} is a matrix whose
row and column norms are roughly equal in magnitude, and
@code{dd} = @code{p * d}, in which @code{p} is a permutation
matrix and @code{d} is a diagonal matrix of powers of two. This allows
the equilibration to be computed without roundoff. Results of
eigenvalue calculation are typically improved by balancing first.
If two output values are requested, @code{balance} returns
the diagonal @code{d} and the permutation @code{p} separately as vectors.
In this case, @code{dd = eye(n)(:,p) * diag (d)}, where @code{n} is the matrix
size.
If four output values are requested, compute @code{aa = cc*a*dd} and
@code{bb = cc*b*dd)}, in which @code{aa} and @code{bb} have non-zero
elements of approximately the same magnitude and @code{cc} and @code{dd}
are permuted diagonal matrices as in @code{dd} for the algebraic
eigenvalue problem.
The eigenvalue balancing option @code{opt} may be one of:
@table @asis
@item @code{"noperm"}, @code{"S"}
Scale only; do not permute.
@item @code{"noscal"}, @code{"P"}
Permute only; do not scale.
@end table
Algebraic eigenvalue balancing uses standard @sc{lapack} routines.
Generalized eigenvalue problem balancing uses Ward's algorithm
(SIAM Journal on Scientific and Statistical Computing, 1981).
@end deftypefn
@c ./linear-algebra/cond.m
@anchor{doc-cond}
@deftypefn {Function File} {} cond (@var{a},@var{p})
Compute the @var{p}-norm condition number of a matrix. @code{cond (@var{a})} is
defined as @code{norm (@var{a}, @var{p}) * norm (inv (@var{a}), @var{p})}.
By default @code{@var{p}=2} is used which implies a (relatively slow)
singular value decomposition. Other possible selections are
@code{@var{p}= 1, Inf, inf, 'Inf', 'fro'} which are generally faster.
@seealso{@ref{doc-condest,,condest}, @ref{doc-rcond,,rcond}, @ref{doc-norm,,norm}, @ref{doc-svd,,svd}}
@end deftypefn
@c ./DLD-FUNCTIONS/det.cc
@anchor{doc-det}
@deftypefn {Loadable Function} {[@var{d}, @var{rcond}] =} det (@var{a})
Compute the determinant of @var{a} using @sc{lapack} for full and UMFPACK
for sparse matrices. Return an estimate of the reciprocal condition number
if requested.
@end deftypefn
@c ./deprecated/dmult.m
@anchor{doc-dmult}
@deftypefn {Function File} {} dmult (@var{a}, @var{b})
This function has been deprecated. Use the direct syntax @code{diag(A)*B}
which is more readable and now also more efficient.
@end deftypefn
@c ./linear-algebra/dot.m
@anchor{doc-dot}
@deftypefn {Function File} {} dot (@var{x}, @var{y}, @var{dim})
Computes the dot product of two vectors. If @var{x} and @var{y}
are matrices, calculate the dot-product along the first
non-singleton dimension. If the optional argument @var{dim} is
given, calculate the dot-product along this dimension.
@end deftypefn
@c ./DLD-FUNCTIONS/eig.cc
@anchor{doc-eig}
@deftypefn {Loadable Function} {@var{lambda} =} eig (@var{a})
@deftypefnx {Loadable Function} {@var{lambda} =} eig (@var{a}, @var{b})
@deftypefnx {Loadable Function} {[@var{v}, @var{lambda}] =} eig (@var{a})
@deftypefnx {Loadable Function} {[@var{v}, @var{lambda}] =} eig (@var{a}, @var{b})
The eigenvalues (and eigenvectors) of a matrix are computed in a several
step process which begins with a Hessenberg decomposition, followed by a
Schur decomposition, from which the eigenvalues are apparent. The
eigenvectors, when desired, are computed by further manipulations of the
Schur decomposition.
The eigenvalues returned by @code{eig} are not ordered.
@seealso{@ref{doc-eigs,,eigs}}
@end deftypefn
@c ./DLD-FUNCTIONS/givens.cc
@anchor{doc-givens}
@deftypefn {Loadable Function} {@var{g} =} givens (@var{x}, @var{y})
@deftypefnx {Loadable Function} {[@var{c}, @var{s}] =} givens (@var{x}, @var{y})
@iftex
@tex
Return a $2\times 2$ orthogonal matrix
$$
G = \left[\matrix{c & s\cr -s'& c\cr}\right]
$$
such that
$$
G \left[\matrix{x\cr y}\right] = \left[\matrix{\ast\cr 0}\right]
$$
with $x$ and $y$ scalars.
@end tex
@end iftex
@ifnottex
Return a 2 by 2 orthogonal matrix
@code{@var{g} = [@var{c} @var{s}; -@var{s}' @var{c}]} such that
@code{@var{g} [@var{x}; @var{y}] = [*; 0]} with @var{x} and @var{y} scalars.
@end ifnottex
For example,
@example
@group
givens (1, 1)
@result{} 0.70711 0.70711
-0.70711 0.70711
@end group
@end example
@end deftypefn
@c ./linear-algebra/planerot.m
@anchor{doc-planerot}
@deftypefn {Function File} {[@var{g}, @var{y}] =} planerot (@var{x})
Given a two-element column vector, returns the
@tex
$2 \times 2$ orthogonal matrix
@end tex
@ifnottex
2 by 2 orthogonal matrix
@end ifnottex
@var{G} such that
@code{@var{y} = @var{g} * @var{x}} and @code{@var{y}(2) = 0}.
@seealso{@ref{doc-givens,,givens}}
@end deftypefn
@c ./DLD-FUNCTIONS/inv.cc
@anchor{doc-inv}
@deftypefn {Loadable Function} {[@var{x}, @var{rcond}] =} inv (@var{a})
@deftypefnx {Loadable Function} {[@var{x}, @var{rcond}] =} inverse (@var{a})
Compute the inverse of the square matrix @var{a}. Return an estimate
of the reciprocal condition number if requested, otherwise warn of an
ill-conditioned matrix if the reciprocal condition number is small.
If called with a sparse matrix, then in general @var{x} will be a full
matrix, and so if possible forming the inverse of a sparse matrix should
be avoided. It is significantly more accurate and faster to do
@code{@var{y} = @var{a} \ @var{b}}, rather than
@code{@var{y} = inv (@var{a}) * @var{b}}.
