
C++ Object Persistence with ODB

Copyright © 2009-2015 Code Synthesis Tools CC

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, version 1.3; with no Invariant Sections, no Front-Cover
Texts and no Back-Cover Texts.

Revision 2.4, February 2015

This revision of the manual describes ODB 2.4.0 and is available in the following formats:
XHTML, PDF, and PostScript.

http://www.codesynthesis.com/licenses/fdl-1.3.txt
http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/mailman/listinfo/odb-users
http://www.codesynthesis.com/pipermail/odb-users/

Table of Contents
.................. 1Preface
.............. 1About This Document
............... 2More Information
......... 3PART I OBJECT-RELATIONAL MAPPING
................ 41 Introduction
............ 41.1 Architecture and Workflow
................ 81.2 Benefits
............ 91.3 Supported C++ Standards
.............. 102 Hello World Example
........... 102.1 Declaring Persistent Classes
.......... 132.2 Generating Database Support Code
............ 142.3 Compiling and Running
............ 152.4 Making Objects Persistent
.......... 182.5 Querying the Database for Objects
........... 202.6 Updating Persistent Objects
............ 222.7 Defining and Using Views
............ 242.8 Deleting Persistent Objects
........... 252.9 Changing Persistent Classes
.......... 272.10 Working with Multiple Databases
............... 292.11 Summary
............ 303 Working with Persistent Objects
............ 303.1 Concepts and Terminology
......... 323.2 Declaring Persistent Objects and Values
............ 353.3 Object and View Pointers
................ 373.4 Database
............... 393.5 Transactions
............... 443.6 Connections
........... 453.7 Error Handling and Recovery
............ 473.8 Making Objects Persistent
............ 483.9 Loading Persistent Objects
........... 503.10 Updating Persistent Objects
........... 523.11 Deleting Persistent Objects
.......... 543.12 Executing Native SQL Statements
.......... 543.13 Tracing SQL Statement Execution
.............. 573.14 ODB Exceptions
.............. 634 Querying the Database
............. 644.1 ODB Query Language
............. 654.2 Parameter Binding
.............. 664.3 Executing a Query
............... 694.4 Query Result
.............. 734.5 Prepared Queries
................. 815 Containers
............. 825.1 Ordered Containers
........... 845.2 Set and Multiset Containers

iRevision 2.4, February 2015 C++ Object Persistence with ODB

Table of Contents

............ 855.3 Map and Multimap Containers

............. 865.4 Change-Tracking Containers

............ 885.4.1 Change-Tracking vector

............. 915.5 Using Custom Containers

.................. 926 Relationships

............. 956.1 Unidirectional Relationships

............. 956.1.1 To-One Relationships

............ 966.1.2 To-Many Relationships

............. 976.2 Bidirectional Relationships

............ 1006.2.1 One-to-One Relationships

........... 1016.2.2 One-to-Many Relationships

........... 1026.2.3 Many-to-Many Relationships

.............. 1036.3 Circular Relationships

................ 1066.4 Lazy Pointers

............ 1116.5 Using Custom Smart Pointers

.................. 1127 Value Types

............... 1127.1 Simple Value Types

.............. 1127.2 Composite Value Types

............. 1157.2.1 Composite Object Ids

........ 1167.2.2 Composite Value Column and Table Names

........... 1197.3 Pointers and NULL Value Semantics

.................. 1238 Inheritance

............... 1258.1 Reuse Inheritance

............. 1268.2 Polymorphism Inheritance

........... 1318.2.1 Performance and Limitations

............... 1348.3 Mixed Inheritance

................... 1359 Sections

.............. 1429.1 Sections and Inheritance

........... 1439.2 Sections and Optimistic Concurrency

............. 1459.3 Sections and Lazy Pointers

.......... 1469.4 Sections and Change-Tracking Containers

................... 14710 Views

................ 14910.1 Object Views

.............. 15510.2 Object Loading Views

................ 16110.3 Table Views

................ 16310.4 Mixed Views

............. 16410.5 View Query Conditions

................ 16610.6 Native Views

........... 16810.7 Other View Features and Limitations

................... 17011 Session

................ 17311.1 Object Cache

............... 17411.2 Custom Sessions

............... 17712 Optimistic Concurrency

.............. 18213 Database Schema Evolution

.......... 18313.1 Object Model Version and Changelog

............... 19113.2 Schema Migration

Revision 2.4, February 2015ii C++ Object Persistence with ODB

Table of Contents

............... 19813.3 Data Migration

............ 19913.3.1 Immediate Data Migration

............. 20513.3.2 Gradual Data Migration

............. 20713.4 Soft Object Model Changes

............ 21313.4.1 Reuse Inheritance Changes

.......... 21513.4.2 Polymorphism Inheritance Changes

............... 21614 ODB Pragma Language

.............. 21814.1 Object Type Pragmas

................ 21914.1.1 table

............... 22014.1.2 pointer

............... 22014.1.3 abstract

............... 22114.1.4 readonly

.............. 22114.1.5 optimistic

................ 22214.1.6 no_id

............... 22214.1.7 callback

............... 22514.1.8 schema

.............. 22814.1.9 polymorphic

............... 22814.1.10 session

.............. 22814.1.11 definition

.............. 22914.1.12 transient

............. 22914.1.13 sectionable

............... 22914.1.14 deleted

................ 22914.1.15 bulk

.............. 22914.2 View Type Pragmas

............... 23014.2.1 object

................ 23014.2.2 table

................ 23014.2.3 query

............... 23014.2.4 pointer

............... 23014.2.5 callback

.............. 23014.2.6 definition

.............. 23114.2.7 transient

.............. 23114.3 Value Type Pragmas

................ 23314.3.1 type

............... 23314.3.2 id_type

............. 23414.3.3 null /not_null

............... 23514.3.4 default

............... 23514.3.5 options

............... 23614.3.6 readonly

.............. 23614.3.7 definition

.............. 23714.3.8 transient

.............. 23714.3.9 unordered

.............. 23814.3.10 index_type

.............. 23814.3.11 key_type

.............. 23814.3.12 value_type

......... 23814.3.13 value_null /value_not_null

.............. 23914.3.14 id_options

iiiRevision 2.4, February 2015 C++ Object Persistence with ODB

Table of Contents

............. 23914.3.15 index_options

............. 23914.3.16 key_options

............. 23914.3.17 value_options

.............. 24014.3.18 id_column

............. 24014.3.19 index_column

.............. 24014.3.20 key_column

............. 24014.3.21 value_column

.............. 24014.4 Data Member Pragmas

................. 24214.4.1 id

................ 24314.4.2 auto

................ 24314.4.3 type

............... 24414.4.4 id_type

............. 24414.4.5 get /set /access

............. 24814.4.6 null /not_null

............... 24914.4.7 default

............... 25014.4.8 options

......... 25114.4.9 column (object, composite value)

............. 25214.4.10 column (view)

.............. 25214.4.11 transient

.............. 25214.4.12 readonly

............... 25414.4.13 virtual

............... 25714.4.14 inverse

.............. 25814.4.15 on_delete

............... 26014.4.16 version

............... 26114.4.17 index

............... 26114.4.18 unique

.............. 26114.4.19 unordered

............... 26214.4.20 table

............. 26214.4.21 load /update

............... 26314.4.22 section

............... 26314.4.23 added

............... 26314.4.24 deleted

.............. 26314.4.25 index_type

.............. 26314.4.26 key_type

.............. 26414.4.27 value_type

......... 26414.4.28 value_null /value_not_null

.............. 26514.4.29 id_options

............. 26514.4.30 index_options

............. 26514.4.31 key_options

............. 26614.4.32 value_options

.............. 26614.4.33 id_column

............. 26614.4.34 index_column

.............. 26714.4.35 key_column

............. 26714.4.36 value_column

.............. 26714.5 Namespace Pragmas

............... 26814.5.1 pointer

Revision 2.4, February 2015iv C++ Object Persistence with ODB

Table of Contents

................ 26914.5.2 table

............... 27014.5.3 schema

............... 27014.5.4 session

.............. 27114.6 Object Model Pragmas

............... 27114.6.1 version

............. 27114.7 Index Definition Pragmas

........... 27414.8 Database Type Mapping Pragmas

............. 27814.9 C++ Compiler Warnings

............... 27814.9.1 GNU C++

............... 27914.9.2 Visual C++

............... 27914.9.3 Sun C++

.............. 27914.9.4 IBM XL C++

............... 28014.9.5 HP aC++

................ 28014.9.6 Clang

........... 28115 Advanced Techniques and Mechanisms

.............. 28115.1 Transaction Callbacks

.......... 28315.2 Persistent Class Template Instantiations

............. 28515.3 Bulk Database Operations

............. 292PART II DATABASE SYSTEMS

............... 29316 Multi-Database Support

............ 29516.1 Static Multi-Database Support

........... 29816.2 Dynamic Multi-Database Support

....... 30116.2.2 Dynamic Loading of Database Support Code

................ 30517 MySQL Database

.............. 30517.1 MySQL Type Mapping

............ 30617.1.1 String Type Mapping

............ 30717.1.2 Binary Type Mapping

............. 30817.2 MySQL Database Class

......... 31117.3 MySQL Connection and Connection Factory

.............. 31417.4 MySQL Exceptions

.............. 31517.5 MySQL Limitations

............ 31517.5.1 Foreign Key Constraints

............. 31517.6 MySQL Index Definitions

............. 31617.7 MySQL Stored Procedures

................. 31918 SQLite Database

.............. 31918.1 SQLite Type Mapping

............ 32018.1.1 String Type Mapping

............ 32118.1.2 Binary Type Mapping

.............. 32218.2 SQLite Database Class

......... 32518.3 SQLite Connection and Connection Factory

............... 32918.4 SQLite Exceptions

.............. 33018.5 SQLite Limitations

............ 33018.5.1 Query Result Caching

......... 33018.5.2 Automatic Assignment of Object Ids

............ 33118.5.3 Foreign Key Constraints

............ 33218.5.4 Constraint Violations

vRevision 2.4, February 2015 C++ Object Persistence with ODB

Table of Contents

............. 33218.5.5 Sharing of Queries

.............. 33218.5.6 Forced Rollback

........... 33218.5.7 Database Schema Evolution

............. 33318.6 SQLite Index Definitions

............... 33519 PostgreSQL Database

............. 33519.1 PostgreSQL Type Mapping

............ 33619.1.1 String Type Mapping

.......... 33719.1.2 Binary Type and UUID Mapping

............. 33819.2 PostgreSQL Database Class

........ 34119.3 PostgreSQL Connection and Connection Factory

............. 34319.4 PostgreSQL Exceptions

............. 34419.5 PostgreSQL Limitations

............ 34419.5.1 Query Result Caching

............ 34519.5.2 Foreign Key Constraints

........... 34519.5.3 Unique Constraint Violations

............. 34519.5.4 Date-Time Format

............... 34519.5.5 Timezones

............ 34519.5.6 NUMERIC Type Support

............ 34619.6 PostgreSQL Index Definitions

................. 34720 Oracle Database

.............. 34720.1 Oracle Type Mapping

............ 34820.1.1 String Type Mapping

............ 34920.1.2 Binary Type Mapping

.............. 35020.2 Oracle Database Class

......... 35320.3 Oracle Connection and Connection Factory

............... 35620.4 Oracle Exceptions

............... 35820.5 Oracle Limitations

............. 35820.5.1 Identifier Truncation

............ 35920.5.2 Query Result Caching

............ 35920.5.3 Foreign Key Constraints

........... 35920.5.4 Unique Constraint Violations

.......... 35920.5.5 Large FLOAT and NUMBER Types

............... 36020.5.6 Timezones

.............. 36020.5.7 LONG Types

....... 36020.5.8 LOB Types and By-Value Accessors/Modifiers

........... 36020.5.9 Database Schema Evolution

............. 36020.6 Oracle Index Definitions

............. 36221 Microsoft SQL Server Database

............. 36221.1 SQL Server Type Mapping

............ 36421.1.1 String Type Mapping

...... 36521.1.2 Binary Type and UNIQUEIDENTIFIER Mapping

............ 36621.1.3 ROWVERSION Mapping

........... 36721.1.4 Long String and Binary Types

............. 36821.2 SQL Server Database Class

........ 37321.3 SQL Server Connection and Connection Factory

.............. 37621.4 SQL Server Exceptions

Revision 2.4, February 2015vi C++ Object Persistence with ODB

Table of Contents

............. 37821.5 SQL Server Limitations

............ 37821.5.1 Query Result Caching

............ 37821.5.2 Foreign Key Constraints

........... 37921.5.3 Unique Constraint Violations

......... 37921.5.4 Multi-threaded Windows Applications

........ 37921.5.5 Affected Row Count and DDL Statements

....... 37921.5.6 Long Data and Auto Object Ids, ROWVERSION

....... 37921.5.7 Long Data and By-Value Accessors/Modifiers

.......... 38021.5.8 Bulk Update and ROWVERSION

............ 38021.6 SQL Server Index Definitions

............ 38021.7 SQL Server Stored Procedures

................ 383PART III PROFILES

................ 38422 Profiles Introduction

................. 38523 Boost Profile

.............. 38523.1 Smart Pointers Library

............ 38623.2 Unordered Containers Library

............ 38723.3 Multi-Index Container Library

............... 38823.4 Optional Library

............... 38923.5 Date Time Library

.......... 39023.5.1 MySQL Database Type Mapping

.......... 39123.5.2 SQLite Database Type Mapping

......... 39223.5.3 PostgreSQL Database Type Mapping

.......... 39223.5.4 Oracle Database Type Mapping

......... 39323.5.5 SQL Server Database Type Mapping

................ 39423.6 Uuid Library

.......... 39423.6.1 MySQL Database Type Mapping

.......... 39523.6.2 SQLite Database Type Mapping

......... 39523.6.3 PostgreSQL Database Type Mapping

.......... 39523.6.4 Oracle Database Type Mapping

......... 39523.6.5 SQL Server Database Type Mapping

.................. 39624 Qt Profile

.............. 39624.1 Basic Types Library

.......... 39724.1.1 MySQL Database Type Mapping

.......... 39724.1.2 SQLite Database Type Mapping

......... 39824.1.3 PostgreSQL Database Type Mapping

.......... 39824.1.4 Oracle Database Type Mapping

......... 39924.1.5 SQL Server Database Type Mapping

.............. 40024.2 Smart Pointers Library

............... 40124.3 Containers Library

............ 40224.3.1 Change-Tracking QList

............... 40424.4 Date Time Library

.......... 40524.4.1 MySQL Database Type Mapping

.......... 40624.4.2 SQLite Database Type Mapping

......... 40724.4.3 PostgreSQL Database Type Mapping

.......... 40824.4.4 Oracle Database Type Mapping

......... 40824.4.5 SQL Server Database Type Mapping

viiRevision 2.4, February 2015 C++ Object Persistence with ODB

Table of Contents

Preface
As more critical aspects of our lives become dependant on software systems, more and more
applications are required to save the data they work on in persistent and reliable storage.
Database management systems and, in particular, relational database management systems
(RDBMS) are commonly used for such storage. However, while the application development
techniques and programming languages have evolved significantly over the past decades, the
relational database technology in this area stayed relatively unchanged. In particular, this led
to the now infamous mismatch between the object-oriented model used by many modern
applications and the relational model still used by RDBMS.

While relational databases may be inconvenient to use from modern programming languages,
they are still the main choice for many applications due to their maturity, reliability, as well as
the availability of tools and alternative implementations.

To allow application developers to utilize relational databases from their object-oriented
applications, a technique called object-relational mapping (ORM) is often used. It involves a
conversion layer that maps between objects in the application’s memory and their relational
representation in the database. While the object-relational mapping code can be written manu-
ally, automated ORM systems are available for most object-oriented programming languages
in use today.

ODB is an ORM system for the C++ programming language. It was designed and imple-
mented with the following main goals:

Provide a fully-automatic ORM system. In particular, the application developer should
not have to manually write any mapping code, neither for persistent classes nor for their
data member.
Provide clean and easy to use object-oriented persistence model and database APIs that
support the development of realistic applications for a wide variety of domains.
Provide a portable and thread-safe implementation. ODB should be written in standard
C++ and capable of persisting any standard C++ classes.
Provide profiles that integrate ODB with type systems of widely-used frameworks and
libraries such as Qt and Boost.
Provide a high-performance and low overhead implementation. ODB should make effi-
cient use of database and application resources.

About This Document

The goal of this manual is to provide you with an understanding of the object persistence
model and APIs which are implemented by ODB. As such, this document is intended for C++
application developers and software architects who are looking for a C++ object persistence
solution. Prior experience with C++ is required to understand this document. A basic under-
standing of relational database systems is advantageous but not expected or required.

1Revision 2.4, February 2015 C++ Object Persistence with ODB

Preface

More Information

Beyond this manual, you may also find the following sources of information useful:

ODB Compiler Command Line Manual.
The INSTALL files in the ODB source packages provide build instructions for various
platforms.
The odb-examples package contains a collection of examples and a README file
with an overview of each example.
The odb-users mailing list is the place to ask technical questions about ODB. Further-
more, the searchable archives may already have answers to some of your questions.

Revision 2.4, February 20152 C++ Object Persistence with ODB

More Information

http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/mailman/listinfo/odb-users
http://www.codesynthesis.com/pipermail/odb-users/

PART I OBJECT-RELATIONAL MAPPING
Part I describes the essential database concepts, APIs, and tools that together comprise the
object-relational mapping for C++ as implemented by ODB. It consists of the following chap-
ters.

1 Introduction

2 Hello World Example

3 Working with Persistent Objects

4 Querying the Database

5 Containers

6 Relationships

7 Value Types

8 Inheritance

10 Views

11 Session

12 Optimistic Concurrency

13 Database Schema Evolution

14 ODB Pragma Language

3Revision 2.4, February 2015 C++ Object Persistence with ODB

PART I OBJECT-RELATIONAL MAPPING

1 Introduction
ODB is an object-relational mapping (ORM) system for C++. It provides tools, APIs, and
library support that allow you to persist C++ objects to a relational database (RDBMS)
without having to deal with tables, columns, or SQL and without manually writing any of the
mapping code.

ODB is highly flexible and customizable. It can either completely hide the relational nature of
the underlying database or expose some of the details as required. For example, you can auto-
matically map basic C++ types to suitable SQL types, generate the relational database schema
for your persistent classes, and use simple, safe, and yet powerful object query language
instead of SQL. Or you can assign SQL types to individual data members, use the existing
database schema, run native SQL SELECT queries, and call stored procedures. In fact, at an
extreme, ODB can be used as just a convenient way to handle results of native SQL queries.

ODB is not a framework. It does not dictate how you should write your application. Rather, it
is designed to fit into your style and architecture by only handling object persistence and not
interfering with any other functionality. There is no common base type that all persistent
classes should derive from nor are there any restrictions on the data member types in persis-
tent classes. Existing classes can be made persistent with a few or no modifications.

ODB has been designed for high performance and low memory overhead. Prepared state-
ments are used to send and receive object state in binary format instead of text which reduces
the load on the application and the database server. Extensive caching of connections,
prepared statements, and buffers saves time and resources on connection establishment, state-
ment parsing, and memory allocations. For each supported database system the native C API
is used instead of ODBC or higher-level wrapper APIs to reduce overhead and provide the
most efficient implementation for each database operation. Finally, persistent classes have
zero memory overhead. There are no hidden "database" members that each class must have
nor are there per-object data structures allocated by ODB.

In this chapter we present a high-level overview of ODB. We will start with the ODB archi-
tecture and then outline the workflow of building an application that uses ODB. We will then
continue by contrasting the drawbacks of the traditional way of saving C++ objects to rela-
tional databases with the benefits of using ODB for object persistence. We conclude the
chapter by discussing the C++ standards supported by ODB. The next chapter takes a more
hands-on approach and shows the concrete steps necessary to implement object persistence in
a simple "Hello World" application.

1.1 Architecture and Workflow

From the application developer’s perspective, ODB consists of three main components: the
ODB compiler, the common runtime library, called libodb , and the database-specific
runtime libraries, called libodb-<database> , where <database> is the name of the
database system this runtime is for, for example, libodb-mysql . For instance, if the appli-
cation is going to use the MySQL database for object persistence, then the three ODB compo-

Revision 2.4, February 20154 C++ Object Persistence with ODB

1 Introduction

nents that this application will use are the ODB compiler, libodb and libodb-mysql .

The ODB compiler generates the database support code for persistent classes in your applica-
tion. The input to the ODB compiler is one or more C++ header files defining C++ classes
that you want to make persistent. For each input header file the ODB compiler generates a set
of C++ source files implementing conversion between persistent C++ classes defined in this
header and their database representation. The ODB compiler can also generate a database
schema file that creates tables necessary to store the persistent classes.

The ODB compiler is a real C++ compiler except that it produces C++ instead of assembly or
machine code. In particular, it is not an ad-hoc header pre-processor that is only capable of
recognizing a subset of C++. ODB is capable of parsing any standard C++ code.

The common runtime library defines database system-independent interfaces that your appli-
cation can use to manipulate persistent objects. The database-specific runtime library provides
implementations of these interfaces for a concrete database as well as other database-specific
utilities that are used by the generated code. Normally, the application does not use the
database-specific runtime library directly but rather works with it via the common interfaces
from libodb . The following diagram shows the object persistence architecture of an appli-
cation that uses MySQL as the underlying database system:

The ODB system also defines two special-purpose languages: the ODB Pragma Language and
ODB Query Language. The ODB Pragma Language is used to communicate various proper-
ties of persistent classes to the ODB compiler by means of special #pragma directives
embedded in the C++ header files. It controls aspects of the object-relational mapping such as
names of tables and columns that are used for persistent classes and their members or
mapping between C++ types and database types.

The ODB Query Language is an object-oriented database query language that can be used to
search for objects matching certain criteria. It is modeled after and is integrated into C++
allowing you to write expressive and safe queries that look and feel like ordinary C++.

5Revision 2.4, February 2015 C++ Object Persistence with ODB

1.1 Architecture and Workflow

The use of the ODB compiler to generate database support code adds an additional step to
your application build sequence. The following diagram outlines the typical build workflow
of an application that uses ODB:

Revision 2.4, February 20156 C++ Object Persistence with ODB

1.1 Architecture and Workflow

7Revision 2.4, February 2015 C++ Object Persistence with ODB

1.1 Architecture and Workflow

1.2 Benefits

The traditional way of saving C++ objects to relational databases requires that you manually
write code which converts between the database and C++ representations of each persistent
class. The actions that such code usually performs include conversion between C++ values
and strings or database types, preparation and execution of SQL queries, as well as handling
the result sets. Writing this code manually has the following drawbacks:

Difficult and time consuming. Writing database conversion code for any non-trivial
application requires extensive knowledge of the specific database system and its APIs. It
can also take a considerable amount of time to write and maintain. Supporting
multi-threaded applications can complicate this task even further.
Suboptimal performance. Optimal conversion often requires writing large amounts of
extra code, such as parameter binding for prepared statements and caching of connec-
tions, statements, and buffers. Writing code like this in an ad-hoc manner is often too
difficult and time consuming.
Database vendor lock-in. The conversion code is written for a specific database which
makes it hard to switch to another database vendor.
Lack of type safety. It is easy to misspell column names or pass incompatible values in
SQL queries. Such errors will only be detected at runtime.
Complicates the application. The database conversion code often ends up interspersed
throughout the application making it hard to debug, change, and maintain.

In contrast, using ODB for C++ object persistence has the following benefits:

Ease of use. ODB automatically generates database conversion code from your C++
class declarations and allows you to manipulate persistent objects using simple and
thread-safe object-oriented database APIs.
Concise code. With ODB hiding the details of the underlying database, the application
logic is written using the natural object vocabulary instead of tables, columns and SQL.
The resulting code is simpler and thus easier to read and understand.
Optimal performance. ODB has been designed for high performance and low memory
overhead. All the available optimization techniques, such as prepared statements and
extensive connection, statement, and buffer caching, are used to provide the most effi-
cient implementation for each database operation.
Database portability. Because the database conversion code is automatically generated,
it is easy to switch from one database vendor to another. In fact, it is possible to test your
application on several database systems before making a choice.
Safety. The ODB object persistence and query APIs are statically typed. You use C++
identifiers instead of strings to refer to object members and the generated code makes
sure database and C++ types are compatible. All this helps catch programming errors at
compile-time rather than at runtime.
Maintainability. Automatic code generation minimizes the effort needed to adapt the
application to changes in persistent classes. The database support code is kept separately
from the class declarations and application logic. This makes the application easier to
debug and maintain.

Revision 2.4, February 20158 C++ Object Persistence with ODB

1.2 Benefits

Overall, ODB provides an easy to use yet flexible and powerful object-relational mapping
(ORM) system for C++. Unlike other ORM implementations for C++ that still require you to
write database conversion or member registration code for each persistent class, ODB keeps
persistent classes purely declarative. The functional part, the database conversion code, is
automatically generated by the ODB compiler from these declarations.

1.3 Supported C++ Standards

ODB provides support for ISO/IEC C++ 1998/2003 (C++98/03), ISO/IEC TR 19768 C++
Library Extensions (C++ TR1), and ISO/IEC C++ 2011 (C++11). While the majority of the
examples in this manual use C++98/03, support for the new functionality and library compo-
nents introduced in TR1 and C++11 are discussed throughout the document. The c++11
example in the odb-examples package also shows ODB support for various C++11
features.

9Revision 2.4, February 2015 C++ Object Persistence with ODB

1.3 Supported C++ Standards

2 Hello World Example
In this chapter we will show how to create a simple C++ application that relies on ODB for
object persistence using the traditional "Hello World" example. In particular, we will discuss
how to declare persistent classes, generate database support code, as well as compile and run
our application. We will also learn how to make objects persistent, load, update and delete
persistent objects, as well as query the database for persistent objects that match certain crite-
ria. The example also shows how to define and use views, a mechanism that allows us to
create projections of persistent objects, database tables, or to handle results of native SQL
queries or stored procedure calls.

The code presented in this chapter is based on the hello example which can be found in the
odb-examples package of the ODB distribution.

2.1 Declaring Persistent Classes

In our "Hello World" example we will depart slightly from the norm and say hello to people
instead of the world. People in our application will be represented as objects of C++ class
person which is saved in person.hxx :

// person.hxx
//

#include <string>

class person
{
public:
 person (const std::string& first,
 const std::string& last,
 unsigned short age);

 const std::string& first () const;
 const std::string& last () const;

 unsigned short age () const;
 void age (unsigned short);

private:
 std::string first_;
 std::string last_;
 unsigned short age_;
};

In order not to miss anyone whom we need to greet, we would like to save the person
objects in a database. To achieve this we declare the person class as persistent:

// person.hxx
//

#include <string>

Revision 2.4, February 201510 C++ Object Persistence with ODB

2 Hello World Example

#include <odb/core.hxx> // (1)

#pragma db object // (2)
class person
{
 ...

private:
 person () {} // (3)

 friend class odb::access; // (4)

 #pragma db id auto // (5)
 unsigned long id_; // (5)

 std::string first_;
 std::string last_;
 unsigned short age_;
};

To be able to save the person objects in the database we had to make five changes, marked
with (1) to (5), to the original class definition. The first change is the inclusion of the ODB
header <odb/core.hxx> . This header provides a number of core ODB declarations, such
as odb::access , that are used to define persistent classes.

The second change is the addition of db object pragma just before the class definition.
This pragma tells the ODB compiler that the class that follows is persistent. Note that making
a class persistent does not mean that all objects of this class will automatically be stored in the
database. You would still create ordinary or transient instances of this class just as you would
before. The difference is that now you can make such transient instances persistent, as we will
see shortly.

The third change is the addition of the default constructor. The ODB-generated database
support code will use this constructor when instantiating an object from the persistent state.
Just as we have done for the person class, you can make the default constructor private or
protected if you don’t want to make it available to the users of your class. Note also that with
some limitations it is possible to have a persistent class without the default constructor.

With the fourth change we make the odb::access class a friend of our person class.
This is necessary to make the default constructor and the data members accessible to the
database support code. If your class has a public default constructor and either public data
members or public accessors and modifiers for the data members, then the friend declara-
tion is unnecessary.

The final change adds a data member called id_ which is preceded by another pragma. In
ODB every persistent object normally has a unique, within its class, identifier. Or, in other
words, no two persistent instances of the same type have equal identifiers. While it is possible
to define a persistent class without an object id, the number of database operations that can be
performed on such a class is limited. For our class we use an integer id. The db id auto

11Revision 2.4, February 2015 C++ Object Persistence with ODB

2.1 Declaring Persistent Classes

pragma that precedes the id_ member tells the ODB compiler that the following member is
the object’s identifier. The auto specifier indicates that it is a database-assigned id. A unique
id will be automatically generated by the database and assigned to the object when it is made
persistent.

In this example we chose to add an identifier because none of the existing members could
serve the same purpose. However, if a class already has a member with suitable properties,
then it is natural to use that member as an identifier. For example, if our person class
contained some form of personal identification (SSN in the United States or ID/passport
number in other countries), then we could use that as an id. Or, if we stored an email associ-
ated with each person, then we could have used that if each person is presumed to have a
unique email address.

As another example, consider the following alternative version of the person class. Here we
use one of the existing data members as id. Also the data members are kept private and are
instead accessed via public accessor and modifier functions. Finally, the ODB pragmas are
grouped together and are placed after the class definition. They could have also been moved
into a separate header leaving the original class completely unchanged (for more information
on such a non-intrusive conversion refer to Chapter 14, "ODB Pragma Language").

class person
{
public:
 person ();

 const std::string& email () const;
 void email (const std::string&);

 const std::string& get_name () const;
 std::string& set_name ();

 unsigned short getAge () const;
 void setAge (unsigned short);

private:
 std::string email_;
 std::string name_;
 unsigned short age_;
};

#pragma db object(person)
#pragma db member(person::email_) id

Now that we have the header file with the persistent class, let’s see how we can generate that
database support code.

Revision 2.4, February 201512 C++ Object Persistence with ODB

2.1 Declaring Persistent Classes

2.2 Generating Database Support Code

The persistent class definition that we created in the previous section was particularly light on
any code that could actually do the job and store the person’s data to a database. There was no
serialization or deserialization code, not even data member registration, that you would
normally have to write by hand in other ORM libraries for C++. This is because in ODB code
that translates between the database and C++ representations of an object is automatically
generated by the ODB compiler.

To compile the person.hxx header we created in the previous section and generate the
support code for the MySQL database, we invoke the ODB compiler from a terminal (UNIX)
or a command prompt (Windows):

odb -d mysql --generate-query person.hxx

We will use MySQL as the database of choice in the remainder of this chapter, though other
supported database systems can be used instead.

If you haven’t installed the common ODB runtime library (libodb) or installed it into a
directory where C++ compilers don’t search for headers by default, then you may get the
following error:

person.hxx:10:24: fatal error: odb/core.hxx: No such file or directory

To resolve this you will need to specify the libodb headers location with the -I preproces-
sor option, for example:

odb -I.../libodb -d mysql --generate-query person.hxx

Here .../libodb represents the path to the libodb directory.

The above invocation of the ODB compiler produces three C++ files: person-odb.hxx ,
person-odb.ixx , person-odb.cxx . You normally don’t use types or functions
contained in these files directly. Rather, all you have to do is include person-odb.hxx in
C++ files where you are performing database operations with classes from person.hxx as
well as compile person-odb.cxx and link the resulting object file to your application.

