File: poly.texi

package info (click to toggle)
octave3.2 3.2.4-8
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 62,936 kB
  • ctags: 37,353
  • sloc: cpp: 219,497; fortran: 116,336; ansic: 10,264; sh: 5,508; makefile: 4,245; lex: 3,573; yacc: 3,062; objc: 2,042; lisp: 1,692; awk: 860; perl: 844
file content (728 lines) | stat: -rw-r--r-- 25,208 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
@c DO NOT EDIT!  Generated automatically by munge-texi.

@c Copyright (C) 1996, 1997, 1999, 2000, 2002, 2007, 2008, 2009 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c 
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
@c for more details.
@c 
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <http://www.gnu.org/licenses/>.

@node Polynomial Manipulations
@chapter Polynomial Manipulations

In Octave, a polynomial is represented by its coefficients (arranged
in descending order).  For example, a vector @var{c} of length
@math{N+1} corresponds to the following polynomial of order
@tex
 $N$
$$
 p (x) = c_1 x^N + \ldots + c_N x + c_{N+1}.
$$
@end tex
@ifinfo
 @var{N}

@example
p(x) = @var{c}(1) x^@var{N} + @dots{} + @var{c}(@var{N}) x + @var{c}(@var{N}+1).
@end example
@end ifinfo

@menu
* Evaluating Polynomials::
* Finding Roots::
* Products of Polynomials::
* Derivatives and Integrals::
* Polynomial Interpolation::
* Miscellaneous Functions::
@end menu

@node Evaluating Polynomials
@section Evaluating Polynomials

The value of a polynomial represented by the vector @var{c} can be evaluated
at the point @var{x} very easily, as the following example shows:

@example
@group
N = length(c)-1;
val = dot( x.^(N:-1:0), c );
@end group
@end example

@noindent
While the above example shows how easy it is to compute the value of a
polynomial, it isn't the most stable algorithm.  With larger polynomials
you should use more elegant algorithms, such as Horner's Method, which
is exactly what the Octave function @code{polyval} does.

In the case where @var{x} is a square matrix, the polynomial given by
@var{c} is still well-defined.  As when @var{x} is a scalar the obvious
implementation is easily expressed in Octave, but also in this case
more elegant algorithms perform better.  The @code{polyvalm} function
provides such an algorithm.

@c ./polynomial/polyval.m
@anchor{doc-polyval}
@deftypefn {Function File} {@var{y} =} polyval (@var{p}, @var{x})
@deftypefnx {Function File} {@var{y} =} polyval (@var{p}, @var{x}, [], @var{mu})
Evaluate the polynomial at of the specified values for @var{x}.  When @var{mu}
is present evaluate the polynomial for (@var{x}-@var{mu}(1))/@var{mu}(2).
If @var{x} is a vector or matrix, the polynomial is evaluated for each of
the elements of @var{x}.
@deftypefnx {Function File} {[@var{y}, @var{dy}] =} polyval (@var{p}, @var{x}, @var{s})
@deftypefnx {Function File} {[@var{y}, @var{dy}] =} polyval (@var{p}, @var{x}, @var{s}, @var{mu})
In addition to evaluating the polynomial, the second output 
represents the prediction interval, @var{y} +/- @var{dy}, which
contains at least 50% of the future predictions.  To calculate the
prediction interval, the structured variable @var{s}, originating
form `polyfit', must be present.
@seealso{@ref{doc-polyfit,,polyfit}, @ref{doc-polyvalm,,polyvalm}, @ref{doc-poly,,poly}, @ref{doc-roots,,roots}, @ref{doc-conv,,conv}, @ref{doc-deconv,,deconv}, @ref{doc-residue,,residue}, @ref{doc-filter,,filter}, @ref{doc-polyderiv,,polyderiv}, @ref{doc-polyinteg,,polyinteg}}
@end deftypefn


@c ./polynomial/polyvalm.m
@anchor{doc-polyvalm}
@deftypefn {Function File} {} polyvalm (@var{c}, @var{x})
Evaluate a polynomial in the matrix sense.

@code{polyvalm (@var{c}, @var{x})} will evaluate the polynomial in the
matrix sense, i.e., matrix multiplication is used instead of element by
element multiplication as is used in polyval.