@end deftypefn
@c ./DLD-FUNCTIONS/matrix_type.cc
@anchor{doc-matrix_type}
@deftypefn {Loadable Function} {@var{type} =} matrix_type (@var{a})
@deftypefnx {Loadable Function} {@var{a} =} matrix_type (@var{a}, @var{type})
@deftypefnx {Loadable Function} {@var{a} =} matrix_type (@var{a}, 'upper', @var{perm})
@deftypefnx {Loadable Function} {@var{a} =} matrix_type (@var{a}, 'lower', @var{perm})
@deftypefnx {Loadable Function} {@var{a} =} matrix_type (@var{a}, 'banded', @var{nl}, @var{nu})
Identify the matrix type or mark a matrix as a particular type. This allows rapid
for solutions of linear equations involving @var{a} to be performed. Called with a
single argument, @code{matrix_type} returns the type of the matrix and caches it for
future use. Called with more than one argument, @code{matrix_type} allows the type
of the matrix to be defined.
The possible matrix types depend on whether the matrix is full or sparse, and can be
one of the following
@table @asis
@item 'unknown'
Remove any previously cached matrix type, and mark type as unknown
@item 'full'
Mark the matrix as full.
@item 'positive definite'
Probable full positive definite matrix.
@item 'diagonal'
Diagonal Matrix. (Sparse matrices only)
@item 'permuted diagonal'
Permuted Diagonal matrix. The permutation does not need to be specifically
indicated, as the structure of the matrix explicitly gives this. (Sparse matrices
only)
@item 'upper'
Upper triangular. If the optional third argument @var{perm} is given, the matrix is
assumed to be a permuted upper triangular with the permutations defined by the
vector @var{perm}.
@item 'lower'
Lower triangular. If the optional third argument @var{perm} is given, the matrix is
assumed to be a permuted lower triangular with the permutations defined by the
vector @var{perm}.
@item 'banded'
@itemx 'banded positive definite'
Banded matrix with the band size of @var{nl} below the diagonal and @var{nu} above
it. If @var{nl} and @var{nu} are 1, then the matrix is tridiagonal and treated
with specialized code. In addition the matrix can be marked as probably a
positive definite (Sparse matrices only)
@item 'singular'
The matrix is assumed to be singular and will be treated with a minimum norm solution
@end table
Note that the matrix type will be discovered automatically on the first attempt to
solve a linear equation involving @var{a}. Therefore @code{matrix_type} is only
useful to give Octave hints of the matrix type. Incorrectly defining the
matrix type will result in incorrect results from solutions of linear equations,
and so it is entirely the responsibility of the user to correctly identify the
matrix type.
Also the test for positive definiteness is a low-cost test for a hermitian
matrix with a real positive diagonal. This does not guarantee that the matrix
is positive definite, but only that it is a probable candidate. When such a
matrix is factorized, a Cholesky factorization is first attempted, and if
that fails the matrix is then treated with an LU factorization. Once the
matrix has been factorized, @code{matrix_type} will return the correct
classification of the matrix.
@end deftypefn
@c data.cc
@anchor{doc-norm}
@deftypefn {Built-in Function} {} norm (@var{a}, @var{p}, @var{opt})
Compute the p-norm of the matrix @var{a}. If the second argument is
missing, @code{p = 2} is assumed.
If @var{a} is a matrix (or sparse matrix):
@table @asis
@item @var{p} = @code{1}
1-norm, the largest column sum of the absolute values of @var{a}.
@item @var{p} = @code{2}
Largest singular value of @var{a}.
@item @var{p} = @code{Inf} or @code{"inf"}
@cindex infinity norm
Infinity norm, the largest row sum of the absolute values of @var{a}.
@item @var{p} = @code{"fro"}
@cindex Frobenius norm
Frobenius norm of @var{a}, @code{sqrt (sum (diag (@var{a}' * @var{a})))}.
@item other @var{p}, @code{@var{p} > 1}
@cindex general p-norm
maximum @code{norm (A*x, p)} such that @code{norm (x, p) == 1}
@end table
If @var{a} is a vector or a scalar:
@table @asis
@item @var{p} = @code{Inf} or @code{"inf"}
@code{max (abs (@var{a}))}.
@item @var{p} = @code{-Inf}
@code{min (abs (@var{a}))}.
@item @var{p} = @code{"fro"}
Frobenius norm of @var{a}, @code{sqrt (sumsq (abs (a)))}.
@item @var{p} = 0
Hamming norm - the number of nonzero elements.
@item other @var{p}, @code{@var{p} > 1}
p-norm of @var{a}, @code{(sum (abs (@var{a}) .^ @var{p})) ^ (1/@var{p})}.
@item other @var{p} @code{@var{p} < 1}
the p-pseudonorm defined as above.
@end table
If @code{"rows"} is given as @var{opt}, the norms of all rows of the matrix @var{a} are
returned as a column vector. Similarly, if @code{"columns"} or @code{"cols"} is passed
column norms are computed.
@seealso{@ref{doc-cond,,cond}, @ref{doc-svd,,svd}}
@end deftypefn
@c ./linear-algebra/null.m
@anchor{doc-null}
@deftypefn {Function File} {} null (@var{a}, @var{tol})
Return an orthonormal basis of the null space of @var{a}.
The dimension of the null space is taken as the number of singular
values of @var{a} not greater than @var{tol}. If the argument @var{tol}
is missing, it is computed as
@example
max (size (@var{a})) * max (svd (@var{a})) * eps
@end example
@end deftypefn
@c ./linear-algebra/orth.m
@anchor{doc-orth}
@deftypefn {Function File} {} orth (@var{a}, @var{tol})
Return an orthonormal basis of the range space of @var{a}.
The dimension of the range space is taken as the number of singular
values of @var{a} greater than @var{tol}. If the argument @var{tol} is
missing, it is computed as
@example
max (size (@var{a})) * max (svd (@var{a})) * eps
@end example
@end deftypefn
@c ./DLD-FUNCTIONS/pinv.cc
@anchor{doc-pinv}
@deftypefn {Loadable Function} {} pinv (@var{x}, @var{tol})
Return the pseudoinverse of @var{x}. Singular values less than
@var{tol} are ignored.
If the second argument is omitted, it is assumed that
@example
tol = max (size (@var{x})) * sigma_max (@var{x}) * eps,
@end example
@noindent
where @code{sigma_max (@var{x})} is the maximal singular value of @var{x}.
@end deftypefn
@c ./linear-algebra/rank.m
@anchor{doc-rank}
@deftypefn {Function File} {} rank (@var{a}, @var{tol})
Compute the rank of @var{a}, using the singular value decomposition.
The rank is taken to be the number of singular values of @var{a} that
are greater than the specified tolerance @var{tol}. If the second
argument is omitted, it is taken to be
@example
tol = max (size (@var{a})) * sigma(1) * eps;
@end example
@noindent
where @code{eps} is machine precision and @code{sigma(1)} is the largest
singular value of @var{a}.