You may be wondering what the --generate-query option is for. It instructs the ODB
compiler to generate optional query support code that we will use later in our "Hello World"
example. Another option that we will find useful is --generate-schema . This option
makes the ODB compiler generate a fourth file, person.sql , which is the database schema
for the persistent classes defined in person.hxx :

odb -d mysql --generate-query --generate-schema person.hxx

The database schema file contains SQL statements that creates tables necessary to store the
persistent classes. We will learn how to use it in the next section.

13Revision 2.4, February 2015 C++ Object Persistence with ODB

2.2 Generating Database Support Code

If you would like to see a list of all the available ODB compiler options, refer to the ODB
Compiler Command Line Manual.

Now that we have the persistent class and the database support code, the only part that is left
is the application code that does something useful with all of this. But before we move on to
the fun part, let’s first learn how to build and run an application that uses ODB. This way
when we have some application code to try, there are no more delays before we can run it.

2.3 Compiling and Running

Assuming that the main() function with the application code is saved in driver.cxx and
the database support code and schema are generated as described in the previous section, to
build our application we will first need to compile all the C++ source files and then link them
with two ODB runtime libraries.

On UNIX, the compilation part can be done with the following commands (substitute c++
with your C++ compiler name; for Microsoft Visual Studio setup, see the odb-examples
package):

c++ -c driver.cxx
c++ -c person-odb.cxx

Similar to the ODB compilation, if you get an error stating that a header in odb/ or
odb/mysql directory is not found, you will need to use the -I preprocessor option to
specify the location of the common ODB runtime library (libodb) and MySQL ODB
runtime library (libodb-mysql).

Once the compilation is done, we can link the application with the following command:

c++ -o driver driver.o person-odb.o -lodb-mysql -lodb

Notice that we link our application with two ODB libraries: libodb which is a common
runtime library and libodb-mysql which is a MySQL runtime library (if you use another
database, then the name of this library will change accordingly). If you get an error saying that
one of these libraries could not be found, then you will need to use the -L linker option to
specify their locations.

Before we can run our application we need to create a database schema using the generated
person.sql file. For MySQL we can use the mysql client program, for example:

mysql --user=odb_test --database=odb_test < person.sql

The above command will log in to a local MySQL server as user odb_test without a pass-
word and use the database named odb_test . Beware that after executing this command, all
the data stored in the odb_test database will be deleted.

Revision 2.4, February 201514 C++ Object Persistence with ODB

2.3 Compiling and Running

http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/products/odb/doc/odb.xhtml

Note also that using a standalone generated SQL file is not the only way to create a database
schema in ODB. We can also embed the schema directly into our application or use custom
schemas that were not generated by the ODB compiler. Refer to Section 3.4, "Database" for
details.

Once the database schema is ready, we run our application using the same login and database
name:

./driver --user odb_test --database odb_test

2.4 Making Objects Persistent

Now that we have the infrastructure work out of the way, it is time to see our first code frag-
ment that interacts with the database. In this section we will learn how to make person
objects persistent:

// driver.cxx
//

#include <memory> // std::auto_ptr
#include <iostream>

#include <odb/database.hxx>
#include <odb/transaction.hxx>

#include <odb/mysql/database.hxx>

#include "person.hxx"
#include "person-odb.hxx"

using namespace std;
using namespace odb::core;

int
main (int argc, char* argv[])
{
 try
 {
 auto_ptr<database> db (new odb::mysql::database (argc, argv));

 unsigned long john_id, jane_id, joe_id;

 // Create a few persistent person objects.
 //
 {
 person john ("John", "Doe", 33);
 person jane ("Jane", "Doe", 32);
 person joe ("Joe", "Dirt", 30);

 transaction t (db->begin ());

 // Make objects persistent and save their ids for later use.
 //

15Revision 2.4, February 2015 C++ Object Persistence with ODB

2.4 Making Objects Persistent

 john_id = db->persist (john);
 jane_id = db->persist (jane);
 joe_id = db->persist (joe);

 t.commit ();
 }
 }
 catch (const odb::exception& e)
 {
 cerr << e.what () << endl;
 return 1;
 }
}

Let’s examine this code piece by piece. At the beginning we include a bunch of headers. After
the standard C++ headers we include <odb/database.hxx> and <odb/transac-
tion.hxx> which define database system-independent odb::database and
odb::transaction interfaces. Then we include <odb/mysql/database.hxx>
which defines the MySQL implementation of the database interface. Finally, we include
person.hxx and person-odb.hxx which define our persistent person class.

Then we have two using namespace directives. The first one brings in the names from
the standard namespace and the second brings in the ODB declarations which we will use
later in the file. Notice that in the second directive we use the odb::core namespace
instead of just odb . The former only brings into the current namespace the essential ODB
names, such as the database and transaction classes, without any of the auxiliary
objects. This minimizes the likelihood of name conflicts with other libraries. Note also that
you should continue using the odb namespace when qualifying individual names. For
example, you should write odb::database , not odb::core::database .

Once we are in main() , the first thing we do is create the MySQL database object. Notice
that this is the last line in driver.cxx that mentions MySQL explicitly; the rest of the code
works through the common interfaces and is database system-independent. We use the
argc /argv mysql::database constructor which automatically extract the database
parameters, such as login name, password, database name, etc., from the command line. In
your own applications you may prefer to use other mysql::database constructors which
allow you to pass this information directly (Section 17.2, "MySQL Database Class").

Next, we create three person objects. Right now they are transient objects, which means
that if we terminate the application at this point, they will be gone without any evidence of
them ever existing. The next line starts a database transaction. We discuss transactions in
detail later in this manual. For now, all we need to know is that all ODB database operations
must be performed within a transaction and that a transaction is an atomic unit of work; all
database operations performed within a transaction either succeed (committed) together or are
automatically undone (rolled back).

Once we are in a transaction, we call the persist() database function on each of our
person objects. At this point the state of each object is saved in the database. However, note
that this state is not permanent until and unless the transaction is committed. If, for example,

Revision 2.4, February 201516 C++ Object Persistence with ODB

2.4 Making Objects Persistent

our application crashes at this point, there will still be no evidence of our objects ever exist-
ing.

In our case, one more thing happens when we call persist() . Remember that we decided
to use database-assigned identifiers for our person objects. The call to persist() is
where this assignment happens. Once this function returns, the id_ member contains this
object’s unique identifier. As a convenience, the persist() function also returns a copy of
the object’s identifier that it made persistent. We save the returned identifier for each object in
a local variable. We will use these identifiers later in the chapter to perform other database
operations on our persistent objects.

After we have persisted our objects, it is time to commit the transaction and make the changes
permanent. Only after the commit() function returns successfully, are we guaranteed that
the objects are made persistent. Continuing with the crash example, if our application termi-
nates after the commit for whatever reason, the objects’ state in the database will remain
intact. In fact, as we will discover shortly, our application can be restarted and load the origi-
nal objects from the database. Note also that a transaction must be committed explicitly with
the commit() call. If the transaction object leaves scope without the transaction being
explicitly committed or rolled back, it will automatically be rolled back. This behavior allows
you not to worry about exceptions being thrown within a transaction; if they cross the transac-
tion boundary, the transaction will automatically be rolled back and all the changes made to
the database undone.

The final bit of code in our example is the catch block that handles the database exceptions.
We do this by catching the base ODB exception (Section 3.14, "ODB Exceptions") and print-
ing the diagnostics.

Let’s now compile (Section 2.3, "Compiling and Running") and then run our first ODB appli-
cation:

mysql --user=odb_test --database=odb_test < person.sql
./driver --user odb_test --database odb_test

Our first application doesn’t print anything except for error messages so we can’t really tell
whether it actually stored the objects’ state in the database. While we will make our applica-
tion more entertaining shortly, for now we can use the mysql client to examine the database
content. It will also give us a feel for how the objects are stored:

mysql --user=odb_test --database=odb_test

Welcome to the MySQL monitor.

mysql> select * from person;

+----+-------+------+-----+
| id | first | last | age |
+----+-------+------+-----+
1	John	Doe	33
2	Jane	Doe	32
3	Joe	Dirt	30

17Revision 2.4, February 2015 C++ Object Persistence with ODB

2.4 Making Objects Persistent

+----+-------+------+-----+
3 rows in set (0.00 sec)

mysql> quit

Another way to get more insight into what’s going on under the hood, is to trace the SQL
statements executed by ODB as a result of each database operation. Here is how we can
enable tracing just for the duration of our transaction:

 // Create a few persistent person objects.
 //
 {
 ...

 transaction t (db->begin ());

 t.tracer (stderr_tracer);

 // Make objects persistent and save their ids for later use.
 //
 john_id = db->persist (john);
 jane_id = db->persist (jane);
 joe_id = db->persist (joe);

 t.commit ();
 }

With this modification our application now produces the following output:

INSERT INTO ‘person‘ (‘id‘,‘first‘,‘last‘,‘age‘) VALUES (?,?,?,?)
INSERT INTO ‘person‘ (‘id‘,‘first‘,‘last‘,‘age‘) VALUES (?,?,?,?)
INSERT INTO ‘person‘ (‘id‘,‘first‘,‘last‘,‘age‘) VALUES (?,?,?,?)

Note that we see question marks instead of the actual values because ODB uses prepared
statements and sends the data to the database in binary form. For more information on tracing,
refer to Section 3.13, "Tracing SQL Statement Execution". In the next section we will see
how to access persistent objects from our application.

2.5 Querying the Database for Objects

So far our application doesn’t resemble a typical "Hello World" example. It doesn’t print
anything except for error messages. Let’s change that and teach our application to say hello to
people from our database. To make it a bit more interesting, let’s say hello only to people over
30:

// driver.cxx
//

...

int
main (int argc, char* argv[])

Revision 2.4, February 201518 C++ Object Persistence with ODB

2.5 Querying the Database for Objects

{
 try
 {
 ...

 // Create a few persistent person objects.
 //
 {
 ...
 }

 typedef odb::query<person> query;
 typedef odb::result<person> result;

 // Say hello to those over 30.
 //
 {
 transaction t (db->begin ());

 result r (db->query<person> (query::age > 30));

 for (result::iterator i (r.begin ()); i != r.end (); ++i)
 {
 cout << "Hello, " << i->first () << "!" << endl;
 }

 t.commit ();
 }
 }
 catch (const odb::exception& e)
 {
 cerr << e.what () << endl;
 return 1;
 }
}

The first half of our application is the same as before and is replaced with "..." in the above
listing for brevity. Again, let’s examine the rest of it piece by piece.

The two typedef s create convenient aliases for two template instantiations that will be used
a lot in our application. The first is the query type for the person objects and the second is
the result type for that query.

Then we begin a new transaction and call the query() database function. We pass a query
expression (query::age > 30) which limits the returned objects only to those with the
age greater than 30. We also save the result of the query in a local variable.

The next few lines perform a standard for-loop iteration over the result sequence printing
hello for every returned person. Then we commit the transaction and that’s it. Let’s see what
this application will print:

19Revision 2.4, February 2015 C++ Object Persistence with ODB

2.5 Querying the Database for Objects

mysql --user=odb_test --database=odb_test < person.sql
./driver --user odb_test --database odb_test

Hello, John!
Hello, Jane!

That looks about right, but how do we know that the query actually used the database instead
of just using some in-memory artifacts of the earlier persist() calls? One way to test this
would be to comment out the first transaction in our application and re-run it without re-creat-
ing the database schema. This way the objects that were persisted during the previous run will
be returned. Alternatively, we can just re-run the same application without re-creating the
schema and notice that we now show duplicate objects:

./driver --user odb_test --database odb_test

Hello, John!
Hello, Jane!
Hello, John!
Hello, Jane!

What happens here is that the previous run of our application persisted a set of person
objects and when we re-run the application, we persist another set with the same names but
with different ids. When we later run the query, matches from both sets are returned. We can
change the line where we print the "Hello" string as follows to illustrate this point:

cout << "Hello, " << i->first () << " (" << i->id () << ")!" << endl;

If we now re-run this modified program, again without re-creating the database schema, we
will get the following output:

./driver --user odb_test --database odb_test

Hello, John (1)!
Hello, Jane (2)!
Hello, John (4)!
Hello, Jane (5)!
Hello, John (7)!
Hello, Jane (8)!

The identifiers 3, 6, and 9 that are missing from the above list belong to the "Joe Dirt" objects
which are not selected by this query.

2.6 Updating Persistent Objects

While making objects persistent and then selecting some of them using queries are two useful
operations, most applications will also need to change the object’s state and then make these
changes persistent. Let’s illustrate this by updating Joe’s age who just had a birthday:

Revision 2.4, February 201520 C++ Object Persistence with ODB

2.6 Updating Persistent Objects

// driver.cxx
//

...

int
main (int argc, char* argv[])
{
 try
 {
 ...

 unsigned long john_id, jane_id, joe_id;

 // Create a few persistent person objects.
 //
 {
 ...

 // Save object ids for later use.
 //
 john_id = john.id ();
 jane_id = jane.id ();
 joe_id = joe.id ();
 }

 // Joe Dirt just had a birthday, so update his age.
 //
 {
 transaction t (db->begin ());

 auto_ptr<person> joe (db->load<person> (joe_id));
 joe->age (joe->age () + 1);
 db->update (*joe);

 t.commit ();
 }

 // Say hello to those over 30.
 //
 {
 ...
 }
 }
 catch (const odb::exception& e)
 {
 cerr << e.what () << endl;
 return 1;
 }
}

The beginning and the end of the new transaction are the same as the previous two. Once
within a transaction, we call the load() database function to instantiate a person object
with Joe’s persistent state. We pass Joe’s object identifier that we stored earlier when we
made this object persistent. While here we use std::auto_ptr to manage the returned

21Revision 2.4, February 2015 C++ Object Persistence with ODB

2.6 Updating Persistent Objects

object, we could have also used another smart pointer, for example std::unique_ptr
from C++11 or shared_ptr from TR1, C++11, or Boost. For more information on the
object lifetime management and the smart pointers that we can use for that, see Section 3.3,
"Object and View Pointers".

With the instantiated object in hand we increment the age and call the update() function to
update the object’s state in the database. Once the transaction is committed, the changes are
made permanent.

If we now run this application, we will see Joe in the output since he is now over 30:

mysql --user=odb_test --database=odb_test < person.sql
./driver --user odb_test --database odb_test

Hello, John!
Hello, Jane!
Hello, Joe!

What if we didn’t have an identifier for Joe? Maybe this object was made persistent in another
run of our application or by another application altogether. Provided that we only have one
Joe Dirt in the database, we can use the query facility to come up with an alternative imple-
mentation of the above transaction:

 // Joe Dirt just had a birthday, so update his age. An
 // alternative implementation without using the object id.
 //
 {
 transaction t (db->begin ());

 // Here we know that there can be only one Joe Dirt in our
 // database so we use the query_one() shortcut instead of
 // manually iterating over the result returned by query().
 //
 auto_ptr<person> joe (
 db->query_one<person> (query::first == "Joe" &&
 query::last == "Dirt"));

 if (joe.get () != 0)
 {
 joe->age (joe->age () + 1);
 db->update (*joe);
 }

 t.commit ();
 }

2.7 Defining and Using Views

Suppose that we need to gather some basic statistics about the people stored in our database.
Things like the total head count, as well as the minimum and maximum ages. One way to do it
would be to query the database for all the person objects and then calculate this information

Revision 2.4, February 201522 C++ Object Persistence with ODB

2.7 Defining and Using Views

as we iterate over the query result. While this approach may work fine for our database with
just three people in it, it would be very inefficient if we had a large number of objects.

While it may not be conceptually pure from the object-oriented programming point of view, a
relational database can perform some computations much faster and much more economically
than if we performed the same operations ourselves in the application’s process.

To support such cases ODB provides the notion of views. An ODB view is a C++ class that
embodies a light-weight, read-only projection of one or more persistent objects or database
tables or the result of a native SQL query execution or stored procedure call.

Some of the common applications of views include loading a subset of data members from
objects or columns database tables, executing and handling results of arbitrary SQL queries,
including aggregate queries, as well as joining multiple objects and/or database tables using
object relationships or custom join conditions.

While you can find a much more detailed description of views in Chapter 10, "Views", here is
how we can define the person_stat view that returns the basic statistics about the
person objects:

#pragma db view object(person)
struct person_stat
{
 #pragma db column("count(" + person::id_ + ")")
 std::size_t count;

 #pragma db column("min(" + person::age_ + ")")
 unsigned short min_age;

 #pragma db column("max(" + person::age_ + ")")
 unsigned short max_age;
};

Normally, to get the result of a view we use the same query() function as when querying
the database for an object. Here, however, we are executing an aggregate query which always
returns exactly one element. Therefore, instead of getting the result instance and then iterating
over it, we can use the shortcut query_value() function. Here is how we can load and
print our statistics using the view we have just created:

 // Print some statistics about all the people in our database.
 //
 {
 transaction t (db->begin ());

 // The result of this query always has exactly one element.
 //
 person_stat ps (db->query_value<person_stat> ());

 cout << "count : " << ps.count << endl
 << "min age: " << ps.min_age << endl

23Revision 2.4, February 2015 C++ Object Persistence with ODB

2.7 Defining and Using Views

 << "max age: " << ps.max_age << endl;

 t.commit ();
 }

If we now add the person_stat view to the person.hxx header, the above transaction
to driver.cxx , as well as re-compile and re-run our example, then we will see the follow-
ing additional lines in the output:

count : 3
min age: 31
max age: 33

2.8 Deleting Persistent Objects

The last operation that we will discuss in this chapter is deleting the persistent object from the
database. The following code fragment shows how we can delete an object given its identifier:

 // John Doe is no longer in our database.
 //
 {
 transaction t (db->begin ());
 db->erase<person> (john_id);
 t.commit ();
 }

To delete John from the database we start a transaction, call the erase() database function
with John’s object id, and commit the transaction. After the transaction is committed, the
erased object is no longer persistent.

If we don’t have an object id handy, we can use queries to find and delete the object:

 // John Doe is no longer in our database. An alternative
 // implementation without using the object id.
 //
 {
 transaction t (db->begin ());

 // Here we know that there can be only one John Doe in our
 // database so we use the query_one() shortcut again.
 //
 auto_ptr<person> john (
 db->query_one<person> (query::first == "John" &&
 query::last == "Doe"));

 if (john.get () != 0)
 db->erase (*john);

 t.commit ();
 }

Revision 2.4, February 201524 C++ Object Persistence with ODB

2.8 Deleting Persistent Objects

2.9 Changing Persistent Classes

When the definition of a transient C++ class is changed, for example by adding or deleting a
data member, we don’t have to worry about any existing instances of this class not matching
the new definition. After all, to make the class changes effective we have to restart the appli-
cation and none of the transient instances will survive this.

Things are not as simple for persistent classes. Because they are stored in the database and
therefore survive application restarts, we have a new problem: what happens to the state of
existing objects (which correspond to the old definition) once we change our persistent class?

The problem of working with old objects, called database schema evolution, is a complex
issue and ODB provides comprehensive support for handling it. While this support is covered
in detail in Chapter 13, "Database Schema Evolution", let us consider a simple example that
should give us a sense of the functionality provided by ODB in this area.

Suppose that after using our person persistent class for some time and creating a number of
databases containing its instances, we realized that for some people we also need to store their
middle name. If we go ahead and just add the new data member, everything will work fine
with new databases. Existing databases, however, have a table that does not correspond to the
new class definition. Specifically, the generated database support code now expects there to
be a column to store the middle name. But such a column was never created in the old
databases.

ODB can automatically generate SQL statements that will migrate old databases to match the
new class definitions. But first, we need to enable schema evolution support by defining a
version for our object model:

// person.hxx
//

#pragma db model version(1, 1)

class person
{
 ...

 std::string first_;
 std::string last_;
 unsigned short age_;
};

The first number in the version pragma is the base model version. This is the lowest
version we will be able to migrate from. The second number is the current model version.
Since we haven’t made any changes yet to our persistent class, both of these values are 1.

Next we need to re-compile our person.hxx header file with the ODB compiler, just as we
did before:

25Revision 2.4, February 2015 C++ Object Persistence with ODB

2.9 Changing Persistent Classes

odb -d mysql --generate-query --generate-schema person.hxx

If we now look at the list of files produced by the ODB compiler, we will notice a new file:
person.xml . This is a changelog file where the ODB compiler keeps track of the database
changes corresponding to our class changes. Note that this file is automatically maintained by
the ODB compiler and all we have to do is keep it around between re-compilations.

Now we are ready to add the middle name to our person class. We also give it a default
value (empty string) which is what will be assigned to existing objects in old databases.
Notice that we have also incremented the current version:

// person.hxx
//

#pragma db model version(1, 2)

class person
{
 ...

 std::string first_;

 #pragma db default("")
 std::string middle_;

 std::string last_;
 unsigned short age_;
};

If we now recompile the person.hxx header again, we will see two extra generated files:
person-002-pre.sql and person-002-post.sql . These two files contain schema
migration statements from version 1 to version 2. Similar to schema creation, schema migra-
tion statements can also be embedded into the generated C++ code.

person-002-pre.sql and person-002-post.sql are the pre and post schema
migration files. To migrate one of our old databases, we first execute the pre migration file:

mysql --user=odb_test --database=odb_test < person-002-pre.sql

Between the pre and post schema migrations we can run data migration code, if required. At
this stage, we can both access the old and store the new data. In our case we don’t need any
data migration code since we assigned the default value to the middle name for all the existing
objects.

To finish the migration process we execute the post migration statements:

mysql --user=odb_test --database=odb_test < person-002-post.sql

Revision 2.4, February 201526 C++ Object Persistence with ODB

2.9 Changing Persistent Classes

2.10 Working with Multiple Databases

Accessing multiple databases (that is, data stores) is simply a matter of creating multiple
odb::<db>::database instances representing each database. For example:

odb::mysql::database db1 ("john", "secret", "test_db1");
odb::mysql::database db2 ("john", "secret", "test_db2");

Some database systems also allow attaching multiple databases to the same instance. A more
interesting question is how we access multiple database systems (that is, database implemen-
tations) from the same application. For example, our application may need to store some
objects in a remote MySQL database and others in a local SQLite file. Or, our application
may need to be able to store its objects in a database system that is selected by the user at
runtime.

ODB provides comprehensive multi-database support that ranges from tight integration with
specific database systems to being able to write database-agnostic code and loading individual
database systems support dynamically. While all these aspects are covered in detail in Chapter
16, "Multi-Database Support", in this section we will get a taste of this functionality by
extending our "Hello World" example to be able to store its data either in MySQL or Post-
greSQL (other database systems supported by ODB can be added in a similar manner).

The first step in adding multi-database support is to re-compile our person.hxx header to
generate database support code for additional database systems:

odb --multi-database dynamic -d common -d mysql -d pgsql \
--generate-query --generate-schema person.hxx

The --multi-database ODB compiler option turns on multi-database support. For now
it is not important what the dynamic value that we passed to this option means, but if you
are curious, see Chapter 16. The result of this command are three sets of generated files:
person-odb.?xx (common interface; corresponds to the common database),
person-odb-mysql.?xx (MySQL support code), and person-odb-pgsql.?xx
(PostgreSQL support code). There are also two schema files: person-mysql.sql and
person-pgsql.sql .

The only part that we need to change in driver.cxx is how we create the database
instance. Specifically, this line:

auto_ptr<database> db (new odb::mysql::database (argc, argv));

Now our example is capable of storing its data either in MySQL or PostgreSQL so we need to
somehow allow the caller to specify which database we must use. To keep things simple, we
will make the first command line argument specify the database system we must use while the
rest will contain the database-specific options which we will pass to the
odb::<db>::database constructor as before. Let’s put all this logic into a separate func-
tion which we will call create_database() . Here is what the beginning of our modified
driver.cxx will look like (the remainder is unchanged):

27Revision 2.4, February 2015 C++ Object Persistence with ODB

2.10 Working with Multiple Databases

// driver.cxx
//

#include <string>
#include <memory> // std::auto_ptr
#include <iostream>

#include <odb/database.hxx>
#include <odb/transaction.hxx>

#include <odb/mysql/database.hxx>
#include <odb/pgsql/database.hxx>

#include "person.hxx"
#include "person-odb.hxx"

using namespace std;
using namespace odb::core;

auto_ptr<database>
create_database (int argc, char* argv[])
{
 auto_ptr<database> r;

 if (argc < 2)
 {
 cerr << "error: database system name expected" << endl;
 return r;
 }

 string db (argv[1]);

 if (db == "mysql")
 r.reset (new odb::mysql::database (argc, argv));
 else if (db == "pgsql")
 r.reset (new odb::pgsql::database (argc, argv));
 else
 cerr << "error: unknown database system " << db << endl;

 return r;
}

int
main (int argc, char* argv[])
{
 try
 {
 auto_ptr<database> db (create_database (argc, argv));

 if (db.get () == 0)
 return 1; // Diagnostics has already been issued.

 ...

Revision 2.4, February 201528 C++ Object Persistence with ODB

2.10 Working with Multiple Databases

And that’s it. The only thing left is to build and run our example:

c++ -c driver.cxx
c++ -c person-odb.cxx
c++ -c person-odb-mysql.cxx
c++ -c person-odb-pgsql.cxx
c++ -o driver driver.o person-odb.o person-odb-mysql.o \
person-odb-pgsql.o -lodb-mysql -lodb-pgsql -lodb

Here is how we can access a MySQL database:

mysql --user=odb_test --database=odb_test < person-mysql.sql
./driver mysql --user odb_test --database odb_test

Or a PostgreSQL database:

psql --user=odb_test --dbname=odb_test -f person-pgsql.sql
./driver pgsql --user odb_test --database odb_test

2.11 Summary

This chapter presented a very simple application which, nevertheless, exercised all of the core
database functions: persist() , query() , load() , update() , and erase() . We also
saw that writing an application that uses ODB involves the following steps:

1. Declare persistent classes in header files.
2. Compile these headers to generate database support code.
3. Link the application with the generated code and two ODB runtime libraries.

Do not be concerned if, at this point, much appears unclear. The intent of this chapter is to
give you only a general idea of how to persist C++ objects with ODB. We will cover all the
details throughout the remainder of this manual.

29Revision 2.4, February 2015 C++ Object Persistence with ODB

2.11 Summary

3 Working with Persistent Objects
The previous chapters gave us a high-level overview of ODB and showed how to use it to
store C++ objects in a database. In this chapter we will examine the ODB object persistence
model as well as the core database APIs in greater detail. We will start with basic concepts
and terminology in Section 3.1 and Section 3.3 and continue with the discussion of the
odb::database class in Section 3.4, transactions in Section 3.5, and connections in
Section 3.6. The remainder of this chapter deals with the core database operations and
concludes with the discussion of ODB exceptions.

In this chapter we will continue to use and expand the person persistent class that we have
developed in the previous chapter.

3.1 Concepts and Terminology

The term database can refer to three distinct things: a general notion of a place where an
application stores its data, a software implementation for managing this data (for example
MySQL), and, finally, some database software implementations may manage several data
stores which are usually distinguished by name. This name is also commonly referred to as a
database.

In this manual, when we use the word database, we refer to the first meaning above, for
example, "The update() function saves the object’s state to the database." The term
Database Management System (DBMS) is often used to refer to the second meaning of the
word database. In this manual we will use the term database system for short, for example,
"Database system-independent application code." Finally, to distinguish the third meaning
from the other two, we will use the term database name, for example, "The second option
specifies the database name that the application should use to store its data."

In C++ there is only one notion of a type and an instance of a type. For example, a fundamen-
tal type, such as int , is, for the most part, treated the same as a user defined class type.
However, when it comes to persistence, we have to place certain restrictions and requirements
on certain C++ types that can be stored in the database. As a result, we divide persistent C++
types into two groups: object types and value types. An instance of an object type is called an
object and an instance of a value type — a value.

An object is an independent entity. It can be stored, updated, and deleted in the database inde-
pendent of other objects. Normally, an object has an identifier, called object id, that is unique
among all instances of an object type within a database. In contrast, a value can only be stored
in the database as part of an object and doesn’t have its own unique identifier.

An object consists of data members which are either values (Chapter 7, "Value Types"),
pointers to other objects (Chapter 6, "Relationships"), or containers of values or pointers to
other objects (Chapter 5, "Containers"). Pointers to other objects and containers can be
viewed as special kinds of values since they also can only be stored in the database as part of
an object.

Revision 2.4, February 201530 C++ Object Persistence with ODB

3 Working with Persistent Objects

An object type is a C++ class. Because of this one-to-one relationship, we will use terms
object type and object class interchangeably. In contrast, a value type can be a fundamental
C++ type, such as int or a class type, such as std::string . If a value consists of other
values, then it is called a composite value and its type — a composite value type (Section 7.2,
"Composite Value Types"). Otherwise, the value is called simple value and its type — a
simple value type (Section 7.1, "Simple Value Types"). Note that the distinction between
simple and composite values is conceptual rather than representational. For example,
std::string is a simple value type because conceptually string is a single value even
though the representation of the string class may contain several data members each of which
could be considered a value. In fact, the same value type can be viewed (and mapped) as both
simple and composite by different applications.

While not strictly necessary in a purely object-oriented application, practical considerations
often require us to only load a subset of an object’s data members or a combination of
members from several objects. We may also need to factor out some computations to the rela-
tional database instead of performing them in the application’s process. To support such
requirements ODB distinguishes a third kind of C++ types, called views (Chapter 10,
"Views"). An ODB view is a C++ class that embodies a light-weight, read-only projection
of one or more persistent objects or database tables or the result of a native SQL query execu-
tion.

Understanding how all these concepts map to the relational model will hopefully make these
distinctions clearer. In a relational database an object type is mapped to a table and a value
type is mapped to one or more columns. A simple value type is mapped to a single column
while a composite value type is mapped to several columns. An object is stored as a row in
this table and a value is stored as one or more cells in this row. A simple value is stored in a
single cell while a composite value occupies several cells. A view is not a persistent entity and
it is not stored in the database. Rather, it is a data structure that is used to capture a single row
of an SQL query result.

Going back to the distinction between simple and composite values, consider a date type
which has three integer members: year, month, and day. In one application it can be consid-
ered a composite value and each member will get its own column in a relational database. In
another application it can be considered a simple value and stored in a single column as a
number of days from some predefined date.

Until now, we have been using the term persistent class to refer to object classes. We will
continue to do so even though a value type can also be a class. The reason for this asymmetry
is the subordinate nature of value types when it comes to database operations. Remember that
values are never stored directly but rather as part of an object that contains them. As a result,
when we say that we want to make a C++ class persistent or persist an instance of a class in
the database, we invariably refer to an object class rather than a value class.

Normally, you would use object types to model real-world entities, things that have their own
identity. For example, in the previous chapter we created a person class to model a person,
which is a real-world entity. Name and age, which we used as data members in our person
class are clearly values. It is hard to think of age 31 or name "Joe" as having their own identi-

31Revision 2.4, February 2015 C++ Object Persistence with ODB

3.1 Concepts and Terminology

ties.

A good test to determine whether something is an object or a value, is to consider if other
objects might reference it. A person is clearly an object because it can be referred to by other
objects such as a spouse, an employer, or a bank. On the other hand, a person’s age or name is
not something that other objects would normally refer to.

Also, when an object represents a real entity, it is easy to choose a suitable object id. For
example, for a person there is an established notion of an identifier (SSN, student id, passport
number, etc). Another alternative is to use a person’s email address as an identifier.

Note, however, that these are only guidelines. There could be good reasons to make some-
thing that would normally be a value an object. Consider, for example, a database that stores a
vast number of people. Many of the person objects in this database have the same names
and surnames and the overhead of storing them in every object may negatively affect the
performance. In this case, we could make the first name and last name each an object and only
store pointers to these objects in the person class.