The argument @var{x} must be a square matrix.
@seealso{@ref{doc-polyval,,polyval}, @ref{doc-poly,,poly}, @ref{doc-roots,,roots}, @ref{doc-conv,,conv}, @ref{doc-deconv,,deconv}, @ref{doc-residue,,residue}, @ref{doc-filter,,filter}, @ref{doc-polyderiv,,polyderiv}, @ref{doc-polyinteg,,polyinteg}}
@end deftypefn


@node Finding Roots
@section Finding Roots

Octave can find the roots of a given polynomial.  This is done by computing
the companion matrix of the polynomial (see the @code{compan} function
for a definition), and then finding its eigenvalues.

@c ./polynomial/roots.m
@anchor{doc-roots}
@deftypefn {Function File} {} roots (@var{v})

For a vector @var{v} with @math{N} components, return
the roots of the polynomial
@tex
$$
v_1 z^{N-1} + \cdots + v_{N-1} z + v_N.
$$
@end tex
@ifnottex

@example
v(1) * z^(N-1) + @dots{} + v(N-1) * z + v(N)
@end example
@end ifnottex

As an example, the following code finds the roots of the quadratic
polynomial
@tex
$$ p(x) = x^2 - 5. $$
@end tex
@ifnottex
@example
p(x) = x^2 - 5.
@end example
@end ifnottex
@example
@group
c = [1, 0, -5];
roots(c)
@result{}  2.2361
@result{} -2.2361
@end group
@end example
Note that the true result is
@tex
$\pm \sqrt{5}$
@end tex
@ifnottex
@math{+/- sqrt(5)}
@end ifnottex
which is roughly
@tex
$\pm 2.2361$.
@end tex
@ifnottex
@math{+/- 2.2361}.
@end ifnottex
@seealso{@ref{doc-compan,,compan}}
@end deftypefn


@c ./polynomial/compan.m
@anchor{doc-compan}
@deftypefn {Function File} {} compan (@var{c})
Compute the companion matrix corresponding to polynomial coefficient
vector @var{c}.

The companion matrix is
@tex
$$
A = \left[\matrix{
 -c_2/c_1 & -c_3/c_1 & \cdots & -c_N/c_1 & -c_{N+1}/c_1\cr
     1    &     0    & \cdots &     0    &         0   \cr
     0    &     1    & \cdots &     0    &         0   \cr
  \vdots  &   \vdots & \ddots &  \vdots  &      \vdots \cr
     0    &     0    & \cdots &     1    &         0}\right].
$$
@end tex
@ifnottex

@c Set example in small font to prevent overfull line
@smallexample
     _                                                        _
    |  -c(2)/c(1)   -c(3)/c(1)  @dots{}  -c(N)/c(1)  -c(N+1)/c(1)  |
    |       1            0      @dots{}       0             0      |
    |       0            1      @dots{}       0             0      |
A = |       .            .   .            .             .      |
    |       .            .       .        .             .      |
    |       .            .           .    .             .      |
    |_      0            0      @dots{}       1             0     _|
@end smallexample
@end ifnottex

The eigenvalues of the companion matrix are equal to the roots of the
polynomial.
@seealso{@ref{doc-poly,,poly}, @ref{doc-roots,,roots}, @ref{doc-residue,,residue}, @ref{doc-conv,,conv}, @ref{doc-deconv,,deconv}, @ref{doc-polyval,,polyval}, @ref{doc-polyderiv,,polyderiv}, @ref{doc-polyinteg,,polyinteg}}
@end deftypefn


@c ./polynomial/mpoles.m
@anchor{doc-mpoles}
@deftypefn {Function File} {[@var{multp}, @var{indx}] =} mpoles (@var{p})
@deftypefnx {Function File} {[@var{multp}, @var{indx}] =} mpoles (@var{p}, @var{tol})
@deftypefnx {Function File} {[@var{multp}, @var{indx}] =} mpoles (@var{p}, @var{tol}, @var{reorder})
Identify unique poles in @var{p} and associates their multiplicity,
ordering them from largest to smallest.

If the relative difference of the poles is less than @var{tol}, then
they are considered to be multiples.  The default value for @var{tol}
is 0.001.

If the optional parameter @var{reorder} is zero, poles are not sorted.

The value @var{multp} is a vector specifying the multiplicity of the
poles.  @var{multp}(:) refers to multiplicity of @var{p}(@var{indx}(:)).