@end deftypefn
@c ./DLD-FUNCTIONS/rcond.cc
@anchor{doc-rcond}
@deftypefn {Loadable Function} {@var{c} =} rcond (@var{a})
Compute the 1-norm estimate of the reciprocal condition as returned
by @sc{lapack}. If the matrix is well-conditioned then @var{c} will be near
1 and if the matrix is poorly conditioned it will be close to zero.
The matrix @var{a} must not be sparse. If the matrix is sparse then
@code{condest (@var{a})} or @code{rcond (full (@var{a}))} should be used
instead.
@seealso{@ref{doc-inv,,inv}}
@end deftypefn
@c ./linear-algebra/trace.m
@anchor{doc-trace}
@deftypefn {Function File} {} trace (@var{a})
Compute the trace of @var{a}, @code{sum (diag (@var{a}))}.
@end deftypefn
@c ./linear-algebra/rref.m
@anchor{doc-rref}
@deftypefn {Function File} {[@var{r}, @var{k}] =} rref (@var{a}, @var{tol})
Returns the reduced row echelon form of @var{a}. @var{tol} defaults
to @code{eps * max (size (@var{a})) * norm (@var{a}, inf)}.
Called with two return arguments, @var{k} returns the vector of
"bound variables", which are those columns on which elimination
has been performed.
@end deftypefn
@node Matrix Factorizations
@section Matrix Factorizations
@c ./DLD-FUNCTIONS/chol.cc
@anchor{doc-chol}
@deftypefn {Loadable Function} {@var{r} =} chol (@var{a})
@deftypefnx {Loadable Function} {[@var{r}, @var{p}] =} chol (@var{a})
@deftypefnx {Loadable Function} {[@var{r}, @var{p}, @var{q}] =} chol (@var{s})
@deftypefnx {Loadable Function} {[@var{r}, @var{p}, @var{q}] =} chol (@var{s}, 'vector')
@deftypefnx {Loadable Function} {[@var{l}, @dots{}] =} chol (@dots{}, 'lower')
@cindex Cholesky factorization
Compute the Cholesky factor, @var{r}, of the symmetric positive definite
matrix @var{a}, where
@iftex
@tex
$ R^T R = A $.
@end tex
@end iftex
@ifnottex
@example
@var{r}' * @var{r} = @var{a}.
@end example
@end ifnottex
Called with one output argument @code{chol} fails if @var{a} or @var{s} is
not positive definite. With two or more output arguments @var{p} flags
whether the matrix was positive definite and @code{chol} does not fail. A
zero value indicated that the matrix was positive definite and the @var{r}
gives the factorization, and @var{p} will have a positive value otherwise.
If called with 3 outputs then a sparsity preserving row/column permutation
is applied to @var{a} prior to the factorization. That is @var{r}
is the factorization of @code{@var{a}(@var{q},@var{q})} such that
@iftex
@tex
$ R^T R = Q^T A Q$.
@end tex
@end iftex
@ifnottex
@example
@var{r}' * @var{r} = @var{q}' * @var{a} * @var{q}.
@end example
@end ifnottex
The sparsity preserving permutation is generally returned as a matrix.
However, given the flag 'vector', @var{q} will be returned as a vector
such that
@iftex
@tex
$ R^T R = A (Q, Q)$.
@end tex
@end iftex
@ifnottex
@example
@var{r}' * @var{r} = a (@var{q}, @var{q}).
@end example
@end ifnottex
Called with either a sparse or full matrix and using the 'lower' flag,
@code{chol} returns the lower triangular factorization such that
@iftex
@tex
$ L L^T = A $.
@end tex
@end iftex
@ifnottex
@example
@var{l} * @var{l}' = @var{a}.
@end example
@end ifnottex
In general the lower triangular factorization is significantly faster for
sparse matrices.
@seealso{@ref{doc-cholinv,,cholinv}, @ref{doc-chol2inv,,chol2inv}}
@end deftypefn
@c ./DLD-FUNCTIONS/chol.cc
@anchor{doc-cholinv}
@deftypefn {Loadable Function} {} cholinv (@var{a})
Use the Cholesky factorization to compute the inverse of the
symmetric positive definite matrix @var{a}.
@seealso{@ref{doc-chol,,chol}, @ref{doc-chol2inv,,chol2inv}}
@end deftypefn
@c ./DLD-FUNCTIONS/chol.cc
@anchor{doc-chol2inv}
@deftypefn {Loadable Function} {} chol2inv (@var{u})
Invert a symmetric, positive definite square matrix from its Cholesky
decomposition, @var{u}. Note that @var{u} should be an upper-triangular
matrix with positive diagonal elements. @code{chol2inv (@var{u})}
provides @code{inv (@var{u}'*@var{u})} but it is much faster than
using @code{inv}.
@seealso{@ref{doc-chol,,chol}, @ref{doc-cholinv,,cholinv}}
@end deftypefn
@c ./DLD-FUNCTIONS/chol.cc
@anchor{doc-cholupdate}
@deftypefn {Loadable Function} {[@var{R1}, @var{info}] =} cholupdate (@var{R}, @var{u}, @var{op})
Update or downdate a Cholesky factorization. Given an upper triangular
matrix @var{R} and a column vector @var{u}, attempt to determine another
upper triangular matrix @var{R1} such that
@itemize @bullet
@item
@var{R1}'*@var{R1} = @var{R}'*@var{R} + @var{u}*@var{u}'
if @var{op} is "+"
@item
@var{R1}'*@var{R1} = @var{R}'*@var{R} - @var{u}*@var{u}'
if @var{op} is "-"
@end itemize
If @var{op} is "-", @var{info} is set to
@itemize
@item 0 if the downdate was successful,
@item 1 if @var{R}'*@var{R} - @var{u}*@var{u}' is not positive definite,
@item 2 if @var{R} is singular.
@end itemize
If @var{info} is not present, an error message is printed in cases 1 and 2.
@seealso{@ref{doc-chol,,chol}, @ref{doc-qrupdate,,qrupdate}}
@end deftypefn
@c ./DLD-FUNCTIONS/chol.cc
@anchor{doc-cholinsert}
@deftypefn {Loadable Function} {[@var{R1}, @var{info}] =} cholinsert (@var{R}, @var{j}, @var{u})
Given a Cholesky@tie{}factorization of a real symmetric or complex hermitian
positive definite matrix @w{@var{A} = @var{R}'*@var{R}}, @var{R}@tie{}upper triangular,
return the Cholesky@tie{}factorization of
@var{A1}, where @w{A1(p,p) = A}, @w{A1(:,j) = A1(j,:)' = u} and
@w{p = [1:j-1,j+1:n+1]}. @w{u(j)} should be positive.
