File: plot.texi

package info (click to toggle)
octave3.2 3.2.4-8
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 62,936 kB
  • ctags: 37,353
  • sloc: cpp: 219,497; fortran: 116,336; ansic: 10,264; sh: 5,508; makefile: 4,245; lex: 3,573; yacc: 3,062; objc: 2,042; lisp: 1,692; awk: 860; perl: 844
file content (5277 lines) | stat: -rw-r--r-- 175,717 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
@c DO NOT EDIT!  Generated automatically by munge-texi.

@c Copyright (C) 1996, 1997, 1999, 2000, 2002, 2003, 2004, 2005,
@c               2006, 2007, 2008, 2009 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c 
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
@c for more details.
@c 
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <http://www.gnu.org/licenses/>.

@node Plotting
@chapter Plotting
@cindex plotting
@cindex graphics

@menu
* Plotting Basics::
* Advanced Plotting::
@end menu

@node Plotting Basics
@section Plotting Basics

Octave makes it easy to create many different types of two- and
three-dimensional plots using a few high-level functions.

If you need finer control over graphics, see @ref{Advanced Plotting}.

@menu
* Two-Dimensional Plots::       
* Three-Dimensional Plotting::  
* Plot Annotations::            
* Multiple Plots on One Page::  
* Multiple Plot Windows::       
* Printing Plots::              
* Interacting with plots::
* Test Plotting Functions::     
@end menu

@node Two-Dimensional Plots
@subsection Two-Dimensional Plots

The @code{plot} function allows you to create simple x-y plots with
linear axes.  For example,

@example
@group
x = -10:0.1:10;
plot (x, sin (x));
@end group
@end example

@noindent
displays a sine wave shown in @ref{fig:plot}.  On most systems, this
command will open a separate plot window to display the graph.

@float Figure,fig:plot
@center @image{plot,4in}
@caption{Simple Two-Dimensional Plot.}
@end float

@c ./plot/plot.m
@anchor{doc-plot}
@deftypefn {Function File} {} plot (@var{y})
@deftypefnx {Function File} {} plot (@var{x}, @var{y})
@deftypefnx {Function File} {} plot (@var{x}, @var{y}, @var{property}, @var{value}, @dots{})
@deftypefnx {Function File} {} plot (@var{x}, @var{y}, @var{fmt})
@deftypefnx {Function File} {} plot (@var{h}, @dots{})
Produces two-dimensional plots.  Many different combinations of
arguments are possible.  The simplest form is

@example
plot (@var{y})
@end example

@noindent
where the argument is taken as the set of @var{y} coordinates and the
@var{x} coordinates are taken to be the indices of the elements,
starting with 1.

To save a plot, in one of several image formats such as PostScript
or PNG, use the @code{print} command.

If more than one argument is given, they are interpreted as

@example
plot (@var{y}, @var{property}, @var{value}, @dots{})
@end example

@noindent
or

@example
plot (@var{x}, @var{y}, @var{property}, @var{value}, @dots{})
@end example

@noindent
or

@example
plot (@var{x}, @var{y}, @var{fmt}, @dots{})
@end example

@noindent
and so on.  Any number of argument sets may appear.  The @var{x} and
@var{y} values are interpreted as follows:

@itemize @bullet
@item
If a single data argument is supplied, it is taken as the set of @var{y}
coordinates and the @var{x} coordinates are taken to be the indices of
the elements, starting with 1.

@item
If the @var{x} is a vector and @var{y} is a matrix, then
the columns (or rows) of @var{y} are plotted versus @var{x}.
(using whichever combination matches, with columns tried first.)

@item
If the @var{x} is a matrix and @var{y} is a vector,
@var{y} is plotted versus the columns (or rows) of @var{x}.
(using whichever combination matches, with columns tried first.)

@item
If both arguments are vectors, the elements of @var{y} are plotted versus
the elements of @var{x}.

@item
If both arguments are matrices, the columns of @var{y} are plotted
versus the columns of @var{x}.  In this case, both matrices must have
the same number of rows and columns and no attempt is made to transpose
the arguments to make the number of rows match.

If both arguments are scalars, a single point is plotted.
@end itemize

Multiple property-value pairs may be specified, but they must appear
in pairs.  These arguments are applied to the lines drawn by
@code{plot}.

If the @var{fmt} argument is supplied, it is interpreted as
follows.  If @var{fmt} is missing, the default gnuplot line style
is assumed.

@table @samp
@item -
Set lines plot style (default).

@item .
Set dots plot style.

@item @var{n}
Interpreted as the plot color if @var{n} is an integer in the range 1 to
6.

@item @var{nm}
If @var{nm} is a two digit integer and @var{m} is an integer in the
range 1 to 6, @var{m} is interpreted as the point style.  This is only
valid in combination with the @code{@@} or @code{-@@} specifiers.

@item @var{c}
If @var{c} is one of @code{"k"} (black), @code{"r"} (red), @code{"g"}
(green), @code{"b"} (blue), @code{"m"} (magenta), @code{"c"} (cyan),
or @code{"w"} (white), it is interpreted as the line plot color.

@item ";title;"
Here @code{"title"} is the label for the key.

@item +
@itemx *
@itemx o
@itemx x
@itemx ^
Used in combination with the points or linespoints styles, set the point
style.
@end table

The @var{fmt} argument may also be used to assign key titles.
To do so, include the desired title between semi-colons after the
formatting sequence described above, e.g., "+3;Key Title;"
Note that the last semi-colon is required and will generate an error if
it is left out.

Here are some plot examples:

@example
plot (x, y, "@@12", x, y2, x, y3, "4", x, y4, "+")
@end example

This command will plot @code{y} with points of type 2 (displayed as
@samp{+}) and color 1 (red), @code{y2} with lines, @code{y3} with lines of
color 4 (magenta) and @code{y4} with points displayed as @samp{+}.

@example
plot (b, "*", "markersize", 3)
@end example

This command will plot the data in the variable @code{b},
with points displayed as @samp{*} with a marker size of 3.

@example
@group
t = 0:0.1:6.3;
plot (t, cos(t), "-;cos(t);", t, sin(t), "+3;sin(t);");
@end group
@end example

This will plot the cosine and sine functions and label them accordingly
in the key.

If the first argument is an axis handle, then plot into these axes, 
rather than the current axis handle returned by @code{gca}. 
@seealso{@ref{doc-semilogx,,semilogx}, @ref{doc-semilogy,,semilogy}, @ref{doc-loglog,,loglog}, @ref{doc-polar,,polar}, @ref{doc-mesh,,mesh}, @ref{doc-contour,,contour}, @ref{doc-bar,,bar}, @ref{doc-stairs,,stairs}, @ref{doc-errorbar,,errorbar}, @ref{doc-xlabel,,xlabel}, @ref{doc-ylabel,,ylabel}, @ref{doc-title,,title}, @ref{doc-print,,print}}
@end deftypefn


The @code{plotyy} function may be used to create a plot with two
independent y axes.

@c ./plot/plotyy.m
@anchor{doc-plotyy}
@deftypefn {Function File} {} plotyy (@var{x1}, @var{y1}, @var{x2}, @var{y2})
@deftypefnx {Function File} {} plotyy (@dots{}, @var{fun})
@deftypefnx {Function File} {} plotyy (@dots{}, @var{fun1}, @var{fun2})
@deftypefnx {Function File} {} plotyy (@var{h}, @dots{})
@deftypefnx {Function File} {[@var{ax}, @var{h1}, @var{h2}] =} plotyy (@dots{})
Plots two sets of data with independent y-axes.  The arguments @var{x1} and
@var{y1} define the arguments for the first plot and @var{x1} and @var{y2}
for the second. 

By default the arguments are evaluated with 
@code{feval (@@plot, @var{x}, @var{y})}.  However the type of plot can be
modified with the @var{fun} argument, in which case the plots are
generated by @code{feval (@var{fun}, @var{x}, @var{y})}.  @var{fun} can be 
a function handle, an inline function or a string of a function name.

The function to use for each of the plots can be independently defined 
with @var{fun1} and @var{fun2}.

If given, @var{h} defines the principal axis in which to plot the @var{x1}
and @var{y1} data.  The return value @var{ax} is a two element vector with
the axis handles of the two plots.  @var{h1} and @var{h2} are handles to
the objects generated by the plot commands.

@example
@group
x = 0:0.1:2*pi; 
y1 = sin (x);
y2 = exp (x - 1);
ax = plotyy (x, y1, x - 1, y2, @@plot, @@semilogy);
xlabel ("X");
ylabel (ax(1), "Axis 1");
ylabel (ax(2), "Axis 2");
@end group
@end example
@end deftypefn


The functions @code{semilogx}, @code{semilogy}, and @code{loglog} are
similar to the @code{plot} function, but produce plots in which one or
both of the axes use log scales.

@c ./plot/semilogx.m
@anchor{doc-semilogx}
@deftypefn {Function File} {} semilogx (@var{args})
Produce a two-dimensional plot using a log scale for the @var{x}
axis.  See the description of @code{plot} for a description of the
arguments that @code{semilogx} will accept.
@seealso{@ref{doc-plot,,plot}, @ref{doc-semilogy,,semilogy}, @ref{doc-loglog,,loglog}}
@end deftypefn


@c ./plot/semilogy.m
@anchor{doc-semilogy}
@deftypefn {Function File} {} semilogy (@var{args})
Produce a two-dimensional plot using a log scale for the @var{y}
axis.  See the description of @code{plot} for a description of the
arguments that @code{semilogy} will accept.
@seealso{@ref{doc-plot,,plot}, @ref{doc-semilogx,,semilogx}, @ref{doc-loglog,,loglog}}
@end deftypefn


@c ./plot/loglog.m
@anchor{doc-loglog}
@deftypefn {Function File} {} loglog (@var{args})
Produce a two-dimensional plot using log scales for both axes.  See
the description of @code{plot} for a description of the arguments
that @code{loglog} will accept.
@seealso{@ref{doc-plot,,plot}, @ref{doc-semilogx,,semilogx}, @ref{doc-semilogy,,semilogy}}
@end deftypefn


The functions @code{bar}, @code{barh}, @code{stairs}, and @code{stem}
are useful for displaying discrete data.  For example,

@example
@group
hist (randn (10000, 1), 30);
@end group
@end example

@noindent
produces the histogram of 10,000 normally distributed random numbers
shown in @ref{fig:hist}.

@float Figure,fig:hist
@center @image{hist,4in}
@caption{Histogram.}
@end float

@c ./plot/bar.m
@anchor{doc-bar}
@deftypefn {Function File} {} bar (@var{x}, @var{y})
@deftypefnx {Function File} {} bar (@var{y})
@deftypefnx {Function File} {} bar (@var{x}, @var{y}, @var{w})
@deftypefnx {Function File} {} bar (@var{x}, @var{y}, @var{w}, @var{style})
@deftypefnx {Function File} {@var{h} =} bar (@dots{}, @var{prop}, @var{val})
@deftypefnx {Function File} {} bar (@var{h}, @dots{})
Produce a bar graph from two vectors of x-y data.

If only one argument is given, it is taken as a vector of y-values
and the x coordinates are taken to be the indices of the elements.

The default width of 0.8 for the bars can be changed using @var{w}. 

If @var{y} is a matrix, then each column of @var{y} is taken to be a
separate bar graph plotted on the same graph.  By default the columns
are plotted side-by-side.  This behavior can be changed by the @var{style}
argument, which can take the values @code{"grouped"} (the default),
or @code{"stacked"}.

The optional return value @var{h} provides a handle to the "bar series"
object with one handle per column of the variable @var{y}.  This
series allows common elements of the group of bar series objects to
be changed in a single bar series and the same properties are changed
in the other "bar series".  For example

@example
@group
h = bar (rand (5, 10));
set (h(1), "basevalue", 0.5);
@end group
@end example

@noindent
changes the position on the base of all of the bar series.

The optional input handle @var{h} allows an axis handle to be passed.
Properties of the patch graphics object can be changed using
@var{prop}, @var{val} pairs.

@seealso{@ref{doc-barh,,barh}, @ref{doc-plot,,plot}} 
@end deftypefn


@c ./plot/barh.m
@anchor{doc-barh}
@deftypefn {Function File} {} barh (@var{x}, @var{y})
@deftypefnx {Function File} {} barh (@var{y})
@deftypefnx {Function File} {} barh (@var{x}, @var{y}, @var{w})
@deftypefnx {Function File} {} barh (@var{x}, @var{y}, @var{w}, @var{style})
@deftypefnx {Function File} {@var{h} =} barh (@dots{}, @var{prop}, @var{val})
@deftypefnx {Function File} {} barh (@var{h}, @dots{})
Produce a horizontal bar graph from two vectors of x-y data.

If only one argument is given, it is taken as a vector of y-values
and the x coordinates are taken to be the indices of the elements.

The default width of 0.8 for the bars can be changed using @var{w}. 

If @var{y} is a matrix, then each column of @var{y} is taken to be a
separate bar graph plotted on the same graph.  By default the columns
are plotted side-by-side.  This behavior can be changed by the @var{style}
argument, which can take the values @code{"grouped"} (the default),
or @code{"stacked"}.

The optional return value @var{h} provides a handle to the bar series
object.  See @code{bar} for a description of the use of the bar series.

The optional input handle @var{h} allows an axis handle to be passed.
Properties of the patch graphics object can be changed using
@var{prop}, @var{val} pairs.

@seealso{@ref{doc-bar,,bar}, @ref{doc-plot,,plot}}
@end deftypefn


@c ./plot/hist.m
@anchor{doc-hist}
@deftypefn {Function File} {} hist (@var{y}, @var{x}, @var{norm})
Produce histogram counts or plots.

With one vector input argument, plot a histogram of the values with
10 bins.  The range of the histogram bins is determined by the range
of the data.  With one matrix input argument, plot a histogram where
each bin contains a bar per input column.

Given a second scalar argument, use that as the number of bins.

Given a second vector argument, use that as the centers of the bins,
with the width of the bins determined from the adjacent values in
the vector.

If third argument is provided, the histogram is normalized such that
the sum of the bars is equal to @var{norm}.

Extreme values are lumped in the first and last bins.

With two output arguments, produce the values @var{nn} and @var{xx} such
that @code{bar (@var{xx}, @var{nn})} will plot the histogram.
@seealso{@ref{doc-bar,,bar}}
@end deftypefn


@c ./plot/stairs.m
@anchor{doc-stairs}
@deftypefn {Function File} {} stairs (@var{x}, @var{y})
@deftypefnx {Function File} {} stairs (@dots{}, @var{style})
@deftypefnx {Function File} {} stairs (@dots{}, @var{prop}, @var{val})
@deftypefnx {Function File} {} stairs (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} stairs (@dots{})
Produce a stairstep plot.  The arguments may be vectors or matrices.

If only one argument is given, it is taken as a vector of y-values
and the x coordinates are taken to be the indices of the elements.

If two output arguments are specified, the data are generated but
not plotted.  For example,

@example
stairs (x, y);
@end example

@noindent
and

@example
@group
[xs, ys] = stairs (x, y);
plot (xs, ys);
@end group
@end example

@noindent
are equivalent.
@seealso{@ref{doc-plot,,plot}, @ref{doc-semilogx,,semilogx}, @ref{doc-semilogy,,semilogy}, @ref{doc-loglog,,loglog}, @ref{doc-polar,,polar}, @ref{doc-mesh,,mesh}, @ref{doc-contour,,contour}, @ref{doc-bar,,bar}, @ref{doc-xlabel,,xlabel}, @ref{doc-ylabel,,ylabel}, @ref{doc-title,,title}}
@end deftypefn


@c ./plot/stem.m
@anchor{doc-stem}
@deftypefn {Function File} {@var{h} =} stem (@var{x}, @var{y}, @var{linespec})
@deftypefnx {Function File} {@var{h} =} stem (@dots{}, "filled")
Plot a stem graph from two vectors of x-y data.  If only one argument
is given, it is taken as the y-values and the x coordinates are taken
from the indices of the elements.

If @var{y} is a matrix, then each column of the matrix is plotted as
a separate stem graph.  In this case @var{x} can either be a vector,
the same length as the number of rows in @var{y}, or it can be a
matrix of the same size as @var{y}.

The default color is @code{"r"} (red).  The default line style is
@code{"-"} and the default marker is @code{"o"}.  The line style can
be altered by the @code{linespec} argument in the same manner as the
@code{plot} command.  For example

@example
@group
x = 1:10;
y = ones (1, length (x))*2.*x;
stem (x, y, "b");
@end group
@end example

@noindent
plots 10 stems with heights from 2 to 20 in blue;

The return value of @code{stem} is a vector if "stem series" graphics
handles, with one handle per column of the variable @var{y}.  This
handle regroups the elements of the stem graph together as the
children of the "stem series" handle, allowing them to be altered
together.  For example

@example
@group
x = [0 : 10].';
y = [sin(x), cos(x)]
h = stem (x, y);
set (h(2), "color", "g");
set (h(1), "basevalue", -1)
@end group
@end example

@noindent
changes the color of the second "stem series"  and moves the base line
of the first.
@seealso{@ref{doc-bar,,bar}, @ref{doc-barh,,barh}, @ref{doc-plot,,plot}}
@end deftypefn


@c ./plot/stem3.m
@anchor{doc-stem3}
@deftypefn {Function File} {@var{h} =} stem3 (@var{x}, @var{y}, @var{z}, @var{linespec})
Plot a three-dimensional stem graph and return the handles of the line
and marker objects used to draw the stems as "stem series" object.
The default color is @code{"r"} (red).  The default line style is
@code{"-"} and the default marker is @code{"o"}.

For example,
@example
@group
theta = 0:0.2:6; 
stem3 (cos (theta), sin (theta), theta) 
@end group
@end example

@noindent
plots 31 stems with heights from 0 to 6 lying on a circle.  Color 
definitions with rgb-triples are not valid!
@seealso{@ref{doc-bar,,bar}, @ref{doc-barh,,barh}, @ref{doc-stem,,stem}, @ref{doc-plot,,plot}}
@end deftypefn


@c ./plot/scatter.m
@anchor{doc-scatter}
@deftypefn {Function File} {} scatter (@var{x}, @var{y}, @var{s}, @var{c})
@deftypefnx {Function File} {} scatter (@dots{}, 'filled')
@deftypefnx {Function File} {} scatter (@dots{}, @var{style})
@deftypefnx {Function File} {} scatter (@dots{}, @var{prop}, @var{val})
@deftypefnx {Function File} {} scatter (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} scatter (@dots{})

Plot a scatter plot of the data.  A marker is plotted at each point 
defined by the points in the vectors @var{x} and @var{y}.  The size of
the markers used is determined by the @var{s}, which can be a scalar, 
a vector of the same length of @var{x} and @var{y}.  If @var{s} is not 
given or is an empty matrix, then the default value of 8 points is used.

The color of the markers is determined by @var{c}, which can be a string
defining a fixed color, a 3 element vector giving the red, green and blue 
components of the color, a vector of the same length as @var{x} that gives
a scaled index into the current colormap, or a @var{n}-by-3 matrix defining
the colors of each of the markers individually.

The marker to use can be changed with the @var{style} argument, that is a 
string defining a marker in the same manner as the @code{plot} command. 
If the argument 'filled' is given then the markers as filled.  All 
additional arguments are passed to the underlying patch command.

The optional return value @var{h} provides a handle to the patch object

@example
@group
x = randn (100, 1);
y = randn (100, 1);
scatter (x, y, [], sqrt(x.^2 + y.^2));
@end group
@end example

@seealso{@ref{doc-plot,,plot}, @ref{doc-patch,,patch}, @ref{doc-scatter3,,scatter3}}
@end deftypefn


@c ./plot/scatter3.m
@anchor{doc-scatter3}
@deftypefn {Function File} {} scatter3 (@var{x}, @var{y}, @var{z}, @var{s}, @var{c})
@deftypefnx {Function File} {} scatter3 (@dots{}, 'filled')
@deftypefnx {Function File} {} scatter3 (@dots{}, @var{style})
@deftypefnx {Function File} {} scatter3 (@dots{}, @var{prop}, @var{val})
@deftypefnx {Function File} {} scatter3 (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} scatter3 (@dots{})

Plot a scatter plot of the data in 3D.  A marker is plotted at each point 
defined by the points in the vectors @var{x}, @var{y} and @var{z}.  The size
of the markers used is determined by @var{s}, which can be a scalar or
a vector of the same length of @var{x}, @var{y} and @var{z}.  If @var{s} is
not given or is an empty matrix, then the default value of 8 points is used.

The color of the markers is determined by @var{c}, which can be a string
defining a fixed color, a 3 element vector giving the red, green and blue 
components of the color, a vector of the same length as @var{x} that gives
a scaled index into the current colormap, or a @var{n}-by-3 matrix defining
the colors of each of the markers individually.

The marker to use can be changed with the @var{style} argument, that is a 
string defining a marker in the same manner as the @code{plot} command. 
If the argument 'filled' is given then the markers as filled.  All 
additional arguments are passed to the underlying patch command.

The optional return value @var{h} provides a handle to the patch object

@example
@group
[x, y, z] = peaks (20);
scatter3 (x(:), y(:), z(:), [], z(:));
@end group
@end example

@seealso{@ref{doc-plot,,plot}, @ref{doc-patch,,patch}, @ref{doc-scatter,,scatter}}
@end deftypefn


@c ./plot/plotmatrix.m
@anchor{doc-plotmatrix}
@deftypefn {Function File} {} plotmatrix (@var{x}, @var{y})
@deftypefnx {Function File} {} plotmatrix (@var{x})
@deftypefnx {Function File} {} plotmatrix (@dots{}, @var{style})
@deftypefnx {Function File} {} plotmatrix (@var{h}, @dots{})
@deftypefnx {Function File} {[@var{h}, @var{ax}, @var{bigax}, @var{p}, @var{pax}] =} plotmatrix (@dots{})
Scatter plot of the columns of one matrix against another.  Given the
arguments @var{x} and @var{y}, that have a matching number of rows,
@code{plotmatrix} plots a set of axes corresponding to

@example
plot (@var{x} (:, i), @var{y} (:, j)
@end example

Given a single argument @var{x}, then this is equivalent to 

@example
plotmatrix (@var{x}, @var{x})
@end example

@noindent
except that the diagonal of the set of axes will be replaced with the
histogram @code{hist (@var{x} (:, i))}.

The marker to use can be changed with the @var{style} argument, that is a 
string defining a marker in the same manner as the @code{plot}
command.  If a leading axes handle @var{h} is passed to
@code{plotmatrix}, then this axis will be used for the plot.