An instance of a persistent class can be in one of two states: transient and persistent. A tran-
sient instance only has a representation in the application’s memory and will cease to exist
when the application terminates, unless it is explicitly made persistent. In other words, a tran-
sient instance of a persistent class behaves just like an instance of any ordinary C++ class. A
persistent instance has a representation in both the application’s memory and the database. A
persistent instance will remain even after the application terminates unless and until it is
explicitly deleted from the database.

3.2 Declaring Persistent Objects and Values

To make a C++ class a persistent object class we declare it as such using the db object
pragma, for example:

#pragma db object
class person
{
 ...
};

The other pragma that we often use is db id which designates one of the data members as an
object id, for example:

#pragma db object
class person
{
 ...

 #pragma db id
 unsigned long id_;
};

Revision 2.4, February 201532 C++ Object Persistence with ODB

3.2 Declaring Persistent Objects and Values

The object id can be of a simple or composite (Section 7.2.1, "Composite Object Ids") value
type. This type should be default-constructible, copy-constructible, and copy-assignable. It is
also possible to declare a persistent class without an object id, however, such a class will have
limited functionality (Section 14.1.6, "no_id ").

The above two pragmas are the minimum required to declare a persistent class with an object
id. Other pragmas can be used to fine-tune the database-related properties of a class and its
members (Chapter 14, "ODB Pragma Language").

Normally, a persistent class should define the default constructor. The generated database
support code uses this constructor when instantiating an object from the persistent state. If we
add the default constructor only for the database support code, then we can make it private
provided we also make the odb::access class, defined in the <odb/core.hxx> header,
a friend of this object class. For example:

#include <odb/core.hxx>

#pragma db object
class person
{
 ...

private:
 friend class odb::access;
 person () {}
};

It is also possible to have an object class without the default constructor. However, in this
case, the database operations will only be able to load the persistent state into an existing
instance (Section 3.9, "Loading Persistent Objects", Section 4.4, "Query Result").

The ODB compiler also needs access to the non-transient (Section 14.4.11, "transient ")
data members of a persistent class. The ODB compiler can access such data members directly
if they are public. It can also do so if they are private or protected and the odb::access
class is declared a friend of the object type. For example:

#include <odb/core.hxx>

#pragma db object
class person
{
 ...

private:
 friend class odb::access;
 person () {}

 #pragma db id
 unsigned long id_;

 std::string name_;
};

33Revision 2.4, February 2015 C++ Object Persistence with ODB

3.2 Declaring Persistent Objects and Values

If data members are not accessible directly, then the ODB compiler will try to automatically
find suitable accessor and modifier functions. To accomplish this, the ODB compiler will try
to lookup common accessor and modifier names derived from the data member name. Specifi-
cally, for the name_ data member in the above example, the ODB compiler will look for
accessor functions with names: get_name() , getName() , getname() , and just
name() as well as for modifier functions with names: set_name() , setName() ,
setname() , and just name() . You can also add support for custom name derivations with
the --accessor-regex and --modifier-regex ODB compiler options. Refer to the
ODB Compiler Command Line Manual for details on these options. The following example
illustrates automatic accessor and modifier discovery:

#pragma db object
class person
{
public:
 person () {}

 ...

 unsigned long id () const;
 void id (unsigned long);

 const std::string& get_name () const;
 std::string& set_name ();

private:
 #pragma db id
 unsigned long id_; // Uses id() for access.

 std::string name_; // Uses get_name()/set_name() for access.
};

Finally, if a data member is not directly accessible and the ODB compiler was unable to
discover suitable accessor and modifier functions, then we can provide custom accessor and
modifier expressions using the db get and db set pragmas. For more information on
custom accessor and modifier expressions refer to Section 14.4.5, "get /set /access ".

Data members of a persistent class can also be split into separately-loaded and/or sepa-
rately-updated sections. For more information on this functionality, refer to Chapter 9,
"Sections".

You may be wondering whether we also have to declare value types as persistent. We don’t
need to do anything special for simple value types such as int or std::string since the
ODB compiler knows how to map them to suitable database types and how to convert
between the two. On the other hand, if a simple value is unknown to the ODB compiler then
we will need to provide the mapping to the database type and, possibly, the code to convert
between the two. For more information on how to achieve this refer to the db type pragma
description in Section 14.3.1, "type ".

Revision 2.4, February 201534 C++ Object Persistence with ODB

3.2 Declaring Persistent Objects and Values

http://www.codesynthesis.com/products/odb/doc/odb.xhtml

Similar to object classes, composite value types have to be explicitly declared as persistent
using the db value pragma, for example:

#pragma db value
class name
{
 ...

 std::string first_;
 std::string last_;
};

Note that a composite value cannot have a data member designated as an object id since, as
we have discussed earlier, values do not have a notion of identity. A composite value type
also doesn’t have to define the default constructor, unless it is used as an element of a
container. The ODB compiler uses the same mechanisms to access data members in compos-
ite value types as in object types. Composite value types are discussed in more detail in
Section 7.2, "Composite Value Types".

3.3 Object and View Pointers

As we have seen in the previous chapter, some database operations create dynamically allo-
cated instances of persistent classes and return pointers to these instances. As we will see in
later chapters, pointers are also used to establish relationships between objects (Chapter 6,
"Relationships") as well as to cache persistent objects in a session (Chapter 11, "Session").
While in most cases you won’t need to deal with pointers to views, it is possible to a obtain a
dynamically allocated instance of a view using the result_iterator::load() function
(Section 4.4, "Query Results").

By default, all these mechanisms use raw pointers to return objects and views as well as to
pass and cache objects. This is normally sufficient for applications that have simple object
lifetime requirements and do not use sessions or object relationships. In particular, a dynami-
cally allocated object or view that is returned as a raw pointer from a database operation can
be assigned to a smart pointer of our choice, for example std::auto_ptr ,
std::unique_ptr from C++11, or shared_ptr from TR1, C++11, or Boost.

However, to avoid any possibility of a mistake, such as forgetting to use a smart pointer for a
returned object or view, as well as to simplify the use of more advanced ODB functionality,
such as sessions and bidirectional object relationships, it is recommended that you use smart
pointers with the sharing semantics as object pointers. The shared_ptr smart pointer from
TR1, C++11, or Boost is a good default choice. However, if sharing is not required and
sessions are not used, then std::unique_ptr or std::auto_ptr can be used just as
well.

ODB provides several mechanisms for changing the object or view pointer type. To specify
the pointer type on the per object or per view basis we can use the db pointer pragma, for
example:

35Revision 2.4, February 2015 C++ Object Persistence with ODB

3.3 Object and View Pointers

#pragma db object pointer(std::tr1::shared_ptr)
class person
{
 ...
};

We can also specify the default pointer for a group of objects or views at the namespace level:

#pragma db namespace pointer(std::tr1::shared_ptr)
namespace accounting
{
 #pragma db object
 class employee
 {
 ...
 };

 #pragma db object
 class employer
 {
 ...
 };
}

Finally, we can use the --default-pointer option to specify the default pointer for the
whole file. Refer to the ODB Compiler Command Line Manual for details on this option’s
argument. The typical usage is shown below:

--default-pointer std::tr1::shared_ptr

An alternative to this method with the same effect is to specify the default pointer for the
global namespace:

#pragma db namespace() pointer(std::tr1::shared_ptr)

Note that we can always override the default pointer specified at the namespace level or with
the command line option using the db pointer object or view pragma. For example:

#pragma db object pointer(std::shared_ptr)
namespace accounting
{
 #pragma db object
 class employee
 {
 ...
 };

 #pragma db object pointer(std::unique_ptr)
 class employer
 {
 ...
 };
}

Revision 2.4, February 201536 C++ Object Persistence with ODB

3.3 Object and View Pointers

http://www.codesynthesis.com/products/odb/doc/odb.xhtml

Refer to Section 14.1.2, "pointer (object)", Section 14.2.4, "pointer (view)", and
Section 14.5.1, "pointer (namespace)" for more information on these mechanisms.

Built-in support that is provided by the ODB runtime library allows us to use shared_ptr
(TR1 or C++11), std::unique_ptr (C++11), or std::auto_ptr as pointer types.
Plus, ODB profile libraries, that are available for commonly used frameworks and libraries
(such as Boost and Qt), provide support for smart pointers found in these frameworks and
libraries (Part III, "Profiles"). It is also easy to add support for our own smart pointers, as
described in Section 6.5, "Using Custom Smart Pointers".

3.4 Database

Before an application can make use of persistence services offered by ODB, it has to create a
database class instance. A database instance is the representation of the place where the appli-
cation stores its persistent objects. We create a database instance by instantiating one of the
database system-specific classes. For example, odb::mysql::database would be such a
class for the MySQL database system. We will also normally pass a database name as an
argument to the class’ constructor. The following code fragment shows how we can create a
database instance for the MySQL database system:

#include <odb/database.hxx>
#include <odb/mysql/database.hxx>

auto_ptr<odb::database> db (
 new odb::mysql::database (
 "test_user" // database login name
 "test_password" // database password
 "test_database" // database name
));

The odb::database class is a common interface for all the database system-specific
classes provided by ODB. You would normally work with the database instance via this inter-
face unless there is a specific functionality that your application depends on and which is only
exposed by a particular system’s database class. You will need to include the
<odb/database.hxx> header file to make this class available in your application.

The odb::database interface defines functions for starting transactions and manipulating
persistent objects. These are discussed in detail in the remainder of this chapter as well as the
next chapter which is dedicated to the topic of querying the database for persistent objects.
For details on the system-specific database classes, refer to Part II, "Database Systems".

Before we can persist our objects, the corresponding database schema has to be created in the
database. The schema contains table definitions and other relational database artifacts that are
used to store the state of persistent objects in the database.

There are several ways to create the database schema. The easiest is to instruct the ODB
compiler to generate the corresponding schema from the persistent classes (--gener-
ate-schema option). The ODB compiler can generate the schema as a standalone SQL file,

37Revision 2.4, February 2015 C++ Object Persistence with ODB

3.4 Database

embedded into the generated C++ code, or as a separate C++ source file
(--schema-format option). If we are using the SQL file to create the database schema,
then this file should be executed, normally only once, before the application is started.

Alternatively, if the schema is embedded directly into the generated code or produced as a
separate C++ source file, then we can use the odb::schema_catalog class to create it in
the database from within our application, for example:

#include <odb/schema-catalog.hxx>

odb::transaction t (db->begin ());
odb::schema_catalog::create_schema (*db);
t.commit ();

Refer to the next section for information on the odb::transaction class. The complete
version of the above code fragment is available in the schema/embedded example in the
odb-examples package.

The odb::schema_catalog class has the following interface. You will need to include
the <odb/schema-catalog.hxx> header file to make this class available in your appli-
cation.

namespace odb
{
 class schema_catalog
 {
 public:
 static void
 create_schema (database&,
 const std::string& name = "",
 bool drop = true);

 static void
 drop_schema (database&, const std::string& name = "");

 static bool
 exists (database_id, const std::string& name = "");

 static bool
 exists (const database&, const std::string& name = "")
 };
}

The first argument to the create_schema() function is the database instance that we
would like to create the schema in. The second argument is the schema name. By default, the
ODB compiler generates all embedded schemas with the default schema name (empty string).
However, if your application needs to have several separate schemas, you can use the
--schema-name ODB compiler option to assign custom schema names and then use these
names as a second argument to create_schema() . By default, create_schema() will
also delete all the database objects (tables, indexes, etc.) if they exist prior to creating the new
ones. You can change this behavior by passing false as the third argument. The

Revision 2.4, February 201538 C++ Object Persistence with ODB

3.4 Database

drop_schema() function allows you to delete all the database objects without creating the
new ones.

If the schema is not found, the create_schema() and drop_schema() functions throw
the odb::unknown_schema exception. You can use the exists() function to check
whether a schema for the specified database and with the specified name exists in the catalog.
Note also that the create_schema() and drop_schema() functions should be called
within a transaction.

ODB also provides support for database schema evolution. Similar to schema creation,
schema migration statements can be generated either as standalone SQL files or embedded
into the generated C++ code. For more information on schema evolution support, refer to
Chapter 13, "Database Schema Evolution".

Finally, we can also use a custom database schema with ODB. This approach can work simi-
larly to the standalone SQL file described above except that the database schema is
hand-written or produced by another program. Or we could execute custom SQL statements
that create the schema directly from our application. To map persistent classes to custom
database schemas, ODB provides a wide range of mapping customization pragmas, such as
db table , db column , and db type (Chapter 14, "ODB Pragma Language"). For
sample code that shows how to perform such mapping for various C++ constructs, refer to the
schema/custom example in the odb-examples package.

3.5 Transactions

A transaction is an atomic, consistent, isolated and durable (ACID) unit of work. Database
operations can only be performed within a transaction and each thread of execution in an
application can have only one active transaction at a time.

By atomicity we mean that when it comes to making changes to the database state within a
transaction, either all the changes are applied or none at all. Consider, for example, a transac-
tion that transfers funds between two objects representing bank accounts. If the debit function
on the first object succeeds but the credit function on the second fails, the transaction is rolled
back and the database state of the first object remains unchanged.

By consistency we mean that a transaction must take all the objects stored in the database
from one consistent state to another. For example, if a bank account object must reference a
person object as its owner and we forget to set this reference before making the object persis-
tent, the transaction will be rolled back and the database will remain unchanged.

By isolation we mean that the changes made to the database state during a transaction are only
visible inside this transaction until and unless it is committed. Using the above example with
the bank transfer, the results of the debit operation performed on the first object is not visible
to other transactions until the credit operation is successfully completed and the transaction is
committed.

39Revision 2.4, February 2015 C++ Object Persistence with ODB

3.5 Transactions

By durability we mean that once the transaction is committed, the changes that it made to the
database state are permanent and will survive failures such as an application crash. From now
on the only way to alter this state is to execute and commit another transaction.

A transaction is started by calling either the database::begin() or connec-
tion::begin() function. The returned transaction handle is stored in an instance of the
odb::transaction class. You will need to include the <odb/transaction.hxx>
header file to make this class available in your application. For example:

#include <odb/transaction.hxx>

transaction t (db.begin ())

// Perform database operations.

t.commit ();

The odb::transaction class has the following interface:

namespace odb
{
 class transaction
 {
 public:
 typedef odb::database database_type;
 typedef odb::connection connection_type;

 explicit
 transaction (transaction_impl*, bool make_current = true);

 transaction ();

 void
 reset (transaction_impl*, bool make_current = true);

 void
 commit ();

 void
 rollback ();

 database_type&
 database ();

 connection_type&
 connection ();

 bool
 finilized () const;

 public:
 static bool
 has_current ();

Revision 2.4, February 201540 C++ Object Persistence with ODB

3.5 Transactions

 static transaction&
 current ();

 static void
 current (transaction&);

 static bool
 reset_current ();

 // Callback API.
 //
 public:
 ...
 };
}

The commit() function commits a transaction and rollback() rolls it back. Unless the
transaction has been finalized, that is, explicitly committed or rolled back, the destructor of
the transaction class will automatically roll it back when the transaction instance goes
out of scope. If we try to commit or roll back a finalized transaction, the odb::transac-
tion_already_finalized exception is thrown.

The database() accessor returns the database this transaction is working on. Similarly, the
connection() accessor returns the database connection this transaction is on (Section 3.6,
"Connections").

The static current() accessor returns the currently active transaction for this thread. If
there is no active transaction, this function throws the odb::not_in_transaction
exception. We can check whether there is a transaction in effect in this thread using the
has_current() static function.

The make_current argument in the transaction constructor as well as the static
current() modifier and reset_current() function give us additional control over the
nomination of the currently active transaction. If we pass false as the make_current
argument, then the newly created transaction will not automatically be made the active trans-
action for this thread. Later, we can use the static current() modifier to set this transaction
as the active transaction. The reset_current() static function clears the currently active
transaction. Together, these mechanisms allow for more advanced use cases, such as multi-
plexing two or more transactions on the same thread. For example:

transaction t1 (db1.begin ()); // Active transaction.
transaction t2 (db2.begin (), false); // Not active.

// Perform database operations on db1.

transaction::current (t2); // Deactivate t1, activate t2.

// Perform database operations on db2.

transaction::current (t1); // Switch back to t1.

// Perform some more database operations on db1.

41Revision 2.4, February 2015 C++ Object Persistence with ODB

3.5 Transactions

t1.commit ();

transaction::current (t2); // Switch to t2.

// Perform some more database operations on db2.

t2.commit ();

The reset() modifier allows us to reuse the same transaction instance to complete
several database transactions. Similar to the destructor, reset() will roll the current trans-
action back if it hasn’t been finalized. The default transaction constructor creates a final-
ized transaction which can later be initialized using reset() . The finilized() accessor
can be used to check whether the transaction has been finalized. Here is how we can use this
functionality to commit the current transaction and start a new one every time a certain
number of database operations has been performed:

transaction t (db.begin ());

for (size_t i (0); i < n; ++i)
{
 // Perform a database operation, such as persist an object.

 // Commit the current transaction and start a new one after
 // every 100 operations.
 //
 if (i % 100 == 0)
 {
 t.commit ();
 t.reset (db.begin ());
 }
}

t.commit ();

For more information on the transaction callback support, refer to Section 15.1, "Transaction
Callbacks".

Note that in the above discussion of atomicity, consistency, isolation, and durability, all of
those guarantees only apply to the object’s state in the database as opposed to the object’s
state in the application’s memory. It is possible to roll a transaction back but still have
changes from this transaction in the application’s memory. An easy way to avoid this poten-
tial inconsistency is to instantiate persistent objects only within the transaction scope.
Consider, for example, these two implementations of the same transaction:

Revision 2.4, February 201542 C++ Object Persistence with ODB

3.5 Transactions

void
update_age (database& db, person& p)
{
 transaction t (db.begin ());

 p.age (p.age () + 1);
 db.update (p);

 t.commit ();
}

In the above implementation, if the update() call fails and the transaction is rolled back,
the state of the person object in the database and the state of the same object in the applica-
tion’s memory will differ. Now consider an alternative implementation which only instanti-
ates the person object for the duration of the transaction:

void
update_age (database& db, unsigned long id)
{
 transaction t (db.begin ());

 auto_ptr<person> p (db.load<person> (id));
 p.age (p.age () + 1);
 db.update (p);

 t.commit ();
}

Of course, it may not always be possible to write the application in this style. Oftentimes we
need to access and modify the application’s state of persistent objects out of transactions. In
this case it may make sense to try to roll back the changes made to the application state if the
transaction was rolled back and the database state remains unchanged. One way to do this is
to re-load the object’s state from the database, for example:

void
update_age (database& db, person& p)
{
 try
 {
 transaction t (db.begin ());

 p.age (p.age () + 1);
 db.update (p);

 t.commit ();
 }
 catch (...)
 {
 transaction t (db.begin ());
 db.load (p.id (), p);
 t.commit ();

43Revision 2.4, February 2015 C++ Object Persistence with ODB

3.5 Transactions

 throw;
 }
}

See also Section 15.1, "Transaction Callbacks" for an alternative approach.

3.6 Connections

The odb::connection class represents a connection to the database. Normally, you
wouldn’t work with connections directly but rather let the ODB runtime obtain and release
connections as needed. However, certain use cases may require obtaining a connection manu-
ally. For completeness, this section describes the connection class and discusses some of
its use cases. You may want to skip this section if you are reading through the manual for the
first time.

Similar to odb::database , the odb::connection class is a common interface for all
the database system-specific classes provided by ODB. For details on the system-specific
connection classes, refer to Part II, "Database Systems".

To make the odb::connection class available in your application you will need to
include the <odb/connection.hxx> header file. The odb::connection class has the
following interface:

namespace odb
{
 class connection
 {
 public:
 typedef odb::database database_type;

 transaction
 begin () = 0;

 unsigned long long
 execute (const char* statement);

 unsigned long long
 execute (const std::string& statement);

 unsigned long long
 execute (const char* statement, std::size_t length);

 database_type&
 database ();
 };

 typedef details::shared_ptr<connection> connection_ptr;
}

Revision 2.4, February 201544 C++ Object Persistence with ODB

3.6 Connections

The begin() function is used to start a transaction on the connection. The execute()
functions allow us to execute native database statements on the connection. Their semantics
are equivalent to the database::execute() functions (Section 3.12, "Executing Native
SQL Statements") except that they can be legally called outside a transaction. Finally, the
database() accessor returns a reference to the odb::database instance to which this
connection corresponds.

To obtain a connection we call the database::connection() function. The connection
is returned as odb::connection_ptr , which is an implementation-specific smart pointer
with the shared pointer semantics. This, in particular, means that the connection pointer can
be copied and returned from functions. Once the last instance of connection_ptr point-
ing to the same connection is destroyed, the connection is returned to the database
instance. The following code fragment shows how we can obtain, use, and release a connec-
tion:

using namespace odb::core;

database& db = ...
connection_ptr c (db.connection ());

// Temporarily disable foreign key constraints.
//
c->execute ("SET FOREIGN_KEY_CHECKS = 0");

// Start a transaction on this connection.
//
transaction t (c->begin ());
...
t.commit ();

// Restore foreign key constraints.
//
c->execute ("SET FOREIGN_KEY_CHECKS = 1");

// When ’c’ goes out of scope, the connection is returned to ’db’.

Some of the use cases which may require direct manipulation of connections include
out-of-transaction statement execution, such as the execution of connection configuration
statements, the implementation of a connection-per-thread policy, and making sure that a set
of transactions is executed on the same connection.

3.7 Error Handling and Recovery

ODB uses C++ exceptions to report database operation errors. Most ODB exceptions signify
hard errors or errors that cannot be corrected without some intervention from the application.
For example, if we try to load an object with an unknown object id, the
odb::object_not_persistent exception is thrown. Our application may be able to
correct this error, for instance, by obtaining a valid object id and trying again. The hard errors
and corresponding ODB exceptions that can be thrown by each database function are
described in the remainder of this chapter with Section 3.14, "ODB Exceptions" providing a

45Revision 2.4, February 2015 C++ Object Persistence with ODB

3.7 Error Handling and Recovery

quick reference for all the ODB exceptions.

The second group of ODB exceptions signify soft or recoverable errors. Such errors are
temporary failures which normally can be corrected by simply re-executing the transaction.
ODB defines three such exceptions: odb::connection_lost , odb::timeout , and
odb::deadlock . All recoverable ODB exceptions are derived from the common
odb::recoverable base exception which can be used to handle all the recoverable condi-
tions with a single catch block.

The odb::connection_lost exception is thrown if a connection to the database is lost
in the middle of a transaction. In this situation the transaction is aborted but it can be re-tried
without any changes. Similarly, the odb::timeout exception is thrown if one of the
database operations or the whole transaction has timed out. Again, in this case the transaction
is aborted but can be re-tried as is.

If two or more transactions access or modify more than one object and are executed concur-
rently by different applications or by different threads within the same application, then it is
possible that these transactions will try to access objects in an incompatible order and dead-
lock. The canonical example of a deadlock are two transactions in which the first has modi-
fied object1 and is waiting for the second transaction to commit its changes to object2
so that it can also update object2 . At the same time the second transaction has modified
object2 and is waiting for the first transaction to commit its changes to object1 because
it also needs to modify object1 . As a result, none of the two transactions can be completed.

The database system detects such situations and automatically aborts the waiting operation in
one of the deadlocked transactions. In ODB this translates to the odb::deadlock recover-
able exception being thrown from one of the database functions.

The following code fragment shows how to handle the recoverable exceptions by restarting
the affected transaction:

const unsigned short max_retries = 5;

for (unsigned short retry_count (0); ; retry_count++)
{
 try
 {
 transaction t (db.begin ());

 ...

 t.commit ();
 break;
 }
 catch (const odb::recoverable& e)
 {
 if (retry_count > max_retries)
 throw retry_limit_exceeded (e.what ());

Revision 2.4, February 201546 C++ Object Persistence with ODB

3.7 Error Handling and Recovery

 else
 continue;
 }
}

3.8 Making Objects Persistent

A newly created instance of a persistent class is transient. We use the
database::persist() function template to make a transient instance persistent. This
function has four overloaded versions with the following signatures:

 template <typename T>
 typename object_traits<T>::id_type
 persist (const T& object);

 template <typename T>
 typename object_traits<T>::id_type
 persist (const object_traits<T>::const_pointer_type& object);

 template <typename T>
 typename object_traits<T>::id_type
 persist (T& object);

 template <typename T>
 typename object_traits<T>::id_type
 persist (const object_traits<T>::pointer_type& object);

Here and in the rest of the manual, object_traits<T>::pointer_type and
object_traits<T>::const_pointer_type denote the unrestricted and constant
object pointer types (Section 3.3, "Object and View Pointers"), respectively. Similarly,
object_traits<T>::id_type denotes the object id type. The
odb::object_traits template is part of the database support code generated by the
ODB compiler.

The first persist() function expects a constant reference to an instance being persisted.
The second function expects a constant object pointer. Both of these functions can only be
used on objects with application-assigned object ids (Section 14.4.2, "auto ").

The second and third persist() functions are similar to the first two except that they
operate on unrestricted references and object pointers. If the identifier of the object being
persisted is assigned by the database, these functions update the id member of the passed
instance with the assigned value. All four functions return the object id of the newly persisted
object.

If the database already contains an object of this type with this identifier, the persist()
functions throw the odb::object_already_persistent exception. This should never
happen for database-assigned object ids as long as the number of objects persisted does not
exceed the value space of the id type.

47Revision 2.4, February 2015 C++ Object Persistence with ODB

3.8 Making Objects Persistent

When calling the persist() functions, we don’t need to explicitly specify the template
type since it will be automatically deduced from the argument being passed. The following
example shows how we can call these functions:

person john ("John", "Doe", 33);
shared_ptr<person> jane (new person ("Jane", "Doe", 32));

transaction t (db.begin ());

db.persist (john);
unsigned long jane_id (db.persist (jane));

t.commit ();

cerr << "Jane’s id: " << jane_id << endl;

Notice that in the above code fragment we have created instances that we were planning to
make persistent before starting the transaction. Likewise, we printed Jane’s id after we have
committed the transaction. As a general rule, you should avoid performing operations within
the transaction scope that can be performed before the transaction starts or after it terminates.
An active transaction consumes both your application’s resources, such as a database connec-
tion, as well as the database server’s resources, such as object locks. By following the above
rule you make sure these resources are released and made available to other threads in your
application and to other applications as soon as possible.

Some database systems support persisting multiple objects with a single underlying statement
execution which can result in significantly improved performance. For such database systems
ODB provides bulk persist() functions. For details, refer to Section 15.3, "Bulk Database
Operations".

3.9 Loading Persistent Objects

Once an object is made persistent, and you know its object id, it can be loaded by the applica-
tion using the database::load() function template. This function has two overloaded
versions with the following signatures:

 template <typename T>
 typename object_traits<T>::pointer_type
 load (const typename object_traits<T>::id_type& id);

 template <typename T>
 void
 load (const typename object_traits<T>::id_type& id, T& object);

Given an object id, the first function allocates a new instance of the object class in the
dynamic memory, loads its state from the database, and returns the pointer to the new
instance. The second function loads the object’s state into an existing instance. Both functions
throw odb::object_not_persistent if there is no object of this type with this id in
the database.

Revision 2.4, February 201548 C++ Object Persistence with ODB

3.9 Loading Persistent Objects

When we call the first load() function, we need to explicitly specify the object type. We
don’t need to do this for the second function because the object type will be automatically
deduced from the second argument, for example:

transaction t (db.begin ());

auto_ptr<person> jane (db.load<person> (jane_id));

db.load (jane_id, *jane);

t.commit ();

In certain situations it may be necessary to reload the state of an object from the database.
While this is easy to achieve using the second load() function, ODB provides the
database::reload() function template that has a number of special properties. This
function has two overloaded versions with the following signatures:

 template <typename T>
 void
 reload (T& object);

 template <typename T>
 void
 reload (const object_traits<T>::pointer_type& object);

The first reload() function expects an object reference, while the second expects an object
pointer. Both functions expect the id member in the passed object to contain a valid object
identifier and, similar to load() , both will throw odb::object_not_persistent if
there is no object of this type with this id in the database.

The first special property of reload() compared to the load() function is that it does not
interact with the session’s object cache (Section 11.1, "Object Cache"). That is, if the object
being reloaded is already in the cache, then it will remain there after reload() returns.
Similarly, if the object is not in the cache, then reload() won’t put it there either.

The second special property of the reload() function only manifests itself when operating
on an object with the optimistic concurrency model. In this case, if the states of the object in
the application memory and in the database are the same, then no reloading will occur. For
more information on optimistic concurrency, refer to Chapter 12, "Optimistic Concurrency".

If we don’t know for sure whether an object with a given id is persistent, we can use the
find() function instead of load() , for example:

 template <typename T>
 typename object_traits<T>::pointer_type
 find (const typename object_traits<T>::id_type& id);

 template <typename T>
 bool
 find (const typename object_traits<T>::id_type& id, T& object);

49Revision 2.4, February 2015 C++ Object Persistence with ODB

3.9 Loading Persistent Objects

If an object with this id is not found in the database, the first find() function returns a
NULL pointer while the second function leaves the passed instance unmodified and returns
false .

If we don’t know the object id, then we can use queries to find the object (or objects) match-
ing some criteria (Chapter 4, "Querying the Database"). Note, however, that loading an
object’s state using its identifier can be significantly faster than executing a query.

3.10 Updating Persistent Objects

If a persistent object has been modified, we can store the updated state in the database using
the database::update() function template. This function has three overloaded versions
with the following signatures:

 template <typename T>
 void
 update (const T& object);

 template <typename T>
 void
 update (const object_traits<T>::const_pointer_type& object);

 template <typename T>
 void
 update (const object_traits<T>::pointer_type& object);

The first update() function expects an object reference, while the other two expect object
pointers. If the object passed to one of these functions does not exist in the database,
update() throws the odb::object_not_persistent exception (but see a note on
optimistic concurrency below).

Below is an example of the funds transfer that we talked about in the earlier section on trans-
actions. It uses the hypothetical bank_account persistent class:

void
transfer (database& db,
 unsigned long from_acc,
 unsigned long to_acc,
 unsigned int amount)
{
 bank_account from, to;

 transaction t (db.begin ());

 db.load (from_acc, from);

 if (from.balance () < amount)
 throw insufficient_funds ();

 db.load (to_acc, to);

 to.balance (to.balance () + amount);

Revision 2.4, February 201550 C++ Object Persistence with ODB

3.10 Updating Persistent Objects

 from.balance (from.balance () - amount);

 db.update (to);
 db.update (from);

 t.commit ();
}

The same can be accomplished using dynamically allocated objects and the update() func-
tion with object pointer argument, for example:

transaction t (db.begin ());

shared_ptr<bank_account> from (db.load<bank_account> (from_acc));

if (from->balance () < amount)
 throw insufficient_funds ();

shared_ptr<bank_account> to (db.load<bank_account> (to_acc));

to->balance (to->balance () + amount);
from->balance (from->balance () - amount);

db.update (to);
db.update (from);

t.commit ();

If any of the update() functions are operating on a persistent class with the optimistic
concurrency model, then they will throw the odb::object_changed exception if the
state of the object in the database has changed since it was last loaded into the application
memory. Furthermore, for such classes, update() no longer throws the
object_not_persistent exception if there is no such object in the database. Instead,
this condition is treated as a change of object state and object_changed is thrown instead.
For a more detailed discussion of optimistic concurrency, refer to Chapter 12, "Optimistic
Concurrency".