On return, @var{info} is set to
@itemize
@item 0 if the insertion was successful,
@item 1 if @var{A1} is not positive definite,
@item 2 if @var{R} is singular.
@end itemize
If @var{info} is not present, an error message is printed in cases 1 and 2.
@seealso{@ref{doc-chol,,chol}, @ref{doc-cholupdate,,cholupdate}, @ref{doc-choldelete,,choldelete}}
@end deftypefn
@c ./DLD-FUNCTIONS/chol.cc
@anchor{doc-choldelete}
@deftypefn {Loadable Function} {@var{R1} =} choldelete (@var{R}, @var{j})
Given a Cholesky@tie{}factorization of a real symmetric or complex hermitian
positive definite matrix @w{@var{A} = @var{R}'*@var{R}}, @var{R}@tie{}upper triangular,
return the Cholesky@tie{}factorization of @w{A(p,p)}, where @w{p = [1:j-1,j+1:n+1]}.
@seealso{@ref{doc-chol,,chol}, @ref{doc-cholupdate,,cholupdate}, @ref{doc-cholinsert,,cholinsert}}
@end deftypefn
@c ./DLD-FUNCTIONS/chol.cc
@anchor{doc-cholshift}
@deftypefn {Loadable Function} {@var{R1} =} cholshift (@var{R}, @var{i}, @var{j})
Given a Cholesky@tie{}factorization of a real symmetric or complex hermitian
positive definite matrix @w{@var{A} = @var{R}'*@var{R}}, @var{R}@tie{}upper triangular,
return the Cholesky@tie{}factorization of
@w{@var{A}(p,p)}, where @w{p} is the permutation @*
@code{p = [1:i-1, shift(i:j, 1), j+1:n]} if @w{@var{i} < @var{j}} @*
or @*
@code{p = [1:j-1, shift(j:i,-1), i+1:n]} if @w{@var{j} < @var{i}}. @*
@seealso{@ref{doc-chol,,chol}, @ref{doc-cholinsert,,cholinsert}, @ref{doc-choldelete,,choldelete}}
@end deftypefn
@c ./DLD-FUNCTIONS/hess.cc
@anchor{doc-hess}
@deftypefn {Loadable Function} {@var{h} =} hess (@var{a})
@deftypefnx {Loadable Function} {[@var{p}, @var{h}] =} hess (@var{a})
@cindex Hessenberg decomposition
Compute the Hessenberg decomposition of the matrix @var{a}.
The Hessenberg decomposition is usually used as the first step in an
eigenvalue computation, but has other applications as well (see Golub,
Nash, and Van Loan, IEEE Transactions on Automatic Control, 1979). The
Hessenberg decomposition is
@iftex
@tex
$$
A = PHP^T
$$
where $P$ is a square unitary matrix ($P^HP = I$), and $H$
is upper Hessenberg ($H_{i,j} = 0, \forall i \ge j+1$).
@end tex
@end iftex
@ifnottex
@code{p * h * p' = a} where @code{p} is a square unitary matrix
(@code{p' * p = I}, using complex-conjugate transposition) and @code{h}
is upper Hessenberg (@code{i >= j+1 => h (i, j) = 0}).
@end ifnottex
@end deftypefn
@c ./DLD-FUNCTIONS/lu.cc
@anchor{doc-lu}
@deftypefn {Loadable Function} {[@var{l}, @var{u}, @var{p}] =} lu (@var{a})
@deftypefnx {Loadable Function} {[@var{l}, @var{u}, @var{p}, @var{q}] =} lu (@var{s})
@deftypefnx {Loadable Function} {[@var{l}, @var{u}, @var{p}, @var{q}, @var{r}] =} lu (@var{s})
@deftypefnx {Loadable Function} {[@dots{}] =} lu (@var{s}, @var{thres})
@deftypefnx {Loadable Function} {@var{y} =} lu (@dots{})
@deftypefnx {Loadable Function} {[@dots{}] =} lu (@dots{}, 'vector')
@cindex LU decomposition
Compute the LU decomposition of @var{a}. If @var{a} is full subroutines from
@sc{lapack} are used and if @var{a} is sparse then UMFPACK is used. The
result is returned in a permuted form, according to the optional return
value @var{p}. For example, given the matrix @code{a = [1, 2; 3, 4]},
@example
[l, u, p] = lu (a)
@end example
@noindent
returns
@example
@group
l =
1.00000 0.00000
0.33333 1.00000
u =
3.00000 4.00000
0.00000 0.66667
p =
0 1
1 0
@end group
@end example
The matrix is not required to be square.
Called with two or three output arguments and a spare input matrix,
then @dfn{lu} does not attempt to perform sparsity preserving column
permutations. Called with a fourth output argument, the sparsity
preserving column transformation @var{Q} is returned, such that
@code{@var{p} * @var{a} * @var{q} = @var{l} * @var{u}}.
Called with a fifth output argument and a sparse input matrix, then
@dfn{lu} attempts to use a scaling factor @var{r} on the input matrix
such that @code{@var{p} * (@var{r} \ @var{a}) * @var{q} = @var{l} * @var{u}}.
This typically leads to a sparser and more stable factorization.
An additional input argument @var{thres}, that defines the pivoting
threshold can be given. @var{thres} can be a scalar, in which case
it defines UMFPACK pivoting tolerance for both symmetric and unsymmetric
cases. If @var{thres} is a two element vector, then the first element
defines the pivoting tolerance for the unsymmetric UMFPACK pivoting
strategy and the second the symmetric strategy. By default, the values
defined by @code{spparms} are used and are by default @code{[0.1, 0.001]}.
Given the string argument 'vector', @dfn{lu} returns the values of @var{p}
@var{q} as vector values, such that for full matrix, @code{@var{a}
(@var{p},:) = @var{l} * @var{u}}, and @code{@var{r}(@var{p},:) * @var{a}
(:, @var{q}) = @var{l} * @var{u}}.
With two output arguments, returns the permuted forms of the upper and
lower triangular matrices, such that @code{@var{a} = @var{l} * @var{u}}.
With one output argument @var{y}, then the matrix returned by the @sc{lapack}
routines is returned. If the input matrix is sparse then the matrix @var{l}
is embedded into @var{u} to give a return value similar to the full case.
For both full and sparse matrices, @dfn{lu} looses the permutation
information.