The optional return value @var{h} provides handles to the individual
graphics objects in the scatter plots, whereas @var{ax} returns the
handles to the scatter plot axis objects.  @var{bigax} is a hidden
axis object that surrounds the other axes, such that the commands 
@code{xlabel}, @code{title}, etc., will be associated with this hidden
axis.  Finally @var{p} returns the graphics objects associated with
the histogram and @var{pax} the corresponding axes objects.

@example
@group
plotmatrix (randn (100, 3), 'g+')
@end group
@end example

@end deftypefn


@c ./plot/pareto.m
@anchor{doc-pareto}
@deftypefn {Function File} {} pareto (@var{x})
@deftypefnx {Function File} {} pareto (@var{x}, @var{y})
@deftypefnx {Function File} {} pareto (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} pareto (@dots{})
Draw a Pareto chart, also called ABC chart.  A Pareto chart is a bar graph 
used to arrange information in such a way that priorities for process 
improvement can be established.  It organizes and displays information 
to show the relative importance of data.  The chart is similar to the 
histogram or bar chart, except that the bars are arranged in decreasing 
order from left to right along the abscissa.

The fundamental idea (Pareto principle) behind the use of Pareto 
diagrams is that the majority of an effect is due to a small subset of the
causes, so for quality improvement the first few (as presented on the 
diagram) contributing causes to a problem usually account for the majority 
of the result.  Thus, targeting these "major causes" for elimination 
results in the most cost-effective improvement scheme.

The data are passed as @var{x} and the abscissa as @var{y}.  If @var{y} is
absent, then the abscissa are assumed to be @code{1 : length (@var{x})}.
@var{y} can be a string array, a cell array of strings or a numerical
vector.

An example of the use of @code{pareto} is

@example
@group
Cheese = @{"Cheddar", "Swiss", "Camembert", ...
          "Munster", "Stilton", "Blue"@};
Sold = [105, 30, 70, 10, 15, 20];
pareto(Sold, Cheese);
@end group
@end example
@end deftypefn


@c ./plot/rose.m
@anchor{doc-rose}
@deftypefn {Function File} {} rose (@var{th}, @var{r})
@deftypefnx {Function File} {} rose (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} rose (@dots{})
@deftypefnx {Function File} {[@var{r}, @var{th}] =} rose (@dots{})

Plot an angular histogram.  With one vector argument @var{th}, plots the
histogram with 20 angular bins.  If @var{th} is a matrix, then each column
of @var{th} produces a separate histogram.

If @var{r} is given and is a scalar, then the histogram is produced with
@var{r} bins.  If @var{r} is a vector, then the center of each bin are 
defined by the values of @var{r}.

The optional return value @var{h} provides a list of handles to the 
the parts of the vector field (body, arrow and marker).

If two output arguments are requested, then rather than plotting the 
histogram, the polar vectors necessary to plot the histogram are 
returned.

@example
@group
[r, t] = rose ([2*randn(1e5,1), pi + 2 * randn(1e5,1)]);
polar (r, t);
@end group
@end example


@seealso{@ref{doc-plot,,plot}, @ref{doc-compass,,compass}, @ref{doc-polar,,polar}, @ref{doc-hist,,hist}}
@end deftypefn


The @code{contour}, @code{contourf} and @code{contourc} functions
produce two-dimensional contour plots from three-dimensional data.

@c ./plot/contour.m
@anchor{doc-contour}
@deftypefn {Function File} {} contour (@var{z})
@deftypefnx {Function File} {} contour (@var{z}, @var{vn})
@deftypefnx {Function File} {} contour (@var{x}, @var{y}, @var{z})
@deftypefnx {Function File} {} contour (@var{x}, @var{y}, @var{z}, @var{vn})
@deftypefnx {Function File} {} contour (@dots{}, @var{style})
@deftypefnx {Function File} {} contour (@var{h}, @dots{})
@deftypefnx {Function File} {[@var{c}, @var{h}] =} contour (@dots{})
Plot level curves (contour lines) of the matrix @var{z}, using the
contour matrix @var{c} computed by @code{contourc} from the same
arguments; see the latter for their interpretation.  The set of
contour levels, @var{c}, is only returned if requested.  For example:

@example
@group
x = 0:2;
y = x;
z = x' * y;
contour (x, y, z, 2:3)
@end group
@end example

The style to use for the plot can be defined with a line style @var{style}
in a similar manner to the line styles used with the @code{plot} command.
Any markers defined by @var{style} are ignored.

The optional input and output argument @var{h} allows an axis handle to 
be passed to @code{contour} and the handles to the contour objects to be
returned.
@seealso{@ref{doc-contourc,,contourc}, @ref{doc-patch,,patch}, @ref{doc-plot,,plot}}
@end deftypefn


@c ./plot/contourf.m
@anchor{doc-contourf}
@deftypefn {Function File} {[@var{c}, @var{h}] =} contourf (@var{x}, @var{y}, @var{z}, @var{lvl})
@deftypefnx {Function File} {[@var{c}, @var{h}] =} contourf (@var{x}, @var{y}, @var{z}, @var{n})
@deftypefnx {Function File} {[@var{c}, @var{h}] =} contourf (@var{x}, @var{y}, @var{z})
@deftypefnx {Function File} {[@var{c}, @var{h}] =} contourf (@var{z}, @var{n})
@deftypefnx {Function File} {[@var{c}, @var{h}] =} contourf (@var{z}, @var{lvl})
@deftypefnx {Function File} {[@var{c}, @var{h}] =} contourf (@var{z})
@deftypefnx {Function File} {[@var{c}, @var{h}] =} contourf (@var{ax}, @dots{})
@deftypefnx {Function File} {[@var{c}, @var{h}] =} contourf (@dots{}, @var{"property"}, @var{val})
Compute and plot filled contours of the matrix @var{z}.
Parameters @var{x}, @var{y} and @var{n} or @var{lvl} are optional.

The return value @var{c} is a 2xn matrix containing the contour lines
as described in the help to the contourc function.

The return value @var{h} is handle-vector to the patch objects creating
the filled contours.

If @var{x} and @var{y} are omitted they are taken as the row/column
index of @var{z}.  @var{n} is a scalar denoting the number of lines
to compute.  Alternatively @var{lvl} is a vector containing the
contour levels.  If only one value (e.g., lvl0) is wanted, set
@var{lvl} to [lvl0, lvl0].  If both @var{n} or @var{lvl} are omitted
a default value of 10 contour level is assumed.

If provided, the filled contours are added to the axes object
@var{ax} instead of the current axis.

The following example plots filled contours of the @code{peaks}
function.
@example
@group
[x, y, z] = peaks (50);
contourf (x, y, z, -7:9)
@end group
@end example
@seealso{@ref{doc-contour,,contour}, @ref{doc-contourc,,contourc}, @ref{doc-patch,,patch}}
@end deftypefn


@c ./plot/contourc.m
@anchor{doc-contourc}
@deftypefn {Function File} {[@var{c}, @var{lev}] =}  contourc (@var{x}, @var{y}, @var{z}, @var{vn})
Compute isolines (contour lines) of the matrix @var{z}. 
Parameters @var{x}, @var{y} and @var{vn} are optional.

The return value @var{lev} is a vector of the contour levels.
The return value @var{c} is a 2 by @var{n} matrix containing the
contour lines in the following format

@example
@group
@var{c} = [lev1, x1, x2, @dots{}, levn, x1, x2, @dots{} 
     len1, y1, y2, @dots{}, lenn, y1, y2, @dots{}]
@end group
@end example

@noindent
in which contour line @var{n} has a level (height) of @var{levn} and
length of @var{lenn}.

If @var{x} and @var{y} are omitted they are taken as the row/column 
index of @var{z}.  @var{vn} is either a scalar denoting the number of lines 
to compute or a vector containing the values of the lines.  If only one 
value is wanted, set @code{@var{vn} = [val, val]};
If @var{vn} is omitted it defaults to 10.

For example,
@example
@group
x = 0:2;
y = x;
z = x' * y;
contourc (x, y, z, 2:3)
     @result{}   2.0000   2.0000   1.0000   3.0000   1.5000   2.0000
     2.0000   1.0000   2.0000   2.0000   2.0000   1.5000

@end group
@end example
@seealso{@ref{doc-contour,,contour}}
@end deftypefn


@c ./plot/contour3.m
@anchor{doc-contour3}
@deftypefn {Function File} {} contour3 (@var{z})
@deftypefnx {Function File} {} contour3 (@var{z}, @var{vn})
@deftypefnx {Function File} {} contour3 (@var{x}, @var{y}, @var{z})
@deftypefnx {Function File} {} contour3 (@var{x}, @var{y}, @var{z}, @var{vn})
@deftypefnx {Function File} {} contour3 (@dots{}, @var{style})
@deftypefnx {Function File} {} contour3 (@var{h}, @dots{})
@deftypefnx {Function File} {[@var{c}, @var{h}] =} contour3 (@dots{})
Plot level curves (contour lines) of the matrix @var{z}, using the
contour matrix @var{c} computed by @code{contourc} from the same
arguments; see the latter for their interpretation.  The contours are
plotted at the Z level corresponding to their contour.  The set of
contour levels, @var{c}, is only returned if requested.  For example:

@example
@group
contour3 (peaks (19));
hold on
surface (peaks (19), "facecolor", "none", "EdgeColor", "black")
colormap hot
@end group
@end example

The style to use for the plot can be defined with a line style @var{style}
in a similar manner to the line styles used with the @code{plot} command.
Any markers defined by @var{style} are ignored.

The optional input and output argument @var{h} allows an axis handle to 
be passed to @code{contour} and the handles to the contour objects to be
returned.
@seealso{@ref{doc-contourc,,contourc}, @ref{doc-patch,,patch}, @ref{doc-plot,,plot}}
@end deftypefn


The @code{errorbar}, @code{semilogxerr}, @code{semilogyerr}, and
@code{loglogerr} functions produce plots with error bar markers.  For
example,

@example
@group
x = 0:0.1:10;
y = sin (x);
yp =  0.1 .* randn (size (x));
ym = -0.1 .* randn (size (x));
errorbar (x, sin (x), ym, yp);
@end group
@end example

@noindent
produces the figure shown in @ref{fig:errorbar}.

@float Figure,fig:errorbar
@center @image{errorbar,4in}
@caption{Errorbar plot.}
@end float

@c ./plot/errorbar.m
@anchor{doc-errorbar}
@deftypefn {Function File} {} errorbar (@var{args})
This function produces two-dimensional plots with errorbars.  Many
different combinations of arguments are possible.  The simplest form is

@example
errorbar (@var{y}, @var{ey})
@end example

@noindent
where the first argument is taken as the set of @var{y} coordinates
and the second argument @var{ey} is taken as the errors of the
@var{y} values.  @var{x} coordinates are taken to be the indices
of the elements, starting with 1.

If more than two arguments are given, they are interpreted as

@example
errorbar (@var{x}, @var{y}, @dots{}, @var{fmt}, @dots{})
@end example

@noindent
where after @var{x} and @var{y} there can be up to four error
parameters such as @var{ey}, @var{ex}, @var{ly}, @var{uy}, etc.,
depending on the plot type.  Any number of argument sets may appear,
as long as they are separated with a format string @var{fmt}.

If @var{y} is a matrix, @var{x} and error parameters must also be matrices
having same dimensions.  The columns of @var{y} are plotted versus the
corresponding columns of @var{x} and errorbars are drawn from
the corresponding columns of error parameters.

If @var{fmt} is missing, yerrorbars ("~") plot style is assumed.

If the @var{fmt} argument is supplied, it is interpreted as in
normal plots.  In addition the following plot styles are supported by
errorbar:

@table @samp
@item ~
Set yerrorbars plot style (default).

@item >
Set xerrorbars plot style.

@item ~>
Set xyerrorbars plot style.

@item #
Set boxes plot style.

@item #~
Set boxerrorbars plot style.

@item #~>
Set boxxyerrorbars plot style.
@end table

Examples:

@example
errorbar (@var{x}, @var{y}, @var{ex}, ">")
@end example

produces an xerrorbar plot of @var{y} versus @var{x} with @var{x}
errorbars drawn from @var{x}-@var{ex} to @var{x}+@var{ex}.

@example
@group
errorbar (@var{x}, @var{y1}, @var{ey}, "~",
          @var{x}, @var{y2}, @var{ly}, @var{uy})
@end group
@end example

produces yerrorbar plots with @var{y1} and @var{y2} versus @var{x}.
Errorbars for @var{y1} are drawn from @var{y1}-@var{ey} to
@var{y1}+@var{ey}, errorbars for @var{y2} from @var{y2}-@var{ly} to
@var{y2}+@var{uy}.

@example
@group
errorbar (@var{x}, @var{y}, @var{lx}, @var{ux},
          @var{ly}, @var{uy}, "~>")
@end group
@end example

produces an xyerrorbar plot of @var{y} versus @var{x} in which
@var{x} errorbars are drawn from @var{x}-@var{lx} to @var{x}+@var{ux}
and @var{y} errorbars from @var{y}-@var{ly} to @var{y}+@var{uy}.
@seealso{@ref{doc-semilogxerr,,semilogxerr}, @ref{doc-semilogyerr,,semilogyerr}, @ref{doc-loglogerr,,loglogerr}}
@end deftypefn


@c ./plot/semilogxerr.m
@anchor{doc-semilogxerr}
@deftypefn {Function File} {} semilogxerr (@var{args})
Produce two-dimensional plots on a semilogarithm axis with errorbars.
Many different combinations of arguments are possible.  The most used
form is

@example
semilogxerr (@var{x}, @var{y}, @var{ey}, @var{fmt})
@end example

@noindent
which produces a semi-logarithm plot of @var{y} versus @var{x}
with errors in the @var{y}-scale defined by @var{ey} and the plot
format defined by @var{fmt}.  See errorbar for available formats and 
additional information.
@seealso{@ref{doc-errorbar,,errorbar}, @ref{doc-loglogerr,,loglogerr}, @ref{doc-semilogyerr,,semilogyerr}}
@end deftypefn


@c ./plot/semilogyerr.m
@anchor{doc-semilogyerr}
@deftypefn {Function File} {} semilogyerr (@var{args})
Produce two-dimensional plots on a semilogarithm axis with errorbars.
Many different combinations of arguments are possible.  The most used
form is

@example
semilogyerr (@var{x}, @var{y}, @var{ey}, @var{fmt})
@end example

@noindent
which produces a semi-logarithm plot of @var{y} versus @var{x}
with errors in the @var{y}-scale defined by @var{ey} and the plot
format defined by @var{fmt}.  See errorbar for available formats and 
additional information.
@seealso{@ref{doc-errorbar,,errorbar}, @ref{doc-loglogerr,,loglogerr}, @ref{doc-semilogxerr,,semilogxerr}}
@end deftypefn


@c ./plot/loglogerr.m
@anchor{doc-loglogerr}
@deftypefn {Function File} {} loglogerr (@var{args})
Produce two-dimensional plots on double logarithm axis with
errorbars.  Many different combinations of arguments are possible.
The most used form is

@example
loglogerr (@var{x}, @var{y}, @var{ey}, @var{fmt})
@end example

@noindent
which produces a double logarithm plot of @var{y} versus @var{x} 
with errors in the @var{y}-scale defined by @var{ey} and the plot
format defined by @var{fmt}.  See errorbar for available formats and 
additional information.
@seealso{@ref{doc-errorbar,,errorbar}, @ref{doc-semilogxerr,,semilogxerr}, @ref{doc-semilogyerr,,semilogyerr}}
@end deftypefn


Finally, the @code{polar} function allows you to easily plot data in
polar coordinates.  However, the display coordinates remain rectangular
and linear.  For example,

@example
polar (0:0.1:10*pi, 0:0.1:10*pi);
@end example

@noindent
produces the spiral plot shown in @ref{fig:polar}.

@float Figure,fig:polar
@center @image{polar,4in}
@caption{Polar plot.}
@end float

@c ./plot/polar.m
@anchor{doc-polar}
@deftypefn {Function File} {} polar (@var{theta}, @var{rho}, @var{fmt})
Make a two-dimensional plot given the polar coordinates @var{theta} and
@var{rho}.

The optional third argument specifies the line type.
@seealso{@ref{doc-plot,,plot}}
@end deftypefn


@c ./plot/pie.m
@anchor{doc-pie}
@deftypefn {Function File} {} pie (@var{y})
@deftypefnx {Function File} {} pie (@var{y}, @var{explode})
@deftypefnx {Function File} {} pie (@dots{}, @var{labels})
@deftypefnx {Function File} {} pie (@var{h}, @dots{});
@deftypefnx {Function File} {@var{h} =} pie (@dots{});
Produce a pie chart. 

Called with a single vector argument, produces a pie chart of the
elements in @var{x}, with the size of the slice determined by percentage
size of the values of @var{x}.

The variable @var{explode} is a vector of the same length as @var{x} that
if non zero 'explodes' the slice from the pie chart.

If given @var{labels} is a cell array of strings of the same length as
@var{x}, giving the labels of each of the slices of the pie chart. 

The optional return value @var{h} provides a handle to the patch object.

@seealso{@ref{doc-bar,,bar}, @ref{doc-stem,,stem}}
@end deftypefn


@c ./plot/quiver.m
@anchor{doc-quiver}
@deftypefn {Function File} {} quiver (@var{u}, @var{v})
@deftypefnx {Function File} {} quiver (@var{x}, @var{y}, @var{u}, @var{v})
@deftypefnx {Function File} {} quiver (@dots{}, @var{s})
@deftypefnx {Function File} {} quiver (@dots{}, @var{style})
@deftypefnx {Function File} {} quiver (@dots{}, 'filled')
@deftypefnx {Function File} {} quiver (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} quiver (@dots{})

Plot the @code{(@var{u}, @var{v})} components of a vector field in 
an @code{(@var{x}, @var{y})} meshgrid.  If the grid is uniform, you can 
specify @var{x} and @var{y} as vectors.

If @var{x} and @var{y} are undefined they are assumed to be
@code{(1:@var{m}, 1:@var{n})} where @code{[@var{m}, @var{n}] = 
size(@var{u})}.

The variable @var{s} is a scalar defining a scaling factor to use for
 the arrows of the field relative to the mesh spacing.  A value of 0 
disables all scaling.  The default value is 1.

The style to use for the plot can be defined with a line style @var{style}
in a similar manner to the line styles used with the @code{plot} command.
If a marker is specified then markers at the grid points of the vectors are
printed rather than arrows.  If the argument 'filled' is given then the
markers as filled.

The optional return value @var{h} provides a quiver group that
regroups the components of the quiver plot (body, arrow and marker),
and allows them to be changed together

@example
@group
[x, y] = meshgrid (1:2:20);
h = quiver (x, y, sin (2*pi*x/10), sin (2*pi*y/10));
set (h, "maxheadsize", 0.33);
@end group
@end example

@seealso{@ref{doc-plot,,plot}}
@end deftypefn


@c ./plot/quiver3.m
@anchor{doc-quiver3}
@deftypefn {Function File} {} quiver3 (@var{u}, @var{v}, @var{w})
@deftypefnx {Function File} {} quiver3 (@var{x}, @var{y}, @var{z}, @var{u}, @var{v}, @var{w})
@deftypefnx {Function File} {} quiver3 (@dots{}, @var{s})
@deftypefnx {Function File} {} quiver3 (@dots{}, @var{style})
@deftypefnx {Function File} {} quiver3 (@dots{}, 'filled')
@deftypefnx {Function File} {} quiver3 (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} quiver3 (@dots{})

Plot the @code{(@var{u}, @var{v}, @var{w})} components of a vector field in 
an @code{(@var{x}, @var{y}), @var{z}} meshgrid.  If the grid is uniform, you 
can specify @var{x}, @var{y} @var{z} as vectors.

If @var{x}, @var{y} and @var{z} are undefined they are assumed to be
@code{(1:@var{m}, 1:@var{n}, 1:@var{p})} where @code{[@var{m}, @var{n}] = 
size(@var{u})} and @code{@var{p} = max (size (@var{w}))}.

The variable @var{s} is a scalar defining a scaling factor to use for
 the arrows of the field relative to the mesh spacing.  A value of 0 
disables all scaling.  The default value is 1.

The style to use for the plot can be defined with a line style @var{style}
in a similar manner to the line styles used with the @code{plot} command.
If a marker is specified then markers at the grid points of the vectors are
printed rather than arrows.  If the argument 'filled' is given then the
markers as filled.

The optional return value @var{h} provides a quiver group that
regroups the components of the quiver plot (body, arrow and marker),
and allows them to be changed together

@example
@group
[x, y, z] = peaks (25);
surf (x, y, z);
hold on;
[u, v, w] = surfnorm (x, y, z / 10);
h = quiver3 (x, y, z, u, v, w);
set (h, "maxheadsize", 0.33);
@end group
@end example

@seealso{@ref{doc-plot,,plot}}
@end deftypefn


@c ./plot/compass.m
@anchor{doc-compass}
@deftypefn {Function File} {} compass (@var{u}, @var{v})
@deftypefnx {Function File} {} compass (@var{z})
@deftypefnx {Function File} {} compass (@dots{}, @var{style})
@deftypefnx {Function File} {} compass (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} compass (@dots{})

Plot the @code{(@var{u}, @var{v})} components of a vector field emanating
from the origin of a polar plot.  If a single complex argument @var{z} is 
given, then @code{@var{u} = real (@var{z})} and @code{@var{v} = imag 
(@var{z})}.

The style to use for the plot can be defined with a line style @var{style}
in a similar manner to the line styles used with the @code{plot} command.

The optional return value @var{h} provides a list of handles to the 
the parts of the vector field (body, arrow and marker).

@example
@group
a = toeplitz([1;randn(9,1)],[1,randn(1,9)]);
compass (eig (a))
@end group
@end example

@seealso{@ref{doc-plot,,plot}, @ref{doc-polar,,polar}, @ref{doc-quiver,,quiver}, @ref{doc-feather,,feather}}
@end deftypefn


@c ./plot/feather.m
@anchor{doc-feather}
@deftypefn {Function File} {} feather (@var{u}, @var{v})
@deftypefnx {Function File} {} feather (@var{z})
@deftypefnx {Function File} {} feather (@dots{}, @var{style})
@deftypefnx {Function File} {} feather (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} feather (@dots{})

Plot the @code{(@var{u}, @var{v})} components of a vector field emanating
from equidistant points on the x-axis.  If a single complex argument
@var{z} is given, then @code{@var{u} = real (@var{z})} and
@code{@var{v} = imag (@var{z})}.

The style to use for the plot can be defined with a line style @var{style}
in a similar manner to the line styles used with the @code{plot} command.