In ODB, persistent classes, composite value types, as well as individual data members can be
declared read-only (see Section 14.1.4, "readonly (object)", Section 14.3.6, "readonly
(composite value)", and Section 14.4.12, "readonly (data member)").

If an individual data member is declared read-only, then any changes to this member will be
ignored when updating the database state of an object using any of the above update()
functions. A const data member is automatically treated as read-only. If a composite value
is declared read-only then all its data members are treated as read-only.

If the whole object is declared read-only then the database state of this object cannot be
changed. Calling any of the above update() functions for such an object will result in a
compile-time error.

51Revision 2.4, February 2015 C++ Object Persistence with ODB

3.10 Updating Persistent Objects

Similar to persist() , for database systems that support this functionality, ODB provides
bulk update() functions. For details, refer to Section 15.3, "Bulk Database Operations".

3.11 Deleting Persistent Objects

To delete a persistent object’s state from the database we use the database::erase() or
database::erase_query() function templates. If the application still has an instance
of the erased object, this instance becomes transient. The erase() function has the follow-
ing overloaded versions:

 template <typename T>
 void
 erase (const T& object);

 template <typename T>
 void
 erase (const object_traits<T>::const_pointer_type& object);

 template <typename T>
 void
 erase (const object_traits<T>::pointer_type& object);

 template <typename T>
 void
 erase (const typename object_traits<T>::id_type& id);

The first erase() function uses an object itself, in the form of an object reference, to delete
its state from the database. The next two functions accomplish the same result but using object
pointers. Note that all three functions leave the passed object unchanged. It simply becomes
transient. The last function uses the object id to identify the object to be deleted. If the object
does not exist in the database, then all four functions throw the
odb::object_not_persistent exception (but see a note on optimistic concurrency
below).

We have to specify the object type when calling the last erase() function. The same is
unnecessary for the first three functions because the object type will be automatically deduced
from their arguments. The following example shows how we can call these functions:

person& john = ...
shared_ptr<jane> jane = ...
unsigned long joe_id = ...

transaction t (db.begin ());

db.erase (john);
db.erase (jane);
db.erase<person> (joe_id);

t.commit ();

Revision 2.4, February 201552 C++ Object Persistence with ODB

3.11 Deleting Persistent Objects

If any of the erase() functions except the last one are operating on a persistent class with
the optimistic concurrency model, then they will throw the odb::object_changed
exception if the state of the object in the database has changed since it was last loaded into the
application memory. Furthermore, for such classes, erase() no longer throws the
object_not_persistent exception if there is no such object in the database. Instead,
this condition is treated as a change of object state and object_changed is thrown instead.
For a more detailed discussion of optimistic concurrency, refer to Chapter 12, "Optimistic
Concurrency".

Similar to persist() and update() , for database systems that support this functionality,
ODB provides bulk erase() functions. For details, refer to Section 15.3, "Bulk Database
Operations".

The erase_query() function allows us to delete the state of multiple objects matching
certain criteria. It uses the query expression of the database::query() function (Chapter
4, "Querying the Database") and, because the ODB query facility is optional, it is only avail-
able if the --generate-query ODB compiler option was specified. The
erase_query() function has the following overloaded versions:

 template <typename T>
 unsigned long long
 erase_query ();

 template <typename T>
 unsigned long long
 erase_query (const odb::query<T>&);

The first erase_query() function is used to delete the state of all the persistent objects of
a given type stored in the database. The second function uses the passed query instance to
only delete the state of objects matching the query criteria. Both functions return the number
of objects erased. When calling the erase_query() function, we have to explicitly specify
the object type we are erasing. For example:

typedef odb::query<person> query;

transaction t (db.begin ());

db.erase_query<person> (query::last == "Doe" && query::age < 30);

t.commit ();

Unlike the query() function, when calling erase_query() we cannot use members
from pointed-to objects in the query expression. However, we can still use a member corre-
sponding to a pointer as an ordinary object member that has the id type of the pointed-to
object (Chapter 6, "Relationships"). This allows us to compare object ids as well as test the
pointer for NULL. As an example, the following transaction makes sure that all the
employee objects that reference an employer object that is about to be deleted are deleted
as well. Here we assume that the employee class contains a pointer to the employer class.
Refer to Chapter 6, "Relationships" for complete definitions of these classes.

53Revision 2.4, February 2015 C++ Object Persistence with ODB

3.11 Deleting Persistent Objects

typedef odb::query<employee> query;

transaction t (db.begin ());

employer& e = ... // Employer object to be deleted.

db.erase_query<employee> (query::employer == e.id ());
db.erase (e);

t.commit ();

3.12 Executing Native SQL Statements

In some situations we may need to execute native SQL statements instead of using the
object-oriented database API described above. For example, we may want to tune the
database schema generated by the ODB compiler or take advantage of a feature that is
specific to the database system we are using. The database::execute() function,
which has three overloaded versions, provides this functionality:

 unsigned long long
 execute (const char* statement);

 unsigned long long
 execute (const std::string& statement);

 unsigned long long
 execute (const char* statement, std::size_t length)

The first execute() function expects the SQL statement as a zero-terminated C-string. The
last version expects the explicit statement length as the second argument and the statement
itself may contain ’\0’ characters, for example, to represent binary data, if the database
system supports it. All three functions return the number of rows that were affected by the
statement. For example:

transaction t (db.begin ());

db.execute ("DROP TABLE test");
db.execute ("CREATE TABLE test (n INT PRIMARY KEY)");

t.commit ();

While these functions must always be called within a transaction, it may be necessary to
execute a native statement outside a transaction. This can be done using the connec-
tion::execute() functions as described in Section 3.6, "Connections".

3.13 Tracing SQL Statement Execution

Oftentimes it is useful to understand what SQL statements are executed as a result of
high-level database operations. For example, we can use this information to figure out why
certain transactions don’t produce desired results or why they take longer than expected.

Revision 2.4, February 201554 C++ Object Persistence with ODB

3.12 Executing Native SQL Statements

While this information can usually be obtained from the database logs, ODB provides an
application-side SQL statement tracing support that is both more convenient and
finer-grained. For example, in a typical situation that calls for tracing we would like to see the
SQL statements executed as a result of a specific transaction. While it may be difficult to
extract such a subset of statements from the database logs, it is easy to achieve with ODB
tracing support:

transaction t (db.begin ());
t.tracer (stderr_tracer);

...

t.commit ();

ODB allows us to specify a tracer on the database, connection, and transaction levels. If speci-
fied for the database, then all the statements executed on this database will be traced. On the
other hand, if a tracer is specified for the connection, then only the SQL statements executed
on this connection will be traced. Similarly, a tracer specified for a transaction will only show
statements that are executed as part of this transaction. All three classes (odb::database ,
odb::connection , and odb::transaction) provide the identical tracing API:

 void
 tracer (odb::tracer&);

 void
 tracer (odb::tracer*);

 odb::tracer*
 tracer () const;

The first two tracer() functions allow us to set the tracer object with the second one
allowing us to clear the current tracer by passing a NULL pointer. The last tracer() func-
tion allows us to get the current tracer object. It returns a NULL pointer if there is no tracer in
effect. Note that the tracing API does not manage the lifetime of the tracer object. The tracer
should be valid for as long as it is being used. Furthermore, the tracing API is not thread-safe.
Trying to set a tracer from multiple threads simultaneously will result in undefined behavior.

The odb::tracer class defines a callback interface that can be used to create custom tracer
implementations. The odb::stderr_tracer and odb::stderr_full_tracer are
built-in tracer implementations provided by the ODB runtime. They both print SQL state-
ments being executed to the standard error stream. The full tracer, in addition to tracing state-
ment executions, also traces their preparations and deallocations. One situation where the full
tracer can be particularly useful is if a statement (for example a custom query) contains a
syntax error. In this case the error will be detected during preparation and, as a result, the
statement will never be executed. The only way to see such a statement is by using the full
tracing.

55Revision 2.4, February 2015 C++ Object Persistence with ODB

3.13 Tracing SQL Statement Execution

The odb::tracer class is defined in the <odb/tracer.hxx> header file which you
will need to include in order to make this class available in your application. The
odb::tracer interface provided the following callback functions:

namespace odb
{
 class tracer
 {
 public:
 virtual void
 prepare (connection&, const statement&);

 virtual void
 execute (connection&, const statement&);

 virtual void
 execute (connection&, const char* statement) = 0;

 virtual void
 deallocate (connection&, const statement&);
 };
}

The prepare() and deallocate() functions are called when a prepared statement is
created and destroyed, respectively. The first execute() function is called when a prepared
statement is executed while the second one is called when a normal statement is executed. The
default implementations for the prepare() and deallocate() functions do nothing
while the first execute() function calls the second one passing the statement text as the
second argument. As a result, if all you are interested in are the SQL statements being
executed, then you only need to override the second execute() function.

In addition to the common odb::tracer interface, each database runtime provides a
database-specific version as odb::<database>::tracer . It has exactly the same inter-
face as the common version except that the connection and statement types are
database-specific, which gives us access to additional, database-specific information.

As an example, consider a more elaborate, PostgreSQL-specific tracer implementation. Here
we rely on the fact that the PostgreSQL ODB runtime uses names to identify prepared state-
ments and this information can be obtained from the odb::pgsql::statement object:

#include <odb/pgsql/tracer.hxx>
#include <odb/pgsql/database.hxx>
#include <odb/pgsql/connection.hxx>
#include <odb/pgsql/statement.hxx>

class pgsql_tracer: public odb::pgsql::tracer
{
 virtual void
 prepare (odb::pgsql::connection& c, const odb::pgsql::statement& s)
 {
 cerr << c.database ().db () << ": PREPARE " << s.name ()
 << " AS " << s.text () << endl;

Revision 2.4, February 201556 C++ Object Persistence with ODB

3.13 Tracing SQL Statement Execution

 }

 virtual void
 execute (odb::pgsql::connection& c, const odb::pgsql::statement& s)
 {
 cerr << c.database ().db () << ": EXECUTE " << s.name () << endl;
 }

 virtual void
 execute (odb::pgsql::connection& c, const char* statement)
 {
 cerr << c.database ().db () << ": " << statement << endl;
 }

 virtual void
 deallocate (odb::pgsql::connection& c, const odb::pgsql::statement& s)
 {
 cerr << c.database ().db () << ": DEALLOCATE " << s.name () << endl;
 }
};

Note also that you can only set a database-specific tracer object using a database-specific
database instance, for example:

pgsql_tracer tracer;

odb::database& db = ...;
db.tracer (tracer); // Compile error.

odb::pgsql::database& db = ...;
db.tracer (tracer); // Ok.

3.14 ODB Exceptions

In the previous sections we have already mentioned some of the exceptions that can be thrown
by the database functions. In this section we will discuss the ODB exception hierarchy and
document all the exceptions that can be thrown by the common ODB runtime.

The root of the ODB exception hierarchy is the abstract odb::exception class. This class
derives from std::exception and has the following interface:

namespace odb
{
 struct exception: std::exception
 {
 virtual const char*
 what () const throw () = 0;
 };
}

57Revision 2.4, February 2015 C++ Object Persistence with ODB

3.14 ODB Exceptions

Catching this exception guarantees that we will catch all the exceptions thrown by ODB. The
what() function returns a human-readable description of the condition that triggered the
exception.

The concrete exceptions that can be thrown by ODB are presented in the following listing:

namespace odb
{
 struct null_pointer: exception
 {
 virtual const char*
 what () const throw ();
 };

 // Transaction exceptions.
 //
 struct already_in_transaction: exception
 {
 virtual const char*
 what () const throw ();
 };

 struct not_in_transaction: exception
 {
 virtual const char*
 what () const throw ();
 };

 struct transaction_already_finalized: exception
 {
 virtual const char*
 what () const throw ();
 };

 // Session exceptions.
 //
 struct already_in_session: exception
 {
 virtual const char*
 what () const throw ();
 };

 struct not_in_session: exception
 {
 virtual const char*
 what () const throw ();
 };

 struct session_required: exception
 {
 virtual const char*
 what () const throw ();
 };

 // Database operations exceptions.

Revision 2.4, February 201558 C++ Object Persistence with ODB

3.14 ODB Exceptions

 //
 struct recoverable: exception
 {
 };

 struct connection_lost: recoverable
 {
 virtual const char*
 what () const throw ();
 };

 struct timeout: recoverable
 {
 virtual const char*
 what () const throw ();
 };

 struct deadlock: recoverable
 {
 virtual const char*
 what () const throw ();
 };

 struct object_not_persistent: exception
 {
 virtual const char*
 what () const throw ();
 };

 struct object_already_persistent: exception
 {
 virtual const char*
 what () const throw ();
 };

 struct object_changed: exception
 {
 virtual const char*
 what () const throw ();
 };

 struct result_not_cached: exception
 {
 virtual const char*
 what () const throw ();
 };

 struct database_exception: exception
 {
 };

 // Polymorphism support exceptions.
 //
 struct abstract_class: exception
 {
 virtual const char*

59Revision 2.4, February 2015 C++ Object Persistence with ODB

3.14 ODB Exceptions

 what () const throw ();
 };

 struct no_type_info: exception
 {
 virtual const char*
 what () const throw ();
 };

 // Prepared query support exceptions.
 //
 struct prepared_already_cached: exception
 {
 const char*
 name () const;

 virtual const char*
 what () const throw ();
 };

 struct prepared_type_mismatch: exception
 {
 const char*
 name () const;

 virtual const char*
 what () const throw ();
 };

 // Schema catalog exceptions.
 //
 struct unknown_schema: exception
 {
 const std::string&
 name () const;

 virtual const char*
 what () const throw ();
 };

 struct unknown_schema_version: exception
 {
 schema_version
 version () const;

 virtual const char*
 what () const throw ();
 };

 // Section exceptions.
 //
 struct section_not_loaded: exception
 {
 virtual const char*
 what () const throw ();
 };

Revision 2.4, February 201560 C++ Object Persistence with ODB

3.14 ODB Exceptions

 struct section_not_in_object: exception
 {
 virtual const char*
 what () const throw ();
 };

 // Bulk operation exceptions.
 //
 struct multiple_exceptions: exception
 {
 ...

 virtual const char*
 what () const throw ();
 };
}

The null_pointer exception is thrown when a pointer to a persistent object declared
non-NULL with the db not_null or db value_not_null pragma has the NULL value.
See Chapter 6, "Relationships" for details.

The next three exceptions (already_in_transaction , not_in_transaction ,
transaction_already_finalized) are thrown by the odb::transaction class
and are discussed in Section 3.5, "Transactions".

The next two exceptions (already_in_session , and not_in_session) are thrown
by the odb::session class and are discussed in Chapter 11, "Session".

The session_required exception is thrown when ODB detects that correctly loading a
bidirectional object relationship requires a session but one is not used. See Section 6.2, "Bidi-
rectional Relationships" for more information on this exception.

The recoverable exception serves as a common base for all the recoverable exceptions,
which are: connection_lost , timeout , and deadlock . The connection_lost
exception is thrown when a connection to the database is lost. Similarly, the timeout excep-
tion is thrown if one of the database operations or the whole transaction has timed out. The
deadlock exception is thrown when a transaction deadlock is detected by the database
system. These exceptions can be thrown by any database function. See Section 3.7, "Error
Handling and Recovery" for details.

The object_already_persistent exception is thrown by the persist() database
function. See Section 3.8, "Making Objects Persistent" for details.

The object_not_persistent exception is thrown by the load() , update() , and
erase() database functions. Refer to Section 3.9, "Loading Persistent Objects", Section
3.10, "Updating Persistent Objects", and Section 3.11, "Deleting Persistent Objects" for more
information.

61Revision 2.4, February 2015 C++ Object Persistence with ODB

3.14 ODB Exceptions

The object_changed exception is thrown by the update() database function and
certain erase() database functions when operating on objects with the optimistic concur-
rency model. See Chapter 12, "Optimistic Concurrency" for details.

The result_not_cached exception is thrown by the query result class. Refer to Section
4.4, "Query Result" for details.

The database_exception exception is a base class for all database system-specific
exceptions that are thrown by the database system-specific runtime library. Refer to Part II,
"Database Systems" for more information.

The abstract_class exception is thrown by the database functions when we attempt to
persist, update, load, or erase an instance of a polymorphic abstract class. For more informa-
tion on abstract classes, refer to Section 14.1.3, "abstract ".

The no_type_info exception is thrown by the database functions when we attempt to
persist, update, load, or erase an instance of a polymorphic class for which no type informa-
tion is present in the application. This normally means that the generated database support
code for this class has not been linked (or dynamically loaded) into the application or the
discriminator value has not been mapped to a persistent class. For more information on poly-
morphism support, refer to Section 8.2, "Polymorphism Inheritance".

The prepared_already_cached exception is thrown by the cache_query() func-
tion if a prepared query with the specified name is already cached. The
prepared_type_mismatch exception is thrown by the lookup_query() function if
the specified prepared query object type or parameters type does not match the one in the
cache. Refer to Section 4.5, "Prepared Queries" for details.

The unknown_schema exception is thrown by the odb::schema_catalog class if a
schema with the specified name is not found. Refer to Section 3.4, "Database" for details. The
unknown_schema_version exception is thrown by the schema_catalog functions
that deal with database schema evolution if the passed version is unknow. Refer to Chapter
13, "Database Schema Evolution" for details.

The section_not_loaded exception is thrown if we attempt to update an object section
that hasn’t been loaded. The section_not_in_object exception is thrown if the section
instance being loaded or updated does not belong to the corresponding object. See Chapter 9,
"Sections" for more information on these exceptions.

The multiple_exceptions exception is thrown by the bulk API functions. Refer to
Section 15.3, "Bulk Database Operations" for details.

The odb::exception class is defined in the <odb/exception.hxx> header file. All
the concrete ODB exceptions are defined in <odb/exceptions.hxx> which also
includes <odb/exception.hxx> . Normally you don’t need to include either of these two
headers because they are automatically included by <odb/database.hxx> . However, if
the source file that handles ODB exceptions does not include <odb/database.hxx> , then
you will need to explicitly include one of these headers.

Revision 2.4, February 201562 C++ Object Persistence with ODB

3.14 ODB Exceptions

4 Querying the Database
If we don’t know the identifiers of the objects that we are looking for, we can use queries to
search the database for objects matching certain criteria. The ODB query facility is optional
and we need to explicitly request the generation of the necessary database support code with
the --generate-query ODB compiler option.

ODB provides a flexible query API that offers two distinct levels of abstraction from the
database system query language such as SQL. At the high level we are presented with an easy
to use yet powerful object-oriented query language, called ODB Query Language. This query
language is modeled after and is integrated into C++ allowing us to write expressive and safe
queries that look and feel like ordinary C++. We have already seen examples of these queries
in the introductory chapters. Below is another, more interesting, example:

 typedef odb::query<person> query;
 typedef odb::result<person> result;

 unsigned short age;
 query q (query::first == "John" && query::age < query::_ref (age));

 for (age = 10; age < 100; age += 10)
 {
 result r (db.query<person> (q));
 ...
 }

At the low level, queries can be written as predicates using the database system-native query
language such as the WHERE predicate from the SQL SELECT statement. This language will
be referred to as native query language. At this level ODB still takes care of converting query
parameters from C++ to the database system format. Below is the re-implementation of the
above example using SQL as the native query language:

 query q ("first = ’John’ AND age = " + query::_ref (age));

Note that at this level we lose the static typing of query expressions. For example, if we wrote
something like this:

 query q (query::first == 123 && query::agee < query::_ref (age));

We would get two errors during the C++ compilation. The first would indicate that we cannot
compare query::first to an integer and the second would pick the misspelling in
query::agee . On the other hand, if we wrote something like this:

 query q ("first = 123 AND agee = " + query::_ref (age));

It would compile fine and would trigger an error only when executed by the database system.

63Revision 2.4, February 2015 C++ Object Persistence with ODB

4 Querying the Database

We can also combine the two query languages in a single query, for example:

 query q ("first = ’John’ AND" + (query::age < query::_ref (age)));

4.1 ODB Query Language

An ODB query is an expression that tells the database system whether any given object
matches the desired criteria. As such, a query expression always evaluates as true or
false . At the higher level, an expression consists of other expressions combined with
logical operators such as && (AND), || (OR), and ! (NOT). For example:

 typedef odb::query<person> query;

 query q (query::first == "John" || query::age == 31);

At the core of every query expression lie simple expressions which involve one or more
object members, values, or parameters. To refer to an object member we use an expression
such as query::first above. The names of members in the query class are derived from
the names of data members in the object class by removing the common member name deco-
rations, such as leading and trailing underscores, the m_ prefix, etc.

In a simple expression an object member can be compared to a value, parameter, or another
member using a number of predefined operators and functions. The following table gives an
overview of the available expressions:

Operator Description Example

== equal query::age == 31

!= unequal query::age != 31

< less than query::age < 31

> greater than query::age > 31

<= less than or equal query::age <= 31

>= greater than or equal query::age >= 31

in() one of the values query::age.in (30, 32, 34)

in_range()
one of the values in
range

query::age.in_range (begin,
end)

like() matches a pattern query::first.like ("J%")

is_null() value is NULL query::age.is_null ()

is_not_null() value is NOT NULL query::age.is_not_null ()

Revision 2.4, February 201564 C++ Object Persistence with ODB

4.1 ODB Query Language

The in() function accepts a maximum of five arguments. Use the in_range() function if
you need to compare to more than five values. This function accepts a pair of standard C++
iterators and compares to all the values from the begin position inclusive and until and
excluding the end position. The following code fragment shows how we can use these func-
tions:

 std::vector<string> names;

 names.push_back ("John");
 names.push_back ("Jack");
 names.push_back ("Jane");

 query q1 (query::first.in ("John", "Jack", "Jane"));
 query q2 (query::first.in_range (names.begin (), names.end ()));

Note that the like() function does not perform any translation of the database
system-specific extensions of the SQL LIKE operator. As a result, if you would like your
application to be portable among various database systems, then limit the special characters
used in the pattern to % (matches zero or more characters) and _ (matches exactly one charac-
ter). It is also possible to specify the escape character as a second argument to the like()
function. This character can then be used to escape the special characters (% and _) in the
pattern. For example, the following query will match any two characters separated by an
underscore:

 query q (query::name.like ("_!__", "!"));

The operator precedence in the query expressions are the same as for equivalent C++ opera-
tors. We can use parentheses to make sure the expression is evaluated in the desired order. For
example:

 query q ((query::first == "John" || query::first == "Jane") &&
 query::age < 31);

4.2 Parameter Binding

An instance of the odb::query class encapsulates two parts of information about the query:
the query expression and the query parameters. Parameters can be bound to C++ variables
either by value or by reference.

If a parameter is bound by value, then the value for this parameter is copied from the C++
variable to the query instance at the query construction time. On the other hand, if a parameter
is bound by reference, then the query instance stores a reference to the bound variable. The
actual value of the parameter is only extracted at the query execution time. Consider, for
example, the following two queries:

65Revision 2.4, February 2015 C++ Object Persistence with ODB

4.2 Parameter Binding

 string name ("John");

 query q1 (query::first == query::_val (name));
 query q2 (query::first == query::_ref (name));

 name = "Jane";

 db.query<person> (q1); // Find John.
 db.query<person> (q2); // Find Jane.

The odb::query class provides two special functions, _val() and _ref() , that allow us
to bind the parameter either by value or by reference, respectively. In the ODB query
language, if the binding is not specified explicitly, the value semantic is used by default. In
the native query language, binding must always be specified explicitly. For example:

 query q1 (query::age < age); // By value.
 query q2 (query::age < query::_val (age)); // By value.
 query q3 (query::age < query::_ref (age)); // By reference.

 query q4 ("age < " + age); // Error.
 query q5 ("age < " + query::_val (age)); // By value.
 query q6 ("age < " + query::_ref (age)); // By reference.

A query that only has by-value parameters does not depend on any other variables and is
self-sufficient once constructed. A query that has one or more by-reference parameters
depends on the bound variables until the query is executed. If one such variable goes out of
scope and we execute the query, the behavior is undefined.

4.3 Executing a Query

Once we have the query instance ready and by-reference parameters initialized, we can
execute the query using the database::query() function template. It has two overloaded
versions:

 template <typename T>
 result<T>
 query (bool cache = true);

 template <typename T>
 result<T>
 query (const odb::query<T>&, bool cache = true);

The first query() function is used to return all the persistent objects of a given type stored
in the database. The second function uses the passed query instance to only return objects
matching the query criteria. The cache argument determines whether the objects’ states
should be cached in the application’s memory or if they should be returned by the database
system one by one as the iteration over the result progresses. The result caching is discussed
in detail in the next section.

Revision 2.4, February 201566 C++ Object Persistence with ODB

4.3 Executing a Query

When calling the query() function, we have to explicitly specify the object type we are
querying. For example:

 typedef odb::query<person> query;
 typedef odb::result<person> result;

 result all (db.query<person> ());
 result johns (db.query<person> (query::first == "John"));

Note that it is not required to explicitly create a named query variable before executing it. For
example, the following two queries are equivalent:

 query q (query::first == "John");

 result r1 (db.query<person> (q));
 result r1 (db.query<person> (query::first == "John"));

Normally, we would create a named query instance if we are planning to run the same query
multiple times and would use the in-line version for those that are executed only once (see
also Section 4.5, "Prepared Queries" for a more optimal way to re-execute the same query
multiple times). A named query instance that does not have any by-reference parameters is
immutable and can be shared between multiple threads without synchronization. On the other
hand, a query instance with by-reference parameters is modified every time it is executed. If
such a query is shared among multiple threads, then access to this query instance must be
synchronized from the execution point and until the completion of the iteration over the result.

It is also possible to create queries from other queries by combining them using logical opera-
tors. For example:

result
find_minors (database& db, const query& name_query)
{
 return db.query<person> (name_query && query::age < 18);
}

result r (find_minors (db, query::first == "John"));

The result of executing a query is zero, one, or more objects matching the query criteria. The
query() function returns this result as an instance of the odb::result class template,
which provides a stream-like interface and is discussed in detail in the next section.

In situations where we know that a query produces at most one element, we can instead use
the database::query_one() and database::query_value() shortcut functions,
for example:

 typedef odb::query<person> query;

 auto_ptr<person> p (
 db.query_one<person> (
 query::email == "jon@example.com"));

67Revision 2.4, February 2015 C++ Object Persistence with ODB

4.3 Executing a Query

The shortcut query functions have the following signatures:

 template <typename T>
 typename object_traits<T>::pointer_type
 query_one ();

 template <typename T>
 bool
 query_one (T&);

 template <typename T>
 T
 query_value ();

 template <typename T>
 typename object_traits<T>::pointer_type
 query_one (const odb::query<T>&);

 template <typename T>
 bool
 query_one (const odb::query<T>&, T&);

 template <typename T>
 T
 query_value (const odb::query<T>&);

Similar to query() , the first three functions are used to return the only persistent object of a
given type stored in the database. The second three versions use the passed query instance to
only return the object matching the query criteria.

Similar to the database::find() functions (Section 3.9, "Loading Persistent Objects"),
query_one() can either allocate a new instance of the object class in the dynamic memory
or it can load the object’s state into an existing instance. The query_value() function
allocates and returns the object by value.

The query_one() function allows us to determine if the query result contains zero or one
element. If no objects matching the query criteria were found in the database, the first version
of query_one() returns the NULL pointer while the second — false . If the second
version returns false , then the passed object remains unchanged. For example:

 if (unique_ptr<person> p = db.query_one<person> (
 query::email == "jon@example.com"))
 {
 ...
 }

 person p;
 if (db.query_one<person> (query::email == "jon@example.com", p))
 {
 ...
 }

Revision 2.4, February 201568 C++ Object Persistence with ODB

4.3 Executing a Query

If the query executed using query_one() or query_value() returns more than one
element, then these functions fail with an assertion. Additionally, query_value() also
fails with an assertion if the query returned no elements.

Common situations where we can use the shortcut functions are a query condition that uses a
data member with the unique constraint (at most one element returned; see Section 14.7,
"Index Definition Pragmas") as well as aggregate queries (exactly one element returned; see
Chapter 10, "Views").

4.4 Query Result

The database::query() function returns the result of executing a query as an instance
of the odb::result class template, for example:

 typedef odb::query<person> query;
 typedef odb::result<person> result;

 result johns (db.query<person> (query::first == "John"));

It is best to view an instance of odb::result as a handle to a stream, such as a file stream.
While we can make a copy of a result or assign one result to another, the two instances will
refer to the same result stream. Advancing the current position in one instance will also
advance it in another. The result instance is only usable within the transaction it was created
in. Trying to manipulate the result after the transaction has terminated leads to undefined
behavior.

The odb::result class template conforms to the standard C++ sequence requirements and
has the following interface:

namespace odb
{
 template <typename T>
 class result
 {
 public:
 typedef odb::result_iterator<T> iterator;

 public:
 result ();

 result (const result&);

 result&
 operator= (const result&);

 void
 swap (result&)

 public:
 iterator
 begin ();

69Revision 2.4, February 2015 C++ Object Persistence with ODB

4.4 Query Result

 iterator
 end ();

 public:
 void
 cache ();

 bool
 empty () const;

 std::size_t
 size () const;
 };
}

The default constructor creates an empty result set. The cache() function caches the
returned objects’ state in the application’s memory. We have already mentioned result
caching when we talked about query execution. As you may remember the
database::query() function caches the result unless instructed not to by the caller. The
cache() function allows us to cache the result at a later stage if it wasn’t already cached
during query execution.

If the result is cached, the database state of all the returned objects is stored in the applica-
tion’s memory. Note that the actual objects are still only instantiated on demand during result
iteration. It is the raw database state that is cached in memory. In contrast, for uncached
results the object’s state is sent by the database system one object at a time as the iteration
progresses.

Uncached results can improve the performance of both the application and the database
system in situations where we have a large number of objects in the result or if we will only
examine a small portion of the returned objects. However, uncached results have a number of
limitations. There can only be one uncached result in a transaction. Creating another result
(cached or uncached) by calling database::query() will invalidate the existing
uncached result. Furthermore, calling any other database functions, such as update() or
erase() will also invalidate the uncached result. It also follows that uncached results cannot
be used on objects with containers (Chapter 5, "Containers") since loading a container would
invalidate the uncached result.

The empty() function returns true if there are no objects in the result and false other-
wise. The size() function can only be called for cached results. It returns the number of
objects in the result. If we call this function on an uncached result, the
odb::result_not_cached exception is thrown.

To iterate over the objects in a result we use the begin() and end() functions together
with the odb::result<T>::iterator type, for example:

Revision 2.4, February 201570 C++ Object Persistence with ODB

4.4 Query Result

 result r (db.query<person> (query::first == "John"));

 for (result::iterator i (r.begin ()); i != r.end (); ++i)
 {
 ...
 }

In C++11 we can use the auto -typed variabe instead of spelling the iterator type explicitly,
for example:

 for (auto i (r.begin ()); i != r.end (); ++i)
 {
 ...
 }

The C++11 range-based for -loop can be used to further simplify the iteration:

 for (person& p: r)
 {
 ...
 }

The result iterator is an input iterator which means that the only two position operations that it
supports are to move to the next object and to determine whether the end of the result stream
has been reached. In fact, the result iterator can only be in two states: the current position and
the end position. If we have two iterators pointing to the current position and then we advance
one of them, the other will advance as well. This, for example, means that it doesn’t make
sense to store an iterator that points to some object of interest in the result stream with the
intent of dereferencing it after the iteration is over. Instead, we would need to store the object
itself.