@end deftypefn
@c ./DLD-FUNCTIONS/qr.cc
@anchor{doc-qr}
@deftypefn {Loadable Function} {[@var{q}, @var{r}, @var{p}] =} qr (@var{a})
@deftypefnx {Loadable Function} {[@var{q}, @var{r}, @var{p}] =} qr (@var{a}, '0')
@cindex QR factorization
Compute the QR factorization of @var{a}, using standard @sc{lapack}
subroutines. For example, given the matrix @code{a = [1, 2; 3, 4]},
@example
[q, r] = qr (a)
@end example
@noindent
returns
@example
@group
q =
-0.31623 -0.94868
-0.94868 0.31623
r =
-3.16228 -4.42719
0.00000 -0.63246
@end group
@end example
The @code{qr} factorization has applications in the solution of least
squares problems
@iftex
@tex
$$
\min_x \left\Vert A x - b \right\Vert_2
$$
@end tex
@end iftex
@ifnottex
@example
@code{min norm(A x - b)}
@end example
@end ifnottex
for overdetermined systems of equations (i.e.,
@iftex
@tex
$A$
@end tex
@end iftex
@ifnottex
@code{a}
@end ifnottex
is a tall, thin matrix). The QR factorization is
@iftex
@tex
$QR = A$ where $Q$ is an orthogonal matrix and $R$ is upper triangular.
@end tex
@end iftex
@ifnottex
@code{q * r = a} where @code{q} is an orthogonal matrix and @code{r} is
upper triangular.
@end ifnottex
If given a second argument of '0', @code{qr} returns an economy-sized
QR factorization, omitting zero rows of @var{R} and the corresponding
columns of @var{Q}.
If the matrix @var{a} is full, the permuted QR factorization
@code{[@var{q}, @var{r}, @var{p}] = qr (@var{a})} forms the QR factorization
such that the diagonal entries of @code{r} are decreasing in magnitude
order. For example,given the matrix @code{a = [1, 2; 3, 4]},
@example
[q, r, p] = qr(a)
@end example
@noindent
returns
@example
@group
q =
-0.44721 -0.89443
-0.89443 0.44721
r =
-4.47214 -3.13050
0.00000 0.44721
p =
0 1
1 0
@end group
@end example
The permuted @code{qr} factorization @code{[q, r, p] = qr (a)}
factorization allows the construction of an orthogonal basis of
@code{span (a)}.
If the matrix @var{a} is sparse, then compute the sparse QR factorization
of @var{a}, using @sc{CSparse}. As the matrix @var{Q} is in general a full
matrix, this function returns the @var{Q}-less factorization @var{r} of
@var{a}, such that @code{@var{r} = chol (@var{a}' * @var{a})}.
If the final argument is the scalar @code{0} and the number of rows is
larger than the number of columns, then an economy factorization is
returned. That is @var{r} will have only @code{size (@var{a},1)} rows.
If an additional matrix @var{b} is supplied, then @code{qr} returns
@var{c}, where @code{@var{c} = @var{q}' * @var{b}}. This allows the
least squares approximation of @code{@var{a} \ @var{b}} to be calculated
as
@example
@group
[@var{c},@var{r}] = spqr (@var{a},@var{b})
@var{x} = @var{r} \ @var{c}
@end group
@end example
@end deftypefn
@c ./DLD-FUNCTIONS/qr.cc
@anchor{doc-qrupdate}
@deftypefn {Loadable Function} {[@var{Q1}, @var{R1}] =} qrupdate (@var{Q}, @var{R}, @var{u}, @var{v})
Given a QR@tie{}factorization of a real or complex matrix
@w{@var{A} = @var{Q}*@var{R}}, @var{Q}@tie{}unitary and
@var{R}@tie{}upper trapezoidal, return the QR@tie{}factorization
of @w{@var{A} + @var{u}*@var{v}'}, where @var{u} and @var{v} are
column vectors (rank-1 update) or matrices with equal number of columns
(rank-k update). Notice that the latter case is done as a sequence of rank-1 updates;
thus, for k large enough, it will be both faster and more accurate to recompute
the factorization from scratch.
The QR factorization supplied may be either full
(Q is square) or economized (R is square).
@seealso{@ref{doc-qr,,qr}, @ref{doc-qrinsert,,qrinsert}, @ref{doc-qrdelete,,qrdelete}}
@end deftypefn
@c ./DLD-FUNCTIONS/qr.cc
@anchor{doc-qrinsert}
@deftypefn {Loadable Function} {[@var{Q1}, @var{R1}] =} qrinsert (@var{Q}, @var{R}, @var{j}, @var{x}, @var{orient})
Given a QR@tie{}factorization of a real or complex matrix
@w{@var{A} = @var{Q}*@var{R}}, @var{Q}@tie{}unitary and
@var{R}@tie{}upper trapezoidal, return the QR@tie{}factorization of
@w{[A(:,1:j-1) x A(:,j:n)]}, where @var{u} is a column vector to be
inserted into @var{A} (if @var{orient} is @code{"col"}), or the
QR@tie{}factorization of @w{[A(1:j-1,:);x;A(:,j:n)]}, where @var{x}
is a row vector to be inserted into @var{A} (if @var{orient} is
@code{"row"}).
The default value of @var{orient} is @code{"col"}.
If @var{orient} is @code{"col"},
@var{u} may be a matrix and @var{j} an index vector
resulting in the QR@tie{}factorization of a matrix @var{B} such that
@w{B(:,@var{j})} gives @var{u} and @w{B(:,@var{j}) = []} gives @var{A}.
Notice that the latter case is done as a sequence of k insertions;
thus, for k large enough, it will be both faster and more accurate to recompute
the factorization from scratch.
If @var{orient} is @code{"col"},
the QR factorization supplied may be either full
(Q is square) or economized (R is square).
If @var{orient} is @code{"row"}, full factorization is needed.
@seealso{@ref{doc-qr,,qr}, @ref{doc-qrupdate,,qrupdate}, @ref{doc-qrdelete,,qrdelete}}
@end deftypefn
@c ./DLD-FUNCTIONS/qr.cc
@anchor{doc-qrdelete}
@deftypefn {Loadable Function} {[@var{Q1}, @var{R1}] =} qrdelete (@var{Q}, @var{R}, @var{j}, @var{orient})
Given a QR@tie{}factorization of a real or complex matrix
@w{@var{A} = @var{Q}*@var{R}}, @var{Q}@tie{}unitary and
@var{R}@tie{}upper trapezoidal, return the QR@tie{}factorization of
@w{[A(:,1:j-1) A(:,j+1:n)]}, i.e., @var{A} with one column deleted
(if @var{orient} is "col"), or the QR@tie{}factorization of
@w{[A(1:j-1,:);A(:,j+1:n)]}, i.e., @var{A} with one row deleted (if
@var{orient} is "row").