The optional return value @var{h} provides a list of handles to the 
the parts of the vector field (body, arrow and marker).

@example
@group
phi = [0 : 15 : 360] * pi / 180;
feather (sin (phi), cos (phi))
@end group
@end example

@seealso{@ref{doc-plot,,plot}, @ref{doc-quiver,,quiver}, @ref{doc-compass,,compass}}
@end deftypefn


@c ./plot/pcolor.m
@anchor{doc-pcolor}
@deftypefn {Function File} {} pcolor (@var{x}, @var{y}, @var{c})
@deftypefnx {Function File} {} pcolor (@var{c})
Density plot for given matrices @var{x}, and @var{y} from @code{meshgrid} and
a matrix @var{c} corresponding to the @var{x} and @var{y} coordinates of
the mesh's vertices.  If @var{x} and @var{y} are vectors, then a typical vertex
is (@var{x}(j), @var{y}(i), @var{c}(i,j)).  Thus, columns of @var{c}
correspond to different @var{x} values and rows of @var{c} correspond
to different @var{y} values.

The @code{colormap} is scaled to the extents of @var{c}.
Limits may be placed on the color axis by the
command @code{caxis}, or by setting the @code{clim} property of the
parent axis.

The face color of each cell of the mesh is determined by interpolating
the values of @var{c} for the cell's vertices.  Contrast this with 
@code{imagesc} which renders one cell for each element of @var{c}.

@code{shading} modifies an attribute determining the manner by which the
face color of each cell is interpolated from the values of @var{c},
and the visibility of the cells' edges.  By default the attribute is
"faceted", which renders a single color for each cell's face with the edge
visible.

@var{h} is the handle to the surface object.

@seealso{@ref{doc-caxis,,caxis}, @ref{doc-contour,,contour}, @ref{doc-meshgrid,,meshgrid}, @ref{doc-imagesc,,imagesc}, @ref{doc-shading,,shading}}
@end deftypefn


@c ./plot/area.m
@anchor{doc-area}
@deftypefn {Function File} {} area (@var{x}, @var{y})
@deftypefnx {Function File} {} area (@var{x}, @var{y}, @var{lvl})
@deftypefnx {Function File} {} area (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {Function File} {} area (@var{y}, @dots{})
@deftypefnx {Function File} {} area (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} area (@dots{})
Area plot of cumulative sum of the columns of @var{y}.  This shows the
contributions of a value to a sum, and is functionally similar to 
@code{plot (@var{x}, cumsum (@var{y}, 2))}, except that the area under 
the curve is shaded.

If the @var{x} argument is omitted it is assumed to be given by
@code{1 : rows (@var{y})}.  A value @var{lvl} can be defined that determines
where the base level of the shading under the curve should be defined.

Additional arguments to the @code{area} function are passed to the 
@code{patch}.  The optional return value @var{h} provides a handle to 
area series object representing the patches of the areas.
@seealso{@ref{doc-plot,,plot}, @ref{doc-patch,,patch}}
@end deftypefn


@c ./plot/comet.m
@anchor{doc-comet}
@deftypefn {Function File} {} comet (@var{y})
@deftypefnx {Function File} {} comet (@var{x}, @var{y})
@deftypefnx {Function File} {} comet (@var{x}, @var{y}, @var{p})
@deftypefnx {Function File} {} comet (@var{ax}, @dots{})
Produce a simple comet style animation along the trajectory provided by 
the input coordinate vectors (@var{x}, @var{y}), where @var{x} will default
to the indices of @var{y}.

The speed of the comet may be controlled by @var{p}, which represents the
time which passes as the animation passes from one point to the next.  The
default for @var{p} is 0.1 seconds.

If @var{ax} is specified the animation is produced in that axis rather than
the @code{gca}.
@end deftypefn


The axis function may be used to change the axis limits of an existing
plot and various other axis properties, such as the aspect ratio and the
appearance of tic marks.

@c ./plot/axis.m
@anchor{doc-axis}
@deftypefn {Function File} {} axis (@var{limits})
Set axis limits for plots.

The argument @var{limits} should be a 2, 4, or 6 element vector.  The
first and second elements specify the lower and upper limits for the x
axis.  The third and fourth specify the limits for the y-axis, and the
fifth and sixth specify the limits for the z-axis.

Without any arguments, @code{axis} turns autoscaling on.  

With one output argument, @code{x = axis} returns the current axes 

The vector argument specifying limits is optional, and additional
string arguments may be used to specify various axis properties.  For
example,

@example
axis ([1, 2, 3, 4], "square");
@end example

@noindent
forces a square aspect ratio, and

@example
axis ("labely", "tic");
@end example

@noindent
turns tic marks on for all axes and tic mark labels on for the y-axis
only.

@noindent
The following options control the aspect ratio of the axes.

@table @code
@item "square"
Force a square aspect ratio.
@item "equal"
Force x distance to equal y-distance.
@item "normal"
Restore the balance.
@end table

@noindent
The following options control the way axis limits are interpreted.

@table @code
@item "auto" 
Set the specified axes to have nice limits around the data
or all if no axes are specified.
@item "manual" 
Fix the current axes limits.
@item "tight"
Fix axes to the limits of the data.
@end table

@noindent
The option @code{"image"} is equivalent to @code{"tight"} and
@code{"equal"}.

@noindent
The following options affect the appearance of tic marks.

@table @code
@item "on" 
Turn tic marks and labels on for all axes.
@item "off"
Turn tic marks off for all axes.
@item "tic[xyz]"
Turn tic marks on for all axes, or turn them on for the
specified axes and off for the remainder.
@item "label[xyz]"
Turn tic labels on for all axes, or turn them on for the 
specified axes and off for the remainder.
@item "nolabel"
Turn tic labels off for all axes.
@end table
Note, if there are no tic marks for an axis, there can be no labels.

@noindent
The following options affect the direction of increasing values on
the axes.

@table @code
@item "ij"
Reverse y-axis, so lower values are nearer the top.
@item "xy" 
Restore y-axis, so higher values are nearer the top. 
@end table

If an axes handle is passed as the first argument, then operate on
this axes rather than the current axes.
@end deftypefn


Similarly the axis limits of the colormap can be changed with the caxis
function.

@c ./plot/caxis.m
@anchor{doc-caxis}
@deftypefn {Function File} {} caxis (@var{limits})
@deftypefnx {Function File} {} caxis (@var{h}, @dots{})
Set color axis limits for plots.

The argument @var{limits} should be a 2 element vector specifying the 
lower and upper limits to assign to the first and last value in the
colormap.  Values outside this range are clamped to the first and last
colormap entries. 

If @var{limits} is 'auto', then automatic colormap scaling is applied,
whereas if @var{limits} is 'manual' the colormap scaling is set to manual.

Called without any arguments to current color axis limits are returned.

If an axes handle is passed as the first argument, then operate on
this axes rather than the current axes.
@end deftypefn


The @code{xlim}, @code{ylim}, and @code{zlim} functions may be used to
get or set individual axis limits.  Each has the same form.

@anchor{doc-ylim}
@anchor{doc-zlim}
@c ./plot/xlim.m
@anchor{doc-xlim}
@deftypefn {Function File} {@var{xl} =} xlim ()
@deftypefnx {Function File} {} xlim (@var{xl})
@deftypefnx {Function File} {@var{m} =} xlim ('mode')
@deftypefnx {Function File} {} xlim (@var{m})
@deftypefnx {Function File} {} xlim (@var{h}, @dots{})
Get or set the limits of the x-axis of the current plot.  Called without
arguments @code{xlim} returns the x-axis limits of the current plot.
If passed a two element vector @var{xl}, the limits of the x-axis are set
to this value.

The current mode for calculation of the x-axis can be returned with a
call @code{xlim ('mode')}, and can be either 'auto' or 'manual'.  The 
current plotting mode can be set by passing either 'auto' or 'manual' 
as the argument.

If passed an handle as the first argument, then operate on this handle
rather than the current axes handle.
@seealso{@ref{doc-ylim,,ylim}, @ref{doc-zlim,,zlim}, @ref{doc-set,,set}, @ref{doc-get,,get}, @ref{doc-gca,,gca}}
@end deftypefn


@menu
* Two-dimensional Function Plotting::
@end menu

@node Two-dimensional Function Plotting
@subsubsection Two-dimensional Function Plotting

Octave can plot a function from a function handle inline function or
string defining the function without the user needing to explicitly
create the data to be plotted.  The function @code{fplot} also generates
two-dimensional plots with linear axes using a function name and limits
for the range of the x-coordinate instead of the x and y data.  For
example,

@example
@group
fplot (@@sin, [-10, 10], 201);
@end group
@end example

@noindent
produces a plot that is equivalent to the one above, but also includes a
legend displaying the name of the plotted function.

@c ./plot/fplot.m
@anchor{doc-fplot}
@deftypefn {Function File} {} fplot (@var{fn}, @var{limits})
@deftypefnx {Function File} {} fplot (@var{fn}, @var{limits}, @var{tol})
@deftypefnx {Function File} {} fplot (@var{fn}, @var{limits}, @var{n})
@deftypefnx {Function File} {} fplot (@dots{}, @var{fmt})
Plot a function @var{fn}, within the defined limits.  @var{fn}
an be either a string, a function handle or an inline function.
The limits of the plot are given by @var{limits} of the form
@code{[@var{xlo}, @var{xhi}]} or @code{[@var{xlo}, @var{xhi},
@var{ylo}, @var{yhi}]}.  @var{tol} is the default tolerance to use for the
plot, and if @var{tol} is an integer it is assumed that it defines the 
number points to use in the plot.  The @var{fmt} argument is passed
to the plot command.

@example
@group
   fplot ("cos", [0, 2*pi])
   fplot ("[cos(x), sin(x)]", [0, 2*pi])
@end group
@end example
@seealso{@ref{doc-plot,,plot}}
@end deftypefn


Other functions that can create two-dimensional plots directly from a
function include @code{ezplot}, @code{ezcontour}, @code{ezcontourf} and
@code{ezpolar}.

@c ./plot/ezplot.m
@anchor{doc-ezplot}
@deftypefn {Function File} {} ezplot (@var{f})
@deftypefnx {Function File} {} ezplot (@var{fx}, @var{fy})
@deftypefnx {Function File} {} ezplot (@dots{}, @var{dom})
@deftypefnx {Function File} {} ezplot (@dots{}, @var{n})
@deftypefnx {Function File} {} ezplot (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} ezplot (@dots{})

Plots in two-dimensions the curve defined by @var{f}.  The function
@var{f} may be a string, inline function or function handle and can
have either one or two variables.  If @var{f} has one variable, then 
the function is plotted over the domain @code{-2*pi < @var{x} < 2*pi}  
with 500 points. 

If @var{f} has two variables then @code{@var{f}(@var{x},@var{y}) = 0}
is calculated over the meshed domain @code{-2*pi < @var{x} | @var{y}
< 2*pi} with 60 by 60 in the mesh.  For example

@example
ezplot (@@(@var{x}, @var{y}) @var{x} .^ 2 - @var{y} .^ 2 - 1)
@end example

If two functions are passed as strings, inline functions or function
handles, then the parametric function

@example
@group
@var{x} = @var{fx} (@var{t})
@var{y} = @var{fy} (@var{t})
@end group
@end example

is plotted over the domain @code{-2*pi < @var{t} < 2*pi} with 500
points. 

If @var{dom} is a two element vector, it represents the minimum and maximum
value of @var{x}, @var{y} and @var{t}.  If it is a four element
vector, then the minimum and maximum values of @var{x} and @var{t}
are determined by the first two elements and the minimum and maximum
of @var{y} by the second pair of elements.

@var{n} is a scalar defining the number of points to use in plotting
the function.

The optional return value @var{h} provides a list of handles to the 
the line objects plotted.

@seealso{@ref{doc-plot,,plot}, @ref{doc-ezplot3,,ezplot3}}
@end deftypefn


@c ./plot/ezcontour.m
@anchor{doc-ezcontour}
@deftypefn {Function File} {} ezcontour (@var{f})
@deftypefnx {Function File} {} ezcontour (@dots{}, @var{dom})
@deftypefnx {Function File} {} ezcontour (@dots{}, @var{n})
@deftypefnx {Function File} {} ezcontour (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} ezcontour (@dots{})

Plots the contour lines of a function.  @var{f} is a string, inline function
or function handle with two arguments defining the function.  By default the
plot is over the domain @code{-2*pi < @var{x} < 2*pi} and @code{-2*pi < 
@var{y} < 2*pi} with 60 points in each dimension. 

If @var{dom} is a two element vector, it represents the minimum and maximum
value of both @var{x} and @var{y}.  If @var{dom} is a four element vector,
then the minimum and maximum value of @var{x} and @var{y} are specify
separately.

@var{n} is a scalar defining the number of points to use in each dimension.

The optional return value @var{h} provides a list of handles to the 
the parts of the vector field (body, arrow and marker).

@example
@group
f = @@(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezcontour (f, [-3, 3]);
@end group
@end example

@seealso{@ref{doc-ezplot,,ezplot}, @ref{doc-ezcontourf,,ezcontourf}, @ref{doc-ezsurfc,,ezsurfc}, @ref{doc-ezmeshc,,ezmeshc}}
@end deftypefn


@c ./plot/ezcontourf.m
@anchor{doc-ezcontourf}
@deftypefn {Function File} {} ezcontourf (@var{f})
@deftypefnx {Function File} {} ezcontourf (@dots{}, @var{dom})
@deftypefnx {Function File} {} ezcontourf (@dots{}, @var{n})
@deftypefnx {Function File} {} ezcontourf (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} ezcontourf (@dots{})

Plots the filled contour lines of a function.  @var{f} is a string, inline 
function or function handle with two arguments defining the function.  By 
default the plot is over the domain @code{-2*pi < @var{x} < 2*pi} and 
@code{-2*pi < @var{y} < 2*pi} with 60 points in each dimension. 

If @var{dom} is a two element vector, it represents the minimum and maximum
value of both @var{x} and @var{y}.  If @var{dom} is a four element vector,
then the minimum and maximum value of @var{x} and @var{y} are specify
separately.

@var{n} is a scalar defining the number of points to use in each dimension.

The optional return value @var{h} provides a list of handles to the 
the parts of the vector field (body, arrow and marker).

@example
@group
f = @@(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezcontourf (f, [-3, 3]);
@end group
@end example

@seealso{@ref{doc-ezplot,,ezplot}, @ref{doc-ezcontour,,ezcontour}, @ref{doc-ezsurfc,,ezsurfc}, @ref{doc-ezmeshc,,ezmeshc}}
@end deftypefn


@c ./plot/ezpolar.m
@anchor{doc-ezpolar}
@deftypefn {Function File} {} ezpolar (@var{f})
@deftypefnx {Function File} {} ezpolar (@dots{}, @var{dom})
@deftypefnx {Function File} {} ezpolar (@dots{}, @var{n})
@deftypefnx {Function File} {} ezpolar (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} ezpolar (@dots{})

Plots in polar plot defined by a function.  The function @var{f} is either
a string, inline function or function handle with one arguments defining 
the function.  By default the plot is over the domain @code{0 < @var{x} < 
2*pi} with 60 points. 

If @var{dom} is a two element vector, it represents the minimum and maximum
value of both @var{t}.  @var{n} is a scalar defining the number of points to 
use.

The optional return value @var{h} provides a list of handles to the 
the parts of the vector field (body, arrow and marker).

@example
ezpolar (@@(t) 1 + sin (t));
@end example

@seealso{@ref{doc-polar,,polar}, @ref{doc-ezplot,,ezplot}, @ref{doc-ezsurf,,ezsurf}, @ref{doc-ezmesh,,ezmesh}}
@end deftypefn


@node Three-Dimensional Plotting
@subsection Three-Dimensional Plotting

The function @code{mesh} produces mesh surface plots.  For example,

@example
@group
tx = ty = linspace (-8, 8, 41)';
[xx, yy] = meshgrid (tx, ty);
r = sqrt (xx .^ 2 + yy .^ 2) + eps;
tz = sin (r) ./ r;
mesh (tx, ty, tz);
@end group
@end example

@noindent
produces the familiar ``sombrero'' plot shown in @ref{fig:mesh}.  Note
the use of the function @code{meshgrid} to create matrices of X and Y
coordinates to use for plotting the Z data.  The @code{ndgrid} function
is similar to @code{meshgrid}, but works for N-dimensional matrices.

@float Figure,fig:mesh
@center @image{mesh,4in}
@caption{Mesh plot.}
@end float

The @code{meshc} function is similar to @code{mesh}, but also produces a
plot of contours for the surface.

The @code{plot3} function displays arbitrary three-dimensional data,
without requiring it to form a surface.  For example

@example
@group
t = 0:0.1:10*pi;
r = linspace (0, 1, numel (t));
z = linspace (0, 1, numel (t));
plot3 (r.*sin(t), r.*cos(t), z);
@end group
@end example

@noindent
displays the spiral in three dimensions shown in @ref{fig:plot3}.

@float Figure,fig:plot3
@center @image{plot3,4in}
@caption{Three dimensional spiral.}
@end float

Finally, the @code{view} function changes the viewpoint for
three-dimensional plots.

@c ./plot/mesh.m
@anchor{doc-mesh}
@deftypefn {Function File} {} mesh (@var{x}, @var{y}, @var{z})
Plot a mesh given matrices @var{x}, and @var{y} from @code{meshgrid} and
a matrix @var{z} corresponding to the @var{x} and @var{y} coordinates of
the mesh.  If @var{x} and @var{y} are vectors, then a typical vertex
is (@var{x}(j), @var{y}(i), @var{z}(i,j)).  Thus, columns of @var{z}
correspond to different @var{x} values and rows of @var{z} correspond
to different @var{y} values.
@seealso{@ref{doc-meshgrid,,meshgrid}, @ref{doc-contour,,contour}}
@end deftypefn


@c ./plot/meshc.m
@anchor{doc-meshc}
@deftypefn {Function File} {} meshc (@var{x}, @var{y}, @var{z})
Plot a mesh and contour given matrices @var{x}, and @var{y} from 
@code{meshgrid} and a matrix @var{z} corresponding to the @var{x} and 
@var{y} coordinates of the mesh.  If @var{x} and @var{y} are vectors, 
then a typical vertex is (@var{x}(j), @var{y}(i), @var{z}(i,j)).  Thus, 
columns of @var{z} correspond to different @var{x} values and rows of 
@var{z} correspond to different @var{y} values.
@seealso{@ref{doc-meshgrid,,meshgrid}, @ref{doc-mesh,,mesh}, @ref{doc-contour,,contour}}
@end deftypefn


@c ./plot/meshz.m
@anchor{doc-meshz}
@deftypefn {Function File} {} meshz (@var{x}, @var{y}, @var{z})
Plot a curtain mesh given matrices @var{x}, and @var{y} from 
@code{meshgrid} and a matrix @var{z} corresponding to the @var{x} and 
@var{y} coordinates of the mesh.  If @var{x} and @var{y} are vectors, 
then a typical vertex is (@var{x}(j), @var{y}(i), @var{z}(i,j)).  Thus, 
columns of @var{z} correspond to different @var{x} values and rows of 
@var{z} correspond to different @var{y} values.
@seealso{@ref{doc-meshgrid,,meshgrid}, @ref{doc-mesh,,mesh}, @ref{doc-contour,,contour}}
@end deftypefn


@c ./plot/hidden.m
@anchor{doc-hidden}
@deftypefn {Function File} {} hidden (@var{mode})
@deftypefnx {Function File} {} hidden ()
Manipulation the mesh hidden line removal.  Called with no argument
the hidden line removal is toggled.  The argument @var{mode} can be either
'on' or 'off' and the set of the hidden line removal is set accordingly.
@seealso{@ref{doc-mesh,,mesh}, @ref{doc-meshc,,meshc}, @ref{doc-surf,,surf}}
@end deftypefn


@c ./plot/surf.m
@anchor{doc-surf}
@deftypefn {Function File} {} surf (@var{x}, @var{y}, @var{z})
Plot a surface given matrices @var{x}, and @var{y} from @code{meshgrid} and
a matrix @var{z} corresponding to the @var{x} and @var{y} coordinates of
the mesh.  If @var{x} and @var{y} are vectors, then a typical vertex
is (@var{x}(j), @var{y}(i), @var{z}(i,j)).  Thus, columns of @var{z}
correspond to different @var{x} values and rows of @var{z} correspond
to different @var{y} values.
@seealso{@ref{doc-mesh,,mesh}, @ref{doc-surface,,surface}}
@end deftypefn


@c ./plot/surfc.m
@anchor{doc-surfc}
@deftypefn {Function File} {} surfc (@var{x}, @var{y}, @var{z})
Plot a surface and contour given matrices @var{x}, and @var{y} from 
@code{meshgrid} and a matrix @var{z} corresponding to the @var{x} and 
@var{y} coordinates of the mesh.  If @var{x} and @var{y} are vectors, 
then a typical vertex is (@var{x}(j), @var{y}(i), @var{z}(i,j)).  Thus, 
columns of @var{z} correspond to different @var{x} values and rows of 
@var{z} correspond to different @var{y} values.
@seealso{@ref{doc-meshgrid,,meshgrid}, @ref{doc-surf,,surf}, @ref{doc-contour,,contour}}
@end deftypefn


@c ./plot/surfl.m
@anchor{doc-surfl}
@deftypefn {Function File} {} surfl (@var{x}, @var{y}, @var{z})
@deftypefnx {Function File} {} surfl (@var{z})
@deftypefnx {Function File} {} surfl (@var{x}, @var{y}, @var{z}, @var{L})
@deftypefnx {Function File} {} surfl (@var{x}, @var{y}, @var{z}, @var{L}, @var{P})
@deftypefnx {Function File} {} surfl (@dots{},"light")
Plot a lighted surface given matrices @var{x}, and @var{y} from @code{meshgrid} and
a matrix @var{z} corresponding to the @var{x} and @var{y} coordinates of
the mesh.  If @var{x} and @var{y} are vectors, then a typical vertex
is (@var{x}(j), @var{y}(i), @var{z}(i,j)).  Thus, columns of @var{z}
correspond to different @var{x} values and rows of @var{z} correspond
to different @var{y} values.

The light direction can be specified using @var{L}.  It can be
given as 2-element vector [azimuth, elevation] in degrees or as 3-element vector [lx, ly, lz].
The default value is rotated 45° counter-clockwise from the current view.