The result iterator has the following dereference functions that can be used to access the
pointed-to object:

namespace odb
{
 template <typename T>
 class result_iterator
 {
 public:
 T*
 operator-> () const;

 T&
 operator* () const;

 typename object_traits<T>::pointer_type
 load ();

 void
 load (T& x);

71Revision 2.4, February 2015 C++ Object Persistence with ODB

4.4 Query Result

 typename object_traits<T>::id_type
 id ();
 };
}

When we call the * or -> operator, the iterator will allocate a new instance of the object class
in the dynamic memory, load its state from the database state, and return a reference or
pointer to the new instance. The iterator maintains the ownership of the returned object and
will return the same pointer for subsequent calls to either of these operators until it is
advanced to the next object or we call the first load() function (see below). For example:

 result r (db.query<person> (query::first == "John"));

 for (result::iterator i (r.begin ()); i != r.end ();)
 {
 cout << i->last () << endl; // Create an object.
 person& p (*i); // Reference to the same object.
 cout << p.age () << endl;
 ++i; // Free the object.
 }

The overloaded result_iterator::load() functions are similar to
database::load() . The first function returns a dynamically allocated instance of the
current object. As an optimization, if the iterator already owns an object as a result of an
earlier call to the * or -> operator, then it relinquishes the ownership of this object and
returns it instead. This allows us to write code like this without worrying about a double allo-
cation:

 result r (db.query<person> (query::first == "John"));

 for (result::iterator i (r.begin ()); i != r.end (); ++i)
 {
 if (i->last == "Doe")
 {
 auto_ptr p (i.load ());
 ...
 }
 }

Note, however, that because of this optimization, a subsequent to load() call to the * or ->
operator results in the allocation of a new object.

The second load() function allows us to load the current object’s state into an existing
instance. For example:

Revision 2.4, February 201572 C++ Object Persistence with ODB

4.4 Query Result

 result r (db.query<person> (query::first == "John"));

 person p;
 for (result::iterator i (r.begin ()); i != r.end (); ++i)
 {
 i.load (p);
 cout << p.last () << endl;
 cout << i.age () << endl;
 }

The id() function return the object id of the current object. While we can achieve the same
by loading the object and getting its id, this function is more efficient since it doesn’t actually
create the object. This can be useful when all we need is the object’s identifier. For example:

 std::set<unsigned long> set = ...; // Persons of interest.

 result r (db.query<person> (query::first == "John"));

 for (result::iterator i (r.begin ()); i != r.end (); ++i)
 {
 if (set.find (i.id ()) != set.end ()) // No object loaded.
 {
 cout << i->first () << endl; // Object loaded.
 }
 }

4.5 Prepared Queries

Most modern relational database systems have the notion of a prepared statement. Prepared
statements allow us to perform the potentially expensive tasks of parsing SQL, preparing the
query execution plan, etc., once and then executing the same query multiple times, potentially
using different values for parameters in each execution.

In ODB all the non-query database operations such as persist() , load() , update() ,
etc., are implemented in terms of prepared statements that are cached and reused. While the
query() , query_one() , and query_one() database operations also use prepared state-
ments, these statements are not cached or reused by default since ODB has no knowledge of
whether a query will be executed multiple times or only once. Instead, ODB provides a mech-
anism, called prepared queries, that allows us to prepare a query once and execute it multiple
times. In other words, ODB prepared queries are a thin wrapper around the underlying
database’s prepared statement functionality.

In most cases ODB shields the application developer from database connection management
and multi-threading issues. However, when it comes to prepared queries, a basic understand-
ing of how ODB manages these aspects is required. Conceptually, the odb::database
class represents a specific database, that is, a data store. However, underneath, it maintains
one or more connections to this database. A connection can be used only by a single thread at
a time. When we start a transaction (by calling database::begin()), the transaction
instance obtains a connection and holds on to it until the transaction is committed or rolled
back. During this time no other thread can use this connection. When the transaction releases

73Revision 2.4, February 2015 C++ Object Persistence with ODB

4.5 Prepared Queries

the connection, it may be closed or reused by another transaction in this or another thread.
What exactly happens to a connection after it has been released depends on the connection
factory that is used by the odb::database instance. For more information on connection
factories, refer to Part II, "Database Systems".

A query prepared on one connection cannot be executed on another. In other words, a
prepared query is associated with the connection. One important implication of this restriction
is that we cannot prepare a query in one transaction and then try to execute it in another
without making sure that both transactions use the same connection.

To enable the prepared query functionality we need to specify the --gener-
ate-prepared ODB compiler option. If we are planning to always prepare our queries,
then we can disable the once-off query execution support by also specifying the
--omit-unprepared option.

To prepare a query we use the prepare_query() function template. This function can be
called on both the odb::database and odb::connection instances. The
odb::database version simply obtains the connection used by the currently active trans-
action and calls the corresponding odb::connection version. If no transaction is
currently active, then this function throws the odb::not_in_transaction exception
(Section 3.5, "Transactions"). The prepare_query() function has the following signa-
ture:

 template <typename T>
 prepared_query<T>
 prepare_query (const char* name, const odb::query<T>&);

The first argument to the prepare_query() function is the prepared query name. This
name is used as a key for prepared query caching (discussed later) and must be unique. For
some databases, notably PostgreSQL, it is also used as a name of the underlying prepared
statement. The name " object_query" (for example, "person_query") is reserved for
the once-off queries executed by the database::query() function. Note that the
prepare_query() function makes only a shallow copy of this argument, which means
that the name must be valid for the lifetime of the returned prepared_query instance.

The second argument to the prepare_query() function is the query criteria. It has the
same semantics as in the query() function discussed in Section 4.3, "Executing a Query".
Similar to query() , we also have to explicitly specify the object type that we will be query-
ing. For example:

typedef odb::query<person> query;
typedef odb::prepared_query<person> prep_query;

prep_query pq (
 db.prepare_query<person> ("person-age-query", query::age > 50));

The result of executing the prepare_query() function is the prepared_query
instance that represent the prepared query. It is best to view prepared_query as a handle
to the underlying prepared statement. While we can make a copy of it or assign one

Revision 2.4, February 201574 C++ Object Persistence with ODB

4.5 Prepared Queries

prepared_query to another, the two instances will refer to the same prepared statement.
Once the last instance of prepared_query referencing a specific prepared statement is
destroyed, this statement is released. The prepared_query class template has the follow-
ing interface:

namespace odb
{
 template <typename T>
 struct prepared_query
 {
 prepared_query ();

 prepared_query (const prepared_query&)
 prepared_query& operator= (const prepared_query&)

 result<T>
 execute (bool cache = true);

 typename object_traits<T>::pointer_type
 execute_one ();

 bool
 execute_one (T& object);

 T
 execute_value ();

 const char*
 name () const;

 statement&
 statement () const;

 operator unspecified_bool_type () const;
 };
}

The default constructor creates an empty prepared_query instance, that is, an instance
that does not reference a prepared statement and therefore cannot be executed. The only way
to create a non-empty prepared query is by calling the prepare_query() function
discussed above. To test whether the prepared query is empty, we can use the implicit conver-
sion operator to a boolean type. For example:

 prepared_query<person> pq;

 if (pq)
 {
 // Not empty.
 ...
 }

75Revision 2.4, February 2015 C++ Object Persistence with ODB

4.5 Prepared Queries

The execute() function executes the query and returns the result instance. The cache
argument indicates whether the result should be cached and has the same semantics as in the
query() function. In fact, conceptually, prepare_query() and execute() are just
the query() function split into two: prepare_query() takes the first query() argu-
ment (the query condition) while execute() takes the second (the cache flag). Note also
that re-executing a prepared query invalidates the previous execution result, whether cached
or uncached.

The execute_one() and execute_value() functions can be used as shortcuts to
execute a query that is known to return at most one or exactly one object, respectively. The
arguments and return values in these functions have the same semantics as in query_one()
and query_value() . And similar to execute() above, prepare_query() and
execute_one/value() can be seen as the query_one/value() function split into
two: prepare_query() takes the first query_one/value() argument (the query
condition) while execute_one/value() takes the second argument (if any) and returns
the result. Note also that execute_one/value() never caches its result but invalidates
the result of any previous execute() call on the same prepared query.

The name() function returns the prepared query name. This is the same name as was passed
as the first argument in the prepare_query() call. The statement() function returns
a reference to the underlying prepared statement. Note also that calling any of these functions
on an empty prepared_query instance results in undefined behavior.

The simplest use-case for a prepared query is the need to execute the same query multiple
times within a single transaction. Consider the following example that queries for people that
are older than a number of different ages. This and subsequent code fragments are taken from
the prepared example in the odb-examples package.

typedef odb::query<person> query;
typedef odb::prepared_query<person> prep_query;
typedef odb::result<person> result;

transaction t (db.begin ());

unsigned short age;
query q (query::age > query::_ref (age));
prep_query pq (db.prepare_query<person> ("person-age-query", q));

for (age = 90; age > 40; age -= 10)
{
 result r (pq.execute ());
 ...
}

t.commit ();

Another scenario is the need to reuse the same query in multiple transactions that are executed
at once. As was mentioned above, in this case we need to make sure that the prepared query
and all the transactions use the same connection. Consider an alternative version of the above
example that executes each query in a separate transaction:

Revision 2.4, February 201576 C++ Object Persistence with ODB

4.5 Prepared Queries

connection_ptr conn (db.connection ());

unsigned short age;
query q (query::age > query::_ref (age));
prep_query pq (conn->prepare_query<person> ("person-age-query", q));

for (age = 90; age > 40; age -= 10)
{
 transaction t (conn->begin ());

 result r (pq.execute ());
 ...

 t.commit ();
}

Note that with this approach we hold on to the database connection until all the transactions
involving the prepared query are executed. In particular, this means that while we are busy,
the connection cannot be reused by another thread. Therefore, this approach is only recom-
mended if all the transactions are executed close to each other. Also note that an uncached
(see below) prepared query is invalidated once we release the connection on which it was
prepared.

If we need to reuse a prepared query in transactions that are executed at various times, poten-
tially in different threads, then the recommended approach is to cache the prepared query on
the connection. To support this functionality the odb::database and odb::connec-
tion classes provide the following function templates. Similar to prepare_query() , the
odb::database versions of the below functions call the corresponding odb::connec-
tion versions using the currently active transaction to resolve the connection.

 template <typename T>
 void
 cache_query (const prepared_query<T>&);

 template <typename T, typename P>
 void
 cache_query (const prepared_query<T>&,
 std::[auto|unique]_ptr<P> params);

 template <typename T>
 prepared_query<T>
 lookup_query (const char* name) const;

 template <typename T, typename P>
 prepared_query<T>
 lookup_query (const char* name, P*& params) const;

The cache_query() function caches the passed prepared query on the connection. The
second overloaded version of cache_query() also takes a pointer to the by-reference
query parameters. In C++98/03 it should be std::auto_ptr while in C++11
std::auto_ptr or std::unique_ptr can be used. The cache_query() function
assumes ownership of the passed params argument. If a prepared query with the same name

77Revision 2.4, February 2015 C++ Object Persistence with ODB

4.5 Prepared Queries

is already cached on this connection, then the odb::prepared_already_cached
exception is thrown.

The lookup_query() function looks up a previously cached prepared query given its
name. The second overloaded version of lookup_query() also returns a pointer to the
by-reference query parameters. If a prepared query with this name has not been cached, then
an empty prepared_query instance is returned. If a prepared query with this name has
been cached but either the object type or the parameters type does not match that which was
cached, then the odb::prepared_type_mismatch exception is thrown.

As a first example of the prepared query cache functionality, consider the case that does not
use any by-reference parameters:

for (unsigned short i (0); i < 5; ++i)
{
 transaction t (db.begin ());

 prep_query pq (db.lookup_query<person> ("person-age-query"));

 if (!pq)
 {
 pq = db.prepare_query<person> (
 "person-val-age-query", query::age > 50);
 db.cache_query (pq);
 }

 result r (pq.execute ());
 ...

 t.commit ();

 // Do some other work.
 //
 ...
}

The following example shows how to do the same but for a query that includes by-reference
parameters. In this case the parameters are cached together with the prepared query.

for (unsigned short age (90); age > 40; age -= 10)
{
 transaction t (db.begin ());

 unsigned short* age_param;
 prep_query pq (
 db.lookup_query<person> ("person-age-query", age_param));

 if (!pq)
 {
 auto_ptr<unsigned short> p (new unsigned short);
 age_param = p.get ();
 query q (query::age > query::_ref (*age_param));
 pq = db.prepare_query<person> ("person-age-query", q);

Revision 2.4, February 201578 C++ Object Persistence with ODB

4.5 Prepared Queries

 db.cache_query (pq, p); // Assumes ownership of p.
 }

 *age_param = age; // Initialize the parameter.
 result r (pq.execute ());
 ...

 t.commit ();

 // Do some other work.
 //
 ...
}

As is evident from the above examples, when we use a prepared query cache, each transaction
that executes a query must also include code that prepares and caches this query if it hasn’t
already been done. If a prepared query is used in a single place in the application, then this is
normally not an issue since all the relevant code is kept in one place. However, if the same
query is used in several different places in the application, then we may end up duplicating the
same preparation and caching code, which makes it hard to maintain.

To resolve this issue ODB allows us to register a prepared query factory that will be called to
prepare and cache a query during the call to lookup_query() . To register a factory we use
the database::query_factory() function. In C++98/03 it has the following signa-
ture:

 void
 query_factory (const char* name,
 void (*factory) (const char* name, connection&));

While in C++11 it uses the std::function class template:

 void
 query_factory (const char* name,
 std::function<void (const char* name, connection&)>);

The first argument to the query_factory() function is the prepared query name that this
factory will be called to prepare and cache. An empty name is treated as a fallback wildcard
factory that is capable of preparing any query. The second argument is the factory function or,
in C++11, function object or lambda.

The example fragment shows how we can use the prepared query factory:

struct params
{
 unsigned short age;
 string first;
};

static void
query_factory (const char* name, connection& c)
{

79Revision 2.4, February 2015 C++ Object Persistence with ODB

4.5 Prepared Queries

 auto_ptr<params> p (new params);
 query q (query::age > query::_ref (p->age) &&
 query::first == query::_ref (p->first));
 prep_query pq (c.prepare_query<person> (name, q));
 c.cache_query (pq, p);
}

db.query_factory ("person-age-name-query", &query_factory);

for (unsigned short age (90); age > 40; age -= 10)
{
 transaction t (db.begin ());

 params* p;
 prep_query pq (db.lookup_query<person> ("person-age-name-query", p));
 assert (pq);

 p->age = age;
 p->first = "John";
 result r (pq.execute ());
 ...

 t.commit ();
}

In C++11 we could have instead used a lambda function as well as unique_ptr rather than
auto_ptr :

db.query_factory (
 "person-age-name-query",
 [] (const char* name, connection& c)
 {
 unique_ptr<params> p (new params);
 query q (query::age > query::_ref (p->age) &&
 query::first == query::_ref (p->first));
 prep_query pq (c.prepare_query<person> (name, q));
 c.cache_query (pq, std::move (p));
 });

Revision 2.4, February 201580 C++ Object Persistence with ODB

4.5 Prepared Queries

5 Containers
The ODB runtime library provides built-in persistence support for all the commonly used
standard C++98/03 containers, namely, std::vector , std::list , std::deque ,
std::set , std::multiset , std::map , and std::multimap as well as C++11
std::array , std::forward_list , std::unordered_set ,
std::unordered_multiset , std::unordered_map , and
std::unordered_multimap . Plus, ODB profile libraries, that are available for
commonly used frameworks and libraries (such as Boost and Qt), provide persistence support
for containers found in these frameworks and libraries (Part III, "Profiles"). Both the ODB
runtime library and profile libraries also provide a number of change-tracking container
equivalents which can be used to minimize the number of database operations necessary to
synchronize the container state with the database (Section 5.4, "Change-Tracking Contain-
ers"). It is also easy to persist custom container types as discussed later in Section 5.5, "Using
Custom Containers".

We don’t need to do anything special to declare a member of a container type in a persistent
class. For example:

#pragma db object
class person
{
 ...
private:
 std::vector<std::string> nicknames_;
 ...
};

The complete version of the above code fragment and the other code samples presented in this
chapter can be found in the container example in the odb-examples package.

A data member in a persistent class that is of a container type behaves like a value type. That
is, when an object is made persistent, the elements of the container are stored in the database.
Similarly, when a persistent object is loaded from the database, the contents of the container
are automatically loaded as well. A data member of a container type can also use a smart
pointer, as discussed in Section 7.3, "Pointers and NULL Value Semantics".

While an ordinary member is mapped to one or more columns in the object’s table, a member
of a container type is mapped to a separate table. The exact schema of such a table depends on
the kind of container. ODB defines the following container kinds: ordered, set, multiset, map,
and multimap. The container kinds and the contents of the tables to which they are mapped
are discussed in detail in the following sections.

Containers in ODB can contain simple value types (Section 7.1, "Simple Value Types"),
composite value types (Section 7.2, "Composite Value Types"), and pointers to objects
(Chapter 6, "Relationships"). Containers of containers, either directly or indirectly via a
composite value type, are not allowed. A key in a map or multimap container can be a simple
or composite value type but not a pointer to an object. An index in the ordered container

81Revision 2.4, February 2015 C++ Object Persistence with ODB

5 Containers

should be a simple integer value type.

The value type in the ordered, set, and map containers as well as the key type in the map
containers should be default-constructible. The default constructor in these types can be made
private in which case the odb::access class should be made a friend of the value or key
type. For example:

#pragma db value
class name
{
public:
 name (const std::string&, const std::string&);
 ...
private:
 friend class odb::access;
 name ();
 ...
};

#pragma db object
class person
{
 ...
private:
 std::vector<name> aliases_;
 ...
};

5.1 Ordered Containers

In ODB an ordered container is any container that maintains (explicitly or implicitly) an order
of its elements in the form of an integer index. Standard C++ containers that are ordered
include std::vector std::list , and std::deque as well as C++11 std::array
and std::forward_list . While elements in std::set are also kept in a specific order,
this order is not based on an integer index but rather on the relationship between elements. As
a result, std::set is not considered an ordered container for the purpose of persistence.

The database table for an ordered container consists of at least three columns. The first
column contains the object id of a persistent class instance of which the container is a
member. The second column contains the element index within a container. And the last
column contains the element value. If the object id or element value are composite, then,
instead of a single column, they can occupy multiple columns. For an ordered container table
the ODB compiler also defines two indexes: one for the object id column(s) and the other for
the index column. Refer to Section 14.7, "Index Definition Pragmas" for more information on
how to customize these indexes.

Consider the following persistent object as an example:

Revision 2.4, February 201582 C++ Object Persistence with ODB

5.1 Ordered Containers

#pragma db object
class person
{
 ...
private:
 #pragma db id auto
 unsigned long id_;

 std::vector<std::string> nicknames_;
 ...
};

The resulting database table (called person_nicknames) will contain the object id column
of type unsigned long (called object_id), the index column of an integer type (called
index), and the value column of type std::string (called value).

A number of ODB pragmas allow us to customize the table name, column names, and native
database types of an ordered container both, on the per-container and per-member basis. For
more information on these pragmas, refer to Chapter 14, "ODB Pragma Language". The
following example shows some of the possible customizations:

#pragma db object
class person
{
 ...
private:
 #pragma db table("nicknames") \
 id_column("person_id") \
 index_type("SMALLINT UNSIGNED") \
 index_column("nickname_number") \
 value_type("VARCHAR(255)") \
 value_column("nickname")
 std::vector<std::string> nicknames_;
 ...
};

While the C++ container used in a persistent class may be ordered, sometimes we may wish to
store such a container in the database without the order information. In the example above, for
instance, the order of person’s nicknames is probably not important. To instruct the ODB
compiler to ignore the order in ordered containers we can use the db unordered pragma
(Section 14.3.9, "unordered ", Section 14.4.19, "unordered "). For example:

#pragma db object
class person
{
 ...
private:
 #pragma db unordered
 std::vector<std::string> nicknames_;
 ...
};

83Revision 2.4, February 2015 C++ Object Persistence with ODB

5.1 Ordered Containers

The table for an ordered container that is marked unordered won’t have the index column and
the order in which elements are retrieved from the database may not be the same as the order
in which they were stored.

5.2 Set and Multiset Containers

In ODB set and multiset containers (referred to as just set containers) are associative contain-
ers that contain elements based on some relationship between them. A set container may or
may not guarantee a particular order of the elements that it stores. Standard C++ containers
that are considered set containers for the purpose of persistence include std::set and
std::multiset as well as C++11 std::unordered_set and
std::unordered_multiset .

The database table for a set container consists of at least two columns. The first column
contains the object id of a persistent class instance of which the container is a member. And
the second column contains the element value. If the object id or element value are composite,
then, instead of a single column, they can occupy multiple columns. ODB compiler also
defines an index on a set container table for the object id column(s). Refer to Section 14.7,
"Index Definition Pragmas" for more information on how to customize this index.

Consider the following persistent object as an example:

#pragma db object
class person
{
 ...
private:
 #pragma db id auto
 unsigned long id_;

 std::set<std::string> emails_;
 ...
};

The resulting database table (called person_emails) will contain the object id column of
type unsigned long (called object_id) and the value column of type std::string
(called value).

A number of ODB pragmas allow us to customize the table name, column names, and native
database types of a set container, both on the per-container and per-member basis. For more
information on these pragmas, refer to Chapter 14, "ODB Pragma Language". The following
example shows some of the possible customizations:

#pragma db object
class person
{
 ...
private:
 #pragma db table("emails") \
 id_column("person_id") \

Revision 2.4, February 201584 C++ Object Persistence with ODB

5.2 Set and Multiset Containers

 value_type("VARCHAR(255)") \
 value_column("email")
 std::set<std::string> emails_;
 ...
};

5.3 Map and Multimap Containers

In ODB map and multimap containers (referred to as just map containers) are associative
containers that contain key-value elements based on some relationship between keys. A map
container may or may not guarantee a particular order of the elements that it stores. Standard
C++ containers that are considered map containers for the purpose of persistence include
std::map and std::multimap as well as C++11 std::unordered_map and
std::unordered_multimap .

The database table for a map container consists of at least three columns. The first column
contains the object id of a persistent class instance of which the container is a member. The
second column contains the element key. And the last column contains the element value. If
the object id, element key, or element value are composite, then instead of a single column
they can occupy multiple columns. ODB compiler also defines an index on a map container
table for the object id column(s). Refer to Section 14.7, "Index Definition Pragmas" for more
information on how to customize this index.

Consider the following persistent object as an example:

#pragma db object
class person
{
 ...
private:
 #pragma db id auto
 unsigned long id_;

 std::map<unsigned short, float> age_weight_map_;
 ...
};

The resulting database table (called person_age_weight_map) will contain the object id
column of type unsigned long (called object_id), the key column of type unsigned
short (called key), and the value column of type float (called value).

A number of ODB pragmas allow us to customize the table name, column names, and native
database types of a map container, both on the per-container and per-member basis. For more
information on these pragmas, refer to Chapter 14, "ODB Pragma Language". The following
example shows some of the possible customizations:

#pragma db object
class person
{
 ...

85Revision 2.4, February 2015 C++ Object Persistence with ODB

5.3 Map and Multimap Containers

private:
 #pragma db table("weight_map") \
 id_column("person_id") \
 key_type("INT UNSIGNED") \
 key_column("age") \
 value_type("DOUBLE") \
 value_column("weight")
 std::map<unsigned short, float> age_weight_map_;
 ...
};

5.4 Change-Tracking Containers

When a persistent object containing one of the standard containers is updated in the database,
ODB has no knowledge of which elements were inserted, erased, or modified. As a result,
ODB has no choice but to assume the whole container has changed and update the state of
every single element. This can result in a significant overhead if a container contains a large
number of elements and we only changed a small subset of them.

To eliminate this overhead, ODB provides a notion of change-tracking containers. A
change-tracking container, besides containing its elements, just like an ordinary container,
also includes the change state for each element. When it is time to update such a container in
the database, ODB can use this change information to perform a minimum number of
database operations necessary to synchronize the container state with the database.

The current version of the ODB runtime library provides a change-tracking equivalent of
std::vector (Section 5.4.1, "Change-Tracking vector ") with support for other standard
container equivalents planned for future releases. ODB profile libraries also provide
change-tracking equivalents for some containers found in the corresponding frameworks and
libraries (Part III, "Profiles").

A change-tracking container equivalent can normally be used as a drop-in replacement for an
ordinary container except for a few minor interface differences (discussed in the correspond-
ing sub-sections). In particular, we don’t need to do anything extra to effect change tracking.
ODB will automatically start, stop, and reset change tracking when necessary. The following
example illustrates this point using odb::vector as a replacement for std::vector .

#pragma db object
class person
{
 ...

 odb::vector<std::string> names;
};

person p; // No change tracking (not persistent).
p.names.push_back ("John Doe");

{
 transaction t (db.begin ());
 db.persist (p); // Start change tracking (persistent).

Revision 2.4, February 201586 C++ Object Persistence with ODB

5.4 Change-Tracking Containers

 t.commit ();
}

p.names.push_back ("Johnny Doo");

{
 transaction t (db.begin ());
 db.update (p); // One INSERT; reset change state.
 t.commit ();
}

p.names.modify (0) = "Doe, John"; // Instead of operator[].
p.names.pop_back ();

{
 transaction t (db.begin ());
 db.update (p); // One UPDATE, one DELETE; reset change state.
 t.commit ();
}

{
 transaction t (db.begin ());
 auto_ptr<person> p1 (db.load<person> (...)); // Start change tracking.
 p1->names.insert (p1->names.begin (), "Joe Do");
 db.update (*p1); // One UPDATE, one INSERT; reset change state.
 t.commit ();
}

{
 transaction t (db.begin ());
 db.erase (p); // One DELETE; stop change tracking (not persistent).
 t.commit ();
}

One interesting aspect of change tracking is what happens when a transaction that contains an
update is later rolled back. In this case, while the change-tracking container has reset the
change state (after update), actual changes were not committed to the database. Change-track-
ing containers handle this case by automatically registering a rollback callback and then, if it
is called, marking the container as "completely changed". In this state, the container no longer
tracks individual element changes and, when updated, falls back to the complete state update,
just like an ordinary container. The following example illustrates this point:

person p;
p.names.push_back ("John Doe");

{
 transaction t (db.begin ());
 db.persist (p); // Start change tracking (persistent).
 t.commit ();
}

p.names.push_back ("Johnny Doo");

for (;;)

87Revision 2.4, February 2015 C++ Object Persistence with ODB

5.4 Change-Tracking Containers

{
 try
 {
 transaction t (db.begin ());

 // First try: one INSERT.
 // Next try: one DELETE, two INSERTs.
 //
 db.update (p); // Reset change state.

 t.commit (); // If throws (rollback), mark as completely changed.
 break;
 }
 catch (const odb::recoverable&)
 {
 continue;
 }
}

For the interaction of change-tracking containers with change-updated object sections, refer to
Section 9.4, "Sections and Change-Tracking Containers".

5.4.1 Change-Tracking vector

Class template odb::vector , defined in <odb/vector.hxx> , is a change-tracking
equivalent for std::vector . It is implemented in terms of std::vector and is
implicit-convertible to and implicit-constructible from const std::vector& . In particu-
lar, this means that we can use odb::vector instance anywhere const std::vector&
is expected. In addition, odb::vector constant iterator (const_iterator) is the same
type as that of std::vector .

odb::vector incurs 2-bit per element overhead in order to store the change state. It cannot
be stored unordered in the database (Section 14.4.19 "unordered ") but can be used as an
inverse side of a relationship (6.2 "Bidirectional Relationships"). In this case, no change track-
ing is performed since no state for such a container is stored in the database.

The number of database operations required to update the state of odb::vector corre-
sponds well to the complexity of std::vector functions. In particular, adding or removing
an element from the back of the vector (for example, with push_back() and
pop_back()), requires only a single database statement execution. In contrast, inserting or
erasing an element somewhere in the middle of the vector will require a database statement
for every element that follows it.

odb::vector replicates most of the std::vector interface as defined in both C++98/03
and C++11 standards. However, functions and operators that provide direct write access to the
elements had to be altered or disabled in order to support change tracking. Additional func-
tions used to interface with std::vector and to control the change tracking state were also
added. The following listing summarizes the differences between the odb::vector and
std::vector interfaces. Any std::vector function or operator not mentioned in this
listing has exactly the same signature and semantics in odb::vector . Functions and opera-

Revision 2.4, February 201588 C++ Object Persistence with ODB

5.4.1 Change-Tracking vector

tors that were disabled are shown as commented out and are followed by functions/operators
that replace them.

namespace odb
{
 template <class T, class A = std::allocator<T> >
 class vector
 {
 ...

 // Element access.
 //

 //reference operator[] (size_type);
 reference modify (size_type);

 //reference at (size_type);
 reference modify_at (size_type);

 //reference front ();
 reference modify_front ();

 //reference back ();
 reference modify_back ();

 //T* data () noexcept;
 T* modify_data () noexcept; // C++11 only.

 // Iterators.
 //
 typedef typename std::vector<T, A>::const_iterator const_iterator;

 class iterator
 {
 ...

 // Element Access.
 //

 //reference operator* () const;
 const_reference operator* () const;
 reference modify () const;

 //pointer operator-> () const;
 const_pointer operator-> () const;

 //reference operator[] (difference_type);
 const_reference operator[] (difference_type);
 reference modify (difference_type) const;

 // Interfacing with std::vector::iterator.
 //
 typename std::vector<T, A>::iterator base () const;
 };

89Revision 2.4, February 2015 C++ Object Persistence with ODB

5.4.1 Change-Tracking vector

 // Return std::vector iterators. The begin() functions mark
 // all the elements as modified.
 //
 typename std::vector<T, A>::iterator mbegin ();
 typename std::vector<T, A>::iterator mend ();
 typename std::vector<T, A>::reverse_iterator mrbegin ();
 typename std::vector<T, A>::reverse_iterator mrend ();

 // Interfacing with std::vector.
 //
 vector (const std::vector<T, A>&);
 vector (std::vector<T, A>&&); // C++11 only.

 vector& operator= (const std::vector<T, A>&);
 vector& operator= (std::vector<T, A>&&); // C++11 only.

 operator const std::vector<T, A>& () const;
 std::vector<T, A>& base ();
 const std::vector<T, A>& base ();

 // Change tracking.
 //
 bool _tracking () const;
 void _start () const;
 void _stop () const;
 void _arm (transaction&) const;
 };
}

The following example highlights some of the differences between the two interfaces.
std::vector versions are commented out.

#include <vector>
#include <odb/vector.hxx>

void f (const std::vector<int>&);

odb::vector<int> v ({1, 2, 3});

f (v); // Ok, implicit conversion.

if (v[1] == 2) // Ok, const access.
 //v[1]++;
 v.modify (1)++;

//v.back () = 4;
v.modify_back () = 4;

for (auto i (v.begin ()); i != v.end (); ++i)
{
 if (*i != 0) // Ok, const access.
 //*i += 10;

Revision 2.4, February 201590 C++ Object Persistence with ODB

5.4.1 Change-Tracking vector

 i.modify () += 10;
}

std::sort (v.mbegin (), v.mend ());

Note also the subtle difference between copy/move construction and copy/move assignment
of odb::vector instances. While copy/move constructor will copy/move both the elements
as well as their change state, in contrast, assignment is tracked as any other change to the
vector content.

5.5 Using Custom Containers

While the ODB runtime and profile libraries provide support for a wide range of containers, it
is also easy to persist custom container types or make a change-tracking version out of one.