The default value of @var{orient} is "col".
If @var{orient} is @code{"col"},
@var{j} may be an index vector
resulting in the QR@tie{}factorization of a matrix @var{B} such that
@w{A(:,@var{j}) = []} gives @var{B}.
Notice that the latter case is done as a sequence of k deletions;
thus, for k large enough, it will be both faster and more accurate to recompute
the factorization from scratch.
If @var{orient} is @code{"col"},
the QR factorization supplied may be either full
(Q is square) or economized (R is square).
If @var{orient} is @code{"row"}, full factorization is needed.
@seealso{@ref{doc-qr,,qr}, @ref{doc-qrinsert,,qrinsert}, @ref{doc-qrupdate,,qrupdate}}
@end deftypefn
@c ./DLD-FUNCTIONS/qr.cc
@anchor{doc-qrshift}
@deftypefn {Loadable Function} {[@var{Q1}, @var{R1}] =} qrshift (@var{Q}, @var{R}, @var{i}, @var{j})
Given a QR@tie{}factorization of a real or complex matrix
@w{@var{A} = @var{Q}*@var{R}}, @var{Q}@tie{}unitary and
@var{R}@tie{}upper trapezoidal, return the QR@tie{}factorization
of @w{@var{A}(:,p)}, where @w{p} is the permutation @*
@code{p = [1:i-1, shift(i:j, 1), j+1:n]} if @w{@var{i} < @var{j}} @*
or @*
@code{p = [1:j-1, shift(j:i,-1), i+1:n]} if @w{@var{j} < @var{i}}. @*
@seealso{@ref{doc-qr,,qr}, @ref{doc-qrinsert,,qrinsert}, @ref{doc-qrdelete,,qrdelete}}
@end deftypefn
@c ./DLD-FUNCTIONS/qz.cc
@anchor{doc-qz}
@deftypefn {Loadable Function} {@var{lambda} =} qz (@var{a}, @var{b})
Generalized eigenvalue problem @math{A x = s B x},
@var{QZ} decomposition. There are three ways to call this function:
@enumerate
@item @code{lambda = qz(A,B)}
Computes the generalized eigenvalues
@iftex
@tex
$\lambda$
@end tex
@end iftex
@ifnottex
@var{lambda}
@end ifnottex
of @math{(A - s B)}.
@item @code{[AA, BB, Q, Z, V, W, lambda] = qz (A, B)}
Computes qz decomposition, generalized eigenvectors, and
generalized eigenvalues of @math{(A - sB)}
@iftex
@tex
$$ AV = BV{ \rm diag }(\lambda) $$
$$ W^T A = { \rm diag }(\lambda)W^T B $$
$$ AA = Q^T AZ, BB = Q^T BZ $$
@end tex
@end iftex
@ifnottex
@example
@group
A*V = B*V*diag(lambda)
W'*A = diag(lambda)*W'*B
AA = Q'*A*Z, BB = Q'*B*Z
@end group
@end example
@end ifnottex
with @var{Q} and @var{Z} orthogonal (unitary)= @var{I}
@item @code{[AA,BB,Z@{, lambda@}] = qz(A,B,opt)}
As in form [2], but allows ordering of generalized eigenpairs
for (e.g.) solution of discrete time algebraic Riccati equations.
Form 3 is not available for complex matrices, and does not compute
the generalized eigenvectors @var{V}, @var{W}, nor the orthogonal matrix @var{Q}.
@table @var
@item opt
for ordering eigenvalues of the GEP pencil. The leading block
of the revised pencil contains all eigenvalues that satisfy:
@table @code
@item "N"
= unordered (default)
@item "S"
= small: leading block has all |lambda| <=1
@item "B"
= big: leading block has all |lambda| >= 1
@item "-"
= negative real part: leading block has all eigenvalues
in the open left half-plane
@item "+"
= non-negative real part: leading block has all eigenvalues
in the closed right half-plane
@end table
@end table
@end enumerate
Note: qz performs permutation balancing, but not scaling (see balance).
Order of output arguments was selected for compatibility with @sc{matlab}
@seealso{@ref{doc-balance,,balance}, @ref{doc-eig,,eig}, @ref{doc-schur,,schur}}
@end deftypefn
@c ./linear-algebra/qzhess.m
@anchor{doc-qzhess}
@deftypefn {Function File} {[@var{aa}, @var{bb}, @var{q}, @var{z}] =} qzhess (@var{a}, @var{b})
Compute the Hessenberg-triangular decomposition of the matrix pencil
@code{(@var{a}, @var{b})}, returning
@code{@var{aa} = @var{q} * @var{a} * @var{z}},
@code{@var{bb} = @var{q} * @var{b} * @var{z}}, with @var{q} and @var{z}
orthogonal. For example,
@example
@group
[aa, bb, q, z] = qzhess ([1, 2; 3, 4], [5, 6; 7, 8])
@result{} aa = [ -3.02244, -4.41741; 0.92998, 0.69749 ]
@result{} bb = [ -8.60233, -9.99730; 0.00000, -0.23250 ]
@result{} q = [ -0.58124, -0.81373; -0.81373, 0.58124 ]
@result{} z = [ 1, 0; 0, 1 ]
@end group
@end example
The Hessenberg-triangular decomposition is the first step in
Moler and Stewart's QZ decomposition algorithm.
Algorithm taken from Golub and Van Loan, @cite{Matrix Computations, 2nd
edition}.
@end deftypefn
@c ./DLD-FUNCTIONS/schur.cc
@anchor{doc-schur}
@deftypefn {Loadable Function} {@var{s} =} schur (@var{a})
@deftypefnx {Loadable Function} {[@var{u}, @var{s}] =} schur (@var{a}, @var{opt})
@cindex Schur decomposition
The Schur decomposition is used to compute eigenvalues of a
square matrix, and has applications in the solution of algebraic
Riccati equations in control (see @code{are} and @code{dare}).
@code{schur} always returns
@iftex
@tex
$S = U^T A U$
@end tex
@end iftex
@ifnottex
@code{s = u' * a * u}
@end ifnottex
where
@iftex
@tex
$U$
@end tex
@end iftex
@ifnottex
@code{u}
@end ifnottex
is a unitary matrix
@iftex
@tex
($U^T U$ is identity)
@end tex
@end iftex
@ifnottex
(@code{u'* u} is identity)
@end ifnottex
and
@iftex
@tex
$S$
@end tex
@end iftex
@ifnottex
@code{s}
@end ifnottex
is upper triangular. The eigenvalues of
@iftex
@tex
$A$ (and $S$)
@end tex
@end iftex
@ifnottex
@code{a} (and @code{s})
@end ifnottex
are the diagonal elements of
@iftex
@tex
$S$.