The material properties of the surface can specified using a 4-element vector
@var{P} = [@var{AM} @var{D} @var{SP} @var{exp}] which defaults to
@var{p} = [0.55 0.6 0.4 10]. 
@table @code
@item "AM" strength of ambient light
@item "D" strength of diffuse reflection
@item "SP" strength of specular reflection
@item "EXP" specular exponent
@end table

The default lighting mode "cdata", changes the cdata property to give the impression
of a lighted surface.  Please note: the alternative "light" mode, which creates a light
object to illuminate the surface is not implemented (yet).

Example:

@example
@group
colormap(bone);
surfl(peaks);
shading interp;
@end group
@end example
@seealso{@ref{doc-surf,,surf}, @ref{doc-diffuse,,diffuse}, @ref{doc-specular,,specular}, @ref{doc-surface,,surface}}
@end deftypefn


@c ./plot/surfnorm.m
@anchor{doc-surfnorm}
@deftypefn {Function File} {} surfnorm (@var{x}, @var{y}, @var{z})
@deftypefnx {Function File} {} surfnorm (@var{z})
@deftypefnx {Function File} {[@var{nx}, @var{ny}, @var{nz}] =} surfnorm (@dots{})
@deftypefnx {Function File} {} surfnorm (@var{h}, @dots{})
Find the vectors normal to a meshgridded surface.  The meshed gridded 
surface is defined by @var{x}, @var{y}, and @var{z}.  If @var{x} and 
@var{y} are not defined, then it is assumed that they are given by

@example
@group
[@var{x}, @var{y}] = meshgrid (1:size(@var{z}, 1), 
                     1:size(@var{z}, 2));
@end group
@end example

If no return arguments are requested, a surface plot with the normal 
vectors to the surface is plotted.  Otherwise the components of the normal
vectors at the mesh gridded points are returned in @var{nx}, @var{ny},
and @var{nz}.

The normal vectors are calculated by taking the cross product of the 
diagonals of each of the quadrilaterals in the meshgrid to find the 
normal vectors of the centers of these quadrilaterals.  The four nearest
normal vectors to the meshgrid points are then averaged to obtain the 
normal to the surface at the meshgridded points.

An example of the use of @code{surfnorm} is

@example
surfnorm (peaks (25));
@end example
@seealso{@ref{doc-surf,,surf}, @ref{doc-quiver3,,quiver3}}
@end deftypefn


@c ./plot/diffuse.m
@anchor{doc-diffuse}
@deftypefn {Function File} {} diffuse (@var{sx}, @var{sy}, @var{sz}, @var{l})
Calculate diffuse reflection strength of a surface defined by the normal
vector elements @var{sx}, @var{sy}, @var{sz}. 
The light vector can be specified using parameter @var{L}.  It can be
given as 2-element vector [azimuth, elevation] in degrees or as 3-element
vector [lx, ly, lz]. 
@seealso{@ref{doc-specular,,specular}, @ref{doc-surfl,,surfl}}
@end deftypefn


@c ./plot/specular.m
@anchor{doc-specular}
@deftypefn {Function File} {} specular (@var{sx}, @var{sy}, @var{sz}, @var{l}, @var{v})
@deftypefnx {Function File} {} specular (@var{sx}, @var{sy}, @var{sz}, @var{l}, @var{v}, @var{se})
Calculate specular reflection strength of a surface defined by the normal
vector elements @var{sx}, @var{sy}, @var{sz} using Phong's approximation. 
The light and view vectors can be specified using parameter @var{L} and @var{V} respectively.
Both can be given as 2-element vectors [azimuth, elevation] in degrees or as 3-element
vector [x, y, z].  An optional 6th argument describes the specular exponent (spread) @var{se}.
@seealso{@ref{doc-surfl,,surfl}, @ref{doc-diffuse,,diffuse}}
@end deftypefn


@c ./plot/meshgrid.m
@anchor{doc-meshgrid}
@deftypefn {Function File} {[@var{xx}, @var{yy}, @var{zz}] =} meshgrid (@var{x}, @var{y}, @var{z})
@deftypefnx {Function File} {[@var{xx}, @var{yy}] =} meshgrid (@var{x}, @var{y})
@deftypefnx {Function File} {[@var{xx}, @var{yy}] =} meshgrid (@var{x})
Given vectors of @var{x} and @var{y} and @var{z} coordinates, and
returning 3 arguments, return three-dimensional arrays corresponding
to the @var{x}, @var{y}, and @var{z} coordinates of a mesh.  When
returning only 2 arguments, return matrices corresponding to the
@var{x} and @var{y} coordinates of a mesh.  The rows of @var{xx} are
copies of @var{x}, and the columns of @var{yy} are copies of @var{y}.
If @var{y} is omitted, then it is assumed to be the same as @var{x},
and @var{z} is assumed the same as @var{y}.
@seealso{@ref{doc-mesh,,mesh}, @ref{doc-contour,,contour}}
@end deftypefn


@c ./plot/ndgrid.m
@anchor{doc-ndgrid}
@deftypefn {Function File} {[@var{y1}, @var{y2}, @dots{},  @var{y}n] =} ndgrid (@var{x1}, @var{x2}, @dots{}, @var{x}n)
@deftypefnx {Function File} {[@var{y1}, @var{y2}, @dots{},  @var{y}n] =} ndgrid (@var{x})
Given n vectors @var{x1}, @dots{} @var{x}n, @code{ndgrid} returns
n arrays of dimension n. The elements of the i-th output argument
contains the elements of the vector @var{x}i repeated over all
dimensions different from the i-th dimension.  Calling ndgrid with
only one input argument @var{x} is equivalent of calling ndgrid with
all n input arguments equal to @var{x}:

[@var{y1}, @var{y2}, @dots{},  @var{y}n] = ndgrid (@var{x}, @dots{}, @var{x})
@seealso{@ref{doc-meshgrid,,meshgrid}}
@end deftypefn


@c ./plot/plot3.m
@anchor{doc-plot3}
@deftypefn {Function File} {} plot3 (@var{args})
Produce three-dimensional plots.  Many different combinations of
arguments are possible.  The simplest form is

@example
plot3 (@var{x}, @var{y}, @var{z})
@end example

@noindent
in which the arguments are taken to be the vertices of the points to
be plotted in three dimensions.  If all arguments are vectors of the
same length, then a single continuous line is drawn.  If all arguments
are matrices, then each column of the matrices is treated as a
separate line.  No attempt is made to transpose the arguments to make
the number of rows match.

If only two arguments are given, as

@example
plot3 (@var{x}, @var{c})
@end example

@noindent
the real and imaginary parts of the second argument are used
as the @var{y} and @var{z} coordinates, respectively.

If only one argument is given, as

@example
plot3 (@var{c})
@end example

@noindent
the real and imaginary parts of the argument are used as the @var{y}
and @var{z} values, and they are plotted versus their index.

Arguments may also be given in groups of three as

@example
plot3 (@var{x1}, @var{y1}, @var{z1}, @var{x2}, @var{y2}, @var{z2}, @dots{})
@end example

@noindent
in which each set of three arguments is treated as a separate line or
set of lines in three dimensions.

To plot multiple one- or two-argument groups, separate each group
with an empty format string, as

@example
plot3 (@var{x1}, @var{c1}, "", @var{c2}, "", @dots{})
@end example

An example of the use of @code{plot3} is

@example
@group
   z = [0:0.05:5];
   plot3 (cos(2*pi*z), sin(2*pi*z), z, ";helix;");
   plot3 (z, exp(2i*pi*z), ";complex sinusoid;");
@end group
@end example
@seealso{@ref{doc-plot,,plot}, @ref{doc-xlabel,,xlabel}, @ref{doc-ylabel,,ylabel}, @ref{doc-zlabel,,zlabel}, @ref{doc-title,,title}, @ref{doc-print,,print}}
@end deftypefn


@c ./plot/view.m
@anchor{doc-view}
@deftypefn {Function File} {} view (@var{azimuth}, @var{elevation})
@deftypefnx {Function File} {} view (@var{dims})
@deftypefnx {Function File} {[@var{azimuth}, @var{elevation}] =} view ()
Set or get the viewpoint for the current axes.
@end deftypefn


@c ./plot/slice.m
@anchor{doc-slice}
@deftypefn {Function File} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{sx}, @var{sy}, @var{sz})
@deftypefnx {Function File} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi})
@deftypefnx {Function File} {} slice (@var{v}, @var{sx}, @var{sy}, @var{sz})
@deftypefnx {Function File} {} slice (@var{v}, @var{xi}, @var{yi}, @var{zi})
@deftypefnx {Function File} {@var{h} =} slice (@dots{})
@deftypefnx {Function File} {@var{h} =} slice (@dots{}, @var{method})
Plot slices of 3D data/scalar fields.  Each element of the 3-dimensional 
array @var{v} represents a scalar value at a location given by the
parameters @var{x}, @var{y}, and @var{z}.  The parameters @var{x},
@var{x}, and @var{z} are either 3-dimensional arrays of the same size
as the array @var{v} in the "meshgrid" format or vectors.  The
parameters @var{xi}, etc. respect a similar format to @var{x}, etc.,
and they represent the points at which the array @var{vi} is
interpolated using interp3.  The vectors @var{sx}, @var{sy}, and
@var{sz} contain points of orthogonal slices of the respective axes.

If @var{x}, @var{y}, @var{z} are omitted, they are assumed to be 
@code{x = 1:size (@var{v}, 2)}, @code{y = 1:size (@var{v}, 1)} and
@code{z = 1:size (@var{v}, 3)}. 

@var{Method} is one of:

@table @code
@item "nearest"
Return the nearest neighbor.
@item "linear"
Linear interpolation from nearest neighbors.
@item "cubic"
Cubic interpolation from four nearest neighbors (not implemented yet).
@item "spline"
Cubic spline interpolation---smooth first and second derivatives
throughout the curve.
@end table

The default method is @code{"linear"}.
The optional return value @var{h} is a vector of handles to the
surface graphic objects.

Examples:
@example
@group
[x, y, z] = meshgrid (linspace (-8, 8, 32));
v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
slice (x, y, z, v, [], 0, []);
[xi, yi] = meshgrid (linspace (-7, 7));
zi = xi + yi;
slice (x, y, z, v, xi, yi, zi);
@end group
@end example
@seealso{@ref{doc-interp3,,interp3}, @ref{doc-surface,,surface}, @ref{doc-pcolor,,pcolor}}
@end deftypefn


@c ./plot/ribbon.m
@anchor{doc-ribbon}
@deftypefn  {Function File} {} ribbon (@var{x}, @var{y}, @var{width})
@deftypefnx {Function File} {} ribbon (@var{y})
@deftypefnx {Function File} {@var{h} =} ribbon (@dots{})
Plot a ribbon plot for the columns of @var{y} vs.  @var{x}.  The
optional parameter @var{width} specifies the width of a single ribbon
(default is 0.75).  If @var{x} is omitted, a vector containing the
row numbers is assumed (1:rows(Y)).  If requested, return a vector
@var{h} of the handles to the surface objects.
@seealso{@ref{doc-gca,,gca}, @ref{doc-colorbar,,colorbar}}
@end deftypefn


@c ./plot/shading.m
@anchor{doc-shading}
@deftypefn {Function File} {} shading (@var{type})
@deftypefnx {Function File} {} shading (@var{ax}, @dots{})
Set the shading of surface or patch graphic objects.  Valid arguments
for @var{type} are

@table @code
@item "flat"
Single colored patches with invisible edges.

@item "faceted"
Single colored patches with visible edges.

@item "interp"
Color between patch vertices are interpolated and the patch edges are
invisible.
@end table

If @var{ax} is given the shading is applied to axis @var{ax} instead
of the current axis.
@end deftypefn


@menu
* Three-dimensional Function Plotting::
* Three-dimensional Geometric Shapes::
@end menu

@node Three-dimensional Function Plotting
@subsubsection Three-dimensional Function Plotting

@c ./plot/ezplot3.m
@anchor{doc-ezplot3}
@deftypefn {Function File} {} ezplot3 (@var{fx}, @var{fy}, @var{fz})
@deftypefnx {Function File} {} ezplot3 (@dots{}, @var{dom})
@deftypefnx {Function File} {} ezplot3 (@dots{}, @var{n})
@deftypefnx {Function File} {} ezplot3 (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} ezplot3 (@dots{})

Plots in three-dimensions the curve defined parametrically. 
@var{fx}, @var{fy}, and @var{fz} are strings, inline functions
or function handles with one arguments defining the function.  By 
default the plot is over the domain @code{-2*pi < @var{x} < 2*pi}  
with 60 points. 

If @var{dom} is a two element vector, it represents the minimum and maximum
value of @var{t}.  @var{n} is a scalar defining the number of points to use.

The optional return value @var{h} provides a list of handles to the 
the parts of the vector field (body, arrow and marker).

@example
@group
fx = @@(t) cos (t);
fy = @@(t) sin (t);
fz = @@(t) t;
ezplot3 (fx, fy, fz, [0, 10*pi], 100);
@end group
@end example

@seealso{@ref{doc-plot3,,plot3}, @ref{doc-ezplot,,ezplot}, @ref{doc-ezsurf,,ezsurf}, @ref{doc-ezmesh,,ezmesh}}
@end deftypefn


@c ./plot/ezmesh.m
@anchor{doc-ezmesh}
@deftypefn {Function File} {} ezmesh (@var{f})
@deftypefnx {Function File} {} ezmesh (@var{fx}, @var{fy}, @var{fz})
@deftypefnx {Function File} {} ezmesh (@dots{}, @var{dom})
@deftypefnx {Function File} {} ezmesh (@dots{}, @var{n})
@deftypefnx {Function File} {} ezmesh (@dots{}, 'circ')
@deftypefnx {Function File} {} ezmesh (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} ezmesh (@dots{})

Plots the mesh defined by a function.  @var{f} is a string, inline
function or function handle with two arguments defining the function.  By 
default the plot is over the domain @code{-2*pi < @var{x} < 2*pi} and
@code{-2*pi < @var{y} < 2*pi} with 60 points in each dimension. 

If @var{dom} is a two element vector, it represents the minimum and maximum
value of both @var{x} and @var{y}.  If @var{dom} is a four element vector,
then the minimum and maximum value of @var{x} and @var{y} are specify
separately.

@var{n} is a scalar defining the number of points to use in each dimension.

If three functions are passed, then plot the parametrically defined 
function @code{[@var{fx} (@var{s}, @var{t}), @var{fy} (@var{s}, @var{t}), 
@var{fz} (@var{s}, @var{t})]}. 

If the argument 'circ' is given, then the function is plotted over a disk
centered on the middle of the domain @var{dom}.

The optional return value @var{h} provides a list of handles to the 
the parts of the vector field (body, arrow and marker).

@example
@group
f = @@(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezmesh (f, [-3, 3]);
@end group
@end example

An example of a parametrically defined function is

@example
@group
fx = @@(s,t) cos (s) .* cos(t);
fy = @@(s,t) sin (s) .* cos(t);
fz = @@(s,t) sin(t);
ezmesh (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);
@end group
@end example

@seealso{@ref{doc-ezplot,,ezplot}, @ref{doc-ezsurf,,ezsurf}, @ref{doc-ezsurfc,,ezsurfc}, @ref{doc-ezmeshc,,ezmeshc}}
@end deftypefn


@c ./plot/ezmeshc.m
@anchor{doc-ezmeshc}
@deftypefn {Function File} {} ezmeshc (@var{f})
@deftypefnx {Function File} {} ezmeshc (@var{fx}, @var{fy}, @var{fz})
@deftypefnx {Function File} {} ezmeshc (@dots{}, @var{dom})
@deftypefnx {Function File} {} ezmeshc (@dots{}, @var{n})
@deftypefnx {Function File} {} ezmeshc (@dots{}, 'circ')
@deftypefnx {Function File} {} ezmeshc (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} ezmeshc (@dots{})

Plots the mesh and contour lines defined by a function.  @var{f} is a string,
inline function or function handle with two arguments defining the function.
By default the plot is over the domain @code{-2*pi < @var{x} < 2*pi} and
@code{-2*pi < @var{y} < 2*pi} with 60 points in each dimension. 

If @var{dom} is a two element vector, it represents the minimum and maximum
value of both @var{x} and @var{y}.  If @var{dom} is a four element vector,
then the minimum and maximum value of @var{x} and @var{y} are specify
separately.

@var{n} is a scalar defining the number of points to use in each dimension.

If three functions are passed, then plot the parametrically defined 
function @code{[@var{fx} (@var{s}, @var{t}), @var{fy} (@var{s}, @var{t}), 
@var{fz} (@var{s}, @var{t})]}. 

If the argument 'circ' is given, then the function is plotted over a disk
centered on the middle of the domain @var{dom}.

The optional return value @var{h} provides a list of handles to the 
the parts of the vector field (body, arrow and marker).

@example
@group
f = @@(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezmeshc (f, [-3, 3]);
@end group
@end example

@seealso{@ref{doc-ezplot,,ezplot}, @ref{doc-ezsurfc,,ezsurfc}, @ref{doc-ezsurf,,ezsurf}, @ref{doc-ezmesh,,ezmesh}}
@end deftypefn


@c ./plot/ezsurf.m
@anchor{doc-ezsurf}
@deftypefn {Function File} {} ezsurf (@var{f})
@deftypefnx {Function File} {} ezsurf (@var{fx}, @var{fy}, @var{fz})
@deftypefnx {Function File} {} ezsurf (@dots{}, @var{dom})
@deftypefnx {Function File} {} ezsurf (@dots{}, @var{n})
@deftypefnx {Function File} {} ezsurf (@dots{}, 'circ')
@deftypefnx {Function File} {} ezsurf (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} ezsurf (@dots{})

Plots the surface defined by a function.  @var{f} is a string, inline
function or function handle with two arguments defining the function.  By 
default the plot is over the domain @code{-2*pi < @var{x} < 2*pi} and
@code{-2*pi < @var{y} < 2*pi} with 60 points in each dimension. 

If @var{dom} is a two element vector, it represents the minimum and maximum
value of both @var{x} and @var{y}.  If @var{dom} is a four element vector,
then the minimum and maximum value of @var{x} and @var{y} are specify
separately.

@var{n} is a scalar defining the number of points to use in each dimension.

If three functions are passed, then plot the parametrically defined 
function @code{[@var{fx} (@var{s}, @var{t}), @var{fy} (@var{s}, @var{t}), 
@var{fz} (@var{s}, @var{t})]}. 

If the argument 'circ' is given, then the function is plotted over a disk
centered on the middle of the domain @var{dom}.

The optional return value @var{h} provides a list of handles to the 
the parts of the vector field (body, arrow and marker).

@example
@group
f = @@(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezsurf (f, [-3, 3]);
@end group
@end example

An example of a parametrically defined function is

@example
@group
fx = @@(s,t) cos (s) .* cos(t);
fy = @@(s,t) sin (s) .* cos(t);
fz = @@(s,t) sin(t);
ezsurf (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);
@end group
@end example

@seealso{@ref{doc-ezplot,,ezplot}, @ref{doc-ezmesh,,ezmesh}, @ref{doc-ezsurfc,,ezsurfc}, @ref{doc-ezmeshc,,ezmeshc}}
@end deftypefn


@c ./plot/ezsurfc.m
@anchor{doc-ezsurfc}
@deftypefn {Function File} {} ezsurfc (@var{f})
@deftypefnx {Function File} {} ezsurfc (@var{fx}, @var{fy}, @var{fz})
@deftypefnx {Function File} {} ezsurfc (@dots{}, @var{dom})
@deftypefnx {Function File} {} ezsurfc (@dots{}, @var{n})
@deftypefnx {Function File} {} ezsurfc (@dots{}, 'circ')
@deftypefnx {Function File} {} ezsurfc (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} ezsurfc (@dots{})

Plots the surface and contour lines defined by a function.  @var{f} is a
string, inline function or function handle with two arguments defining the
function.  By default the plot is over the domain @code{-2*pi < @var{x} <
2*pi} and @code{-2*pi < @var{y} < 2*pi} with 60 points in each dimension. 

If @var{dom} is a two element vector, it represents the minimum and maximum
value of both @var{x} and @var{y}.  If @var{dom} is a four element vector,
then the minimum and maximum value of @var{x} and @var{y} are specify
separately.

@var{n} is a scalar defining the number of points to use in each dimension.

If three functions are passed, then plot the parametrically defined 
function @code{[@var{fx} (@var{s}, @var{t}), @var{fy} (@var{s}, @var{t}), 
@var{fz} (@var{s}, @var{t})]}. 

If the argument 'circ' is given, then the function is plotted over a disk
centered on the middle of the domain @var{dom}.

The optional return value @var{h} provides a list of handles to the 
the parts of the vector field (body, arrow and marker).

@example
@group
f = @@(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezsurfc (f, [-3, 3]);
@end group
@end example

@seealso{@ref{doc-ezplot,,ezplot}, @ref{doc-ezmeshc,,ezmeshc}, @ref{doc-ezsurf,,ezsurf}, @ref{doc-ezmesh,,ezmesh}}
@end deftypefn


@node Three-dimensional Geometric Shapes
@subsubsection Three-dimensional Geometric Shapes

@c ./plot/cylinder.m
@anchor{doc-cylinder}
@deftypefn {Function File} {} cylinder
@deftypefnx {Function File} {} cylinder (@var{r})
@deftypefnx {Function File} {} cylinder (@var{r}, @var{n})
@deftypefnx {Function File} {[@var{x}, @var{y}, @var{z}] =} cylinder (@dots{})
@deftypefnx {Function File} {} cylinder (@var{ax}, @dots{})
Generates three matrices in @code{meshgrid} format, such that
@code{surf (@var{x}, @var{y}, @var{z})} generates a unit cylinder.
The matrices are of size @code{@var{n}+1}-by-@code{@var{n}+1}. 
@var{r} is a vector containing the radius along the z-axis.
If @var{n} or @var{r} are omitted then default values of 20 or [1 1]
are assumed.

Called with no return arguments, @code{cylinder} calls directly
@code{surf (@var{x}, @var{y}, @var{z})}.  If an axes handle @var{ax}
is passed as the first argument, the surface is plotted to this set
of axes.

Examples:
@example
@group
disp ("plotting a cone")
[x, y, z] = cylinder (10:-1:0,50);
surf (x, y, z);
@end group
@end example
@seealso{@ref{doc-sphere,,sphere}}
@end deftypefn


@c ./plot/sphere.m
@anchor{doc-sphere}
@deftypefn {Function File} {[@var{x}, @var{y}, @var{z}] =} sphere (@var{n})
@deftypefnx {Function File} {} sphere (@var{h}, @dots{})
Generates three matrices in @code{meshgrid} format, such that 
@code{surf (@var{x}, @var{y}, @var{z})} generates a unit sphere. 
The matrices of @code{@var{n}+1}-by-@code{@var{n}+1}.  If @var{n} is 
omitted then a default value of 20 is assumed.