For example,

@example
@group
p = [2 3 1 1 2];
[m, n] = mpoles(p);
  @result{} m = [1; 1; 2; 1; 2]
  @result{} n = [2; 5; 1; 4; 3]
  @result{} p(n) = [3, 2, 2, 1, 1]
@end group
@end example

@seealso{@ref{doc-poly,,poly}, @ref{doc-roots,,roots}, @ref{doc-conv,,conv}, @ref{doc-deconv,,deconv}, @ref{doc-polyval,,polyval}, @ref{doc-polyderiv,,polyderiv}, @ref{doc-polyinteg,,polyinteg}, @ref{doc-residue,,residue}}
@end deftypefn


@node Products of Polynomials
@section Products of Polynomials

@c ./polynomial/conv.m
@anchor{doc-conv}
@deftypefn {Function File} {} conv (@var{a}, @var{b})
Convolve two vectors.

@code{y = conv (a, b)} returns a vector of length equal to
@code{length (a) + length (b) - 1}.
If @var{a} and @var{b} are polynomial coefficient vectors, @code{conv}
returns the coefficients of the product polynomial.
@seealso{@ref{doc-deconv,,deconv}, @ref{doc-poly,,poly}, @ref{doc-roots,,roots}, @ref{doc-residue,,residue}, @ref{doc-polyval,,polyval}, @ref{doc-polyderiv,,polyderiv}, @ref{doc-polyinteg,,polyinteg}}
@end deftypefn


@c ./polynomial/convn.m
@anchor{doc-convn}
@deftypefn {Function File} {@var{c} =} convn (@var{a}, @var{b}, @var{shape})
@math{N}-dimensional convolution of matrices @var{a} and @var{b}.

The size of the output is determined by the @var{shape} argument.
This can be any of the following character strings:

@table @asis
@item "full"
The full convolution result is returned.  The size out of the output is
@code{size (@var{a}) + size (@var{b})-1}.  This is the default behavior.
@item "same"
The central part of the convolution result is returned.  The size out of the
output is the same as @var{a}.
@item "valid"
The valid part of the convolution is returned.  The size of the result is
@code{max (size (@var{a}) - size (@var{b})+1, 0)}.
@end table

@seealso{@ref{doc-conv,,conv}, @ref{doc-conv2,,conv2}}
@end deftypefn


@c ./polynomial/deconv.m
@anchor{doc-deconv}
@deftypefn {Function File} {} deconv (@var{y}, @var{a})
Deconvolve two vectors.

@code{[b, r] = deconv (y, a)} solves for @var{b} and @var{r} such that
@code{y = conv (a, b) + r}.

If @var{y} and @var{a} are polynomial coefficient vectors, @var{b} will
contain the coefficients of the polynomial quotient and @var{r} will be
a remainder polynomial of lowest order.
@seealso{@ref{doc-conv,,conv}, @ref{doc-poly,,poly}, @ref{doc-roots,,roots}, @ref{doc-residue,,residue}, @ref{doc-polyval,,polyval}, @ref{doc-polyderiv,,polyderiv}, @ref{doc-polyinteg,,polyinteg}}
@end deftypefn


@c ./DLD-FUNCTIONS/conv2.cc
@anchor{doc-conv2}
@deftypefn {Loadable Function} {y =} conv2 (@var{a}, @var{b}, @var{shape})
@deftypefnx {Loadable Function} {y =} conv2 (@var{v1}, @var{v2}, @var{M}, @var{shape})

Returns 2D convolution of @var{a} and @var{b} where the size
of @var{c} is given by

@table @asis
@item @var{shape}= 'full'
returns full 2-D convolution
@item @var{shape}= 'same'
same size as a. 'central' part of convolution
@item @var{shape}= 'valid'
only parts which do not include zero-padded edges
@end table

By default @var{shape} is 'full'.  When the third argument is a matrix
returns the convolution of the matrix @var{M} by the vector @var{v1}
in the column direction and by vector @var{v2} in the row direction
@end deftypefn


@c ./polynomial/polygcd.m
@anchor{doc-polygcd}
@deftypefn {Function File} {@var{q} =} polygcd (@var{b}, @var{a}, @var{tol})

Find greatest common divisor of two polynomials.  This is equivalent
to the polynomial found by multiplying together all the common roots.
Together with deconv, you can reduce a ratio of two polynomials.
Tolerance defaults to 
@example 
sqrt(eps).
@end example
 Note that this is an unstable
algorithm, so don't try it on large polynomials.