@end tex
@end iftex
@ifnottex
@code{s}.
@end ifnottex
If the matrix
@iftex
@tex
$A$
@end tex
@end iftex
@ifnottex
@code{a}
@end ifnottex
is real, then the real Schur decomposition is computed, in which the
matrix
@iftex
@tex
$U$
@end tex
@end iftex
@ifnottex
@code{u}
@end ifnottex
is orthogonal and
@iftex
@tex
$S$
@end tex
@end iftex
@ifnottex
@code{s}
@end ifnottex
is block upper triangular
with blocks of size at most
@iftex
@tex
$2\times 2$
@end tex
@end iftex
@ifnottex
@code{2 x 2}
@end ifnottex
along the diagonal. The diagonal elements of
@iftex
@tex
$S$
@end tex
@end iftex
@ifnottex
@code{s}
@end ifnottex
(or the eigenvalues of the
@iftex
@tex
$2\times 2$
@end tex
@end iftex
@ifnottex
@code{2 x 2}
@end ifnottex
blocks, when
appropriate) are the eigenvalues of
@iftex
@tex
$A$
@end tex
@end iftex
@ifnottex
@code{a}
@end ifnottex
and
@iftex
@tex
$S$.
@end tex
@end iftex
@ifnottex
@code{s}.
@end ifnottex
The eigenvalues are optionally ordered along the diagonal according to
the value of @code{opt}. @code{opt = "a"} indicates that all
eigenvalues with negative real parts should be moved to the leading
block of
@iftex
@tex
$S$
@end tex
@end iftex
@ifnottex
@code{s}
@end ifnottex
(used in @code{are}), @code{opt = "d"} indicates that all eigenvalues
with magnitude less than one should be moved to the leading block of
@iftex
@tex
$S$
@end tex
@end iftex
@ifnottex
@code{s}
@end ifnottex
(used in @code{dare}), and @code{opt = "u"}, the default, indicates that
no ordering of eigenvalues should occur. The leading
@iftex
@tex
$k$
@end tex
@end iftex
@ifnottex
@code{k}
@end ifnottex
columns of
@iftex
@tex
$U$
@end tex
@end iftex
@ifnottex
@code{u}
@end ifnottex
always span the
@iftex
@tex
$A$-invariant
@end tex
@end iftex
@ifnottex
@code{a}-invariant
@end ifnottex
subspace corresponding to the
@iftex
@tex
$k$
@end tex
@end iftex
@ifnottex
@code{k}
@end ifnottex
leading eigenvalues of
@iftex
@tex
$S$.
@end tex
@end iftex
@ifnottex
@code{s}.
@end ifnottex
@end deftypefn
@c ./linear-algebra/subspace.m
@anchor{doc-subspace}
@deftypefn {Function File} {@var{angle} =} subspace (@var{a}, @var{B})
Determine the largest principal angle between two subspaces
spanned by columns of matrices @var{a} and @var{b}.
@end deftypefn
@c ./DLD-FUNCTIONS/svd.cc
@anchor{doc-svd}
@deftypefn {Loadable Function} {@var{s} =} svd (@var{a})
@deftypefnx {Loadable Function} {[@var{u}, @var{s}, @var{v}] =} svd (@var{a})
@cindex singular value decomposition
Compute the singular value decomposition of @var{a}
@iftex
@tex
$$
A = U S V^H
$$
@end tex
@end iftex
@ifnottex
@example
A = U*S*V'
@end example
@end ifnottex
The function @code{svd} normally returns the vector of singular values.
If asked for three return values, it computes
@iftex
@tex
$U$, $S$, and $V$.
@end tex
@end iftex
@ifnottex
U, S, and V.
@end ifnottex
For example,
@example
svd (hilb (3))
@end example
@noindent
returns
@example
@group
ans =
1.4083189
0.1223271
0.0026873
@end group
@end example
@noindent
and
@example
[u, s, v] = svd (hilb (3))
@end example
@noindent
returns
@example
@group
u =
-0.82704 0.54745 0.12766
-0.45986 -0.52829 -0.71375
-0.32330 -0.64901 0.68867
s =
1.40832 0.00000 0.00000
0.00000 0.12233 0.00000
0.00000 0.00000 0.00269
v =
-0.82704 0.54745 0.12766
-0.45986 -0.52829 -0.71375
-0.32330 -0.64901 0.68867
@end group
@end example
If given a second argument, @code{svd} returns an economy-sized
decomposition, eliminating the unnecessary rows or columns of @var{u} or
@var{v}.
@end deftypefn
@c FIXME -- should there be a new section here?
@c ./linear-algebra/housh.m
@anchor{doc-housh}
@deftypefn {Function File} {[@var{housv}, @var{beta}, @var{zer}] =} housh (@var{x}, @var{j}, @var{z})
Compute Householder reflection vector @var{housv} to reflect @var{x}
to be the j-th column of identity, i.e.,
@example
@group
(I - beta*housv*housv')x = norm(x)*e(j) if x(1) < 0,
(I - beta*housv*housv')x = -norm(x)*e(j) if x(1) >= 0
@end group
@end example
@noindent
Inputs
@table @var
@item x
vector
@item j
index into vector
@item z
threshold for zero (usually should be the number 0)
@end table
@noindent
Outputs (see Golub and Van Loan):
@table @var
@item beta
If beta = 0, then no reflection need be applied (zer set to 0)
@item housv
householder vector
@end table
@end deftypefn
@c ./linear-algebra/krylov.m
@anchor{doc-krylov}
@deftypefn {Function File} {[@var{u}, @var{h}, @var{nu}] =} krylov (@var{a}, @var{v}, @var{k}, @var{eps1}, @var{pflg})
Construct an orthogonal basis @var{u} of block Krylov subspace
@example
[v a*v a^2*v @dots{} a^(k+1)*v]
@end example
@noindent
Using Householder reflections to guard against loss of orthogonality.
If @var{v} is a vector, then @var{h} contains the Hessenberg matrix
such that @code{a*u == u*h+rk*ek'}, in which @code{rk =
a*u(:,k)-u*h(:,k)}, and @code{ek'} is the vector
@code{[0, 0, @dots{}, 1]} of length @code{k}. Otherwise, @var{h} is
meaningless.