Called with no return arguments, @code{sphere} call directly 
@code{surf (@var{x}, @var{y}, @var{z})}.  If an axes handle is passed
as the first argument, the surface is plotted to this set of axes.
@seealso{@ref{doc-peaks,,peaks}}
@end deftypefn


@c ./plot/ellipsoid.m
@anchor{doc-ellipsoid}
@deftypefn {Function File} {[@var{x}, @var{y}, @var{z}] =} ellipsoid (@var{xc},@var{yc}, @var{zc}, @var{xr}, @var{yr}, @var{zr}, @var{n})
@deftypefnx {Function File} {} ellipsoid (@var{h}, @dots{})
Generate three matrices in @code{meshgrid} format that define an
ellipsoid.  Called with no return arguments, @code{ellipsoid} calls
directly @code{surf (@var{x}, @var{y}, @var{z})}.  If an axes handle
is passed as the first argument, the surface is plotted to this
set of axes.
@seealso{@ref{doc-sphere,,sphere}}
@end deftypefn


@node Plot Annotations
@subsection Plot Annotations

You can add titles, axis labels, legends, and arbitrary text to an
existing plot.  For example,

@example
@group
x = -10:0.1:10;
plot (x, sin (x));
title ("sin(x) for x = -10:0.1:10");
xlabel ("x");
ylabel ("sin (x)");
text (pi, 0.7, "arbitrary text");
legend ("sin (x)");
@end group
@end example

The functions @code{grid} and @code{box} may also be used to add grid
and border lines to the plot.  By default, the grid is off and the
border lines are on.

@c ./plot/title.m
@anchor{doc-title}
@deftypefn {Function File} {} title (@var{title})
@deftypefnx {Function File} {} title (@var{title}, @var{p1}, @var{v1}, @dots{})
Create a title object and return a handle to it.
@end deftypefn


@c ./plot/legend.m
@anchor{doc-legend}
@deftypefn {Function File} {} legend (@var{st1}, @var{st2}, @dots{})
@deftypefnx {Function File} {} legend (@var{st1}, @var{st2}, @dots{}, "location", @var{pos})
@deftypefnx {Function File} {} legend (@var{matstr})
@deftypefnx {Function File} {} legend (@var{matstr}, "location", @var{pos})
@deftypefnx {Function File} {} legend (@var{cell})
@deftypefnx {Function File} {} legend (@var{cell}, "location", @var{pos})
@deftypefnx {Function File} {} legend ('@var{func}')

Display a legend for the current axes using the specified strings
as labels.  Legend entries may be specified as individual character
string arguments, a character array, or a cell array of character
strings.  Legend works on line graphs, bar graphs, etc.  A plot must
exist before legend is called.

The optional parameter @var{pos} specifies the location of the legend
as follows:

@multitable @columnfractions 0.06 0.14 0.80
@item @tab north @tab
  center top
@item @tab south @tab
  center bottom
@item @tab east @tab
  right center
@item @tab west @tab
  left center
@item @tab northeast @tab
  right top (default)
@item @tab northwest @tab
  left top
@item @tab southeast @tab
  right bottom
@item @tab southwest @tab
  left bottom
@item 
@item @tab outside @tab
  can be appended to any location string
@end multitable

Some specific functions are directly available using @var{func}:

@table @asis
@item "show"
  Show legends from the plot
@item "hide"
@itemx "off"
  Hide legends from the plot
@item "boxon"
  Draw a box around legends
@item "boxoff"
  Withdraw the box around legends
@item "left"
  Text is to the left of the keys
@item "right"
  Text is to the right of the keys
@end table
@end deftypefn


@c ./plot/text.m
@anchor{doc-text}
@deftypefn {Function File} {@var{h} =} text (@var{x}, @var{y}, @var{label})
@deftypefnx {Function File} {@var{h} =} text (@var{x}, @var{y}, @var{z}, @var{label})
@deftypefnx {Function File} {@var{h} =} text (@var{x}, @var{y}, @var{label}, @var{p1}, @var{v1}, @dots{})
@deftypefnx {Function File} {@var{h} =} text (@var{x}, @var{y}, @var{z}, @var{label}, @var{p1}, @var{v1}, @dots{})
Create a text object with text @var{label} at position @var{x},
@var{y}, @var{z} on the current axes.  Property-value pairs following
@var{label} may be used to specify the appearance of the text.
@end deftypefn


See @ref{Text Properties} for the properties that you can set.

@anchor{doc-ylabel}
@anchor{doc-zlabel}
@c ./plot/xlabel.m
@anchor{doc-xlabel}
@deftypefn {Function File} {} xlabel (@var{string})
@deftypefnx {Function File} {} ylabel (@var{string})
@deftypefnx {Function File} {} zlabel (@var{string})
@deftypefnx {Function File} {} xlabel (@var{h}, @var{string})
Specify x, y, and z axis labels for the current figure.  If @var{h} is
specified then label the axis defined by @var{h}.
@seealso{@ref{doc-plot,,plot}, @ref{doc-semilogx,,semilogx}, @ref{doc-semilogy,,semilogy}, @ref{doc-loglog,,loglog}, @ref{doc-polar,,polar}, @ref{doc-mesh,,mesh}, @ref{doc-contour,,contour}, @ref{doc-bar,,bar}, @ref{doc-stairs,,stairs}, @ref{doc-title,,title}}
@end deftypefn


@c ./plot/clabel.m
@anchor{doc-clabel}
@deftypefn {Function File} {} clabel (@var{c}, @var{h})
@deftypefnx {Function File} {} clabel (@var{c}, @var{h}, @var{v})
@deftypefnx {Function File} {} clabel (@var{c}, @var{h}, "manual")
@deftypefnx {Function File} {} clabel (@var{c})
@deftypefnx {Function File} {} clabel (@var{c}, @var{h})
@deftypefnx {Function File} {} clabel (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {Function File} {@var{h} =} clabel (@dots{})
Adds labels to the contours of a contour plot.  The contour plot is specified
by the contour matrix @var{c} and optionally the contourgroup object @var{h}
that are returned by @code{contour}, @code{contourf} and @code{contour3}.
The contour labels are rotated and placed in the contour itself.

By default, all contours are labelled.  However, the contours to label can be
specified by the vector @var{v}.  If the "manual" argument is given then
the contours to label can be selected with the mouse.

Additional property/value pairs that are valid properties of text objects
can be given and are passed to the underlying text objects.  Additionally,
the property "LabelSpacing" is available allowing the spacing between labels
on a contour (in points) to be specified.  The default is 144 points, or 2
inches.

The returned value @var{h} is the set of text object that represent the
contour labels.  The "userdata" property of the text objects contains the
numerical value of the contour label.

An example of the use of @code{clabel} is

@example
@group
[c, h] = contour (peaks(), -4 : 6);
clabel (c, h, -4 : 2 : 6, 'fontsize', 12);
@end group
@end example

@seealso{@ref{doc-contour,,contour}, @ref{doc-contourf,,contourf}, @ref{doc-contour3,,contour3}, @ref{doc-meshc,,meshc}, @ref{doc-surfc,,surfc}, @ref{doc-text,,text}}
@end deftypefn


@c ./plot/box.m
@anchor{doc-box}
@deftypefn {Function File} {} box (@var{arg})
@deftypefnx {Function File} {} box (@var{h}, @dots{})
Control the display of a border around the plot.
The argument may be either @code{"on"} or @code{"off"}.  If it is
omitted, the current box state is toggled.
@seealso{@ref{doc-grid,,grid}}
@end deftypefn


@c ./plot/grid.m
@anchor{doc-grid}
@deftypefn {Function File} {} grid (@var{arg})
@deftypefnx {Function File} {} grid ("minor", @var{arg2})
@deftypefnx {Function File} {} grid (@var{hax}, @dots{})
Force the display of a grid on the plot.
The argument may be either @code{"on"}, or @code{"off"}.
If it is omitted, the current grid state is toggled.

If @var{arg} is @code{"minor"} then the minor grid is toggled.  When
using a minor grid a second argument @var{arg2} is allowed, which can
be either @code{"on"} or @code{"off"} to explicitly set the state of
the minor grid.

If the first argument is an axis handle, @var{hax}, operate on the
specified axis object.
@seealso{@ref{doc-plot,,plot}}
@end deftypefn


@c ./plot/colorbar.m
@anchor{doc-colorbar}
@deftypefn {Function File} {} colorbar (@var{s})
@deftypefnx {Function File} {} colorbar ("peer", @var{h}, @dots{})
Adds a colorbar to the current axes.  Valid values for @var{s} are

@table @asis
@item "EastOutside"
Place the colorbar outside the plot to the right.  This is the default.
@item "East"
Place the colorbar inside the plot to the right.
@item "WestOutside"
Place the colorbar outside the plot to the left.
@item "West"
Place the colorbar inside the plot to the left.
@item "NorthOutside"
Place the colorbar above the plot.
@item "North"
Place the colorbar at the top of the plot.
@item "SouthOutside"
Place the colorbar under the plot.
@item "South"
Place the colorbar at the bottom of the plot.
@item "Off", "None"
Remove any existing colorbar from the plot.
@end table

If the argument "peer" is given, then the following argument is treated
as the axes handle on which to add the colorbar.
@end deftypefn


@node Multiple Plots on One Page
@subsection Multiple Plots on One Page

Octave can display more than one plot in a single figure.  The simplest
way to do this is to use the @code{subplot} function to divide the plot
area into a series of subplot windows that are indexed by an integer.
For example,

@example
@group
subplot (2, 1, 1)
fplot (@@sin, [-10, 10]);
subplot (2, 1, 2)
fplot (@@cos, [-10, 10]);
@end group
@end example

@noindent
creates a figure with two separate axes, one displaying a sine wave and
the other a cosine wave.  The first call to subplot divides the figure
into two plotting areas (two rows and one column) and makes the first plot
area active.  The grid of plot areas created by @code{subplot} is
numbered in column-major order (top to bottom, left to right).

@c ./plot/subplot.m
@anchor{doc-subplot}
@deftypefn {Function File} {} subplot (@var{rows}, @var{cols}, @var{index})
@deftypefnx {Function File} {} subplot (@var{rcn})
Set up a plot grid with @var{cols} by @var{rows} subwindows and plot
in location given by @var{index}.

If only one argument is supplied, then it must be a three digit value
specifying the location in digits 1 (rows) and 2 (columns) and the plot
index in digit 3.

The plot index runs row-wise.  First all the columns in a row are filled
and then the next row is filled.

For example, a plot with 2 by 3 grid will have plot indices running as
follows:
@tex
\vskip 10pt
\hfil\vbox{\offinterlineskip\hrule
\halign{\vrule#&&\qquad\hfil#\hfil\qquad\vrule\cr
height13pt&1&2&3\cr height12pt&&&\cr\noalign{\hrule}
height13pt&4&5&6\cr height12pt&&&\cr\noalign{\hrule}}}
\hfil
\vskip 10pt
@end tex
@ifnottex
@display
@example
@group

+-----+-----+-----+
|  1  |  2  |  3  |
+-----+-----+-----+
|  4  |  5  |  6  |
+-----+-----+-----+
@end group
@end example
@end display
@end ifnottex
@seealso{@ref{doc-plot,,plot}}
@end deftypefn


@node Multiple Plot Windows
@subsection Multiple Plot Windows

You can open multiple plot windows using the @code{figure} function.
For example

@example
@group
figure (1);
fplot (@@sin, [-10, 10]);
figure (2);
fplot (@@cos, [-10, 10]);
@end group
@end example

@noindent
creates two figures, with the first displaying a sine wave and
the second a cosine wave.  Figure numbers must be positive integers.

@c ./plot/figure.m
@anchor{doc-figure}
@deftypefn {Function File} {} figure (@var{n})
@deftypefnx {Function File} {} figure (@var{n}, @var{property}, @var{value}, @dots{})
Set the current plot window to plot window @var{n}.  If no arguments are
specified, the next available window number is chosen.

Multiple property-value pairs may be specified for the figure, but they
must appear in pairs.
@end deftypefn


@node Printing Plots
@subsection Printing Plots

The @code{print} command allows you to save plots in a variety of
formats.  For example,

@example
print -deps foo.eps
@end example

@noindent
writes the current figure to an encapsulated PostScript file called
@file{foo.eps}.

@c ./plot/print.m
@anchor{doc-print}
@deftypefn {Function File} {} print ()
@deftypefnx {Function File} {} print (@var{options})
@deftypefnx {Function File} {} print (@var{filename}, @var{options})
@deftypefnx {Function File} {} print (@var{h}, @var{filename}, @var{options})
Print a graph, or save it to a file

@var{filename} defines the file name of the output file.  If no
filename is specified, the output is sent to the printer.

@var{h} specifies the figure handle.  If no handle is specified
the handle for the current figure is used.

@var{options}:
@table @code
@item -P@var{printer}
  Set the @var{printer} name to which the graph is sent if no
@var{filename} is specified.
@item -G@var{ghostscript_command}
  Specify the command for calling Ghostscript.  For Unix and Windows,
the defaults are 'gs' and 'gswin32c', respectively.
@item -color
@itemx -mono
  Monochrome or color lines.
@item -solid
@itemx -dashed
  Solid or dashed lines.
@item -portrait
@itemx -landscape
  Specify the orientation of the plot for printed output.
@item -d@var{device}
  Output device, where @var{device} is one of:
@table @code
@item ps
@itemx ps2
@itemx psc
@itemx psc2
    Postscript (level 1 and 2, mono and color)
@item eps
@itemx eps2
@itemx epsc
@itemx epsc2
    Encapsulated postscript (level 1 and 2, mono and color)
@item tex
@itemx epslatex
@itemx epslatexstandalone
@itemx pstex
@itemx pslatex
    Generate a @LaTeX{} (or @TeX{}) file for labels, and eps/ps for
graphics.  The file produced by @code{epslatexstandalone} can be
processed directly by @LaTeX{}.  The other formats are intended to
be included in a @LaTeX{} (or @TeX{}) document.  The @code{tex} device
is the same as the @code{epslatex} device.
@item ill
@itemx aifm
    Adobe Illustrator
@item cdr
@itemx corel
    CorelDraw
@item dxf
    AutoCAD
@item emf
@itemx meta
    Microsoft Enhanced Metafile
@item fig
    XFig.  If this format is selected the additional options
@code{-textspecial} or @code{-textnormal} can be used to control
    whether the special flag should be set for the text in
    the figure (default is @code{-textnormal}). 
@item hpgl
    HP plotter language
@item mf
    Metafont
@item png
    Portable network graphics
@item jpg
@itemx jpeg
    JPEG image
@item gif
    GIF image
@item pbm
    PBMplus
@item svg
    Scalable vector graphics
@item pdf
    Portable document format
@end table

  If the device is omitted, it is inferred from the file extension,
or if there is no filename it is sent to the printer as postscript.

@item -d@var{gs_device}
  Additional devices are supported by Ghostscript.
Some examples are;

@table @code
@item ljet2p 
    HP LaserJet IIP
@item ljet3 
    HP LaserJet III
@item deskjet
    HP DeskJet and DeskJet Plus
@item cdj550
    HP DeskJet 550C
@item paintjet
    HP PointJet
@item pcx24b
    24-bit color PCX file format
@item ppm
    Portable Pixel Map file format
@end table

  For a complete list, type `system ("gs -h")' to see what formats
and devices are available.

  When the ghostscript is sent to a printer the size is determined
by the figure's "papersize" property.  When the ghostscript output 
is sent to a file the size is determined by the figure's
"paperposition" property.

@itemx -r@var{NUM}
  Resolution of bitmaps in pixels per inch.  For both metafiles and 
SVG the default is the screen resolution, for other it is 150 dpi.
To specify screen resolution, use "-r0".

@item -tight
  Forces a tight bounding box for eps-files.  Since the ghostscript
devices are conversion of an eps-file, this option works the those
devices as well.

@itemx -S@var{xsize},@var{ysize}
  Plot size in pixels for EMF, GIF, JPEG, PBM, PNG and SVG.  If
using the command form of the print function, you must quote the
@var{xsize},@var{ysize} option.  For example, by writing
@w{@code{"-S640,480"}}.  The size defaults to that specified by the
figure's paperposition property.

@item -F@var{fontname}
@itemx -F@var{fontname}:@var{size}
@itemx -F:@var{size}
@var{fontname} set the postscript font (for use with postscript,
aifm, corel and fig).  By default, 'Helvetica' is set for PS/Aifm,
and 'SwitzerlandLight' for Corel.  It can also be 'Times-Roman'.
@var{size} is given in points.  @var{fontname} is ignored for the
fig device.
@end table

The filename and options can be given in any order.
@end deftypefn


@c ./plot/orient.m
@anchor{doc-orient}
@deftypefn {Function File} {} orient (@var{orientation})
Set the default print orientation.  Valid values for
@var{orientation} include @code{"landscape"}, @code{"portrait"}, 
and @code{"tall"}.

The @code{"tall"} option sets the orientation to portait and fills
the page with the plot, while leaving a 0.25in border.

If called with no arguments, return the default print orientation.
@end deftypefn


@node Interacting with plots
@subsection Interacting with plots

The user can select points on a plot with the @code{ginput} function or
selection the position at which to place text on the plot with the
@code{gtext} function using the mouse.

@c ./plot/ginput.m
@anchor{doc-ginput}
@deftypefn {Function File} {[@var{x}, @var{y}, @var{buttons}] =} ginput (@var{n})
Return which mouse buttons were pressed and keys were hit on the current
figure.  If @var{n} is defined, then wait for @var{n} mouse clicks
before returning.  If @var{n} is not defined, then @code{ginput} will
loop until the return key is pressed.
@end deftypefn


@c ./plot/waitforbuttonpress.m
@anchor{doc-waitforbuttonpress}
@deftypefn {Function File} {@var{b} =} waitforbuttonpress ()
Wait for button or mouse press.over a figure window.  The value of
@var{b} returns 0 if a mouse button was pressed or 1 is a key was
pressed.
@seealso{@ref{doc-ginput,,ginput}}
@end deftypefn


@c ./plot/gtext.m
@anchor{doc-gtext}
@deftypefn  {Function File} {} gtext (@var{s})
@deftypefnx {Function File} {} gtext (@{@var{s1}; @var{s2}; @dots{}@})
@deftypefnx {Function File} {} gtext (@dots{}, @var{prop}, @var{val})
Place text on the current figure using the mouse.  The text is defined
by the string @var{s}.  If @var{s} is a cell array, each element of the cell
array is written to a separate line.  Additional arguments are passed to
the underlying text object as properties.
@seealso{@ref{doc-ginput,,ginput}, @ref{doc-text,,text}}
@end deftypefn


@node Test Plotting Functions
@subsection Test Plotting Functions

The functions @code{sombrero} and @code{peaks} provide a way to check
that plotting is working.  Typing either @code{sombrero} or @code{peaks}
at the Octave prompt should display a three-dimensional plot.

@c ./plot/sombrero.m
@anchor{doc-sombrero}
@deftypefn {Function File} {} sombrero (@var{n})
Produce the familiar three-dimensional sombrero plot using @var{n}
grid lines.  If @var{n} is omitted, a value of 41 is assumed.

The function plotted is

@example
z = sin (sqrt (x^2 + y^2)) / (sqrt (x^2 + y^2))
@end example
@seealso{@ref{doc-surf,,surf}, @ref{doc-meshgrid,,meshgrid}, @ref{doc-mesh,,mesh}}
@end deftypefn


@c ./plot/peaks.m
@anchor{doc-peaks}
@deftypefn {Function File} {} peaks ()
@deftypefnx {Function File} {} peaks (@var{n})
@deftypefnx {Function File} {} peaks (@var{x}, @var{y})
@deftypefnx {Function File} {@var{z} =} peaks (@dots{})
@deftypefnx {Function File} {[@var{x}, @var{y}, @var{z}] =} peaks (@dots{})
Generate a function with lots of local maxima and minima.  The function
has the form

@tex
$f(x,y) = 3 (1 - x) ^ 2 e ^ {\left(-x^2 - (y+1)^2\right)} - 10 \left({x \over 5} - x^3 - y^5)\right) - {1 \over 3} e^{\left(-(x+1)^2 - y^2\right)}$
@end tex
@ifnottex
@verbatim
f(x,y) = 3*(1-x)^2*exp(-x^2 - (y+1)^2) ...
         - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2) ...
         - 1/3*exp(-(x+1)^2 - y^2)
@end verbatim
@end ifnottex

Called without a return argument, @code{peaks} plots the surface of the 
above function using @code{mesh}.  If @var{n} is a scalar, the @code{peaks}
returns the values of the above function on a @var{n}-by-@var{n} mesh over
the range @code{[-3,3]}.  The default value for @var{n} is 49.

If @var{n} is a vector, then it represents the @var{x} and @var{y} values
of the grid on which to calculate the above function.  The @var{x} and 
@var{y} values can be specified separately.
@seealso{@ref{doc-surf,,surf}, @ref{doc-mesh,,mesh}, @ref{doc-meshgrid,,meshgrid}}
@end deftypefn


@node Advanced Plotting
@section Advanced Plotting

@menu
* Graphics Objects::
* Graphics Object Properties::  
* Managing Default Properties::  
* Colors::
* Line Styles::
* Marker Styles::
* Callbacks::
* Object Groups::
* Graphics backends::
@end menu

@node Graphics Objects
@subsection Graphics Objects

Plots in Octave are constructed from the following @dfn{graphics
objects}.  Each graphics object has a set of properties that define its
appearance and may also contain links to other graphics objects.
Graphics objects are only referenced by a numeric index, or @dfn{handle}.

@table @asis
@item root figure
@cindex root figure graphics object
@cindex graphics object, root figure
The parent of all figure objects.  The index for the root figure is
defined to be 0.

@item figure
@cindex figure graphics object
@cindex graphics object, figure
A figure window.

@item axes
@cindex axes graphics object
@cindex graphics object, axes
A set of axes.  This object is a child of a figure object and may be a
parent of line, text, image, patch, or surface objects.

@item line
@cindex line graphics object
@cindex graphics object, line
A line in two or three dimensions.

@item text
@cindex text graphics object
@cindex graphics object, text
Text annotations.

@item image
@cindex image graphics object
@cindex graphics object, image
A bitmap image.

@item patch
@cindex patch graphics object
@cindex graphics object, patch
A filled polygon, currently limited to two dimensions.