To achieve this you will need to implement the container_traits class template
specialization for your container. First, determine the container kind (ordered, set, multiset,
map, or multimap) for your container type. Then use a specialization for one of the standard
C++ containers found in the common ODB runtime library (libodb) as a base for your own
implementation.

Once the container traits specialization is ready for your container, you will need to include it
into the ODB compilation process using the --odb-epilogue option and into the gener-
ated header files with the --hxx-prologue option. As an example, suppose we have a
hash table container for which we have the traits specialization implemented in the
hashtable-traits.hxx file. Then, we can create an ODB compiler options file for this
container and save it to hashtable.options :

Options file for the hash table container.
#
--odb-epilogue ’#include "hashtable-traits.hxx"’
--hxx-prologue ’#include "hashtable-traits.hxx"’

Now, whenever we compile a header file that uses the hashtable container, we can specify the
following command line option to make sure it is recognized by the ODB compiler as a
container and the traits file is included in the generated code:

--options-file hashtable.options

91Revision 2.4, February 2015 C++ Object Persistence with ODB

5.5 Using Custom Containers

6 Relationships
Relationships between persistent objects are expressed with pointers or containers of pointers.
The ODB runtime library provides built-in support for shared_ptr /weak_ptr (TR1 or
C++11), std::unique_ptr (C++11), std::auto_ptr , and raw pointers. Plus, ODB
profile libraries, that are available for commonly used frameworks and libraries (such as
Boost and Qt), provide support for smart pointers found in these frameworks and libraries
(Part III, "Profiles"). It is also easy to add support for a custom smart pointer as discussed
later in Section 6.5, "Using Custom Smart Pointers". Any supported smart pointer can be used
in a data member as long as it can be explicitly constructed from the canonical object pointer
(Section 3.3, "Object and View Pointers"). For example, we can use weak_ptr if the object
pointer is shared_ptr .

When an object containing a pointer to another object is loaded, the pointed-to object is
loaded as well. In some situations this eager loading of the relationships is undesirable since it
can lead to a large number of otherwise unused objects being instantiated from the database.
To support finer control over relationships loading, the ODB runtime and profile libraries
provide the so-called lazy versions of the supported pointers. An object pointed-to by a lazy
pointer is not loaded automatically when the containing object is loaded. Instead, we have to
explicitly request the instantiation of the pointed-to object. Lazy pointers are discussed in
detail in Section 6.4, "Lazy Pointers".

As a simple example, consider the following employee-employer relationship. Code examples
presented in this chapter will use the shared_ptr and weak_ptr smart pointers from the
TR1 (std::tr1) namespace.

#pragma db object
class employer
{
 ...

 #pragma db id
 std::string name_;
};

#pragma db object
class employee
{
 ...

 #pragma db id
 unsigned long id_;

 std::string first_name_;
 std::string last_name_;

 shared_ptr<employer> employer_;
};

Revision 2.4, February 201592 C++ Object Persistence with ODB

6 Relationships

By default, an object pointer can be NULL. To specify that a pointer always points to a valid
object we can use the not_null pragma (Section 14.4.6, "null /not_null ") for single
object pointers and the value_not_null pragma (Section 14.4.28,
"value_null /value_not_null ") for containers of object pointers. For example:

#pragma db object
class employee
{
 ...

 #pragma db not_null
 shared_ptr<employer> current_employer_;

 #pragma db value_not_null
 std::vector<shared_ptr<employer> > previous_employers_;
};

In this case, if we call either persist() or update() database function on the
employee object and the current_employer_ pointer or one of the pointers stored in
the previous_employers_ container is NULL, then the odb::null_pointer excep-
tion will be thrown.

We don’t need to do anything special to establish or navigate a relationship between two
persistent objects, as shown in the following code fragment:

// Create an employer and a few employees.
//
unsigned long john_id, jane_id;
{
 shared_ptr<employer> er (new employer ("Example Inc"));
 shared_ptr<employee> john (new employee ("John", "Doe"));
 shared_ptr<employee> jane (new employee ("Jane", "Doe"));

 john->employer_ = er;
 jane->employer_ = er;

 transaction t (db.begin ());

 db.persist (er);
 john_id = db.persist (john);
 jane_id = db.persist (jane);

 t.commit ();
}

// Load a few employee objects and print their employer.
//
{
 session s;
 transaction t (db.begin ());

 shared_ptr<employee> john (db.load<employee> (john_id));
 shared_ptr<employee> jane (db.load<employee> (jane_id));

93Revision 2.4, February 2015 C++ Object Persistence with ODB

6 Relationships

 cout << john->employer_->name_ << endl;
 cout << jane->employer_->name_ << endl;

 t.commit ();
}

The only notable line in the above code is the creation of a session before the second transac-
tion starts. As discussed in Chapter 11, "Session", a session acts as a cache of persistent
objects. By creating a session before loading the employee objects we make sure that their
employer_ pointers point to the same employer object. Without a session, each
employee would have ended up pointing to its own, private instance of the Example Inc
employer.

As a general guideline, you should use a session when loading objects that have pointers to
other persistent objects. A session makes sure that for a given object id, a single instance is
shared among all other objects that relate to it.

We can also use data members from pointed-to objects in database queries (Chapter 4,
"Querying the Database"). For each pointer in a persistent class, the query class defines a
smart pointer-like member that contains members corresponding to the data members in the
pointed-to object. We can then use the access via a pointer syntax (->) to refer to data
members in pointed-to objects. For example, the query class for the employee object
contains the employer member (its name is derived from the employer_ pointer) which
in turn contains the name member (its name is derived from the employer::name_ data
member of the pointed-to object). As a result, we can use the query::employer->name
expression while querying the database for the employee objects. For example, the follow-
ing transaction finds all the employees of Example Inc that have the Doe last name:

typedef odb::query<employee> query;
typedef odb::result<employee> result;

session s;
transaction t (db.begin ());

result r (db.query<employee> (
 query::employer->name == "Example Inc" && query::last == "Doe"));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
 cout << i->first_ << " " << i->last_ << endl;

t.commit ();

A query class member corresponding to a non-inverse (Section 6.2, "Bidirectional Relation-
ships") object pointer can also be used as a normal member that has the id type of the
pointed-to object. For example, the following query locates all the employee objects that
don’t have an associated employer object:

result r (db.query<employee> (query::employer.is_null ()));

Revision 2.4, February 201594 C++ Object Persistence with ODB

6 Relationships

An important concept to keep in mind when working with object relationships is the indepen-
dence of persistent objects. In particular, when an object containing a pointer to another object
is made persistent or is updated, the pointed-to object is not automatically persisted or
updated. Rather, only a reference to the object (in the form of the object id) is stored for the
pointed-to object in the database. The pointed-to object itself is a separate entity and should be
made persistent or updated independently. By default, the same principle also applies to
erasing pointed-to objects. That is, we have to make sure all the pointing objects are updated
accordingly. However, in the case of erase, we can specify an alternative on-delete
semantic as discussed in Section 14.4.15, "on_delete ".

When persisting or updating an object containing a pointer to another object, the pointed-to
object must have a valid object id. This, however, may not always be easy to achieve in
complex relationships that involve objects with automatically assigned identifiers. In such
cases it may be necessary to first persist an object with a pointer set to NULL and then, once
the pointed-to object is made persistent and its identifier assigned, set the pointer to the
correct value and update the object in the database.

Persistent object relationships can be divided into two groups: unidirectional and bidirec-
tional. Each group in turn contains several configurations that vary depending on the cardinal-
ity of the sides of the relationship. All possible unidirectional and bidirectional configurations
are discussed in the following sections.

6.1 Unidirectional Relationships

In unidirectional relationships we are only interested in navigating from object to object in
one direction. Because there is no interest in navigating in the opposite direction, the cardinal-
ity of the other end of the relationship is unimportant. As a result, there are only two possible
unidirectional relationships: to-one and to-many. Each of these relationships is described in
the following sections. For sample code that shows how to work with these relationships, refer
to the relationship example in the odb-examples package.

6.1.1 To-One Relationships

An example of a unidirectional to-one relationship is the employee-employer relationship (an
employee has one employer). The following persistent C++ classes model this relationship:

#pragma db object
class employer
{
 ...

 #pragma db id
 std::string name_;
};

#pragma db object
class employee
{
 ...

95Revision 2.4, February 2015 C++ Object Persistence with ODB

6.1 Unidirectional Relationships

 #pragma db id
 unsigned long id_;

 #pragma db not_null
 shared_ptr<employer> employer_;
};

The corresponding database tables look like this:

CREATE TABLE employer (
 name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 employer VARCHAR (255) NOT NULL REFERENCES employer (name));

6.1.2 To-Many Relationships

An example of a unidirectional to-many relationship is the employee-project relationship (an
employee can be involved in multiple projects). The following persistent C++ classes model
this relationship:

#pragma db object
class project
{
 ...

 #pragma db id
 std::string name_;
};

#pragma db object
class employee
{
 ...

 #pragma db id
 unsigned long id_;

 #pragma db value_not_null unordered
 std::vector<shared_ptr<project> > projects_;
};

The corresponding database tables look like this:

Revision 2.4, February 201596 C++ Object Persistence with ODB

6.1.2 To-Many Relationships

CREATE TABLE project (
 name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee_projects (
 object_id BIGINT UNSIGNED NOT NULL,
 value VARCHAR (255) NOT NULL REFERENCES project (name));

To obtain a more canonical database schema, the names of tables and columns above can be
customized using ODB pragmas (Chapter 14, "ODB Pragma Language"). For example:

#pragma db object
class employee
{
 ...

 #pragma db value_not_null unordered \
 id_column("employee_id") value_column("project_name")
 std::vector<shared_ptr<project> > projects_;
};

The resulting employee_projects table would then look like this:

CREATE TABLE employee_projects (
 employee_id BIGINT UNSIGNED NOT NULL,
 project_name VARCHAR (255) NOT NULL REFERENCES project (name));

6.2 Bidirectional Relationships

In bidirectional relationships we are interested in navigating from object to object in both
directions. As a result, each object class in a relationship contains a pointer to the other object.
If smart pointers are used, then a weak pointer should be used as one of the pointers to avoid
ownership cycles. For example:

class employee;

#pragma db object
class position
{
 ...

 #pragma db id
 unsigned long id_;

 weak_ptr<employee> employee_;
};

#pragma db object
class employee
{
 ...

97Revision 2.4, February 2015 C++ Object Persistence with ODB

6.2 Bidirectional Relationships

 #pragma db id
 unsigned long id_;

 #pragma db not_null
 shared_ptr<position> position_;
};

Note that when we establish a bidirectional relationship, we have to set both pointers consis-
tently. One way to make sure that a relationship is always in a consistent state is to provide a
single function that updates both pointers at the same time. For example:

#pragma db object
class position: public enable_shared_from_this<position>
{
 ...

 void
 fill (shared_ptr<employee> e)
 {
 employee_ = e;
 e->positions_ = shared_from_this ();
 }

private:
 weak_ptr<employee> employee_;
};

#pragma db object
class employee
{
 ...

private:
 friend class position;

 #pragma db not_null
 shared_ptr<position> position_;
};

At the beginning of this chapter we examined how to use a session to make sure a single
object is shared among all other objects pointing to it. With bidirectional relationships involv-
ing weak pointers the use of a session becomes even more crucial. Consider the following
transaction that tries to load the position object from the above example without using a
session:

transaction t (db.begin ())
shared_ptr<position> p (db.load<position> (1));
...
t.commit ();

Revision 2.4, February 201598 C++ Object Persistence with ODB

6.2 Bidirectional Relationships

When we load the position object, the employee object, which it points to, is also
loaded. While employee is initially stored as shared_ptr , it is then assigned to the
employee_ member which is weak_ptr . Once the assignment is complete, the shared
pointer goes out of scope and the only pointer that points to the newly loaded employee
object is the employee_ weak pointer. And that means the employee object is deleted
immediately after being loaded. To help avoid such pathological situations ODB detects cases
where a newly loaded object will immediately be deleted and throws the
odb::session_required exception.

As the exception name suggests, the easiest way to resolve this problem is to use a session:

session s;
transaction t (db.begin ())
shared_ptr<position> p (db.load<position> (1));
...
t.commit ();

In our example, the session will maintain a shared pointer to the loaded employee object
preventing its immediate deletion. Another way to resolve this problem is to avoid immediate
loading of the pointed-to objects using lazy weak pointers. Lazy pointers are discussed in
Section 6.4, "Lazy Pointers" later in this chapter.

Above, to model a bidirectional relationship in persistent classes, we used two pointers, one in
each object. While this is a natural representation in C++, it does not translate to a canonical
relational model. Consider the database schema generated for the above two classes:

CREATE TABLE position (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 employee BIGINT UNSIGNED REFERENCES employee (id));

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 position BIGINT UNSIGNED NOT NULL REFERENCES position (id));

While this database schema is valid, it is unconventional. We have a reference from a row in
the position table to a row in the employee table. We also have a reference from this
same row in the employee table back to the row in the position table. From the rela-
tional point of view, one of these references is redundant since in SQL we can easily navigate
in both directions using just one of these references.

To eliminate redundant database schema references we can use the inverse pragma
(Section 14.4.14, "inverse ") which tells the ODB compiler that a pointer is the inverse side
of a bidirectional relationship. Either side of a relationship can be made inverse. For example:

#pragma db object
class position
{
 ...

 #pragma db inverse(position_)
 weak_ptr<employee> employee_;

99Revision 2.4, February 2015 C++ Object Persistence with ODB

6.2 Bidirectional Relationships

};

#pragma db object
class employee
{
 ...

 #pragma db not_null
 shared_ptr<position> position_;
};

The resulting database schema looks like this:

CREATE TABLE position (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 position BIGINT UNSIGNED NOT NULL REFERENCES position (id));

As you can see, an inverse member does not have a corresponding column (or table, in case of
an inverse container of pointers) and, from the point of view of database operations, is effec-
tively read-only. The only way to change a bidirectional relationship with an inverse side is to
set its direct (non-inverse) pointer. Also note that an ordered container (Section 5.1, "Ordered
Containers") of pointers that is an inverse side of a bidirectional relationship is always treated
as unordered (Section 14.4.19, "unordered ") because the contents of such a container are
implicitly built from the direct side of the relationship which does not contain the element
order (index).

There are three distinct bidirectional relationships that we will cover in the following sections:
one-to-one, one-to-many, and many-to-many. We will only talk about bidirectional relation-
ships with inverse sides since they result in canonical database schemas. For sample code that
shows how to work with these relationships, refer to the inverse example in the
odb-examples package.

6.2.1 One-to-One Relationships

An example of a bidirectional one-to-one relationship is the presented above employee-posi-
tion relationship (an employee fills one position and a position is filled by one employee). The
following persistent C++ classes model this relationship:

class employee;

#pragma db object
class position
{
 ...

 #pragma db id
 unsigned long id_;

 #pragma db inverse(position_)

Revision 2.4, February 2015100 C++ Object Persistence with ODB

6.2.1 One-to-One Relationships

 weak_ptr<employee> employee_;
};

#pragma db object
class employee
{
 ...

 #pragma db id
 unsigned long id_;

 #pragma db not_null
 shared_ptr<position> position_;
};

The corresponding database tables look like this:

CREATE TABLE position (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 position BIGINT UNSIGNED NOT NULL REFERENCES position (id));

If instead the other side of this relationship is made inverse, then the database tables will
change as follows:

CREATE TABLE position (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 employee BIGINT UNSIGNED REFERENCES employee (id));

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

6.2.2 One-to-Many Relationships

An example of a bidirectional one-to-many relationship is the employer-employee relation-
ship (an employer has multiple employees and an employee is employed by one employer).
The following persistent C++ classes model this relationship:

class employee;

#pragma db object
class employer
{
 ...

 #pragma db id
 std::string name_;

 #pragma db value_not_null inverse(employer_)
 std::vector<weak_ptr<employee> > employees_
};

101Revision 2.4, February 2015 C++ Object Persistence with ODB

6.2.2 One-to-Many Relationships

#pragma db object
class employee
{
 ...

 #pragma db id
 unsigned long id_;

 #pragma db not_null
 shared_ptr<employer> employer_;
};

The corresponding database tables differ significantly depending on which side of the rela-
tionship is made inverse. If the one side (employer) is inverse as in the code above, then the
resulting database schema looks like this:

CREATE TABLE employer (
 name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 employer VARCHAR (255) NOT NULL REFERENCES employer (name));

If instead the many side (employee) of this relationship is made inverse, then the database
tables will change as follows:

CREATE TABLE employer (
 name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employer_employees (
 object_id VARCHAR (255) NOT NULL,
 value BIGINT UNSIGNED NOT NULL REFERENCES employee (id));

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

6.2.3 Many-to-Many Relationships

An example of a bidirectional many-to-many relationship is the employee-project relationship
(an employee can work on multiple projects and a project can have multiple participating
employees). The following persistent C++ classes model this relationship:

class employee;

#pragma db object
class project
{
 ...

 #pragma db id
 std::string name_;

 #pragma db value_not_null inverse(projects_)

Revision 2.4, February 2015102 C++ Object Persistence with ODB

6.2.3 Many-to-Many Relationships

 std::vector<weak_ptr<employee> > employees_;
};

#pragma db object
class employee
{
 ...

 #pragma db id
 unsigned long id_;

 #pragma db value_not_null unordered
 std::vector<shared_ptr<project> > projects_;
};

The corresponding database tables look like this:

CREATE TABLE project (
 name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee_projects (
 object_id BIGINT UNSIGNED NOT NULL,
 value VARCHAR (255) NOT NULL REFERENCES project (name));

If instead the other side of this relationship is made inverse, then the database tables will
change as follows:

CREATE TABLE project (
 name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE project_employees (
 object_id VARCHAR (255) NOT NULL,
 value BIGINT UNSIGNED NOT NULL REFERENCES employee (id));

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

6.3 Circular Relationships

A relationship between two persistent classes is circular if each of them references the other.
Bidirectional relationships are always circular. A unidirectional relationship combined with
inheritance (Chapter 8, "Inheritance") can also be circular. For example, the employee class
could derive from person which, in turn, could contain a pointer to employee .

We don’t need to do anything extra if persistent classes with circular dependencies are defined
in the same header file. Specifically, ODB will make sure that the database tables and foreign
key constraints are created in the correct order. As a result, unless you have good reasons not
to, it is recommended that you keep persistent classes with circular dependencies in the same
header file.

103Revision 2.4, February 2015 C++ Object Persistence with ODB

6.3 Circular Relationships

If you have to keep such classes in separate header files, then there are two extra steps that
you may need to take in order to use these classes with ODB. Consider again the example
from Section 6.2.1, "One-to-One Relationships" but this time with the classes defined in sepa-
rate headers:

// position.hxx
//
class employee;

#pragma db object
class position
{
 ...

 #pragma db id
 unsigned long id_;

 #pragma db inverse(position_)
 weak_ptr<employee> employee_;
};

// employee.hxx
//
#include "position.hxx"

#pragma db object
class employee
{
 ...

 #pragma db id
 unsigned long id_;

 #pragma db not_null
 shared_ptr<position> position_;
};

Note that the position.hxx header contains only the forward declaration for employee .
While this is sufficient to define a valid, from the C++ point of view, position class, the
ODB compiler needs to "see" the definitions of the pointed-to persistent classes. There are
several ways we can fulfil this requirement. The easiest is to simply include employee.hxx
at the end of position.hxx :

// position.hxx
//
class employee;

#pragma db object
class position
{
 ...
};

#include "employee.hxx"

Revision 2.4, February 2015104 C++ Object Persistence with ODB

6.3 Circular Relationships

We can also limit this inclusion only to the time when position.hxx is compiled with the
ODB compiler:

// position.hxx
//

...

#ifdef ODB_COMPILER
include "employee.hxx"
#endif

Finally, if we don’t want to modify position.hxx , then we can add employee.hxx to
the ODB compilation process with the --odb-epilogue option. For example:

odb ... --odb-epilogue "#include \"employee.hxx\"" position.hxx

Note also that in this example we didn’t have to do anything extra for employee.hxx
because it already includes position.hxx . However, if instead it relied only on the
forward declaration of the position class, then we would have to handle it in the same way
as position.hxx .

The other difficulty with separately defined classes involving circular relationships has to do
with the correct order of foreign key constraint creation in the generated database schema. In
the above example, if we generate the database schema as standalone SQL files, then we will
end up with two such files: position.sql and employee.sql . If we try to execute
employee.sql first, then we will get an error indicating that the table corresponding to the
position class and referenced by the foreign key constraint corresponding to the posi-
tion_ pointer does not yet exist.

Note that there is no such problem if the database schema is embedded in the generated C++
code instead of being produced as standalone SQL files. In this case, the ODB compiler is
able to ensure the correct creation order even if the classes are defined in separate header files.

In certain cases, for example, a bidirectional relationship with an inverse side, this problem
can be resolved by executing the database schema creation files in the correct order. In our
example, this would be position.sql first and employee.sql second. However, this
approach doesn’t scale beyond simple object models.

A more robust solution to this problem is to generate the database schema for all the persistent
classes into a single SQL file. This way, the ODB compiler can again ensure the correct
creation order of tables and foreign keys. To instruct the ODB compiler to produce a
combined schema file for several headers we can use the --generate-schema-only and
--at-once options. For example:

odb ... --generate-schema-only --at-once --input-name company \
position.hxx employee.hxx

105Revision 2.4, February 2015 C++ Object Persistence with ODB

6.3 Circular Relationships

The result of the above command is a single company.sql file (the name is derived from
the --input-name value) that contains the database creation code for both position and
employee classes.

6.4 Lazy Pointers

Consider again the bidirectional, one-to-many employer-employee relationship that was
presented earlier in this chapter:

class employee;

#pragma db object
class employer
{
 ...

 #pragma db id
 std::string name_;

 #pragma db value_not_null inverse(employer_)
 std::vector<weak_ptr<employee> > employees_;
};

#pragma db object
class employee
{
 ...

 #pragma db id
 unsigned long id_;

 #pragma db not_null
 shared_ptr<employer> employer_;
};

Consider also the following transaction which obtains the employer name given the employee
id:

unsigned long id = ...
string name;

session s;
transaction t (db.begin ());

shared_ptr<employee> e (db.load<employee> (id));
name = e->employer_->name_;

t.commit ();

While this transaction looks very simple, it actually does a lot more than what meets the eye
and is necessary. Consider what happens when we load the employee object: the
employer_ pointer is also automatically loaded which means the employer object corre-

Revision 2.4, February 2015106 C++ Object Persistence with ODB

6.4 Lazy Pointers

sponding to this employee is also loaded. But the employer object in turn contains the list
of pointers to all the employees, which are also loaded. A a result, when object relationships
are involved, a simple transaction like the above can load many more objects than is neces-
sary.

To overcome this problem ODB offers finer grained control over the relationship loading in
the form of lazy pointers. A lazy pointer does not automatically load the pointed-to object
when the containing object is loaded. Instead, we have to explicitly load the pointed-to object
if and when we need to access it.

The ODB runtime library provides lazy counterparts for all the supported pointers, namely:
odb::lazy_shared_ptr /lazy_weak_ptr for C++11
std::shared_ptr /weak_ptr , odb::tr1::lazy_shared_ptr /lazy_weak_ptr
for TR1 std::tr1::shared_ptr /weak_ptr , odb::lazy_unique_ptr for C++11
std::unique_ptr , odb::lazy_auto_ptr for std::auto_ptr , and
odb::lazy_ptr for raw pointers. The TR1 lazy pointers are defined in the
<odb/tr1/lazy-ptr.hxx> header while all the others — in <odb/lazy-ptr.hxx> .
The ODB profile libraries also provide lazy pointer implementations for smart pointers from
popular frameworks and libraries (Part III, "Profiles").

While we will discuss the interface of lazy pointers in more detail shortly, the most commonly
used extra function provided by these pointers is load() . This function loads the pointed-to
object if it hasn’t already been loaded. After the call to this function, the lazy pointer can be
used in the the same way as its eager counterpart. The load() function also returns the eager
pointer, in case you need to pass it around. For a lazy weak pointer, the load() function also
locks the pointer.

The following example shows how we can change our employer-employee relationship to use
lazy pointers. Here we choose to use lazy pointers for both sides of the relationship.

class employee;

#pragma db object
class employer
{
 ...

 #pragma db value_not_null inverse(employer_)
 std::vector<lazy_weak_ptr<employee> > employees_;
};

#pragma db object
class employee
{
 ...

 #pragma db not_null
 lazy_shared_ptr<employer> employer_;
};

107Revision 2.4, February 2015 C++ Object Persistence with ODB

6.4 Lazy Pointers

And the transaction is changed like this:

unsigned long id = ...
string name;

session s;
transaction t (db.begin ());

shared_ptr<employee> e (db.load<employee> (id));
e->employer_.load ();
name = e->employer_->name_;

t.commit ();

As a general guideline we recommend that you make at least one side of a bidirectional rela-
tionship lazy, especially for relationships with a many side.

A lazy pointer implementation mimics the interface of its eager counterpart which can be used
once the pointer is loaded. It also adds a number of additional functions that are specific to the
lazy loading functionality. Overall, the interface of a lazy pointer follows this general outline:

template <class T>
class lazy_ptr
{
public:
 //
 // The eager pointer interface.
 //

 // Initialization/assignment from an eager pointer.
 //
public:
 template <class Y> lazy_ptr (const eager_ptr<Y>&);
 template <class Y> lazy_ptr& operator= (const eager_ptr<Y>&);

 // Lazy loading interface.
 //
public:
 // NULL loaded()
 //
 // true true NULL pointer to transient object
 // false true valid pointer to persistent object
 // true false unloaded pointer to persistent object
 // false false valid pointer to transient object
 //
 bool loaded () const;

 eager_ptr<T> load () const;

 // Unload the pointer. For transient objects this function is
 // equivalent to reset().
 //
 void unload () const;

Revision 2.4, February 2015108 C++ Object Persistence with ODB

6.4 Lazy Pointers

 // Get the underlying eager pointer. If this is an unloaded pointer
 // to a persistent object, then the returned pointer will be NULL.
 //
 eager_ptr<T> get_eager () const;

 // Initialization with a persistent loaded object.
 //
 template <class Y> lazy_ptr (database&, Y*);
 template <class Y> lazy_ptr (database&, const eager_ptr<Y>&);

 template <class Y> void reset (database&, Y*);
 template <class Y> void reset (database&, const eager_ptr<Y>&);

 // Initialization with a persistent unloaded object.
 //
 template <class ID> lazy_ptr (database&, const ID&);

 template <class ID> void reset (database&, const ID&);

 // Query object id and database of a persistent object.
 //
 template <class O /* = T */>
 // C++11: template <class O = T>
 object_traits<O>::id_type object_id () const;

 odb::database& database () const;
};

In a lazy weak pointer interface, the load() function returns the strong (shared) eager
pointer. The following transaction demonstrates the use of a lazy weak pointer based on the
employer and employee classes presented earlier.

typedef std::vector<lazy_weak_ptr<employee> > employees;

session s;
transaction t (db.begin ());

shared_ptr<employer> er (db.load<employer> ("Example Inc"));
employees& es (er->employees ());

for (employees::iterator i (es.begin ()); i != es.end (); ++i)
{
 // We are only interested in employees with object id less than
 // 100.
 //
 lazy_weak_ptr<employee>& lwp (*i);

 if (lwp.object_id<employee> () < 100)
 // C++11: if (lwp.object_id () < 100)
 {
 shared_ptr<employee> e (lwp.load ()); // Load and lock.
 cout << e->first_ << " " << e->last_ << endl;

109Revision 2.4, February 2015 C++ Object Persistence with ODB

6.4 Lazy Pointers

 }
}

t.commit ();

Notice that inside the for-loop we use a reference to the lazy weak pointer instead of making a
copy. This is not merely to avoid a copy. When a lazy pointer is loaded, all other lazy pointers
that point to the same object do not automatically become loaded (though an attempt to load
such copies will result in them pointing to the same object, provided the same session is still
in effect). By using a reference in the above transaction we make sure that we load the pointer
that is contained in the employer object. This way, if we later need to re-examine this
employee object, the pointer will already be loaded.

As another example, suppose we want to add an employee to Example Inc. The straightfor-
ward implementation of this transaction is presented below:

session s;
transaction t (db.begin ());

shared_ptr<employer> er (db.load<employer> ("Example Inc"));
shared_ptr<employee> e (new employee ("John", "Doe"));

e->employer_ = er;
er->employees ().push_back (e);

db.persist (e);
t.commit ();

Notice here that we didn’t have to update the employer object in the database since the
employees_ list of pointers is an inverse side of a bidirectional relationship and is effec-
tively read-only, from the persistence point of view.

A faster implementation of this transaction, that avoids loading the employer object, relies on
the ability to initialize an unloaded lazy pointer with the database where the object is stored as
well as its identifier:

lazy_shared_ptr<employer> er (db, std::string ("Example Inc"));
shared_ptr<employee> e (new employee ("John", "Doe"));

e->employer_ = er;

session s;
transaction t (db.begin ());

db.persist (e);

t.commit ();

For the interaction of lazy pointers with lazy-loaded object sections, refer to Section 9.3,
"Sections and Lazy Pointers".

Revision 2.4, February 2015110 C++ Object Persistence with ODB

6.4 Lazy Pointers

6.5 Using Custom Smart Pointers

While the ODB runtime and profile libraries provide support for the majority of widely-used
pointers, it is also easy to add support for a custom smart pointer.

To achieve this you will need to implement the pointer_traits class template special-
ization for your pointer. The first step is to determine the pointer kind since the interface of
the pointer_traits specialization varies depending on the pointer kind. The supported
pointer kinds are: raw (raw pointer or equivalent, that is, unmanaged), unique (smart pointer
that doesn’t support sharing), shared (smart pointer that supports sharing), and weak (weak
counterpart of the shared pointer). Any of these pointers can be lazy, which also affects the
interface of the pointer_traits specialization.

Once you have determined the pointer kind for your smart pointer, use a specialization for one
of the standard pointers found in the common ODB runtime library (libodb) as a base for
your own implementation.

Once the pointer traits specialization is ready, you will need to include it into the ODB compi-
lation process using the --odb-epilogue option and into the generated header files with
the --hxx-prologue option. As an example, suppose we have the smart_ptr smart
pointer for which we have the traits specialization implemented in the
smart-ptr-traits.hxx file. Then, we can create an ODB compiler options file for this
pointer and save it to smart-ptr.options :

Options file for smart_ptr.
#
--odb-epilogue ’#include "smart-ptr-traits.hxx"’
--hxx-prologue ’#include "smart-ptr-traits.hxx"’

Now, whenever we compile a header file that uses smart_ptr , we can specify the follow-
ing command line option to make sure it is recognized by the ODB compiler as a smart
pointer and the traits file is included in the generated code:

--options-file smart-ptr.options

It is also possible to implement a lazy counterpart for your smart pointer. The ODB runtime
library provides a class template that encapsulates the object id management and loading
functionality that is needed to implement a lazy pointer. All you need to do is wrap it with an
interface that mimics your smart pointer. Using one of the existing lazy pointer implementa-
tions (either from the ODB runtime library or one of the profile libraries) as a base for your
implementation is the easiest way to get started.

111Revision 2.4, February 2015 C++ Object Persistence with ODB

6.5 Using Custom Smart Pointers

7 Value Types
In Section 3.1, "Concepts and Terminology" we have already discussed the notion of values
and value types as well as the distinction between simple and composite values. This chapter
covers simple and composite value types in more detail.