Example
@example
@group
polygcd (poly(1:8), poly(3:12)) - poly(3:8)
@result{} [ 0, 0, 0, 0, 0, 0, 0 ]
deconv (poly(1:8), polygcd (poly(1:8), poly(3:12))) ...
  - poly(1:2)
@result{} [ 0, 0, 0 ]
@end group
@end example
@seealso{@ref{doc-poly,,poly}, @ref{doc-polyinteg,,polyinteg}, @ref{doc-polyderiv,,polyderiv}, @ref{doc-polyreduce,,polyreduce}, @ref{doc-roots,,roots}, @ref{doc-conv,,conv}, @ref{doc-deconv,,deconv}, @ref{doc-residue,,residue}, @ref{doc-filter,,filter}, @ref{doc-polyval,,polyval}, @ref{doc-polyvalm,,polyvalm}}
@end deftypefn


@c ./polynomial/residue.m
@anchor{doc-residue}
@deftypefn {Function File} {[@var{r}, @var{p}, @var{k}, @var{e}] =} residue (@var{b}, @var{a})
Compute the partial fraction expansion for the quotient of the
polynomials, @var{b} and @var{a}.

@tex
$$
{B(s)\over A(s)} = \sum_{m=1}^M {r_m\over (s-p_m)^e_m}
  + \sum_{i=1}^N k_i s^{N-i}.
$$
@end tex
@ifnottex

@example
@group
 B(s)    M       r(m)         N
 ---- = SUM -------------  + SUM k(i)*s^(N-i)
 A(s)   m=1 (s-p(m))^e(m)    i=1
@end group
@end example
@end ifnottex

@noindent
where @math{M} is the number of poles (the length of the @var{r},
@var{p}, and @var{e}), the @var{k} vector is a polynomial of order @math{N-1}
representing the direct contribution, and the @var{e} vector specifies
the multiplicity of the m-th residue's pole.

For example,

@example
@group
b = [1, 1, 1];
a = [1, -5, 8, -4];
[r, p, k, e] = residue (b, a);
     @result{} r = [-2; 7; 3]
     @result{} p = [2; 2; 1]
     @result{} k = [](0x0)
     @result{} e = [1; 2; 1]
@end group
@end example

@noindent
which represents the following partial fraction expansion
@tex
$$
{s^2+s+1\over s^3-5s^2+8s-4} = {-2\over s-2} + {7\over (s-2)^2} + {3\over s-1}
$$
@end tex
@ifnottex

@example
@group
        s^2 + s + 1       -2        7        3
   ------------------- = ----- + ------- + -----
   s^3 - 5s^2 + 8s - 4   (s-2)   (s-2)^2   (s-1)
@end group
@end example

@end ifnottex

@deftypefnx {Function File} {[@var{b}, @var{a}] =} residue (@var{r}, @var{p}, @var{k})
@deftypefnx {Function File} {[@var{b}, @var{a}] =} residue (@var{r}, @var{p}, @var{k}, @var{e})
Compute the reconstituted quotient of polynomials,
@var{b}(s)/@var{a}(s), from the partial fraction expansion;
represented by the residues, poles, and a direct polynomial specified
by @var{r}, @var{p} and @var{k}, and the pole multiplicity @var{e}.

If the multiplicity, @var{e}, is not explicitly specified the multiplicity is
determined by the script mpoles.m.

For example,

@example
@group
r = [-2; 7; 3];
p = [2; 2; 1];
k = [1, 0];
[b, a] = residue (r, p, k);
     @result{} b = [1, -5, 9, -3, 1]
     @result{} a = [1, -5, 8, -4]

where mpoles.m is used to determine e = [1; 2; 1]

@end group
@end example

Alternatively the multiplicity may be defined explicitly, for example,

@example
@group
r = [7; 3; -2];
p = [2; 1; 2];
k = [1, 0];
e = [2; 1; 1];
[b, a] = residue (r, p, k, e);
     @result{} b = [1, -5, 9, -3, 1]
     @result{} a = [1, -5, 8, -4]
@end group
@end example

@noindent
which represents the following partial fraction expansion
@tex
$$
{-2\over s-2} + {7\over (s-2)^2} + {3\over s-1} + s = {s^4-5s^3+9s^2-3s+1\over s^3-5s^2+8s-4}
$$
@end tex
@ifnottex