@item surface
@cindex surface graphics object
@cindex graphics object, surface 
A three-dimensional surface.
@end table

To determine whether a variable is a graphics object index or a figure
index, use the functions @code{ishandle} and @code{isfigure}.

@c graphics.cc
@anchor{doc-ishandle}
@deftypefn {Built-in Function} {} ishandle (@var{h})
Return true if @var{h} is a graphics handle and false otherwise.
@end deftypefn


@c ./plot/ishghandle.m
@anchor{doc-ishghandle}
@deftypefn {Function File} {} ishghandle (@var{h})
Return true if @var{h} is a graphics handle and false otherwise.
@end deftypefn


@c ./plot/isfigure.m
@anchor{doc-isfigure}
@deftypefn {Function File} {} isfigure (@var{h})
Return true if @var{h} is a graphics handle that contains a figure
object and false otherwise.
@end deftypefn


The function @code{gcf} returns an index to the current figure object,
or creates one if none exists.  Similarly, @code{gca} returns the
current axes object, or creates one (and its parent figure object) if
none exists.

@c ./plot/gcf.m
@anchor{doc-gcf}
@deftypefn {Function File} {} gcf ()
Return the current figure handle.  If a figure does not exist, create
one and return its handle.  The handle may then be used to examine or
set properties of the figure.  For example,

@example
@group
fplot (@@sin, [-10, 10]);
fig = gcf ();
set (fig, "visible", "off");
@end group
@end example

@noindent
plots a sine wave, finds the handle of the current figure, and then
makes that figure invisible.  Setting the visible property of the
figure to @code{"on"} will cause it to be displayed again.
@seealso{@ref{doc-get,,get}, @ref{doc-set,,set}}
@end deftypefn


@c ./plot/gca.m
@anchor{doc-gca}
@deftypefn {Function File} {} gca ()
Return a handle to the current axis object.  If no axis object
exists, create one and return its handle.  The handle may then be
used to examine or set properties of the axes.  For example,

@example
@group
ax = gca ();
set (ax, "position", [0.5, 0.5, 0.5, 0.5]);
@end group
@end example

@noindent
creates an empty axes object, then changes its location and size in
the figure window.
@seealso{@ref{doc-get,,get}, @ref{doc-set,,set}}
@end deftypefn


The @code{get} and @code{set} functions may be used to examine and set
properties for graphics objects.  For example,

@example
@group
get (0)
    @result{} ans =
       @{
         type = root
         currentfigure = [](0x0)
         children = [](0x0)
         visible = on
			@dots{}
       @}
@end group
@end example

@noindent
returns a structure containing all the properties of the root figure.
As with all functions in Octave, the structure is returned by value, so
modifying it will not modify the internal root figure plot object.  To
do that, you must use the @code{set} function.  Also, note that in this
case, the @code{currentfigure} property is empty, which indicates that
there is no current figure window.

The @code{get} function may also be used to find the value of a single
property.  For example,

@example
@group
get (gca (), "xlim")
    @result{} [ 0 1 ]
@end group
@end example

@noindent
returns the range of the x-axis for the current axes object in the
current figure.

To set graphics object properties, use the set function.  For example,

@example
set (gca (), "xlim", [-10, 10]);
@end example

@noindent
sets the range of the x-axis for the current axes object in the current
figure to @samp{[-10, 10]}.  Additionally, calling set with a graphics
object index as the only argument returns a structure containing the
default values for all the properties for the given object type.  For
example,

@example
set (gca ())
@end example

@noindent
returns a structure containing the default property values for axes
objects.

@c graphics.cc
@anchor{doc-get}
@deftypefn {Built-in Function} {} get (@var{h}, @var{p})
Return the named property @var{p} from the graphics handle @var{h}.
If @var{p} is omitted, return the complete property list for @var{h}.
If @var{h} is a vector, return a cell array including the property
values or lists respectively.
@end deftypefn


@c graphics.cc
@anchor{doc-set}
@deftypefn {Built-in Function} {} set (@var{h}, @var{p}, @var{v}, @dots{})
Set the named property value or vector @var{p} to the value @var{v}
for the graphics handle @var{h}.
@end deftypefn


@c ./plot/ancestor.m
@anchor{doc-ancestor}
@deftypefn {Function File} {@var{parent} =} ancestor (@var{h}, @var{type})
@deftypefnx {Function File} {@var{parent} =} ancestor (@var{h}, @var{type}, 'toplevel')
Return the first ancestor of handle object @var{h} whose type matches
@var{type}, where @var{type} is a character string.  If @var{type} is a
cell array of strings, return the first parent whose type matches
any of the given type strings.

If the handle object @var{h} is of type @var{type}, return @var{h}.

If @code{"toplevel"} is given as a 3rd argument, return the highest
parent in the object hierarchy that matches the condition, instead
of the first (nearest) one.
@seealso{@ref{doc-get,,get}, @ref{doc-set,,set}}
@end deftypefn


@c ./plot/allchild.m
@anchor{doc-allchild}
@deftypefn {Function File} {@var{h} =} allchild (@var{handles})
Find all children, including hidden children, of a graphics object.

This function is similar to @code{get (h, "children")}, but also
returns includes hidden objects.  If @var{handles} is a scalar,
@var{h} will be a vector.  Otherwise, @var{h} will be a cell matrix
of the same size as @var{handles} and each cell will contain a
vector of handles.
@seealso{@ref{doc-get,,get}, @ref{doc-set,,set}, @ref{doc-findall,,findall}, @ref{doc-findobj,,findobj}}
@end deftypefn


You can create axes, line, and patch objects directly using the
@code{axes}, @code{line}, and @code{patch} functions.  These objects
become children of the current axes object.

@c ./plot/axes.m
@anchor{doc-axes}
@deftypefn {Function File} {} axes ()
@deftypefnx {Function File} {} axes (@var{property}, @var{value}, @dots{})
@deftypefnx {Function File} {} axes (@var{h})
Create an axes object and return a handle to it.
@end deftypefn


@c ./plot/line.m
@anchor{doc-line}
@deftypefn {Function File} {} line ()
@deftypefnx {Function File} {} line (@var{x}, @var{y})
@deftypefnx {Function File} {} line (@var{x}, @var{y}, @var{z})
@deftypefnx {Function File} {} line (@var{x}, @var{y}, @var{z}, @var{property}, @var{value}, @dots{})
Create line object from @var{x} and @var{y} and insert in current
axes object.  Return a handle (or vector of handles) to the line
objects created.

Multiple property-value pairs may be specified for the line, but they
must appear in pairs.
@end deftypefn


@c ./plot/patch.m
@anchor{doc-patch}
@deftypefn {Function File} {} patch ()
@deftypefnx {Function File} {} patch (@var{x}, @var{y}, @var{c})
@deftypefnx {Function File} {} patch (@var{x}, @var{y}, @var{z}, @var{c})
@deftypefnx {Function File} {} patch (@var{fv})
@deftypefnx {Function File} {} patch ('Faces', @var{f}, 'Vertices', @var{v}, @dots{})
@deftypefnx {Function File} {} patch (@dots{}, @var{prop}, @var{val})
@deftypefnx {Function File} {} patch (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} patch (@dots{})
Create patch object from @var{x} and @var{y} with color @var{c} and
insert in the current axes object.  Return handle to patch object.

For a uniform colored patch, @var{c} can be given as an RGB vector,
scalar value referring to the current colormap, or string value (for
example, "r" or "red").

If passed a structure @var{fv} contain the fields "vertices", "faces"
and optionally "facevertexcdata", create the patch based on these 
properties.
@end deftypefn


@c ./plot/fill.m
@anchor{doc-fill}
@deftypefn {Function File} {} fill (@var{x}, @var{y}, @var{c})
@deftypefnx {Function File} {} fill (@var{x1}, @var{y1}, @var{c1}, @var{x2}, @var{y2}, @var{c2})
@deftypefnx {Function File} {} fill (@dots{}, @var{prop}, @var{val})
@deftypefnx {Function File} {} fill (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} fill (@dots{})
Create one or more filled patch objects, returning a patch object for each.
@end deftypefn


@c ./plot/surface.m
@anchor{doc-surface}
@deftypefn {Function File} {} surface (@var{x}, @var{y}, @var{z}, @var{c})
@deftypefnx {Function File} {} surface (@var{x}, @var{y}, @var{z})
@deftypefnx {Function File} {} surface (@var{z}, @var{c})
@deftypefnx {Function File} {} surface (@var{z})
@deftypefnx {Function File} {} surface (@dots{}, @var{prop}, @var{val})
@deftypefnx {Function File} {} surface (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} surface (@dots{})
Plot a surface graphic object given matrices @var{x}, and @var{y} from 
@code{meshgrid} and a matrix @var{z} corresponding to the @var{x} and 
@var{y} coordinates of the surface.  If @var{x} and @var{y} are vectors,
then a typical vertex is (@var{x}(j), @var{y}(i), @var{z}(i,j)).  Thus, 
columns of @var{z} correspond to different @var{x} values and rows of 
@var{z} correspond to different @var{y} values.  If @var{x} and @var{y}
are missing, they are constructed from size of the matrix @var{z}.

Any additional properties passed are assigned to the surface.
@seealso{@ref{doc-surf,,surf}, @ref{doc-mesh,,mesh}, @ref{doc-patch,,patch}, @ref{doc-line,,line}}
@end deftypefn


By default, Octave refreshes the plot window when a prompt is printed,
or when waiting for input.  To force an update at other times, call the
@code{drawnow} function.

@c graphics.cc
@anchor{doc-drawnow}
@deftypefn  {Built-in Function} {} drawnow ()
@deftypefnx {Built-in Function} {} drawnow ("expose")
@deftypefnx {Built-in Function} {} drawnow (@var{term}, @var{file}, @var{mono}, @var{debug_file})
Update figure windows and their children.  The event queue is flushed and
any callbacks generated are executed.  With the optional argument
@code{"expose"}, only graphic objects are updated and no other events or
callbacks are processed.
The third calling form of @code{drawnow} is for debugging and is
undocumented.
@end deftypefn


Only figures that are modified will be updated.  The @code{refresh}
function can also be used to force an update of the current figure, even if
it is not modified.

@c ./plot/refresh.m
@anchor{doc-refresh}
@deftypefn {Function File} {} refresh ()
@deftypefnx {Function File} {} refresh (@var{h})
Refresh a figure, forcing it to be redrawn.  Called without an
argument the current figure is redrawn, otherwise the figure pointed
to by @var{h} is redrawn.
@seealso{@ref{doc-drawnow,,drawnow}}
@end deftypefn


Normally, high-level plot functions like @code{plot} or @code{mesh} call
@code{newplot} to initialize the state of the current axes so that the
next plot is drawn in a blank window with default property settings.  To
have two plots superimposed over one another, use the @code{hold}
function.  For example,

@example
@group
hold on;
x = -10:0.1:10;
plot (x, sin (x));
plot (x, cos (x));
hold off;
@end group
@end example

@noindent
displays sine and cosine waves on the same axes.  If the hold state is
off, consecutive plotting commands like this will only display the last
plot.

@c ./plot/newplot.m
@anchor{doc-newplot}
@deftypefn {Function File} {} newplot ()
Prepare graphics engine to produce a new plot.  This function should
be called at the beginning of all high-level plotting functions.
@end deftypefn


@c ./plot/hold.m
@anchor{doc-hold}
@deftypefn  {Function File} {} hold
@deftypefnx {Function File} {} hold @var{state}
@deftypefnx {Function File} {} hold (@var{hax}, @dots{})
Toggle or set the 'hold' state of the plotting engine which determines
whether new graphic objects are added to the plot or replace the existing
objects.  

@table @code
@item hold on
Retain plot data and settings so that subsequent plot commands are displayed
on a single graph.

@item hold off
Clear plot and restore default graphics settings before each new plot
command.  (default).

@item hold
Toggle the current 'hold' state.
@end table

When given the additional argument @var{hax}, the hold state is modified
only for the given axis handle.

To query the current 'hold' state use the @code{ishold} function.
@seealso{@ref{doc-ishold,,ishold}, @ref{doc-cla,,cla}, @ref{doc-newplot,,newplot}, @ref{doc-clf,,clf}}
@end deftypefn


@c ./plot/ishold.m
@anchor{doc-ishold}
@deftypefn {Function File} {} ishold
Return true if the next line will be added to the current plot, or
false if the plot device will be cleared before drawing the next line.
@end deftypefn


To clear the current figure, call the @code{clf} function.  To clear the
current axis, call the @code{cla} function.  To bring the current figure
to the top of the window stack, call the @code{shg} function.  To delete
a graphics object, call @code{delete} on its index.  To close the
figure window, call the @code{close} function.

@c ./plot/clf.m
@anchor{doc-clf}
@deftypefn  {Function File} {} clf ()
@deftypefnx {Function File} {} clf ("reset")
@deftypefnx {Function File} {} clf (@var{hfig})
@deftypefnx {Function File} {} clf (@var{hfig}, "reset")
Clear the current figure window.  @code{clf} operates by deleting child
graphics objects with visible handles (@code{HandleVisibility} = on).
If @var{hfig} is specified operate on it instead of the current figure.
If the optional argument @code{"reset"} is specified, all objects including
those with hidden handles are deleted.
@seealso{@ref{doc-cla,,cla}, @ref{doc-close,,close}, @ref{doc-delete,,delete}}
@end deftypefn


@c ./plot/cla.m
@anchor{doc-cla}
@deftypefn {Function File} {} cla ()
@deftypefnx {Function File} {} cla ("reset")
@deftypefnx {Function File} {} cla (@var{hax})
@deftypefnx {Function File} {} cla (@var{hax}, "reset")
Delete the children of the current axes with visible handles.
If @var{hax} is specified and is an axes object handle, operate on it
instead of the current axes.  If the optional argument @code{"reset"}
is specified, also delete the children with hidden handles.
@seealso{@ref{doc-clf,,clf}}
@end deftypefn


@c ./plot/shg.m
@anchor{doc-shg}
@deftypefn {Function File} {} shg
Show the graph window.  Currently, this is the same as executing
@code{drawnow}.
@seealso{@ref{doc-drawnow,,drawnow}, @ref{doc-figure,,figure}}
@end deftypefn


@c ./miscellaneous/delete.m
@anchor{doc-delete}
@deftypefn  {Function File} {} delete (@var{file})
@deftypefnx {Function File} {} delete (@var{handle})
Delete the named file or graphics handle.

Deleting graphics objects is the proper way to remove
features from a plot without clearing the entire figure.
@seealso{@ref{doc-clf,,clf}, @ref{doc-cla,,cla}}
@end deftypefn


@c ./plot/close.m
@anchor{doc-close}
@deftypefn {Command} {} close
@deftypefnx {Command} {} close (@var{n})
@deftypefnx {Command} {} close all
@deftypefnx {Command} {} close all hidden
Close figure window(s) by calling the function specified by the
@code{"closerequestfcn"} property for each figure.  By default, the
function @code{closereq} is used.
@seealso{@ref{doc-closereq,,closereq}}
@end deftypefn


@c ./plot/closereq.m
@anchor{doc-closereq}
@deftypefn {Function File} {} closereq ()
Close the current figure and delete all graphics objects associated
with it.
@seealso{@ref{doc-close,,close}, @ref{doc-delete,,delete}}
@end deftypefn


@node Graphics Object Properties
@subsection Graphics Object Properties
@cindex graphics object properties

@menu
* Root Figure Properties::      
* Figure Properties::           
* Axes Properties::             
* Line Properties::             
* Text Properties::             
* Image Properties::            
* Patch Properties::            
* Surface Properties::          
* Searching Properties::
@end menu

@node Root Figure Properties
@subsubsection Root Figure Properties

@table @code
@item currentfigure
Index to graphics object for the current figure.

@c FIXME -- does this work?
@c @item visible
@c Either @code{"on"} or @code{"off"} to toggle display of figures.
@end table

@node Figure Properties
@subsubsection Figure Properties
@cindex figure properties

@table @code
@item nextplot
May be one of
@table @code
@item "new"
@item "add"
@item "replace"
@item "replacechildren"
@end table

@item closerequestfcn
Handle of function to call when a figure is closed.

@item currentaxes
Index to graphics object of current axes.

@item colormap
An N-by-3 matrix containing the color map for the current axes.

@item visible
Either @code{"on"} or @code{"off"} to toggle display of the figure.

@item paperorientation
Indicates the orientation for printing.  Either @code{"landscape"} or
@code{"portrait"}.
@end table

@node Axes Properties
@subsubsection Axes Properties
@cindex axes properties

@table @code
@item position
A vector specifying the position of the plot, excluding titles, axes and
legend.  The four elements of the vector are the coordinates of the
lower left corner and width and height of the plot, in units normalized
to the width and height of the plot window.  For example, @code{[0.2,
0.3, 0.4, 0.5]} sets the lower left corner of the axes at @math{(0.2,
0.3)} and the width and height to be 0.4 and 0.5 respectively.  See also
the @code{outerposition} property.

@item title
Index of text object for the axes title.

@item box
Either @code{"on"} or @code{"off"} to toggle display of the box around
the axes.

@item key
Either @code{"on"} or @code{"off"} to toggle display of the legend.
Note that this property is not compatible with @sc{matlab} and may be
removed in a future version of Octave.

@item keybox
Either @code{"on"} or @code{"off"} to toggle display of a box around the
legend.  Note that this property is not compatible with @sc{matlab} and
may be removed in a future version of Octave.

@item keypos
An integer from 1 to 4 specifying the position of the legend.  1
indicates upper right corner, 2 indicates upper left, 3 indicates lower
left, and 4 indicates lower right.  Note that this property is not
compatible with @sc{matlab} and may be removed in a future version of
Octave.

@item dataaspectratio
A two-element vector specifying the relative height and width of the
data displayed in the axes.  Setting @code{dataaspectratio} to @samp{1,
2]} causes the length of one unit as displayed on the y-axis to be the
same as the length of 2 units on the x-axis.  Setting
@code{dataaspectratio} also forces the @code{dataaspectratiomode}
property to be set to @code{"manual"}.

@item dataaspectratiomode
Either @code{"manual"} or @code{"auto"}.

@item xlim
@itemx ylim
@itemx zlim
@itemx clim
Two-element vectors defining the limits for the x, y, and z axes and the 
Setting one of these properties also forces the corresponding mode
property to be set to @code{"manual"}.

@item xlimmode
@itemx ylimmode
@itemx zlimmode
@itemx climmode
Either @code{"manual"} or @code{"auto"}.

@item xlabel
@itemx ylabel
@itemx zlabel
Indices to text objects for the axes labels.

@item xgrid
@itemx ygrid
@itemx zgrid
Either @code{"on"} or @code{"off"} to toggle display of grid lines.

@item xminorgrid
@itemx yminorgrid
@itemx zminorgrid
Either @code{"on"} or @code{"off"} to toggle display of minor grid lines.

@item xtick
@itemx ytick
@itemx ztick
Setting one of these properties also forces the corresponding mode
property to be set to @code{"manual"}.

@item xtickmode
@itemx ytickmode
@itemx ztickmode
Either @code{"manual"} or @code{"auto"}.

@item xticklabel
@itemx yticklabel
@itemx zticklabel
Setting one of these properties also forces the corresponding mode
property to be set to @code{"manual"}.

@item xticklabelmode
@itemx yticklabelmode
@itemx zticklabelmode
Either @code{"manual"} or @code{"auto"}.

@item xscale
@itemx yscale
@itemx zscale
Either @code{"linear"} or @code{"log"}.

@item xdir
@itemx ydir
@itemx zdir
Either @code{"forward"} or @code{"reverse"}.

@item xaxislocation
@itemx yaxislocation
Either @code{"top"} or @code{"bottom"} for the x-axis and @code{"left"}
or @code{"right"} for the y-axis.

@item view
A three element vector specifying the view point for three-dimensional plots.

@item visible
Either @code{"on"} or @code{"off"} to toggle display of the axes.

@item nextplot
May be one of
@table @code
@item "new"
@item "add"
@item "replace"
@item "replacechildren"
@end table

@item outerposition
A vector specifying the position of the plot, including titles, axes and
legend.  The four elements of the vector are the coordinates of the
lower left corner and width and height of the plot, in units normalized
to the width and height of the plot window.  For example, @code{[0.2,
0.3, 0.4, 0.5]} sets the lower left corner of the axes at @math{(0.2,
0.3)} and the width and height to be 0.4 and 0.5 respectively.  See also
the @code{position} property.
@end table

@node Line Properties
@subsubsection Line Properties
@cindex line properties

@table @code
@itemx xdata
@itemx ydata
@itemx zdata
@itemx ldata
@itemx udata
@itemx xldata
@itemx xudata
The data to be plotted.  The @code{ldata} and @code{udata} elements are
for errorbars in the y direction, and the @code{xldata} and @code{xudata}
elements are for errorbars in the x direction.

@item color
The RGB color of the line, or a color name.  @xref{Colors}.

@item linestyle
@itemx linewidth
@xref{Line Styles}.

@item marker
@item markeredgecolor
@item markerfacecolor
@item markersize
@xref{Marker Styles}.

@item keylabel
The text of the legend entry corresponding to this line.  Note that this
property is not compatible with @sc{matlab} and may be removed in a
future version of Octave.
@end table

@node Text Properties
@subsubsection Text Properties
@cindex text properties

@table @code
@item string
The character string contained by the text object.

@item units
May be @code{"normalized"} or @code{"graph"}.

@item position
The coordinates of the text object.

@item rotation
The angle of rotation for the displayed text, measured in degrees.

@item horizontalalignment
May be @code{"left"}, @code{"center"}, or @code{"right"}.

@item color
The color of the text.  @xref{Colors}.

@item fontname
The font used for the text.

@item fontsize
The size of the font, in points to use.

@item fontangle
Flag whether the font is italic or normal.  Valid values are 'normal',
'italic' and 'oblique'.

@item fontweight
Flag whether the font is bold, etc.  Valid values are 'normal', 'bold',
'demi' or 'light'.

@item interpreter
Determines how the text is rendered.  Valid values are 'none', 'tex' or
'latex'.
@end table

All text objects, including titles, labels, legends, and text, include
the property 'interpreter', this property determines the manner in which
special control sequences in the text are rendered.  If the interpreter
is set to 'none', then no rendering occurs.  At this point the 'latex'
option is not implemented and so the 'latex' interpreter also does not
interpret the text.

The 'tex' option implements a subset of @sc{TeX} functionality in the
rendering of the text.  This allows the insertion of special characters
such as Greek or mathematical symbols within the text.  The special
characters are also inserted with a code starting with the back-slash
(\) character, as in the table @ref{tab:extended}. 