7.1 Simple Value Types

A simple value type is a fundamental C++ type or a class type that is mapped to a single
database column. For each supported database system the ODB compiler provides a default
mapping to suitable database types for most fundamental C++ types, such as int or float
as well as some class types, such as std::string . For more information about the default
mapping for each database system refer to Part II, Database Systems. We can also provide a
custom mapping for these or our own value types using the db type pragma (Section
14.3.1, "type ").

7.2 Composite Value Types

A composite value type is a class or struct type that is mapped to more than one
database column. To declare a composite value type we use the db value pragma, for
example:

#pragma db value
class basic_name
{
 ...

 std::string first_;
 std::string last_;
};

The complete version of the above code fragment and the other code samples presented in this
section can be found in the composite example in the odb-examples package.

A composite value type does not have to define a default constructor, unless it is used as an
element of a container. In this case the default constructor can be made private provided we
also make the odb::access class, defined in the <odb/core.hxx> header, a friend of
this value type. For example:

#include <odb/core.hxx>

#pragma db value
class basic_name
{
public:
 basic_name (const std::string& first, const std::string& last);

 ...

Revision 2.4, February 2015112 C++ Object Persistence with ODB

7 Value Types

private:
 friend class odb::access;

 basic_name () {} // Needed for storing basic_name in containers.

 ...
};

The ODB compiler also needs access to the non-transient (Section 14.4.11, "transient ")
data members of a composite value type. It uses the same mechanisms as for persistent classes
which are discussed in Section 3.2, "Declaring Persistent Objects and Values".

The members of a composite value can be other value types (either simple or composite),
containers (Chapter 5, "Containers"), and pointers to objects (Chapter 6, "Relationships").
Similarly, a composite value type can be used in object members, as an element of a
container, and as a base for another composite value type. In particular, composite value types
can be used as element types in set containers (Section 5.2, "Set and Multiset Containers")
and as key types in map containers (Section 5.3, "Map and Multimap Containers"). A
composite value type that is used as an element of a container cannot contain other containers
since containers of containers are not allowed. The following example illustrates some of the
possible use cases:

#pragma db value
class basic_name
{
 ...

 std::string first_;
 std::string last_;
};

typedef std::vector<basic_name> basic_names;

#pragma db value
class name_extras
{
 ...

 std::string nickname_;
 basic_names aliases_;
};

#pragma db value
class name: public basic_name
{
 ...

 std::string title_;
 name_extras extras_;
};

#pragma db object
class person

113Revision 2.4, February 2015 C++ Object Persistence with ODB

7.2 Composite Value Types

{
 ...

 name name_;
};

A composite value type can be defined inside a persistent class, view, or another composite
value and even made private, provided we make odb::access a friend of the containing
class, for example:

#pragma db object
class person
{
 ...

 #pragma db value
 class name
 {
 ...

 std::string first_;
 std::string last_;
 };

 name name_;
};

A composite value type can also be defined as an instantiation of a C++ class template, for
example:

template <typename T>
struct point
{
 T x;
 T y;
 T z;
};

typedef point<int> int_point;
#pragma db value(int_point)

#pragma db object
class object
{
 ...

 int_point center_;
};

Note that the database support code for such a composite value type is generated when
compiling the header containing the db value pragma and not the header containing the
template definition or the typedef name. This allows us to use templates defined in other
files, such as std::pair defined in the utility standard header file:

Revision 2.4, February 2015114 C++ Object Persistence with ODB

7.2 Composite Value Types

#include <utility> // std::pair

typedef std::pair<std::string, std::string> phone_numbers;
#pragma db value(phone_numbers)

#pragma db object
class person
{
 ...

 phone_numbers phone_;
};

We can also use data members from composite value types in database queries (Chapter 4,
"Querying the Database"). For each composite value in a persistent class, the query class
defines a nested member that contains members corresponding to the data members in the
value type. We can then use the member access syntax (.) to refer to data members in value
types. For example, the query class for the person object presented above contains the
name member (its name is derived from the name_ data member) which in turn contains the
extras member (its name is derived from the name::extras_ data member of the
composite value type). This process continues recursively for nested composite value types
and, as a result, we can use the query::name.extras.nickname expression while
querying the database for the person objects. For example:

typedef odb::query<person> query;
typedef odb::result<person> result;

transaction t (db.begin ());

result r (db.query<person> (
 query::name.extras.nickname == "Squeaky"));

...

t.commit ();

7.2.1 Composite Object Ids

An object id can be of a composite value type, for example:

#pragma db value
class name
{
 ...

 std::string first_;
 std::string last_;
};

#pragma db object
class person
{
 ...

115Revision 2.4, February 2015 C++ Object Persistence with ODB

7.2.1 Composite Object Ids

 #pragma db id
 name name_;
};

However, a value type that can be used as an object id has a number of restrictions. Such a
value type cannot have container, object pointer, or read-only data members. It also must be
default-constructible, copy-constructible, and copy-assignable. Furthermore, if the persistent
class in which this composite value type is used as object id has session support enabled
(Chapter 11, "Session"), then it must also implement the less-than comparison operator
(operator<).

7.2.2 Composite Value Column and Table Names

Customizing a column name for a data member of a simple value type is straightforward: we
simply specify the desired name with the db column pragma (Section 14.4.9, "column ").
For composite value types things are slightly more complex since they are mapped to multiple
columns. Consider the following example:

#pragma db value
class name
{
 ...

 std::string first_;
 std::string last_;
};

#pragma db object
class person
{
 ...

 #pragma db id auto
 unsigned long id_;

 name name_;
};

The column names for the first_ and last_ members are constructed by using the sani-
tized name of the person::name_ member as a prefix and the names of the members in
the value type (first_ and last_) as suffixes. As a result, the database schema for the
above classes will look like this:

CREATE TABLE person (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 name_first TEXT NOT NULL,
 name_last TEXT NOT NULL);

Revision 2.4, February 2015116 C++ Object Persistence with ODB

7.2.2 Composite Value Column and Table Names

We can customize both the prefix and the suffix using the db column pragma as shown in
the following example:

#pragma db value
class name
{
 ...

 #pragma db column("first_name")
 std::string first_;

 #pragma db column("last_name")
 std::string last_;
};

#pragma db object
class person
{
 ...

 #pragma db column("person_")
 name name_;
};

The database schema changes as follows:

CREATE TABLE person (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 person_first_name TEXT NOT NULL,
 person_last_name TEXT NOT NULL);

We can also make the column prefix empty, for example:

#pragma db object
class person
{
 ...

 #pragma db column("")
 name name_;
};

This will result in the following schema:

CREATE TABLE person (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 first_name TEXT NOT NULL,
 last_name TEXT NOT NULL);

The same principle applies when a composite value type is used as an element of a container,
except that instead of db column , either the db value_column (Section 14.4.36,
"value_column ") or db key_column (Section 14.4.35, "key_column ") pragmas are
used to specify the column prefix.

117Revision 2.4, February 2015 C++ Object Persistence with ODB

7.2.2 Composite Value Column and Table Names

When a composite value type contains a container, an extra table is used to store its elements
(Chapter 5, "Containers"). The names of such tables are constructed in a way similar to the
column names, except that by default both the object name and the member name are used as
a prefix. For example:

#pragma db value
class name
{
 ...

 std::string first_;
 std::string last_;
 std::vector<std::string> nicknames_;
};

#pragma db object
class person
{
 ...

 name name_;
};

The corresponding database schema will look like this:

CREATE TABLE person_name_nicknames (
 object_id BIGINT UNSIGNED NOT NULL,
 index BIGINT UNSIGNED NOT NULL,
 value TEXT NOT NULL)

CREATE TABLE person (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 name_first TEXT NOT NULL,
 name_last TEXT NOT NULL);

To customize the container table name we can use the db table pragma (Section 14.4.20,
"table "), for example:

#pragma db value
class name
{
 ...

 #pragma db table("nickname")
 std::vector<std::string> nicknames_;
};

#pragma db object
class person
{
 ...

Revision 2.4, February 2015118 C++ Object Persistence with ODB

7.2.2 Composite Value Column and Table Names

 #pragma db table("person_")
 name name_;
};

This will result in the following schema changes:

CREATE TABLE person_nickname (
 object_id BIGINT UNSIGNED NOT NULL,
 index BIGINT UNSIGNED NOT NULL,
 value TEXT NOT NULL)

Similar to columns, we can make the table prefix empty.

7.3 Pointers and NULL Value Semantics

Relational database systems have a notion of the special NULL value that is used to indicate
the absence of a valid value in a column. While by default ODB maps values to columns that
do not allow NULL values, it is possible to change that with the db null pragma (Section
14.4.6, "null /not_null ").

To properly support the NULL semantics, the C++ value type must have a notion of a NULL
value or a similar special state concept. Most basic C++ types, such as int or
std::string , do not have this notion and therefore cannot be used directly for
NULL-enabled data members (in the case of a NULL value being loaded from the database,
such data members will be default-initialized).

To allow the easy conversion of value types that do not support the NULL semantics into the
ones that do, ODB provides the odb::nullable class template. It allows us to wrap an
existing C++ type into a container-like class that can either be NULL or contain a value of the
wrapped type. ODB also automatically enables the NULL values for data members of the
odb::nullable type. For example:

#include <odb/nullable.hxx>

#pragma db object
class person
{
 ...

 std::string first_; // TEXT NOT NULL
 odb::nullable<std::string> middle_; // TEXT NULL
 std::string last_; // TEXT NOT NULL
};

The odb::nullable class template is defined in the <odb/nullable.hxx> header file
and has the following interface:

119Revision 2.4, February 2015 C++ Object Persistence with ODB

7.3 Pointers and NULL Value Semantics

namespace odb
{
 template <typename T>
 class nullable
 {
 public:
 typedef T value_type;

 nullable ();
 nullable (const T&);
 nullable (const nullable&);
 template <typename Y> explicit nullable (const nullable<Y>&);

 nullable& operator= (const T&);
 nullable& operator= (const nullable&);
 template <typename Y> nullable& operator= (const nullable<Y>&);

 void swap (nullable&);

 // Accessor interface.
 //
 bool null () const;

 T& get ();
 const T& get () const;

 // Pointer interface.
 //
 operator bool_convertible () const;

 T* operator-> ();
 const T* operator-> () const;

 T& operator* ();
 const T& operator* () const;

 // Reset to the NULL state.
 //
 void reset ();
 };
}

The following example shows how we can use this interface:

 nullable<string> ns;

 // Using the accessor interface.
 //
 if (ns.null ())
 {
 s = "abc";
 }
 else
 {
 string s (ns.get ());

Revision 2.4, February 2015120 C++ Object Persistence with ODB

7.3 Pointers and NULL Value Semantics

 ns.reset ();
 }

 // The same using the pointer interface.
 //
 if (ns)
 {
 s = "abc";
 }
 else
 {
 string s (*ns);
 ns.reset ();
 }

The odb::nullable class template requires the wrapped type to have public default and
copy constructors as well as the copy assignment operator. Note also that the
odb::nullable implementation is not the most efficient in that it always contains a fully
constructed value of the wrapped type. This is normally not a concern for simple types such as
the C++ fundamental types or std::string . However, it may become an issue for more
complex types. In such cases you may want to consider using a more efficient implementation
of the optional value concept such as the optional class template from Boost (Section
23.4, "Optional Library").

Another common C++ representation of a value that can be NULL is a pointer. ODB will auto-
matically handle data members that are pointers to values, however, it will not automatically
enable NULL values for such data members, as is the case for odb::nullable . Instead, if
the NULL value is desired, we will need to enable it explicitly using the db null pragma.
For example:

#pragma db object
class person
{
 ...

 std::string first_;

 #pragma db null
 std::auto_ptr<std::string> middle_;

 std::string last_;
};

The ODB compiler includes built-in support for using std::auto_ptr ,
std::unique_ptr (C++11), and shared_ptr (TR1 or C++11) as pointers to values.
Plus, ODB profile libraries, that are available for commonly used frameworks and libraries
(such as Boost and Qt), provide support for smart pointers found in these frameworks and
libraries (Part III, "Profiles").

121Revision 2.4, February 2015 C++ Object Persistence with ODB

7.3 Pointers and NULL Value Semantics

ODB also supports the NULL semantics for composite values. In the relational database the
NULL composite value is translated to NULL values for all the simple data members of this
composite value. For example:

#pragma db value
struct name
{
 std::string first_;
 odb::nullable<std::string> middle_;
 std::string last_;
};

#pragma db object
class person
{
 ...
 odb::nullable<name> name_;
};

ODB does not support the NULL semantics for containers. This also means that a composite
value that contains a container cannot be NULL. With this limitation in mind, we can still use
smart pointers in data members of container types. The only restriction is that these pointers
must not be NULL. For example:

#pragma db object
class person
{
 ...

 std::auto_ptr<std::vector<std::string> > aliases_;
};

Revision 2.4, February 2015122 C++ Object Persistence with ODB

7.3 Pointers and NULL Value Semantics

8 Inheritance
In C++ inheritance can be used to achieve two different goals. We can employ inheritance to
reuse common data and functionality in multiple classes. For example:

class person
{
public:
 const std::string& first () const;
 const std::string& last () const;

private:
 std::string first_;
 std::string last_;
};

class employee: public person
{
 ...
};

class contractor: public person
{
 ...
};

In the above example both the employee and contractor classes inherit the first_
and last_ data members as well as the first() and last() accessors from the person
base class.

A common trait of this inheritance style, referred to as reuse inheritance from now on, is the
lack of virtual functions and a virtual destructor in the base class. Also with this style the
application code is normally written in terms of the derived classes instead of the base.

The second way to utilize inheritance in C++ is to provide polymorphic behavior through a
common interface. In this case the base class defines a number of virtual functions and,
normally, a virtual destructor while the derived classes provide specific implementations of
these virtual functions. For example:

class person
{
public:
 enum employment_status
 {
 unemployed,
 temporary,
 permanent,
 self_employed
 };

 virtual employment_status
 employment () const = 0;

123Revision 2.4, February 2015 C++ Object Persistence with ODB

8 Inheritance

 virtual
 ~person ();
};

class employee: public person
{
public:
 virtual employment_status
 employment () const
 {
 return temporary_ ? temporary : permanent;
 }

private:
 bool temporary_;
};

class contractor: public person
{
public:
 virtual employment_status
 employment () const
 {
 return self_employed;
 }
};

With this inheritance style, which we will call polymorphism inheritance, the application code
normally works with derived classes via the base class interface. Note also that it is very
common to mix both styles in the same hierarchy. For example, the above two code fragments
can be combined so that the person base class provides the common data members and
functions as well as defines the polymorphic interface.

The following sections describe the available strategies for mapping reuse and polymorphism
inheritance styles to a relational data model. Note also that the distinction between the two
styles is conceptual rather than formal. For example, it is possible to treat a class hierarchy
that defines virtual functions as a case of reuse inheritance if this results in the desired
database mapping and semantics.

Generally, classes that employ reuse inheritance are mapped to completely independent enti-
ties in the database. They use different object id spaces and should always be passed to and
returned from the database operations as pointers or references to derived types. In other
words, from the persistence point of view, such classes behave as if the data members from
the base classes were copied verbatim into the derived ones.

In contrast, classes that employ polymorphism inheritance share the object id space and can
be passed to and returned from the database operations polymorphically as pointers or refer-
ences to the base class.

Revision 2.4, February 2015124 C++ Object Persistence with ODB

8 Inheritance

For both inheritance styles it is sometimes desirable to prevent instances of a base class from
being stored in the database. To achieve this a persistent class can be declared abstract using
the db abstract pragma (Section 14.1.3, "abstract "). Note that a C++-abstract class,
or a class that has one or more pure virtual functions and therefore cannot be instantiated, is
also database-abstract. However, a database-abstract class is not necessarily C++-abstract.
The ODB compiler automatically treats C++-abstract classes as database-abstract.

8.1 Reuse Inheritance

Each non-abstract class from the reuse inheritance hierarchy is mapped to a separate database
table that contains all its data members, including those inherited from base classes. An
abstract persistent class does not have to define an object id, nor a default constructor, and it
does not have a corresponding database table. An abstract class cannot be a pointed-to object
in a relationship. Multiple inheritance is supported as long as each base class is only inherited
once. The following example shows a persistent class hierarchy employing reuse inheritance:

// Abstract person class. Note that it does not declare the
// object id.
//
#pragma db object abstract
class person
{
 ...

 std::string first_;
 std::string last_;
};

// Abstract employee class. It derives from the person class and
// declares the object id for all the concrete employee types.
//
#pragma db object abstract
class employee: public person
{
 ...

 #pragma db id auto
 unsigned long id_;
};

// Concrete permanent_employee class. Note that it doesn’t define
// any data members of its own.
//
#pragma db object
class permanent_employee: public employee
{
 ...
};

// Concrete temporary_employee class. It adds the employment
// duration in months.
//

125Revision 2.4, February 2015 C++ Object Persistence with ODB

8.1 Reuse Inheritance

#pragma db object
class temporary_employee: public employee
{
 ...

 unsigned long duration_;
};

// Concrete contractor class. It derives from the person class
// (and not employee; an independent contractor is not considered
// an employee). We use the contractor’s external email address
// as the object id.
//
#pragma db object
class contractor: public person
{
 ...

 #pragma db id
 std::string email_;
};

The sample database schema for this hierarchy is shown below.

CREATE TABLE permanent_employee (
 first TEXT NOT NULL,
 last TEXT NOT NULL,
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT);

CREATE TABLE temporary_employee (
 first TEXT NOT NULL,
 last TEXT NOT NULL,
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
 duration BIGINT UNSIGNED NOT NULL);

CREATE TABLE contractor (
 first TEXT NOT NULL,
 last TEXT NOT NULL,
 email VARCHAR (255) NOT NULL PRIMARY KEY);

The complete version of the code presented in this section is available in the inheri-
tance/reuse example in the odb-examples package.

8.2 Polymorphism Inheritance

There are three general approaches to mapping a polymorphic class hierarchy to a relational
database. These are table-per-hierarchy, table-per-difference, and table-per-class. With the
table-per-hierarchy mapping, all the classes in a hierarchy are stored in a single, "wide" table.
NULL values are stored in columns corresponding to data members of derived classes that are
not present in any particular instance.

Revision 2.4, February 2015126 C++ Object Persistence with ODB

8.2 Polymorphism Inheritance

In the table-per-difference mapping, each class is mapped to a separate table. For a derived
class, this table contains only columns corresponding to the data members added by this
derived class.

Finally, in the table-per-class mapping, each class is mapped to a separate table. For a derived
class, this table contains columns corresponding to all the data members, from this derived
class all the way down to the root of the hierarchy.

The table-per-difference mapping is generally considered as having the best balance of flexi-
bility, performance, and space efficiency. It also results in a more canonical relational
database model compared to the other two approaches. As a result, this is the mapping
currently implemented in ODB. Other mappings may be supported in the future.

A pointer or reference to an ordinary, non-polymorphic object has just one type — the class
type of that object. When we start working with polymorphic objects, there are two types to
consider: the static type, or the declaration type of a reference or pointer, and the object’s
actual or dynamic type. An example will help illustrate the difference:

class person {...};
class employee: public person {...};

person p;
employee e;

person& r1 (p);
person& r2 (e);

auto_ptr<person> p1 (new employee);

In the above example, the r1 reference’s both static and dynamic types are person . In
contrast, the r2 reference’s static type is person while its dynamic type (the actual object
that it refers to) is employee . Similarly, p1 points to the object of the person static type
but employee dynamic type.

In C++, the primary mechanisms for working with polymorphic objects are virtual functions.
We call a virtual function only knowing the object’s static type, but the version corresponding
to the object’s dynamic type is automatically executed. This is the essence of runtime poly-
morphism support in C++: we can operate in terms of a base class interface but get the
derived class’ behavior. Similarly, the essence of the runtime polymorphism support in ODB
is to allow us to persist, load, update, and query in terms of the base class interface but have
the derived class actually stored in the database.

To declare a persistent class as polymorphic we use the db polymorphic pragma. We
only need to declare the root class of a hierarchy as polymorphic; ODB will treat all the
derived classes as polymorphic automatically. For example:

#pragma db object polymorphic
class person
{
 ...

127Revision 2.4, February 2015 C++ Object Persistence with ODB

8.2 Polymorphism Inheritance

 virtual
 ~person () = 0; // Automatically abstract.

 #pragma db id auto
 unsigned long id_;

 std::string first_;
 std::string last_;
};

#pragma db object
class employee: public person
{
 ...

 bool temporary_;
};

#pragma db object
class contractor: public person
{

 std::string email_;
};

A persistent class hierarchy declared polymorphic must also be polymorphic in the C++
sense, that is, the root class must declare or inherit at least one virtual function. It is recom-
mended that the root class also declares a virtual destructor. The root class of the polymorphic
hierarchy must contain the data member designated as object id (a persistent class without an
object id cannot be polymorphic). Note also that, unlike reuse inheritance, abstract polymor-
phic classes have a table in the database, just like non-abstract classes.

Persistent classes in the same polymorphic hierarchy must use the same kind of object pointer
(Section 3.3, "Object and View Pointers"). If the object pointer for the root class is specified
as a template or using the special raw pointer syntax (*), then the ODB compiler will auto-
matically use the same object pointer for all the derived classes. For example:

#pragma db object polymorphic pointer(std::shared_ptr)
class person
{
 ...
};

#pragma db object // Object pointer is std::shared_ptr<employee>.
class employee: public person
{
 ...
};

#pragma db object // Object pointer is std::shared_ptr<contractor>.

Revision 2.4, February 2015128 C++ Object Persistence with ODB

8.2 Polymorphism Inheritance

class contractor: public person
{
 ...
};

Similarly, if we enable or disable session support (Chapter 11, "Session") for the root class,
then the ODB compiler will automatically enable or disable it for all the derived classes.

For polymorphic persistent classes, all the database operations can be performed on objects
with different static and dynamic types. Similarly, operations that load persistent objects from
the database (load() , query() , etc.), can return objects with different static and dynamic
types. For example:

unsigned long id1, id2;

// Persist.
//
{
 shared_ptr<person> p1 (new employee (...));
 shared_ptr<person> p2 (new contractor (...));

 transaction t (db.begin ());
 id1 = db.persist (p1); // Stores employee.
 id2 = db.persist (p2); // Stores contractor.
 t.commit ();
}

// Load.
//
{
 shared_ptr<person> p;

 transaction t (db.begin ());
 p = db.load<person> (id1); // Loads employee.
 p = db.load<person> (id2); // Loads contractor.
 t.commit ();
}

// Query.
//
{
 typedef odb::query<person> query;
 typedef odb::result<person> result;

 transaction t (db.begin ());

 result r (db.query<person> (query::last == "Doe"));

 for (result::iterator i (r.begin ()); i != r.end (); ++i)
 {
 person& p (*i); // Can be employee or contractor.
 }

 t.commit ();

129Revision 2.4, February 2015 C++ Object Persistence with ODB

8.2 Polymorphism Inheritance

}

// Update.
//
{
 shared_ptr<person> p;
 shared_ptr<employee> e;

 transaction t (db.begin ());

 e = db.load<employee> (id1);
 e->temporary (false);
 p = e;
 db.update (p); // Updates employee.

 t.commit ();
}

// Erase.
//
{
 shared_ptr<person> p;

 transaction t (db.begin ());
 p = db.load<person> (id1); // Loads employee.
 db.erase (p); // Erases employee.
 db.erase<person> (id2); // Erases contractor.
 t.commit ();
}

The table-per-difference mapping, as supported by ODB, requires two extra columns, in addi-
tion to those corresponding to the data members. The first, called discriminator, is added to
the table corresponding to the root class of the hierarchy. This column is used to determine the
dynamic type of each object. The second column is added to tables corresponding to the
derived classes and contains the object id. This column is used to form a foreign key
constraint referencing the root class table.

When querying the database for polymorphic objects, it is possible to obtain the discriminator
value without instantiating the object. For example:

typedef odb::query<person> query;
typedef odb::result<person> result;

transaction t (db.begin ());

result r (db.query<person> (query::last == "Doe"));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
{
 std::string d (i.discriminator ());
 ...
}

t.commit ();

Revision 2.4, February 2015130 C++ Object Persistence with ODB

8.2 Polymorphism Inheritance

In the current implementation, ODB has limited support for customizing names, types, and
values of the extra columns. Currently, the discriminator column is always called typeid
and contains a namespace-qualified class name (for example, "employee" or
"hr::employee"). The id column in the derived class table has the same name as the
object id column in the root class table. Future versions of ODB will add support for
customizing these extra columns.

The sample database schema for the above polymorphic hierarchy is shown below.

CREATE TABLE person (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
 typeid VARCHAR(255) NOT NULL,
 first TEXT NOT NULL,
 last TEXT NOT NULL);

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 temporary TINYINT(1) NOT NULL,

 CONSTRAINT employee_id_fk
 FOREIGN KEY (id)
 REFERENCES person (id)
 ON DELETE CASCADE);

CREATE TABLE contractor (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 email TEXT NOT NULL,

 CONSTRAINT contractor_id_fk
 FOREIGN KEY (id)
 REFERENCES person (id)
 ON DELETE CASCADE);

The complete version of the code presented in this section is available in the inheri-
tance/polymorphism example in the odb-examples package.

8.2.1 Performance and Limitations

A database operation on a non-polymorphic object normally translates to a single database
statement execution (objects with containers and eager object pointers can be the exception).
Because polymorphic objects have their data members stored in multiple tables, some
database operations on such objects may result in multiple database statements being executed
while others may require more complex statements. There is also some functionality that is
not available to polymorphic objects.

The first part of this section discusses the performance implications to keep in mind when
designing and working with polymorphic hierarchies. The second part talks about limitations
of polymorphic objects.

131Revision 2.4, February 2015 C++ Object Persistence with ODB

8.2.1 Performance and Limitations

The most important aspect of a polymorphic hierarchy that affects database performance is its
depth. The distance between the root of the hierarchy and the derived class translates directly
to the number of database statements that will have to be executed in order to persist, update,
or erase this derived class. It also translates directly to the number of SQL JOIN clauses that
will be needed to load or query the database for this derived class. As a result, to achieve best
performance, we should try to keep our polymorphic hierarchies as flat as possible.

When loading an object or querying the database for objects, ODB will need to execute two
statements if this object’s static and dynamic types are different but only one statement if they
are the same. This example will help illustrate the difference:

unsigned long id;

{
 employee e (...);

 transaction t (db.begin ());
 id = db.persist (e);
 t.commit ();
}

{
 shared_ptr<person> p;

 transaction t (db.begin ());
 p = db.load<person> (id); // Requires two statement.
 p = db.load<employee> (id); // Requires only one statement.
 t.commit ();
}

As a result, we should try to load and query using the most derived class possible.

Finally, for polymorphic objects, erasing via the object instance is faster than erasing via its
object id. In the former case the object’s dynamic type can be determined locally in the appli-
cation while in the latter case an extra statement has to be executed to achieve the same result.
For example:

shared_ptr<person> p = ...;

transaction t (db.begin ());
db.erase<person> (p.id ()); // Slower (executes extra statement).
db.erase (p); // Faster.
t.commit ();

Polymorphic objects can use all the mechanisms that are available to ordinary objects. These
include containers (Chapter 5, "Containers"), object relationships, including to polymorphic
objects (Chapter 6, "Relationships"), views (Chapter 10, "Views"), session (Chapter 11,
"Session"), and optimistic concurrency (Chapter 12, "Optimistic Concurrency"). There are,
however, a few limitations, mainly due to the underlying use of SQL to access the data.

Revision 2.4, February 2015132 C++ Object Persistence with ODB

8.2.1 Performance and Limitations

When a polymorphic object is "joined" in a view, and the join condition (either in the form of
an object pointer or a custom condition) comes from the object itself (as opposed to one of the
objects joined previously), then this condition must only use data members from the derived
class. For example, consider the following polymorphic object hierarchy and a view:

#pragma db object polymorphic
class employee
{
 ...
};

#pragma db object
class permanent_employee: public employee
{
 ...
};

#pragma db object
class temporary_employee: public employee
{
 ...

 shared_ptr<permanent_employee> manager_;
};

#pragma db object
class contractor: public temporary_employee
{
 shared_ptr<permanent_employee> manager_;
};

#pragma db view object(permanent_employee) \
 object(contractor: contractor::manager_)
struct contractor_manager
{
 ...
};

This view will not function correctly because the join condition (manager_) comes from the
base class (temporary_employee) instead of the derived (contractor). The reason for
this limitation is the JOIN clause order in the underlying SQL SELECT statement. In the
view presented above, the table corresponding to the base class (temporary_employee)
will have to be joined first which will result in this view matching both the tempo-
rary_employee and contractor objects instead of just contractor . It is usually
possible to resolve this issue by reordering the objects in the view. Our example, for instance,
can be fixed by swapping the two objects:

#pragma db view object(contractor) \
 object(permanent_employee: contractor::manager_)
struct contractor_manager
{
 ...
};

133Revision 2.4, February 2015 C++ Object Persistence with ODB

8.2.1 Performance and Limitations

The erase_query() database function (Section 3.11, "Deleting Persistent Objects") also
has limited functionality when used on polymorphic objects. Because many database imple-
mentations do not support JOIN clauses in the SQL DELETE statement, only data members
from the derived class being erased can be used in the query condition. For example:

typedef odb::query<employee> query;

transaction t (db.begin ());
db.erase_query<employee> (query::permanent); // Ok.
db.erase_query<employee> (query::last == "Doe"); // Error.
t.commit ();

8.3 Mixed Inheritance

It is possible to mix the reuse and polymorphism inheritance styles in the same hierarchy. In
this case, the reuse inheritance must be used for the "bottom" (base) part of the hierarchy
while the polymorphism inheritance — for the "top" (derived) part. For example:

#pragma db object
class person
{
 ...
};

#pragma db object polymorphic
class employee: public person // Reuse inheritance.
{
 ...
};

#pragma db object
class temporary_employee: public employee // Polymorphism inheritance.
{
 ...
};

#pragma db object
class permanent_employee: public employee // Polymorphism inheritance.
{
 ...
};

Revision 2.4, February 2015134 C++ Object Persistence with ODB

8.3 Mixed Inheritance

9 Sections
ODB sections are an optimization mechanism that allows us to partition data members of a
persistent class into groups that can be separately loaded and/or updated. This can be useful,
for example, if an object contains expensive to load or update data members (such as BLOBs
or containers) and that are accessed or modified infrequently. For example:

#include <odb/section.hxx>

#pragma db object
class person
{
 ...

 #pragma db load(lazy) update(manual)
 odb::section keys_;

 #pragma db section(keys_) type("BLOB")
 char public_key_[1024];

 #pragma db section(keys_) type("BLOB")
 char private_key_[1024];
};

transaction t (db.begin ());

auto_ptr<person> p (db.load<person> (...)); // Keys are not loaded.

if (need_keys)
{
 db.load (*p, p->keys_); // Load keys.
 ...
}

db.update (*p); // Keys are not updated.

if (update_keys)
{
 ...
 db.update (*p, p->keys_); // Update keys.
}

t.commit ();

A complete example that shows how to use sections is available in the section directory in
the odb-examples package.

Why do we need to group data members into sections? Why can’t each data member be
loaded and updated independently if and when necessary? The reason for this requirement is
that loading or updating a group of data members with a single database statement is signifi-
cantly more efficient than loading or updating each data member with a separate statement.
Because ODB prepares and caches statements used to load and update persistent objects,

135Revision 2.4, February 2015 C++ Object Persistence with ODB

9 Sections

generating a custom statement for a specific set of data members that need to be loaded or
updated together is not a viable approach either. To resolve this, ODB allows us to group data
members that are often updated and/or loaded together into sections. To achieve the best
performance, we should aim to find a balance between having too many sections with too few
data members and too few sections with too many data members. We can use the access and
modification patterns of our application as a base for this decision.