@example
@group
    -2        7        3         s^4 - 5s^3 + 9s^2 - 3s + 1
   ----- + ------- + ----- + s = --------------------------
   (s-2)   (s-2)^2   (s-1)          s^3 - 5s^2 + 8s - 4
@end group
@end example
@end ifnottex
@seealso{@ref{doc-poly,,poly}, @ref{doc-roots,,roots}, @ref{doc-conv,,conv}, @ref{doc-deconv,,deconv}, @ref{doc-mpoles,,mpoles}, @ref{doc-polyval,,polyval}, @ref{doc-polyderiv,,polyderiv}, @ref{doc-polyinteg,,polyinteg}}
@end deftypefn


@node Derivatives and Integrals
@section Derivatives and Integrals

Octave comes with functions for computing the derivative and the integral
of a polynomial.  The functions @code{polyderiv} and @code{polyint}
both return new polynomials describing the result.  As an example we'll
compute the definite integral of @math{p(x) = x^2 + 1} from 0 to 3.

@example
@group
c = [1, 0, 1];
integral = polyint(c);
area = polyval(integral, 3) - polyval(integral, 0)
@result{} 12
@end group
@end example

@c ./polynomial/polyderiv.m
@anchor{doc-polyderiv}
@deftypefn {Function File} {} polyderiv (@var{c})
@deftypefnx {Function File} {[@var{q}] =} polyderiv (@var{b}, @var{a})
@deftypefnx {Function File} {[@var{q}, @var{r}] =} polyderiv (@var{b}, @var{a})
Return the coefficients of the derivative of the polynomial whose
coefficients are given by vector @var{c}.  If a pair of polynomials
is given @var{b} and @var{a}, the derivative of the product is
returned in @var{q}, or the quotient numerator in @var{q} and the
quotient denominator in @var{r}.
@seealso{@ref{doc-poly,,poly}, @ref{doc-polyinteg,,polyinteg}, @ref{doc-polyreduce,,polyreduce}, @ref{doc-roots,,roots}, @ref{doc-conv,,conv}, @ref{doc-deconv,,deconv}, @ref{doc-residue,,residue}, @ref{doc-filter,,filter}, @ref{doc-polygcd,,polygcd}, @ref{doc-polyval,,polyval}, @ref{doc-polyvalm,,polyvalm}}
@end deftypefn


@c ./polynomial/polyder.m
@anchor{doc-polyder}
@deftypefn {Function File} {} polyder (@var{c})
@deftypefnx {Function File} {[@var{q}] =} polyder (@var{b}, @var{a})
@deftypefnx {Function File} {[@var{q}, @var{r}] =} polyder (@var{b}, @var{a})
See polyderiv.
@end deftypefn


@c ./deprecated/polyinteg.m
@anchor{doc-polyinteg}
@deftypefn {Function File} {} polyinteg (@var{c})
Return the coefficients of the integral of the polynomial whose
coefficients are represented by the vector @var{c}.

The constant of integration is set to zero.
@seealso{@ref{doc-polyint,,polyint}, @ref{doc-poly,,poly}, @ref{doc-polyderiv,,polyderiv}, @ref{doc-polyreduce,,polyreduce}, @ref{doc-roots,,roots}, @ref{doc-conv,,conv}, @ref{doc-deconv,,deconv}, @ref{doc-residue,,residue}, @ref{doc-filter,,filter}, @ref{doc-polyval,,polyval}, @ref{doc-polyvalm,,polyvalm}}
@end deftypefn


@c ./polynomial/polyint.m
@anchor{doc-polyint}
@deftypefn {Function File} {} polyint (@var{c}, @var{k})
Return the coefficients of the integral of the polynomial whose
coefficients are represented by the vector @var{c}.  The variable
@var{k} is the constant of integration, which by default is set to zero.
@seealso{@ref{doc-poly,,poly}, @ref{doc-polyderiv,,polyderiv}, @ref{doc-polyreduce,,polyreduce}, @ref{doc-roots,,roots}, @ref{doc-conv,,conv}, @ref{doc-deconv,,deconv}, @ref{doc-residue,,residue}, @ref{doc-filter,,filter}, @ref{doc-polyval,,polyval}, @ref{doc-polyvalm,,polyvalm}}
@end deftypefn


@node Polynomial Interpolation
@section Polynomial Interpolation

Octave comes with good support for various kinds of interpolation,
most of which are described in @ref{Interpolation}.  One simple alternative
to the functions described in the aforementioned chapter, is to fit
a single polynomial to some given data points.  To avoid a highly
fluctuating polynomial, one most often wants to fit a low-order polynomial
to data.  This usually means that it is necessary to fit the polynomial
in a least-squares sense, which is what the @code{polyfit} function does.