In addition, the formatting of the text can be changed within the string
with the codes 

@multitable @columnfractions .2 .2 .6 .2
@item @tab \bf @tab Bold font @tab
@item @tab \it @tab Italic font @tab
@item @tab \sl @tab Oblique Font @tab
@item @tab \rm @tab Normal font @tab
@end multitable

These are be used in conjunction with the @{ and @} characters to limit
the change in the font to part of the string.  For example

@example
xlabel ('@{\bf H@} = a @{\bf V@}')
@end example

where the character 'a' will not appear in a bold font.  Note that to
avoid having Octave interpret the backslash characters in the strings,
the strings should be in single quotes.

It is also possible to change the fontname and size within the text 

@multitable @columnfractions .1 .4 .6 .1
@item @tab \fontname@{@var{fontname}@} @tab Specify the font to use @tab
@item @tab \fontsize@{@var{size}@} @tab Specify the size of the font to
use @tab
@end multitable

Finally, the superscript and subscripting can be controlled with the '^'
and '_' characters.  If the '^' or '_' is followed by a @{ character,
then all of the block surrounded by the @{ @} pair is super- or
sub-scripted.  Without the @{ @} pair, only the character immediately
following the '^' or '_' is super- or sub-scripted.

@float Table,tab:extended
@tex
\vskip 6pt
{\hbox to \hsize {\hfill\vbox{\offinterlineskip \tabskip=0pt 
\halign{
\vrule height2.0ex depth1.ex width 0.6pt #\tabskip=0.3em &
# \hfil & \vrule # & # \hfil & # \vrule &
# \hfil & \vrule # & # \hfil & # \vrule &
# \hfil & \vrule # & # \hfil & # \vrule 
width 0.6pt \tabskip=0pt\cr
\noalign{\hrule height 0.6pt}
& Code && Sym && Code && Sym && Code && Sym &\cr
\noalign{\hrule}
& $\backslash$forall    && $\forall$ 
&& $\backslash$exists   && $\exists$ 
&& $\backslash$ni       && $\ni$       &\cr
& $\backslash$cong      && $\cong$ 
&& $\backslash$Delta    && $\Delta$ 
&& $\backslash$Phi      && $\Phi$      &\cr
& $\backslash$Gamma     && $\Gamma$ 
&& $\backslash$vartheta && $\vartheta$ 
&& $\backslash$Lambda   && $\Lambda$   &\cr
& $\backslash$Pi        && $\Pi$ 
&& $\backslash$Theta    && $\Theta$ 
&& $\backslash$Sigma    && $\Sigma$    &\cr
& $\backslash$varsigma  && $\varsigma$ 
&& $\backslash$Omega    && $\Omega$ 
&& $\backslash$Xi       && $\Xi$       &\cr
& $\backslash$Psi       && $\Psi$ 
&& $\backslash$perp     && $\perp$ 
&& $\backslash$alpha    && $\alpha$    &\cr
& $\backslash$beta      && $\beta$ 
&& $\backslash$chi      && $\chi$ 
&& $\backslash$delta    && $\delta$    &\cr
& $\backslash$epsilon   && $\epsilon$ 
&& $\backslash$phi      && $\phi$ 
&& $\backslash$gamma    && $\gamma$    &\cr
& $\backslash$eta       && $\eta$ 
&& $\backslash$iota     && $\iota$ 
&& $\backslash$varphi   && $\varphi$   &\cr
& $\backslash$kappa     && $\kappa$ 
&& $\backslash$lambda   && $\lambda$ 
&& $\backslash$mu       && $\mu$       &\cr
& $\backslash$nu        && $\nu$ 
&& $\backslash$o        && $\o$ 
&& $\backslash$pi       && $\pi$       &\cr
& $\backslash$theta     && $\theta$ 
&& $\backslash$rho      && $\rho$ 
&& $\backslash$sigma    && $\sigma$    &\cr
& $\backslash$tau       && $\tau$
&& $\backslash$upsilon  && $\upsilon$ 
&& $\backslash$varpi    && $\varpi$    &\cr
& $\backslash$omega     && $\omega$ 
&& $\backslash$xi       && $\xi$ 
&& $\backslash$psi      && $\psi$      &\cr
& $\backslash$zeta      && $\zeta$ 
&& $\backslash$sim      && $\sim$ 
&& $\backslash$Upsilon  && $\Upsilon$  &\cr
& $\backslash$prime     && $\prime$ 
&& $\backslash$leq      && $\leq$ 
&& $\backslash$infty    && $\infty$    &\cr
& $\backslash$clubsuit  && $\clubsuit$ 
&& $\backslash$diamondsuit    && $\diamondsuit$ 
&& $\backslash$heartsuit      && $\heartsuit$     &\cr
& $\backslash$spadesuit       && $\spadesuit$ 
&& $\backslash$leftrightarrow && $\leftrightarrow$ 
&& $\backslash$leftarrow      && $\leftarrow$     &\cr
& $\backslash$uparrow         && $\uparrow$ 
&& $\backslash$rightarrow     && $\rightarrow$ 
&& $\backslash$downarrow      && $\downarrow$     &\cr
& $\backslash$circ      && $\circ$ 
&& $\backslash$pm       && $\pm$ 
&& $\backslash$geq      && $\geq$      &\cr
& $\backslash$times     && $\times$ 
&& $\backslash$propto   && $\propto$ 
&& $\backslash$partial  && $\partial$  &\cr
& $\backslash$bullet    && $\bullet$
&& $\backslash$div      && $\div$ 
&& $\backslash$neq      && $\neq$      &\cr
& $\backslash$equiv     && $\equiv$ 
&& $\backslash$approx   && $\approx$ 
&& $\backslash$ldots    && $\ldots$ &\cr
& $\backslash$mid       && $\mid$ 
&& $\backslash$aleph    && $\aleph$ 
&& $\backslash$Im       && $\Im$ &\cr
& $\backslash$Re        && $\Re$ 
&& $\backslash$wp       && $\wp$ 
&& $\backslash$otimes   && $\otimes$ &\cr
& $\backslash$oplus     && $\oplus$ 
&& $\backslash$oslash   && $\oslash$ 
&& $\backslash$cap      && $\cap$ &\cr
& $\backslash$cup       && $\cup$ 
&& $\backslash$supset   && $\supset$ 
&& $\backslash$supseteq && $\supseteq$ &\cr
& $\backslash$subset    && $\subset$ 
&& $\backslash$subseteq && $\subseteq$ 
&& $\backslash$in       && $\in$ &\cr
& $\backslash$notin     && $\notin$
&& $\backslash$angle    && $\angle$
&& $\backslash$bigtriangledown && $\bigtriangledown$ &\cr
& $\backslash$langle    && $\langle$ 
&& $\backslash$rangle   && $\rangle$ 
&& $\backslash$nabla    && $\nabla$    &\cr
& $\backslash$prod      && $\prod$
&& $\backslash$surd     && $\surd$ 
&& $\backslash$cdot     && $\cdot$     &\cr
& $\backslash$neg       && $\neg$ 
&& $\backslash$wedge    && $\wedge$ 
&& $\backslash$vee      && $\vee$      &\cr
& $\backslash$Leftrightarrow && $\Leftrightarrow$
&& $\backslash$Leftarrow     && $\Leftarrow$
&& $\backslash$Uparrow       && $\Uparrow$           &\cr
& $\backslash$Rightarrow     && $\Rightarrow$
&& $\backslash$Downarrow     && $\Downarrow$
&& $\backslash$diamond  && $\diamond$  &\cr
& $\backslash$copyright && $\copyright$ 
&& $\backslash$rfloor   && $\rfloor$ 
&& $\backslash$lceil    && $\lceil$    &\cr
& $\backslash$lfloor    && $\lfloor$ 
&& $\backslash$rceil    && $\rceil$ 
&& $\backslash$int      && $\int$      &\cr
\noalign{\hrule height 0.6pt}
}}\hfill}}
@end tex
@ifnottex
@multitable @columnfractions .125 .25 .25 .25 .125
@item @tab  \forall     @tab  \exists     @tab  \ni      @tab
@item @tab  \cong       @tab  \Delta      @tab  \Phi     @tab
@item @tab  \Gamma      @tab  \vartheta   @tab  \Lambda  @tab
@item @tab  \Pi         @tab  \Theta      @tab  \Sigma   @tab
@item @tab  \varsigma   @tab  \Omega      @tab  \Xi      @tab
@item @tab  \Psi        @tab  \perp       @tab  \alpha   @tab
@item @tab  \beta       @tab  \chi        @tab  \delta   @tab  
@item @tab  \epsilon    @tab  \phi        @tab  \gamma   @tab
@item @tab  \eta        @tab  \iota       @tab  \varphi  @tab
@item @tab  \kappa      @tab  \lambda     @tab  \mu      @tab 
@item @tab  \nu         @tab  \o          @tab  \pi      @tab
@item @tab  \theta      @tab  \rho        @tab  \sigma   @tab 
@item @tab  \tau        @tab  \upsilon    @tab  \varpi   @tab
@item @tab  \omega      @tab  \xi         @tab  \psi     @tab 
@item @tab  \zeta       @tab  \sim        @tab  \Upsilon @tab
@item @tab  \prime      @tab  \leq        @tab  \infty   @tab
@item @tab  \clubsuit   @tab  \diamondsuit    @tab  \heartsuit  @tab
@item @tab  \spadesuit  @tab  \leftrightarrow @tab  \leftarrow  @tab 
@item @tab  \uparrow    @tab  \rightarrow @tab  \downarrow @tab 
@item @tab  \circ       @tab \pm          @tab  \geq     @tab 
@item @tab  \times      @tab  \propto     @tab  \partial @tab
@item @tab  \bullet     @tab \div         @tab  \neq     @tab 
@item @tab  \equiv      @tab  \approx     @tab  \ldots   @tab 
@item @tab  \mid        @tab  \aleph      @tab  \Im      @tab 
@item @tab  \Re         @tab \wp          @tab  \otimes  @tab
@item @tab  \oplus      @tab \oslash      @tab  \cap     @tab 
@item @tab  \cup        @tab   \supset    @tab  \supseteq @tab 
@item @tab  \subset     @tab \subseteq    @tab  \in      @tab 
@item @tab  \notin      @tab \angle       @tab  \bigrightriangledown @tab
@item @tab  \langle     @tab  \rangle     @tab  \nabla   @tab
@item @tab  \prod       @tab \surd        @tab  \cdot    @tab 
@item @tab  \neg        @tab  \wedge      @tab \vee      @tab 
@item @tab  \Leftrightarrow @tab \Leftarrow @tab \Uparrow @tab
@item @tab  \Rightarrow @tab \Downarrow   @tab \diamond  @tab
@item @tab  \copyright  @tab  \lfloor     @tab  \lceil   @tab 
@item @tab  \rfloor     @tab  \rceil      @tab  \int     @tab 
@end multitable
@end ifnottex
@caption{Available special characters in @sc{TeX} mode}
@end float

A complete example showing the capabilities of the extended text is

@example
@group
x = 0:0.01:3;
plot(x,erf(x));
hold on;
plot(x,x,"r");
axis([0, 3, 0, 1]);
text(0.65, 0.6175, strcat('\leftarrow x = @{2/\surd\pi',
' @{\fontsize@{16@}\int_@{\fontsize@{8@}0@}^@{\fontsize@{8@}x@}@}',
' e^@{-t^2@} dt@} = 0.6175'))
@end group
@end example

@ifnotinfo
@noindent
The result of which can be seen in @ref{fig:extendedtext}

@float Figure,fig:extendedtext
@center @image{extended,4in}
@caption{Example of inclusion of text with the @sc{TeX} interpreter}
@end float
@end ifnotinfo

@node Image Properties
@subsubsection Image Properties
@cindex image properties

@table @code
@item cdata
The data for the image.  Each pixel of the image corresponds to an
element of @code{cdata}.  The value of an element of @code{cdata}
specifies the row-index into the colormap of the axes object containing
the image.  The color value found in the color map for the given index
determines the color of the pixel.

@item xdata
@itemx ydata
Two-element vectors specifying the range of the x- and y- coordinates for
the image.
@end table

@node Patch Properties
@subsubsection Patch Properties
@cindex patch properties

@table @code
@item cdata
@itemx xdata
@itemx ydata
@itemx zdata
Data defining the patch object.

@item facecolor
The fill color of the patch.  @xref{Colors}.

@item facealpha
A number in the range [0, 1] indicating the transparency of the patch.

@item edgecolor
The color of the line defining the patch.  @xref{Colors}.

@item linestyle
@itemx linewidth
@xref{Line Styles}.

@item marker
@itemx markeredgecolor
@itemx markerfacecolor
@itemx markersize
@xref{Marker Styles}.
@end table

@node Surface Properties
@subsubsection Surface Properties
@cindex surface properties

@table @code
@item xdata
@itemx ydata
@itemx zdata
The data determining the surface.  The @code{xdata} and @code{ydata}
elements are vectors and @code{zdata} must be a matrix.

@item keylabel
The text of the legend entry corresponding to this surface.  Note that
this property is not compatible with @sc{matlab} and may be removed in a
future version of Octave.
@end table

@node Searching Properties
@subsubsection Searching Properties

@c ./plot/findobj.m
@anchor{doc-findobj}
@deftypefn {Function File} {@var{h} =} findobj ()
@deftypefnx {Function File} {@var{h} =} findobj (@var{prop_name}, @var{prop_value})
@deftypefnx {Function File} {@var{h} =} findobj ('-property', @var{prop_name})
@deftypefnx {Function File} {@var{h} =} findobj ('-regexp', @var{prop_name}, @var{pattern})
@deftypefnx {Function File} {@var{h} =} findobj ('flat', @dots{})
@deftypefnx {Function File} {@var{h} =} findobj (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} findobj (@var{h}, '-depth', @var{d}, @dots{})
Find object with specified property values.  The simplest form is

@example
findobj (@var{prop_name}, @var{prop_Value})
@end example

@noindent
which returns all of the handles to the objects with the name 
@var{prop_name} and the name @var{prop_Value}.  The search can be limited
to a particular object or set of objects and their descendants by 
passing a handle or set of handles @var{h} as the first argument to 
@code{findobj}.

The depth of hierarchy of objects to which to search to can be limited
with the '-depth' argument.  To limit the number depth of the hierarchy
to search to @var{d} generations of children, and example is

@example
findobj (@var{h}, '-depth', @var{d}, @var{prop_Name}, @var{prop_Value})
@end example

Specifying a depth @var{d} of 0, limits the search to the set of object
passed in @var{h}.  A depth @var{d} of 0 is equivalent to the '-flat'
argument. 

A specified logical operator may be applied to the pairs of @var{prop_Name}
and @var{prop_Value}.  The supported logical operators are '-and', '-or', 
'-xor', '-not'.

The objects may also be matched by comparing a regular expression to the 
property values, where property values that match @code{regexp 
(@var{prop_Value}, @var{pattern})} are returned.  Finally, objects may be 
matched by property name only, using the '-property' option.
@seealso{@ref{doc-get,,get}, @ref{doc-set,,set}}
@end deftypefn


@c ./plot/findall.m
@anchor{doc-findall}
@deftypefn {Function File} {@var{h} =} findall ()
@deftypefnx {Function File} {@var{h} =} findall (@var{prop_name}, @var{prop_value})
@deftypefnx {Function File} {@var{h} =} findall (@var{h}, @dots{})
@deftypefnx {Function File} {@var{h} =} findall (@var{h}, "-depth", @var{d}, @dots{})
Find object with specified property values including hidden handles.

This function performs the same function as @code{findobj}, but it
includes hidden objects in its search.  For full documentation, see
@code{findobj}.
@seealso{@ref{doc-get,,get}, @ref{doc-set,,set}, @ref{doc-findobj,,findobj}, @ref{doc-allchild,,allchild}}
@end deftypefn



@node Managing Default Properties
@subsection Managing Default Properties
@cindex default graphics properties
@cindex graphics properties, default

Object properties have two classes of default values, @dfn{factory
defaults} (the initial values) and @dfn{user-defined defaults}, which
may override the factory defaults.

Although default values may be set for any object, they are set in
parent objects and apply to child objects.  For example,

@example
set (0, "defaultlinecolor", "green");
@end example

@noindent
sets the default line color for all objects.  The rule for constructing
the property name to set a default value is

@example
default + @var{object-type} + @var{property-name}
@end example

This rule can lead to some strange looking names, for example
@code{defaultlinelinewidth"} specifies the default @code{linewidth}
property for @code{line} objects.

The example above used the root figure object, 0, so the default
property value will apply to all line objects.  However, default values
are hierarchical, so defaults set in a figure objects override those
set in the root figure object.  Likewise, defaults set in axes objects
override those set in figure or root figure objects.  For example,

@example
@group
subplot (2, 1, 1);
set (0, "defaultlinecolor", "red");
set (1, "defaultlinecolor", "green");
set (gca (), "defaultlinecolor", "blue");
line (1:10, rand (1, 10));
subplot (2, 1, 2);
line (1:10, rand (1, 10));
figure (2)
line (1:10, rand (1, 10));
@end group
@end example

@noindent
produces two figures.  The line in first subplot window of the first
figure is blue because it inherits its color from its parent axes
object.  The line in the second subplot window of the first figure is
green because it inherits its color from its parent figure object.  The
line in the second figure window is red because it inherits its color
from the global root figure parent object.

To remove a user-defined default setting, set the default property to
the value @code{"remove"}.  For example,

@example
set (gca (), "defaultlinecolor", "remove");
@end example

@noindent
removes the user-defined default line color setting from the current axes
object.

Getting the @code{"default"} property of an object returns a list of
user-defined defaults set for the object.  For example,

@example
get (gca (), "default");
@end example

@noindent
returns a list of user-defined default values for the current axes
object.

Factory default values are stored in the root figure object.  The
command

@example
get (0, "factory");
@end example

@noindent
returns a list of factory defaults.

@node Colors
@subsection Colors
@cindex graphics colors
@cindex colors, graphics

Colors may be specified as RGB triplets with values ranging from zero to
one, or by name.  Recognized color names include @code{"blue"},
@code{"black"}, @code{"cyan"}, @code{"green"}, @code{"magenta"},
@code{"red"}, @code{"white"}, and @code{"yellow"}.

@node Line Styles
@subsection Line Styles
@cindex line styles, graphics
@cindex graphics line styles

Line styles are specified by the following properties:

@table @code
@item linestyle
May be one of
@table @code
@item "-"
Solid lines.
@item "--"
Dashed lines.
@item ":"
Points.
@item "-."
A dash-dot line.
@end table

@item linewidth
A number specifying the width of the line.  The default is 1.  A value
of 2 is twice as wide as the default, etc.
@end table

@node Marker Styles
@subsection Marker Styles
@cindex graphics marker styles
@cindex marker styles, graphics

Marker styles are specified by the following properties:
@table @code
@item marker
A character indicating a plot marker to be place at each data point, or
@code{"none"}, meaning no markers should be displayed.

@itemx markeredgecolor
The color of the edge around the marker, or @code{"auto"}, meaning that
the edge color is the same as the face color.  @xref{Colors}.

@itemx markerfacecolor
The color of the marker, or @code{"none"} to indicate that the marker
should not be filled.  @xref{Colors}.

@itemx markersize
A number specifying the size of the marker.  The default is 1.  A value
of 2 is twice as large as the default, etc.
@end table

@node Callbacks
@subsection Callbacks
@cindex callbacks

Callback functions can be associated with graphics objects and triggered
after certain events occur.  The basic structure of all callback function
is 

@example
@group
function mycallback (src, data)
@dots{}
endfunction
@end group
@end example

where @code{src} gives a handle to the source of the callback, and
@code{code} gives some event specific data.  This can then be associated
with an object either at the objects creation or later with the
@code{set} function.  For example

@example
plot (x, "DeleteFcn", @@(s, e) disp("Window Deleted"))
@end example

@noindent
where at the moment that the plot is deleted, the message "Window
Deleted" will be displayed.

Additional user arguments can be passed to callback functions, and will
be passed after the 2 default arguments.  For example

@example
@group
plot (x, "DeleteFcn", @{@@mycallback, "1"@})
@dots{}
function mycallback (src, data, a1)
  fprintf ("Closing plot %d\n", a1);
endfunction
@end group
@end example

The basic callback functions that are available for all graphics objects
are

@itemize @bullet
@item CreateFcn
This is the callback that is called at the moment of the objects
creation.  It is not called if the object is altered in any way, and so
it only makes sense to define this callback in the function call that
defines the object.  Callbacks that are added to @code{CreateFcn} later with
the @code{set} function will never be executed.

@item DeleteFcn
This is the callback that is called at the moment an object is deleted.

@item ButtonDownFcn
This is the callback that is called if a mouse button is pressed while
the pointer is over this object.  Note, that the gnuplot interface does
not respect this callback.
@end itemize

The object and figure that the event occurred in that resulted in the
callback being called can be found with the @code{gcbo} and @code{gcbf}
functions.

@c ./plot/gcbo.m
@anchor{doc-gcbo}
@deftypefn {Function File} {@var{h} =} gcbo ()
@deftypefnx {Function File} {[@var{h}, @var{fig}] =} gcbo ()
Return a handle to the object whose callback is currently
executing.  If no callback is executing, this function returns the
empty matrix.  This handle is obtained from the root object property
"CallbackObject".

Additionally return the handle of the figure containing the
object whose callback is currently executing.  If no callback is
executing, the second output is also set to the empty matrix.

@seealso{@ref{doc-gcf,,gcf}, @ref{doc-gca,,gca}, @ref{doc-gcbf,,gcbf}}
@end deftypefn


@c ./plot/gcbf.m
@anchor{doc-gcbf}
@deftypefn {Function File} {@var{fig} =} gcbf ()
Return a handle to the figure containing the object whose callback
is currently executing.  If no callback is executing, this function
returns the empty matrix.  The handle returned by this function is
the same as the second output argument of gcbo.

@seealso{@ref{doc-gcf,,gcf}, @ref{doc-gca,,gca}, @ref{doc-gcbo,,gcbo}}
@end deftypefn


Callbacks can equally be added to properties with the @code{addlistener}
function described below.

@node Object Groups
@subsection Object Groups
@cindex object groups

A number of Octave high level plot functions return groups of other
graphics objects or they return graphics objects that are have their
properties linked in such a way that changes to one of the properties
results in changes in the others.  A graphic object that groups other
objects is an @code{hggroup}

@c ./plot/hggroup.m
@anchor{doc-hggroup}
@deftypefn {Function File} {} hggroup ()
@deftypefnx {Function File} {} hggroup (@var{h})
@deftypefnx {Function File} {} hggroup (@dots{}, @var{property}, @var{value}, @dots{})
Create group object with parent @var{h}.  If no parent is specified,
the group is created in the current axes.  Return the handle of the
group object created.