If @var{v} is a vector and @var{k} is greater than
@code{length(A)-1}, then @var{h} contains the Hessenberg matrix such
that @code{a*u == u*h}.
The value of @var{nu} is the dimension of the span of the krylov
subspace (based on @var{eps1}).
If @var{b} is a vector and @var{k} is greater than @var{m-1}, then
@var{h} contains the Hessenberg decomposition of @var{a}.
The optional parameter @var{eps1} is the threshold for zero. The
default value is 1e-12.
If the optional parameter @var{pflg} is nonzero, row pivoting is used
to improve numerical behavior. The default value is 0.
Reference: Hodel and Misra, "Partial Pivoting in the Computation of
Krylov Subspaces", to be submitted to Linear Algebra and its
Applications
@end deftypefn
@node Functions of a Matrix
@section Functions of a Matrix
@c ./linear-algebra/expm.m
@anchor{doc-expm}
@deftypefn {Function File} {} expm (@var{a})
Return the exponential of a matrix, defined as the infinite Taylor
series
@tex
$$
\exp (A) = I + A + {A^2 \over 2!} + {A^3 \over 3!} + \cdots
$$
@end tex
@ifnottex
@example
expm(a) = I + a + a^2/2! + a^3/3! + @dots{}
@end example
@end ifnottex
The Taylor series is @emph{not} the way to compute the matrix
exponential; see Moler and Van Loan, @cite{Nineteen Dubious Ways to
Compute the Exponential of a Matrix}, SIAM Review, 1978. This routine
uses Ward's diagonal
@tex
Pad\'e
@end tex
@ifnottex
Pade'
@end ifnottex
approximation method with three step preconditioning (SIAM Journal on
Numerical Analysis, 1977). Diagonal
@tex
Pad\'e
@end tex
@ifnottex
Pade'
@end ifnottex
approximations are rational polynomials of matrices
@tex
$D_q(a)^{-1}N_q(a)$
@end tex
@ifnottex
@example
@group
-1
D (a) N (a)
@end group
@end example
@end ifnottex
whose Taylor series matches the first
@tex
$2 q + 1 $
@end tex
@ifnottex
@code{2q+1}
@end ifnottex
terms of the Taylor series above; direct evaluation of the Taylor series
(with the same preconditioning steps) may be desirable in lieu of the
@tex
Pad\'e
@end tex
@ifnottex
Pade'
@end ifnottex
approximation when
@tex
$D_q(a)$
@end tex
@ifnottex
@code{Dq(a)}
@end ifnottex
is ill-conditioned.
@end deftypefn
@c ./linear-algebra/logm.m
@anchor{doc-logm}
@deftypefn {Function File} {} logm (@var{a})
Compute the matrix logarithm of the square matrix @var{a}. Note that
this is currently implemented in terms of an eigenvalue expansion and
needs to be improved to be more robust.
@end deftypefn
@c ./DLD-FUNCTIONS/sqrtm.cc
@anchor{doc-sqrtm}
@deftypefn {Loadable Function} {[@var{result}, @var{error_estimate}] =} sqrtm (@var{a})
Compute the matrix square root of the square matrix @var{a}.
Ref: Nicholas J. Higham. A new sqrtm for @sc{matlab}. Numerical Analysis
Report No. 336, Manchester Centre for Computational Mathematics,
Manchester, England, January 1999.
@seealso{@ref{doc-expm,,expm}, @ref{doc-logm,,logm}}
@end deftypefn
@c ./DLD-FUNCTIONS/kron.cc
@anchor{doc-kron}
@deftypefn {Loadable Function} {} kron (@var{a}, @var{b})
Form the kronecker product of two matrices, defined block by block as
@example
x = [a(i, j) b]
@end example
For example,
@example
@group
kron (1:4, ones (3, 1))
@result{} 1 2 3 4
1 2 3 4
1 2 3 4
@end group
@end example
@end deftypefn
@c ./DLD-FUNCTIONS/syl.cc
@anchor{doc-syl}
@deftypefn {Loadable Function} {@var{x} =} syl (@var{a}, @var{b}, @var{c})
Solve the Sylvester equation
@iftex
@tex
$$
A X + X B + C = 0
$$
@end tex
@end iftex
@ifnottex
@example
A X + X B + C = 0
@end example
@end ifnottex
using standard @sc{lapack} subroutines. For example,
@example
@group
syl ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])
@result{} [ -0.50000, -0.66667; -0.66667, -0.50000 ]
@end group
@end example
@end deftypefn
@node Specialized Solvers
@section Specialized Solvers
@c ./sparse/bicgstab.m
@anchor{doc-bicgstab}
@deftypefn {Function File} {} bicgstab (@var{A}, @var{b})
@deftypefnx {Function File} {} bicgstab (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0})
This procedure attempts to solve a system of linear equations A*x = b for x.
The @var{A} must be square, symmetric and positive definite real matrix N*N.
The @var{b} must be a one column vector with a length of N.
The @var{tol} specifies the tolerance of the method, the default value is 1e-6.
The @var{maxit} specifies the maximum number of iterations, the default value is min(20,N).
The @var{M1} specifies a preconditioner, can also be a function handler which returns M\X.
The @var{M2} combined with @var{M1} defines preconditioner as preconditioner=M1*M2.
The @var{x0} is the initial guess, the default value is zeros(N,1).
The value @var{x} is a computed result of this procedure.
The value @var{flag} can be 0 when we reach tolerance in @var{maxit} iterations, 1 when
we don't reach tolerance in @var{maxit} iterations and 3 when the procedure stagnates.
The value @var{relres} is a relative residual - norm(b-A*x)/norm(b).
The value @var{iter} is an iteration number in which x was computed.
The value @var{resvec} is a vector of @var{relres} for each iteration.
@end deftypefn
@c ./sparse/cgs.m
@anchor{doc-cgs}
@deftypefn {Function File} {} cgs (@var{A}, @var{b})
@deftypefnx {Function File} {} cgs (@var{A}, @var{b}, @var{tol}, @var{maxit}, @var{M1}, @var{M2}, @var{x0})
This procedure attempts to solve a system of linear equations A*x = b for x.
The @var{A} must be square, symmetric and positive definite real matrix N*N.
The @var{b} must be a one column vector with a length of N.
The @var{tol} specifies the tolerance of the method, default value is 1e-6.
The @var{maxit} specifies the maximum number of iteration, default value is MIN(20,N).
The @var{M1} specifies a preconditioner, can also be a function handler which returns M\X.
The @var{M2} combined with @var{M1} defines preconditioner as preconditioner=M1*M2.
The @var{x0} is initial guess, default value is zeros(N,1).
@end deftypefn
|