@c ./polynomial/polyfit.m
@anchor{doc-polyfit}
@deftypefn {Function File} {[@var{p}, @var{s}, @var{mu}] =} polyfit (@var{x}, @var{y}, @var{n})
Return the coefficients of a polynomial @var{p}(@var{x}) of degree
@var{n} that minimizes the least-squares-error of the fit.

The polynomial coefficients are returned in a row vector.

The second output is a structure containing the following fields:

@table @samp
@item R
Triangular factor R from the QR decomposition.
@item X
The Vandermonde matrix used to compute the polynomial coefficients.
@item df
The degrees of freedom.
@item normr
The norm of the residuals.
@item yf
The values of the polynomial for each value of @var{x}.
@end table

The second output may be used by @code{polyval} to calculate the 
statistical error limits of the predicted values.

When the third output, @var{mu}, is present the 
coefficients, @var{p}, are associated with a polynomial in
@var{xhat} = (@var{x}-@var{mu}(1))/@var{mu}(2).
Where @var{mu}(1) = mean (@var{x}), and @var{mu}(2) = std (@var{x}).
This linear transformation of @var{x} improves the numerical
stability of the fit.
@seealso{@ref{doc-polyval,,polyval}, @ref{doc-residue,,residue}}
@end deftypefn


In situations where a single polynomial isn't good enough, a solution
is to use several polynomials pieced together.  The function @code{mkpp}
creates a piece-wise polynomial, @code{ppval} evaluates the function 
created by @code{mkpp}, and @code{unmkpp} returns detailed information
about the function.

The following example shows how to combine two linear functions and a
quadratic into one function.  Each of these functions is expressed
on adjoined intervals.

@example
@group
x = [-2, -1, 1, 2];
p = [ 0,  1, 0;
      1, -2, 1;
      0, -1, 1 ];
pp = mkpp(x, p);
xi = linspace(-2, 2, 50);
yi = ppval(pp, xi);
plot(xi, yi);
@end group
@end example

@c ./polynomial/ppval.m
@anchor{doc-ppval}
@deftypefn {Function File} {@var{yi} =} ppval (@var{pp}, @var{xi})
Evaluate piece-wise polynomial @var{pp} at the points @var{xi}.  
If @code{@var{pp}.d} is a scalar greater than 1, or an array,
then the returned value @var{yi} will be an array that is 
@code{d1, d1, @dots{}, dk, length (@var{xi})]}.
@seealso{@ref{doc-mkpp,,mkpp}, @ref{doc-unmkpp,,unmkpp}, @ref{doc-spline,,spline}}
@end deftypefn 


@c ./polynomial/mkpp.m
@anchor{doc-mkpp}
@deftypefn {Function File} {@var{pp} =} mkpp (@var{x}, @var{p})
@deftypefnx {Function File} {@var{pp} =} mkpp (@var{x}, @var{p}, @var{d})

Construct a piece-wise polynomial structure from sample points
@var{x} and coefficients @var{p}.  The i-th row of @var{p},
@code{@var{p} (@var{i},:)}, contains the coefficients for the polynomial
over the @var{i}-th interval, ordered from highest to 
lowest.  There must be one row for each interval in @var{x}, so 
@code{rows (@var{p}) == length (@var{x}) - 1}.  

You can concatenate multiple polynomials of the same order over the 
same set of intervals using @code{@var{p} = [ @var{p1}; @var{p2}; 
@dots{}; @var{pd} ]}.  In this case, @code{rows (@var{p}) == @var{d} 
* (length (@var{x}) - 1)}.

@var{d} specifies the shape of the matrix @var{p} for all except the
last dimension.  If @var{d} is not specified it will be computed as
@code{round (rows (@var{p}) / (length (@var{x}) - 1))} instead.