Multiple property-value pairs may be specified for the group, but they
must appear in pairs.
@end deftypefn


For example a simple use of a @code{hggroup} might be

@example
@group
x = 0:0.1:10;
hg = hggroup ();
plot (x, sin (x), "color", [1, 0, 0], "parent", hg);
hold on
plot (x, cos (x), "color", [0, 1, 0], "parent", hg);
set (hg, "visible", "off");
@end group
@end example

@noindent
which groups the two plots into a single object and controls their
visibility directly.  The default properties of an @code{hggroup} are
the same as the set of common properties for the other graphics
objects.  Additional properties can be added with the @code{addproperty}
function. 

@c graphics.cc
@anchor{doc-addproperty}
@deftypefn {Built-in Function} {} addproperty (@var{name}, @var{h}, @var{type}, [@var{arg}, @dots{}])
Create a new property named @var{name} in graphics object @var{h}.
@var{type} determines the type of the property to create.  @var{args}
usually contains the default value of the property, but additional
arguments might be given, depending on the type of the property.

The supported property types are:

@table @code
@item string
A string property.  @var{arg} contains the default string value.
@item any
An un-typed property.  This kind of property can hold any octave
value.  @var{args} contains the default value.
@item radio
A string property with a limited set of accepted values.  The first
argument must be a string with all accepted values separated by
a vertical bar ('|').  The default value can be marked by enclosing
it with a '@{' '@}' pair.  The default value may also be given as
an optional second string argument.
@item boolean
A boolean property.  This property type is equivalent to a radio
property with "on|off" as accepted values.  @var{arg} contains
the default property value.
@item double
A scalar double property.  @var{arg} contains the default value.
@item handle
A handle property.  This kind of property holds the handle of a
graphics object.  @var{arg} contains the default handle value.
When no default value is given, the property is initialized to
the empty matrix.
@item data
A data (matrix) property.  @var{arg} contains the default data
value.  When no default value is given, the data is initialized to
the empty matrix.
@item color
A color property.  @var{arg} contains the default color value.
When no default color is given, the property is set to black.
An optional second string argument may be given to specify an
additional set of accepted string values (like a radio property).
@end table

@var{type} may also be the concatenation of a core object type and
a valid property name for that object type.  The property created
then has the same characteristics as the referenced property (type,
possible values, hidden state@dots{}).  This allows to clone an existing
property into the graphics object @var{h}.

Examples:

@example
@group
addproperty ("my_property", gcf, "string", "a string value");
addproperty ("my_radio", gcf, "radio", "val_1|val_2|@{val_3@}");
addproperty ("my_style", gcf, "linelinestyle", "--");
@end group
@end example

@end deftypefn


Once a property in added to an @code{hggroup}, it is not linked to any
other property of either the children of the group, or any other
graphics object.  Add so to control the way in which this newly added
property is used, the @code{addlistener} function is used to define a
callback function that is executed when the property is altered.

@c graphics.cc
@anchor{doc-addlistener}
@deftypefn {Built-in Function} {} addlistener (@var{h}, @var{prop}, @var{fcn})
Register @var{fcn} as listener for the property @var{prop} of the graphics
object @var{h}.  Property listeners are executed (in order of registration)
when the property is set.  The new value is already available when the
listeners are executed.

@var{prop} must be a string naming a valid property in @var{h}.

@var{fcn} can be a function handle, a string or a cell array whose first
element is a function handle.  If @var{fcn} is a function handle, the
corresponding function should accept at least 2 arguments, that will be
set to the object handle and the empty matrix respectively.  If @var{fcn}
is a string, it must be any valid octave expression.  If @var{fcn} is a cell
array, the first element must be a function handle with the same signature
as described above.  The next elements of the cell array are passed
as additional arguments to the function.

Example:

@example
@group
function my_listener (h, dummy, p1)
  fprintf ("my_listener called with p1=%s\n", p1);
endfunction

addlistener (gcf, "position", @{@@my_listener, "my string"@})
@end group
@end example

@end deftypefn


@c graphics.cc
@anchor{doc-dellistener}
@deftypefn {Built-in Function} {} dellistener (@var{h}, @var{prop}, @var{fcn})
Remove the registration of @var{fcn} as a listener for the property
@var{prop} of the graphics object @var{h}.  The function @var{fcn} must
be the same variable (not just the same value), as was passed to the
original call to @code{addlistener}.

If @var{fcn} is not defined then all listener functions of @var{prop}
are removed.

Example:

@example
@group
function my_listener (h, dummy, p1)
  fprintf ("my_listener called with p1=%s\n", p1);
endfunction

c = @{@@my_listener, "my string"@};
addlistener (gcf, "position", c);
dellistener (gcf, "position", c);
@end group
@end example

@end deftypefn


An example of the use of these two functions might be

@example
@group
x = 0:0.1:10;
hg = hggroup ();
h = plot (x, sin (x), "color", [1, 0, 0], "parent", hg);
addproperty ("linestyle", hg, "linelinestyle", get (h, "linestyle"));
addlistener (hg, "linestyle", @@update_props);
hold on
plot (x, cos (x), "color", [0, 1, 0], "parent", hg);

function update_props (h, d)
  set (get (h, "children"), "linestyle", get (h, "linestyle"));
endfunction
@end group
@end example

@noindent
that adds a @code{linestyle} property to the @code{hggroup} and
propagating any changes its value to the children of the group.  The
@code{linkprop} function can be used to simplify the above to be

@example
@group
x = 0:0.1:10;
hg = hggroup ();
h1 = plot (x, sin (x), "color", [1, 0, 0], "parent", hg);
addproperty ("linestyle", hg, "linelinestyle", get (h, "linestyle"));
hold on
h2 = plot (x, cos (x), "color", [0, 1, 0], "parent", hg);
hlink = linkprop ([hg, h1, h2], "color"); 
@end group
@end example

@c ./plot/linkprop.m
@anchor{doc-linkprop}
@deftypefn {Function File} {@var{hlink} =} linkprop (@var{h}, @var{prop})
Links graphics object properties, such that a change in one is
propagated to the others.  The properties to link are given as a
string of cell string array by @var{prop} and the objects containing
these properties by the handle array @var{h}.

An example of the use of linkprops is

@example
@group
x = 0:0.1:10;
subplot (1, 2, 1);
h1 = plot (x, sin (x));
subplot (1, 2, 2);
h2 = plot (x, cos (x));
hlink = linkprop ([h1, h2], @{"color","linestyle"@});
set (h1, "color", "green");
set (h2, "linestyle", "--");
@end group
@end example

@end deftypefn


These capabilities are used in a number of basic graphics objects. 
The @code{hggroup} objects created by the functions of Octave contain
one or more graphics object and are used to:

@itemize @bullet
@item group together multiple graphics objects,
@item create linked properties between different graphics objects, and
@item to hide the nominal user data, from the actual data of the objects.
@end itemize

@noindent
For example the @code{stem} function creates a stem series where each
@code{hggroup} of the stem series contains two line objects representing
the body and head of the stem.  The @code{ydata} property of the
@code{hggroup} of the stem series represents the head of the stem,
whereas the body of the stem is between the baseline and this value.  For
example

@example
@group
h = stem (1:4)
get (h, "xdata")
@result{} [  1   2   3   4]'
get (get (h, "children")(1), "xdata")
@result{} [  1   1 NaN   2   2 NaN   3   3 NaN   4   4 NaN]'
@end group
@end example

@noindent
shows the difference between the @code{xdata} of the @code{hggroup}
of a stem series object and the underlying line.

The basic properties of such group objects is that they consist of one 
or more linked @code{hggroup}, and that changes in certain properties of
these groups are propagated to other members of the group.  Whereas,
certain properties of the members of the group only apply to the current
member.

In addition the members of the group can also be linked to other
graphics objects through callback functions.  For example the baseline of
the @code{bar} or @code{stem} functions is a line object, whose length
and position are automatically adjusted, based on changes to the
corresponding hggroup elements.

@menu
* Data sources in object groups::
* Area series::
* Bar series::
* Contour groups::
* Error bar series::
* Line series::
* Quiver group::
* Scatter group::
* Stair group::
* Stem Series::
* Surface group::
@end menu

@node Data sources in object groups
@subsubsection Data sources in object groups
@cindex data sources in object groups

All of the group objects contain data source parameters.  There are
string parameters that contain an expression that is evaluated to update
the relevant data property of the group when the @code{refreshdata}
function is called. 

@c ./plot/refreshdata.m
@anchor{doc-refreshdata}
@deftypefn  {Function File} {} refreshdata ()
@deftypefnx {Function File} {} refreshdata (@var{h})
@deftypefnx {Function File} {} refreshdata (@var{h}, @var{workspace})
Evaluate any @samp{datasource} properties of the current figure and update
the plot if the corresponding data has changed.  If called with one or more
arguments @var{h} is a scalar or array of figure handles to refresh.  The
optional second argument @var{workspace} can take the following values.

@table @code
@item "base"
Evaluate the datasource properties in the base workspace.  (default).
@item "caller"
Evaluate the datasource properties in the workspace of the function
that called @code{refreshdata}.
@end table

An example of the use of @code{refreshdata} is:

@example
@group
x = 0:0.1:10;
y = sin (x);
plot (x, y, "ydatasource", "y");
for i = 1 : 100
  pause(0.1)
  y = sin (x + 0.1 * i);
  refreshdata();
endfor
@end group
@end example
@end deftypefn


@anchor{doc-linkdata}
@c add the description of the linkdata function here when it is written
@c remove the explicit anchor when you add the corresponding @DOCSTRING
@c command

@node Area series
@subsubsection Area series
@cindex series objects
@cindex area series

Area series objects are created by the @code{area} function.  Each of the
@code{hggroup} elements contains a single patch object.  The properties
of the area series are

@table @code
@item basevalue
The value where the base of the area plot is drawn.

@item linewidth
@itemx linestyle
The line width and style of the edge of the patch objects making up the
areas.  @xref{Line Styles}.

@item edgecolor
@itemx facecolor
The line and fill color of the patch objects making up the areas.  @xref{Colors}.

@item xdata
@itemx ydata
The x and y coordinates of the original columns of the data passed to
@code{area} prior to the cumulative summation used in the @code{area}
function. 

@item xdatasource
@itemx ydatasource
Data source variables.
@end table

@node Bar series
@subsubsection Bar series
@cindex series objects
@cindex bar series

Bar series objects are created by the @code{bar} or @code{barh}
functions.  Each @code{hggroup} element contains a single patch object. 
The properties of the bar series are

@table @code
@item showbaseline
@itemx baseline
@itemx basevalue
The property @code{showbaseline} flags whether the baseline of the bar
series is displayed (default is "on").  The handle of the graphics object
representing the baseline is given by the @code{baseline} property and
the y-value of the baseline by the @code{basevalue} property. 

Changes to any of these property are propagated to the other members of
the bar series and to the baseline itself.  Equally changes in the
properties of the base line itself are propagated to the members of the
corresponding bar series.

@item barwidth
@itemx barlayout
@itemx horizontal
The property @code{barwidth} is the width of the bar corresponding to
the @var{width} variable passed to @code{bar} or @var{barh}.  Whether the
bar series is "grouped" or "stacked" is determined by the
@code{barlayout} property and whether the bars are horizontal or
vertical by the @code{horizontal} property.

Changes to any of these property are propagated to the other members of
the bar series.

@item linewidth
@itemx linestyle
The line width and style of the edge of the patch objects making up the
bars.  @xref{Line Styles}.

@item edgecolor
@itemx facecolor
The line and fill color of the patch objects making up the bars.  @xref{Colors}.

@item xdata
The nominal x positions of the bars.  Changes in this property and
propagated to the other members of the bar series. 

@item ydata
The y value of the bars in the @code{hggroup}.

@item xdatasource
@itemx ydatasource
Data source variables.
@end table

@node Contour groups
@subsubsection Contour groups
@cindex series objects
@cindex contour series

Contour group objects are created by the @code{contour}, @code{contourf}
and @code{contour3} functions.  The are equally one of the handles returned
by the @code{surfc} and @code{meshc} functions.  The properties of the contour
group are

@table @code
@item contourmatrix
A read only property that contains the data return by @code{contourc} used to
create the contours of the plot.

@item fill
A radio property that can have the values "on" or "off" that flags whether the
contours to plot are to be filled.

@item zlevelmode
@itemx zlevel
The radio property @code{zlevelmode} can have the values "none", "auto" or 
"manual".  When its value is "none" there is no z component to the plotted
contours.  When its value is "auto" the z value of the plotted contours is 
at the same value as the contour itself.  If the value is "manual", then the
z value at which to plot the contour is determined by the @code{zlevel}
property.

@item levellistmode
@itemx levellist
@itemx levelstepmode
@itemx levelstep
If @code{levellistmode} is "manual", then the levels at which to plot the 
contours is determined by @code{levellist}.  If @code{levellistmode} is
set to "auto", then the distance between contours is determined by 
@code{levelstep}.  If both @code{levellistmode} and @code{levelstepmode}
are set to "auto", then there are assumed to be 10 equal spaced contours.

@item textlistmode
@itemx textlist
@itemx textstepmode
@itemx textstep
If @code{textlistmode} is "manual", then the labelled contours 
is determined by @code{textlist}.  If @code{textlistmode} is set to 
"auto", then the distance between labelled contours is determined by 
@code{textstep}.  If both @code{textlistmode} and @code{textstepmode}
are set to "auto", then there are assumed to be 10 equal spaced 
labelled contours.

@item showtext
Flag whether the contour labels are shown or not.

@item labelspacing
The distance between labels on a single contour in points.

@item linewidth
@item linestyle
@item linecolor
The properties of the contour lines.  The properties @code{linewidth} and
@code{linestyle} are similar to the corresponding properties for lines.  The
property @code{linecolor} is a color property (@pxref{Colors}), that can also
have the values of "none" or "auto".  If @code{linecolor} is "none", then no
contour line is drawn.  If @code{linecolor} is "auto" then the line color is
determined by the colormap.

@item xdata
@itemx ydata
@itemx zdata
The original x, y, and z data of the contour lines.

@item xdatasource
@itemx ydatasource
@itemx zdatasource
Data source variables.
@end table

@node Error bar series
@subsubsection Error bar series
@cindex series objects
@cindex error bar series

Error bar series are created by the @code{errorbar} function.  Each 
@code{hggroup} element contains two line objects representing the data and
the errorbars separately.  The properties of the error bar series are

@table @code
@item color
The RGB color or color name of the line objects of the error bars.  @xref{Colors}.

@item linewidth
@itemx linestyle
The line width and style of the line objects of the error bars.  @xref{Line Styles}.

@item marker
@itemx markeredgecolor
@itemx markerfacecolor
@itemx markersize
The line and fill color of the markers on the error bars.  @xref{Colors}.

@item xdata
@itemx ydata
@itemx ldata
@itemx udata
@itemx xldata
@itemx xudata
The original x, y, l, u, xl, xu data of the error bars.

@item xdatasource
@itemx ydatasource
@itemx ldatasource
@itemx udatasource
@itemx xldatasource
@itemx xudatasource
Data source variables.
@end table

@node Line series
@subsubsection Line series
@cindex series objects
@cindex line series

Line series objects are created by the @code{plot}  and @code{plot3}
functions and are of the type @code{line}.  The properties of the
line series with the ability to add data sources.

@table @code
@item color
The RGB color or color name of the line objects.  @xref{Colors}.

@item linewidth
@itemx linestyle
The line width and style of the line objects.  @xref{Line Styles}.

@item marker
@itemx markeredgecolor
@itemx markerfacecolor
@itemx markersize
The line and fill color of the markers.  @xref{Colors}.

@item xdata
@itemx ydata
@itemx zdata
The original x, y and z data.

@item xdatasource
@itemx ydatasource
@itemx zdatasource
Data source variables.
@end table

@node Quiver group
@subsubsection Quiver group
@cindex group objects
@cindex quiver group

Quiver series objects are created by the @code{quiver} or @code{quiver3}
functions.  Each @code{hggroup} element of the series contains three line
objects as children representing the body and head of the arrow,
together with a marker as the point of original of the arrows.  The 
properties of the quiver series are

@table @code
@item autoscale
@itemx autoscalefactor
Flag whether the length of the arrows is scaled or defined directly from
the @var{u}, @var{v} and @var{w} data.  If the arrow length is flagged
as being scaled by the @code{autoscale} property, then the length of the
autoscaled arrow is controlled by the @code{autoscalefactor}. 

@item maxheadsize
This property controls the size of the head of the arrows in the quiver
series.  The default value is 0.2.

@item showarrowhead
Flag whether the arrow heads are displayed in the quiver plot.

@item color
The RGB color or color name of the line objects of the quiver.  @xref{Colors}.

@item linewidth
@itemx linestyle
The line width and style of the line objects of the quiver.  @xref{Line Styles}.

@item marker
@itemx markerfacecolor
@itemx markersize
The line and fill color of the marker objects at the original of the
arrows.  @xref{Colors}.

@item xdata
@itemx ydata
@itemx zdata
The origins of the values of the vector field.

@item udata
@itemx vdata
@itemx wdata
The values of the vector field to plot.

@item xdatasource
@itemx ydatasource
@itemx zdatasource
@itemx udatasource
@itemx vdatasource
@itemx wdatasource
Data source variables.
@end table

@node Scatter group
@subsubsection Scatter group
@cindex group objects
@cindex scatter group

Scatter series objects are created by the @code{scatter} or @code{scatter3}
functions.  A single hggroup element contains as many children as there are
points in the scatter plot, with each child representing one of the points.
The properties of the stem series are

@table @code
@item linewidth
The line width of the line objects of the points.  @xref{Line Styles}.

@item marker
@itemx markeredgecolor
@itemx markerfacecolor
The line and fill color of the markers of the points.  @xref{Colors}.

@item xdata
@itemx ydata
@itemx zdata
The original x, y and z data of the stems.

@item cdata
The color data for the points of the plot.  Each point can have a separate
color, or a unique color can be specified.

@item sizedata
The size data for the points of the plot.  Each point can its own size or a 
unique size can be specified.

@item xdatasource
@itemx ydatasource
@itemx zdatasource
@itemx cdatasource
@itemx sizedatasource
Data source variables.
@end table

@node Stair group
@subsubsection Stair group
@cindex group objects
@cindex stair group

Stair series objects are created by the @code{stair} function.  Each
@code{hggroup} element of the series contains a single line object as a
child representing the stair.  The properties of the stair series are

@table @code
@item color
The RGB color or color name of the line objects of the stairs.  @xref{Colors}.

@item linewidth
@itemx linestyle
The line width and style of the line objects of the stairs.  @xref{Line Styles}.

@item marker
@itemx markeredgecolor
@itemx markerfacecolor
@itemx markersize
The line and fill color of the markers on the stairs.  @xref{Colors}.

@item xdata
@itemx ydata
The original x and y data of the stairs.

@item xdatasource
@itemx ydatasource
Data source variables.
@end table

@node Stem Series
@subsubsection Stem Series
@cindex series objects
@cindex stem series

Stem series objects are created by the @code{stem} or @code{stem3}
functions.  Each @code{hggroup} element contains a single line object
as a child representing the stems.  The properties of the stem series
are

@table @code
@item showbaseline
@itemx baseline
@itemx basevalue
The property @code{showbaseline} flags whether the baseline of the
stem series is displayed (default is "on").  The handle of the graphics
object representing the baseline is given by the @code{baseline}
property and the y-value (or z-value for @code{stem3}) of the baseline
by the @code{basevalue} property.

Changes to any of these property are propagated to the other members of
the stem series and to the baseline itself.  Equally changes in the
properties of the base line itself are propagated to the members of the
corresponding stem series.

@item color
The RGB color or color name of the line objects of the stems.  @xref{Colors}.

@item linewidth
@itemx linestyle
The line width and style of the line objects of the stems.  @xref{Line Styles}.

@item marker
@itemx markeredgecolor
@itemx markerfacecolor
@itemx markersize
The line and fill color of the markers on the stems.  @xref{Colors}.

@item xdata
@itemx ydata
@itemx zdata
The original x, y and z data of the stems.

@item xdatasource
@itemx ydatasource
@itemx zdatasource
Data source variables.
@end table

@node Surface group
@subsubsection Surface group
@cindex group objects
@cindex surface group

Surface group objects are created by the @code{surf} or @code{mesh}
functions, but are equally one of the handles returned by the @code{surfc}
or @code{meshc} functions.  The surface group is of the type @code{surface}.

The properties of the surface group are

@table @code
@item edgecolor
@item facecolor
The RGB color or color name of the edges or faces of the surface.  @xref{Colors}.

@item linewidth
@itemx linestyle
The line width and style of the lines on the surface.  @xref{Line Styles}.

@item marker
@itemx markeredgecolor
@itemx markerfacecolor
@itemx markersize
The line and fill color of the markers on the surface.  @xref{Colors}.

@item xdata
@itemx ydata
@itemx zdata
@item cdata
The original x, y, z and c data.

@item xdatasource
@itemx ydatasource
@itemx zdatasource
@itemx cdatasource
Data source variables.
@end table

@node Graphics backends
@subsection Graphics backends
@cindex graphics backends
@cindex backends, graphics

@c ./plot/backend.m
@anchor{doc-backend}
@deftypefn  {Function File} {} backend (@var{name})
@deftypefnx {Function File} {} backend (@var{hlist}, @var{name})
Change the default graphics backend to @var{name}.  If the backend is
not already loaded, it is first initialized (initialization is done
through the execution of @code{__init_@var{name}__}).

When called with a list of figure handles, @var{hlist}, the backend is
changed only for the listed figures.
@seealso{@ref{doc-available_backends,,available_backends}}
@end deftypefn


@c graphics.cc
@anchor{doc-available_backends}
@deftypefn {Built-in Function} {} available_backends ()
Return a cell array of registered graphics backends.
@end deftypefn


@menu
* Interaction with gnuplot::
@end menu

@node Interaction with gnuplot
@subsubsection Interaction with @code{gnuplot}
@cindex gnuplot interaction

@c ./plot/gnuplot_binary.m
@anchor{doc-gnuplot_binary}
@deftypefn {Loadable Function} {@var{val} =} gnuplot_binary ()
@deftypefnx {Loadable Function} {@var{old_val} =} gnuplot_binary (@var{new_val})
Query or set the name of the program invoked by the plot command.
The default value @code{\"gnuplot\"}.  @xref{Installation}.
@end deftypefn