@seealso{@ref{doc-unmkpp,,unmkpp}, @ref{doc-ppval,,ppval}, @ref{doc-spline,,spline}}
@end deftypefn


@c ./polynomial/unmkpp.m
@anchor{doc-unmkpp}
@deftypefn {Function File} {[@var{x}, @var{p}, @var{n}, @var{k}, @var{d}] =} unmkpp (@var{pp})

Extract the components of a piece-wise polynomial structure @var{pp}.
These are as follows:

@table @asis
@item @var{x}
Sample points.
@item @var{p}
Polynomial coefficients for points in sample interval.  @code{@var{p}
(@var{i}, :)} contains the coefficients for the polynomial over
interval @var{i} ordered from highest to lowest.  If @code{@var{d} >
1}, @code{@var{p} (@var{r}, @var{i}, :)} contains the coefficients for 
the r-th polynomial defined on interval @var{i}.  However, this is 
stored as a 2-D array such that @code{@var{c} = reshape (@var{p} (:,
@var{j}), @var{n}, @var{d})} gives @code{@var{c} (@var{i},  @var{r})}
is the j-th coefficient of the r-th polynomial over the i-th interval.
@item @var{n}
Number of polynomial pieces.
@item @var{k}
Order of the polynomial plus 1.
@item @var{d}
Number of polynomials defined for each interval.
@end table

@seealso{@ref{doc-mkpp,,mkpp}, @ref{doc-ppval,,ppval}, @ref{doc-spline,,spline}}
@end deftypefn


@node Miscellaneous Functions
@section Miscellaneous Functions

@c ./polynomial/poly.m
@anchor{doc-poly}
@deftypefn {Function File} {} poly (@var{a})
If @var{a} is a square @math{N}-by-@math{N} matrix, @code{poly (@var{a})}
is the row vector of the coefficients of @code{det (z * eye (N) - a)},
the characteristic polynomial of @var{a}.  As an example we can use
this to find the eigenvalues of @var{a} as the roots of @code{poly (@var{a})}.
@example
@group
roots(poly(eye(3)))
@result{} 1.00000 + 0.00000i
@result{} 1.00000 - 0.00000i
@result{} 1.00000 + 0.00000i
@end group
@end example
In real-life examples you should, however, use the @code{eig} function
for computing eigenvalues.

If @var{x} is a vector, @code{poly (@var{x})} is a vector of coefficients
of the polynomial whose roots are the elements of @var{x}.  That is,
of @var{c} is a polynomial, then the elements of 
@code{@var{d} = roots (poly (@var{c}))} are contained in @var{c}.
The vectors @var{c} and @var{d} are, however, not equal due to sorting
and numerical errors.
@seealso{@ref{doc-eig,,eig}, @ref{doc-roots,,roots}}
@end deftypefn


@c ./polynomial/polyout.m
@anchor{doc-polyout}
@deftypefn {Function File} {} polyout (@var{c}, @var{x})
Write formatted polynomial
@tex
$$ c(x) = c_1 x^n + \ldots + c_n x + c_{n+1} $$
@end tex
@ifnottex
@example
   c(x) = c(1) * x^n + @dots{} + c(n) x + c(n+1)
@end example
@end ifnottex
 and return it as a string or write it to the screen (if
@var{nargout} is zero).
@var{x} defaults to the string @code{"s"}.
@seealso{@ref{doc-polyval,,polyval}, @ref{doc-polyvalm,,polyvalm}, @ref{doc-poly,,poly}, @ref{doc-roots,,roots}, @ref{doc-conv,,conv}, @ref{doc-deconv,,deconv}, @ref{doc-residue,,residue}, @ref{doc-filter,,filter}, @ref{doc-polyderiv,,polyderiv}, @ref{doc-polyinteg,,polyinteg}}
@end deftypefn


@c ./polynomial/polyreduce.m
@anchor{doc-polyreduce}
@deftypefn {Function File} {} polyreduce (@var{c})
Reduces a polynomial coefficient vector to a minimum number of terms by
stripping off any leading zeros.
@seealso{@ref{doc-poly,,poly}, @ref{doc-roots,,roots}, @ref{doc-conv,,conv}, @ref{doc-deconv,,deconv}, @ref{doc-residue,,residue}, @ref{doc-filter,,filter}, @ref{doc-polyval,,polyval}, @ref{doc-polyvalm,,polyvalm}, @ref{doc-polyderiv,,polyderiv}, @ref{doc-polyinteg,,polyinteg}}
@end deftypefn