To add a new section to a persistent class we declare a new data member of the
odb::section type. At this point we also need to specify the loading and updating behav-
ior of this section with the db load and db update pragmas, respectively.

The loading behavior of a section can be either eager or lazy . An eager-loaded section is
always loaded as part of the object load. A lazy-loaded section is not loaded as part of the
object load and has to be explicitly loaded with the database::load() function
(discussed below) if and when necessary.

The updating behavior of a section can be always , change , or manual . An
always-updated section is always updated as part of the object update, provided it has been
loaded. A change-updated section is only updated as part of the object update if it has been
loaded and marked as changed. A manually-updated section is never updated as part of the
object update and has to be explicitly updated with the database::update() function
(discussed below) if and when necessary.

If no loading behavior is specified explicitly, then an eager-loaded section is assumed. Simi-
larly, if no updating behavior is specified, then an always-updated section is assumed. An
eager-loaded, always-updated section is pointless and therefore illegal. Only persistent classes
with an object id can have sections.

To specify that a data member belongs to a section we use the db section pragma with the
section’s member name as its single argument. Except for special data members such as the
object id and optimistic concurrency version, any direct, non-transient member of a persistent
class can belong to a section, including composite values, containers, and pointers to objects.
For example:

#pragma db value
class text
{
 std::string data;
 std::string lang;
};

#pragma db object
class person
{
 ...

 #pragma db load(lazy)
 odb::section extras_;

 #pragma db section(extras_)

Revision 2.4, February 2015136 C++ Object Persistence with ODB

9 Sections

 text bio_;

 #pragma db section(extras_)
 std::vector<std::string> nicknames_;

 #pragma db section(extras_)
 std::shared_ptr<person> emergency_contact_;
};

An empty section is pointless and therefore illegal, except in abstract or polymorphic classes
where data members can be added to a section by derived classes (see Section 9.1, "Sections
and Inheritance").

The odb::section class is defined in the <odb/section.hxx> header file and has the
following interface:

namespace odb
{
 class section
 {
 public:
 // Load state.
 //
 bool
 loaded () const;

 void
 unload ();

 // Change state.
 //
 bool
 changed () const;

 void
 change ();

 // User data.
 //
 unsigned char
 user_data () const;

 void
 user_data (unsigned char);
 };
}

The loaded() accessor can be used to determine whether a section is already loaded. The
unload() modifier marks a loaded section as not loaded. This, for example, can be useful if
you don’t want the section to be reloaded during the object reload.

137Revision 2.4, February 2015 C++ Object Persistence with ODB

9 Sections

The changed() accessor can be used to query the section’s change state. The change()
modifier marks the section as changed. It is valid to call this modifier for an unloaded (or tran-
sient) section, however, the state will be reset back to unchanged once the section (or object)
is loaded. The change state is only relevant to sections with change-updated behavior and is
ignored for all other sections.

The size of the section class is one byte with four bits available to store a custom state via the
user_data() accessor and modifier.

The odb::database class provides special versions of the load() and update() func-
tions that allow us to load and update sections of a persistent class. Their signatures are as
follows:

 template <typename T>
 void
 load (T& object, section&);

 template <typename T>
 void
 update (const T& object, const section&);

Before calling the section load() function, the object itself must already be loaded. If the
section is already loaded, then the call to load() will reload its data members. It is illegal to
explicitly load an eager-loaded section.

Before calling the section update() function, the section (and therefore the object) must be
in the loaded state. If the section is not loaded, the odb::section_not_loaded excep-
tion is thrown. The section update() function does not check but does clear the section’s
change state. In other words, section update() will always update section data members in
the database and clear the change flag. Note also that any section, that is, always-, change-, or
manually-updated, can be explicitly updated with this function.

Both section load() and update() , just like the rest of the database operations, must be
performed within a transaction. Notice also that both load() and update() expect a refer-
ence to the section as their second argument. This reference must refer to the data member in
the object passed as the first argument. If instead it refers to some other instance of the
section class, for example, a local copy or a temporary, then the
odb::section_not_in_object exception is thrown. For example:

#pragma db object
class person
{
public:
 ...

 odb::section
 keys () const {return keys_;}

private:
 odb::section keys_;

Revision 2.4, February 2015138 C++ Object Persistence with ODB

9 Sections

 ...
};

auto_ptr<person> p (db.load<person> (...));

section s (p->keys ());
db.load (*p, s); // Throw section_not_in_object, copy.

db.update (*p, p->keys ()); // Throw section_not_in_object, copy.

At first glance it may seem more appropriate to make the section class non-copyable in
order to prevent such errors from happening. However, it is perfectly reasonable to expect to
be able to copy (or assign) sections as part of the object copying (or assignment). As a result,
sections are left copyable and copy-assignable, however, this functionality should not be used
in accessors or modifiers. Instead, section accessors and modifiers should always be by-refer-
ence. Here is how we can fix our previous example:

#pragma db object
class person
{
public:
 ...

 const odb::section&
 keys () const {return keys_;}

 odb::section&
 keys () {return keys_;}

private:
 odb::section keys_;

 ...
};

auto_ptr<person> p (db.load<person> (...));

section& s (p->keys ());
db.load (*p, s); // Ok, reference.

db.update (*p, p->keys ()); // Ok, reference.

Several other database operations affect sections. The state of a section in a transient object is
undefined. That is, before the call to object persist() or load() functions, or after the
call to object erase() function, the values returned by the section::loaded() and
section::changed() accessors are undefined.

After the call to persist() , all sections, including eager-loaded ones, are marked as loaded
and unchanged. If instead we are loading an object with the load() call or as a result of a
query, then eager-loaded sections are loaded and marked as loaded and unchanged while
lazy-loaded ones are marked as unloaded. If a lazy-loaded section is later loaded with the
section load() call, then it is marked as loaded and unchanged.

139Revision 2.4, February 2015 C++ Object Persistence with ODB

9 Sections

When we update an object with the update() call, manually-updated sections are ignored
while always-updated sections are updated if they are loaded. Change-updated sections are
only updated if they are both loaded and marked as changed. After the update, such sections
are reset to the unchanged state. When we reload an object with the reload() call, sections
that were loaded are automatically reloaded and reset to the unchanged state.

To further illustrate the state transitions of a section, consider this example:

#pragma db object
class person
{
 ...

 #pragma db load(lazy) update(change)
 odb::section keys_;

 ...
};

transaction t (db.begin ());

person p ("John", "Doe"); // Section state is undefined (transient).

db.persist (p); // Section state: loaded, unchanged.

auto_ptr<person> l (
 db.load<person> (...)); // Section state: unloaded, unchanged.

db.update (*l); // Section not updated since not loaded.
db.update (p); // Section not updated since not changed.

p.keys_.change (); // Section state: loaded, changed.
db.update (p); // Section updated, state: loaded, unchanged.

db.update (*l, l->keys_); // Throw section_not_loaded.
db.update (p, p.keys_); // Section updated even though not changed.

db.reload (*l); // Section not reloaded since not loaded.
db.reload (p); // Section reloaded, state: loaded, unchanged.

db.load (*l, l->keys_); // Section loaded, state: loaded, unchanged.
db.load (p, p.keys_); // Section reloaded, state: loaded, unchanged.

db.erase (p); // Section state is undefined (transient).

t.commit ();

When using change-updated behavior, it is our responsibility to mark the section as changed
when any of the data members belonging to this section is modified. A natural place to mark
the section as changed is the modifiers for section data members, for example:

Revision 2.4, February 2015140 C++ Object Persistence with ODB

9 Sections

#pragma db object
class person
{
 ...

 typedef std::array<char, 1024> key_type;

 const key_type&
 public_key () const {return public_key_;}

 void
 public_key (const key_type& k)
 {
 public_key_ = k;
 keys_.change ();
 }

 const key_type&
 private_key () const {return private_key_;}

 void
 private_key (const key_type& k)
 {
 private_key_ = k;
 keys_.change ();
 }

private:
 #pragma db load(lazy) update(change)
 odb::section keys_;

 #pragma db section(keys_) type("BLOB")
 key_type public_key_;

 #pragma db section(keys_) type("BLOB")
 key_type private_key_;

 ...
};

One interesting aspect of change-updated sections is what happens when a transaction that
performed an object or section update is later rolled back. In this case, while the change state
of a section has been reset (after update), actual changes were not committed to the database.
Change-updated sections handle this case by automatically registering a rollback callback and
then, if it is called, restoring the original change state. The following code illustrates this
semantics (continuing with the previous example):

auto_ptr<person> p;

try
{
 transaction t (db.begin ());
 p = db.load<person> (...);
 db.load (*p, p->keys_);

141Revision 2.4, February 2015 C++ Object Persistence with ODB

9 Sections

 p->private_key (new_key); // The section is marked changed.
 db.update (*p); // The section is reset to unchanged.

 throw failed (); // Triggers rollback.
 t.commit ();
}
catch (const failed&)
{
 // The section is restored back to changed.
}

9.1 Sections and Inheritance

With both reuse and polymorphism inheritance (Chapter 8, "Inheritance") it is possible to add
new sections to derived classes. It is also possible to add data members from derived classes
to sections declared in the base. For example:

#pragma db object polymorphic
class person
{
 ...

 virtual void
 print ();

 #pragma db load(lazy)
 odb::section print_;

 #pragma db section(print_)
 std::string bio_;
};

#pragma db object
class employee: public person
{
 ...

 virtual void
 print ();

 #pragma db section(print_)
 std::vector<std::string> employment_history_;
};

transaction t (db.begin ());

auto_ptr<person> p (db.load<person> (...)); // Person or employee.
db.load (*p, p->print_); // Load data members needed for print.
p->print ();

t.commit ();

Revision 2.4, February 2015142 C++ Object Persistence with ODB

9.1 Sections and Inheritance

When data members of a section are spread over several classes in a reuse inheritance hierar-
chy, both section load and update are performed with a single database statement. In contrast,
with polymorphism inheritance, section load is performed with a single statement while
update requires a separate statement for each class that adds to the section.

Note also that in polymorphism inheritance the section-to-object association is static. Or, in
other words, you can load a section via an object only if its static type actually contains this
section. The following example will help illustrate this point further:

#pragma db object polymorphic
class person
{
 ...
};

#pragma db object
class employee: public person
{
 ...

 #pragma db load(lazy)
 odb::section extras_;

 ...
};

#pragma db object
class manager: public employee
{
 ...
};

auto_ptr<manager> m (db.load<manager> (...));

person& p (*m);
employee& e (*m);
section& s (m->extras_);

db.load (p, s); // Error: extras_ is not in person.
db.load (e, s); // Ok: extras_ is in employee.

9.2 Sections and Optimistic Concurrency

When sections are used in a class with the optimistic concurrency model (Chapter 12, "Opti-
mistic Concurrency"), both section update and load operations compare the object version to
that in the database and throw the odb::object_changed exception if they do not match.
In addition, the section update operation increments the version to indicate that the object
state has changed. For example:

143Revision 2.4, February 2015 C++ Object Persistence with ODB

9.2 Sections and Optimistic Concurrency

#pragma db object optimistic
class person
{
 ...

 #pragma db version
 unsigned long long version_;

 #pragma db load(lazy)
 odb::section extras_;

 #pragma db section(extras_)
 std::string bio_;
};

auto_ptr<person> p;

{
 transaction t (db.begin ());
 p = db.load<person> (...);
 t.commit ();
}

{
 transaction t (db.begin ());

 try
 {
 db.load (*p, p->extras_); // Throws if object state has changed.
 }
 catch (const object_changed&)
 {
 db.reload (*p);
 db.load (*p, p->extras_); // Cannot fail.
 }

 t.commit ();
}

Note also that if an object update triggers one or more section updates, then each such update
will increment the object version. As a result, an update of an object that contains sections
may result in a version increment by more than one.

When sections are used together with optimistic concurrency and inheritance, an extra step
may be required to enable this functionality. If you plan to add new sections to derived
classes, then the root class of the hierarchy (the one that declares the version data member)
must be declared as sectionable with the db sectionable pragma. For example:

#pragma db object polymorphic sectionable
class person
{
 ...

 #pragma db version

Revision 2.4, February 2015144 C++ Object Persistence with ODB

9.2 Sections and Optimistic Concurrency

 unsigned long long version_;
};

#pragma db object
class employee: public person
{
 ...

 #pragma db load(lazy)
 odb::section extras_;

 #pragma db section(extras_)
 std::vector<std::string> employment_history_;
};

This requirement has to do with the need to generate extra version increment code in the root
class that will be used by sections added in the derived classes. If you forget to declare the
root class as sectionable and later add a section to one of the derived classes, the ODB
compiler will issue diagnostics.

9.3 Sections and Lazy Pointers

If a lazy pointer (Section 6.4, "Lazy Pointers") belongs to a lazy-loaded section, then we end
up with two levels of lazy loading. Specifically, when the section is loaded, the lazy pointer is
initialized with the object id but the object itself is not loaded. For example:

#pragma db object
class employee
{
 ...

 #pragma db load(lazy)
 odb::section extras_;

 #pragma db section(extras_)
 odb::lazy_shared_ptr<employer> employer_;
};

transaction t (db.begin ());

auto_ptr<employee> e (db.load<employee> (...)); // employer_ is NULL.

db.load (*e, e->extras_); // employer_ contains valid employer id.

e->employer_.load (); // employer_ points to employer object.

t.commit ();

145Revision 2.4, February 2015 C++ Object Persistence with ODB

9.3 Sections and Lazy Pointers

9.4 Sections and Change-Tracking Containers

If a change-tracking container (Section 5.4, "Change-Tracking Containers") belongs to a
change-updated section, then prior to an object update ODB will check if the container has
been changed and if so, automatically mark the section as changed. For example:

#pragma db object
class person
{
 ...

 #pragma db load(lazy) update(change)
 odb::section extras_;

 #pragma db section(extras_)
 odb::vector<std::string> nicknames_;
};

transaction t (db.begin ());

auto_ptr<person> p (db.load<person> (...));
db.load (*p, p->extras_);

p->nicknames_.push_back ("JD");

db.update (*p); // Section is automatically updated even
 // though it was not marked as changed.
t.commit ();

Revision 2.4, February 2015146 C++ Object Persistence with ODB

9.4 Sections and Change-Tracking Containers

10 Views
An ODB view is a C++ class or struct type that embodies a light-weight, read-only
projection of one or more persistent objects or database tables or the result of a native SQL
query execution.

Some of the common applications of views include loading a subset of data members from
objects or columns from database tables, executing and handling results of arbitrary SQL
queries, including aggregate queries and stored procedure calls, as well as joining multiple
objects and/or database tables using object relationships or custom join conditions.

Many relational databases also define the concept of views. Note, however, that ODB views
are not mapped to database views. Rather, by default, an ODB view is mapped to an SQL
SELECT query. However, if desired, it is easy to create an ODB view that is based on a
database view.

Usually, views are defined in terms of other persistent entities, such as persistent objects,
database tables, sequences, etc. Therefore, before we can examine our first view, we need to
define a few persistent objects and a database table. We will use this model in examples
throughout this chapter. Here we assume that you are familiar with ODB object relationship
support (Chapter 6, "Relationships").

#pragma db object
class country
{
 ...

 #pragma db id
 std::string code_; // ISO 2-letter country code.

 std::string name_;
};

#pragma db object
class employer
{
 ...

 #pragma db id
 unsigned long id_;

 std::string name_;
};

#pragma db object
class employee
{
 ...

 #pragma db id
 unsigned long id_;

147Revision 2.4, February 2015 C++ Object Persistence with ODB

10 Views

 std::string first_;
 std::string last_;

 unsigned short age_;

 shared_ptr<country> residence_;
 shared_ptr<country> nationality_;

 shared_ptr<employer> employed_by_;
};

Besides these objects, we also have the legacy employee_extra table that is not mapped
to any persistent class. It has the following definition:

CREATE TABLE employee_extra(
 employee_id INTEGER NOT NULL,
 vacation_days INTEGER NOT NULL,
 previous_employer_id INTEGER)

The above persistent objects and database table as well as many of the views shown in this
chapter are based on the view example which can be found in the odb-examples package
of the ODB distribution.

To declare a view we use the db view pragma, for example:

#pragma db view object(employee)
struct employee_name
{
 std::string first;
 std::string last;
};

The above example shows one of the simplest views that we can create. It has a single associ-
ated object (employee) and its purpose is to extract the employee’s first and last names
without loading any other data, such as the referenced country and employer objects.

Views use the same query facility (Chapter 4, "Querying the Database") as persistent objects.
Because support for queries is optional and views cannot be used without this support, you
need to compile any header that defines a view with the --generate-query ODB
compiler option.

To query the database for a view we use the database::query() ,
database::query_one() , or database::query_value() functions in exactly the
same way as we would use them to query the database for an object. For example, the follow-
ing code fragment shows how we can find the names of all the employees that are younger
than 31:

typedef odb::query<employee_name> query;
typedef odb::result<employee_name> result;

transaction t (db.begin ());

Revision 2.4, February 2015148 C++ Object Persistence with ODB

10 Views

result r (db.query<employee_name> (query::age < 31));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
{
 const employee_name& en (*i);
 cout << en.first << " " << en.last << endl;
}

t.commit ();

A view can be defined as a projection of one or more objects, one or more tables, a combina-
tion of objects and tables, or it can be the result of a custom SQL query. The following
sections discuss each of these kinds of view in more detail.

10.1 Object Views

To associate one or more objects with a view we use the db object pragma (Section
14.2.1, "object "). We have already seen a simple, single-object view in the introduction to
this chapter. To associate the second and subsequent objects we repeat the db object
pragma for each additional object, for example:

#pragma db view object(employee) object(employer)
struct employee_employer
{
 std::string first;
 std::string last;
 std::string name;
};

The complete syntax of the db object pragma is shown below:

object(name [= alias] [join-type] [: join-condition])

The name part is a potentially qualified persistent class name that has been defined previ-
ously. The optional alias part gives this object an alias. If provided, the alias is used in several
contexts instead of the object’s unqualified name. We will discuss aliases further as we cover
each of these contexts below. The optional join-type part specifies the way this object is asso-
ciated. It can be left , right , full , inner , and cross with left being the default.
Finally, the optional join-condition part provides the criteria which should be used to associate
this object with any of the previously associated objects or, as we will see in Section 10.4,
"Mixed Views", tables. Note that while the first associated object can have an alias, it cannot
have a join type or condition.

For each subsequent associated object the ODB compiler needs a join condition and there are
several ways to specify it. The easiest way is to omit it altogether and let the ODB compiler
try to come up with a join condition automatically. To do this the ODB compiler will examine
each previously associated object for object relationships (Chapter 6, "Relationships") that
may exist between these objects and the object being associated. If such a relationship exists
and is unambiguous, that is there is only one such relationship, then the ODB compiler will

149Revision 2.4, February 2015 C++ Object Persistence with ODB

10.1 Object Views

automatically use it to come up with the join condition for this object. This is exactly what
happens in the previous example: there is a single relationship
(employee::employed_by) between the employee and employer objects.

On the other hand, consider this view:

#pragma db view object(employee) object(country)
struct employee_residence
{
 std::string first;
 std::string last;
 std::string name;
};

While there is a relationship between country and employee , it is ambiguous. It can be
employee::residence_ (which is what we want) or it can be employee::nation-
ality_ (which we don’t want). As result, when compiling the above view, the ODB
compiler will issue an error indicating an ambiguous object relationship. To resolve this ambi-
guity, we can explicitly specify the object relationship that should be used to create the join
condition as the name of the corresponding data member. Here is how we can fix the
employee_residence view:

#pragma db view object(employee) object(country: employee::residence_)
struct employee_residence
{
 std::string first;
 std::string last;
 std::string name;
};

It is possible to associate the same object with a single view more than once using different
join conditions. However, in this case, we have to use aliases to assign different names for
each association. For example:

#pragma db view object(employee) \
 object(country = res_country: employee::residence_) \
 object(country = nat_country: employee::nationality_)
struct employee_country
{
 ...
};

Note that correctly defining data members in this view requires the use of a mechanism that
we haven’t yet covered. We will see how to do this shortly.

If we assign an alias to an object and refer to a data member of this object in one of the join
conditions, we have to use the unqualified alias name instead of the potentially qualified
object name. For example:

Revision 2.4, February 2015150 C++ Object Persistence with ODB

10.1 Object Views

#pragma db view object(employee = ee) object(country: ee::residence_)
struct employee_residence
{
 ...
};

The last way to specify a join condition is to provide a custom query expression. This method
is primarily useful if you would like to associate an object using a condition that does not
involve an object relationship. Consider, for example, a modified employee object from the
beginning of the chapter with an added country of birth member. For one reason or another
we have decided not to use a relationship to the country object, as we have done with resi-
dence and nationality.

#pragma db object
class employee
{
 ...

 std::string birth_place_; // Country name.
};

If we now want to create a view that returns the birth country code for an employee, then we
have to use a custom join condition when associating the country object. For example:

#pragma db view object(employee) \
 object(country: employee::birth_place_ == country::name_)
struct employee_birth_code
{
 std::string first;
 std::string last;
 std::string code;
};

The syntax of the query expression in custom join conditions is the same as in the query facil-
ity used to query the database for objects (Chapter 4, "Querying the Database") except that for
query members, instead of using odb::query<object>::member names, we refer
directly to object members.

Looking at the views we have defined so far, you may be wondering how the ODB compiler
knows which view data members correspond to which object data members. While the names
are similar, they are not exactly the same, for example employee_name::first and
employee::first_ .

As with join conditions, when it comes to associating data members, the ODB compiler tries
to do this automatically. It first searches all the associated objects for an exact name match. If
no match is found, then the ODB compiler compares the so-called public names. A public
name of a member is obtained by removing the common member name decorations, such as
leading and trailing underscores, the m_ prefix, etc. In both of these searches the ODB
compiler also makes sure that the types of the two members are the same or compatible.

151Revision 2.4, February 2015 C++ Object Persistence with ODB

10.1 Object Views

If one of the above searches returned a match and it is unambiguous, that is there is only one
match, then the ODB compiler will automatically associate the two members. On the other
hand, if no match is found or the match is ambiguous, the ODB compiler will issue an error.
To associate two differently-named members or to resolve an ambiguity, we can explicitly
specify the member association using the db column pragma (Section 14.4.9, "column ").
For example:

#pragma db view object(employee) object(employer)
struct employee_employer
{
 std::string first;
 std::string last;

 #pragma db column(employer::name_)
 std::string employer_name;
};

If an object data member specifies the SQL type with the db type pragma (Section 14.4.3,
"type "), then this type is also used for the associated view data members.

Note also that similar to join conditions, if we assign an alias to an object and refer to a data
member of this object in one of the db column pragmas, then we have to use the unquali-
fied alias name instead of the potentially qualified object name. For example:

#pragma db view object(employee) \
 object(country = res_country: employee::residence_) \
 object(country = nat_country: employee::nationality_)
struct employee_country
{
 std::string first;
 std::string last;

 #pragma db column(res_country::name_)
 std::string res_country_name;

 #pragma db column(nat_country::name_)
 std::string nat_country_name;
};

Besides specifying just the object member, we can also specify a +-expression in the
db column pragma. A +-expression consists of string literals and object member references
connected using the + operator. It is primarily useful for defining aggregate views based on
SQL aggregate functions, for example:

#pragma db view object(employee)
struct employee_count
{
 #pragma db column("count(" + employee::id_ + ")")
 std::size_t count;
};

Revision 2.4, February 2015152 C++ Object Persistence with ODB

10.1 Object Views

When querying the database for a view, we may want to provide additional query criteria
based on the objects associated with this view. To support this a view defines query members
for all the associated objects which allows us to refer to such objects’ members using the
odb::query<view>::member expressions. This is similar to how we can refer to object
members using the odb::query<object>::member expressions when querying the
database for an object. For example:

typedef odb::query<employee_count> query;

transaction t (db.begin ());

// Find the number of employees with the Doe last name. Result of this
// aggregate query contains only one element so use the query_value()
// shortcut function.
//
employee_count ec (
 db.query_value<employee_count> (query::last == "Doe"));

cout << ec.count << endl;

t.commit ();

In the above query we used the last name data member from the associated employee object
to only count employees with the specific name.

When a view has only one associated object, the query members corresponding to this object
are defined directly in the odb::query<view> scope. For instance, in the above example,
we referred to the last name member as odb::query<employee_count>::last .
However, if a view has multiple associated objects, then query members corresponding to
each such object are defined in a nested scope named after the object. As an example,
consider the employee_employer view again:

#pragma db view object(employee) object(employer)
struct employee_employer
{
 std::string first;
 std::string last;

 #pragma db column(employer::name_)
 std::string employer_name;
};

Now, to refer to the last name data member from the employee object we use the
odb::query<...>::employee::last expression. Similarly, to refer to the employer
name, we use the odb::query<...>::employer::name expression. For example:

typedef odb::result<employee_employer> result;
typedef odb::query<employee_employer> query;

transaction t (db.begin ());

result r (db.query<employee_employer> (

153Revision 2.4, February 2015 C++ Object Persistence with ODB

10.1 Object Views

 query::employee::last == "Doe" &&
 query::employer::name == "Simple Tech Ltd"));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
 cout << i->first << " " << i->last << " " << i->employer_name << endl;

t.commit ();

If we assign an alias to an object, then this alias is used to name the query members scope
instead of the object name. As an example, consider the employee_country view again:

#pragma db view object(employee) \
 object(country = res_country: employee::residence_) \
 object(country = nat_country: employee::nationality_)
struct employee_country
{
 ...
};

And a query which returns all the employees that have the same country of residence and
nationality:

typedef odb::query<employee_country> query;
typedef odb::result<employee_country> result;

transaction t (db.begin ());

result r (db.query<employee_country> (
 query::res_country::name == query::nat_country::name));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
 cout << i->first << " " << i->last << " " << i->res_country_name << endl;

t.commit ();

Note also that unlike object query members, view query members do no support referencing
members in related objects. For example, the following query is invalid:

typedef odb::query<employee_name> query;
typedef odb::result<employee_name> result;

transaction t (db.begin ());

result r (db.query<employee_name> (
 query::employed_by->name == "Simple Tech Ltd"));

t.commit ();

To get this behavior, we would instead need to associate the employer object with this view
and then use the query::employer::name expression instead of
query::employed_by->name .

Revision 2.4, February 2015154 C++ Object Persistence with ODB

10.1 Object Views

As we have discussed above, if specified, an object alias is used instead of the object name in
the join condition, data member references in the db column pragma, as well as to name the
query members scope. The object alias is also used as a table name alias in the underlying
SELECT statement generated by the ODB compiler. Normally, you would not use the table
alias directly with object views. However, if for some reason you need to refer to a table
column directly, for example, as part of a native query expression, and you need to qualify the
column with the table, then you will need to use the table alias instead.

10.2 Object Loading Views

A special variant of object views is object loading views. Object loading views allow us to
load one or more complete objects instead of, or in addition to, a subset of data member.
While we can often achieve the same end result by calling database::load() , using a
view has several advantages.

If we need to load multiple objects, then using a view allows us to do this with a single
SELECT statement execution instead of one for each object that would be necessary in case of
load() . A view can also be useful for loading only a single object if the query criterion that
we would like to use involves other, potentially unrelated, objects. We will examine concrete
examples of these and other scenarios in the rest of this section.

To load a complete object as part of a view we use a data member of the pointer to object
type, just like for object relationships (Chapter 6, "Relationships"). As an example, here is
how we can load both the employee and employer objects from the previous section with
a single statement:

#pragma db view object(employee) object(employer)
struct employee_employer
{
 shared_ptr<employee> ee;
 shared_ptr<employer> er;
};

We use an object loading view just like any other view. In the result of a query, as we would
expect, the pointer data members point to the loaded objects. For example:

typedef odb::query<employee_employer> query;

transaction t (db.begin ());

for (const employee_employer& r:
 db.query<employee_employer> (query::employee::age < 31))
{
 cout << r.ee->age () << " " << r.er->name () << endl;
}

t.commit ();

155Revision 2.4, February 2015 C++ Object Persistence with ODB

10.2 Object Loading Views

As another example, consider a query that loads the employer objects using some condition
based on its employees. For instance, we want to find all the employers that employ people
over 65 years old. We can use this object loading view to implement such a query (notice the
distinct result modifier discussed later in Section 10.5, "View Query Conditions"):

#pragma db view object(employer) object(employee) query(distinct)
struct employer_view
{
 shared_ptr<employer> er;
};

And this is how we can use this view to find all the employers that employ seniors:

typedef odb::query<employee_employer> query;

db.query<employer_view> (query::employee::age > 65)

We can even use object loading views to load completely unrelated (from the ODB object
relationships point of view) objects. For example, the following view will load all the employ-
ers that are named the same as a country (notice the inner join type):

#pragma db view object(employer) \
 object(country inner: employer::name == country::name)
struct employer_named_country
{
 shared_ptr<employer> e;
 shared_ptr<country> c;
};

An object loading view can contain ordinary data members in addition to object pointers. For
example, if we are only interested in the country code in the above view, then we can reimple-
ment it like this:

#pragma db view object(employer) \
 object(country inner: employer::name == country::name)
struct employer_named_country
{
 shared_ptr<employer> e;
 std::string code;
};

Object loading views also have a few rules and restrictions. Firstly, the pointed-to object in
the data member must be associated with the view. Furthermore, if the associated object has
an alias, then the data member name must be the same as the alias (more precisely, the public
name derived from the data member must match the alias; which means we can use normal
data member decorations such as trailing underscores, etc., see the previous section for more
information on public names). The following view illustrates the use of aliases as data
member names:

Revision 2.4, February 2015156 C++ Object Persistence with ODB

10.2 Object Loading Views

#pragma db view object(employee) \
 object(country = res: employee::residence_) \
 object(country = nat: employee::nationality_)
struct employee_country
{
 shared_ptr<country> res;
 shared_ptr<country> nat_;
};

Finally, the object pointers must be direct data members of the view. Using, for example, a
composite value that contains pointers as a view data member is not supported. Note also that
depending on the join type you are using, some of the resulting pointers might be NULL.

Up until now we have consistently used shared_ptr as an object pointer in our views. Can
we use other pointers, such as unique_ptr or raw pointers? To answer this question we
first need to discuss what happens with object pointers that may be inside objects that a view
loads. As a concrete example, let us revisit the employee_employer view from the begin-
ning of this section:

#pragma db view object(employee) object(employer)
struct employee_employer
{
 shared_ptr<employee> ee;
 shared_ptr<employer> er;
};

This view loads two objects: employee and employer . The employee object, however,
also contains a pointer to employer (see the employed_by_ data member). In fact, this is
the same object that the view loads since employer is associated with the view using this
same relationship (ODB automatically uses it since it is the only one). The correct result of
loading such a view is then clear: both er and er->employed_by_ must point to (or
share) the same instance.

Just like object loading via the database class functions, views achieve this correct behav-
ior of only loading a single instance of the same object with the help of session’s object cache
(Chapter 11, "Session"). In fact, object loading views enforce this by throwing the
session_required exception if there is no current session and the view loads an object
that is also indirectly loaded by one of the other objects. The ODB compiler will also issue
diagnostics if such an object has session support disabled (Section 14.1.10, "session ").

With this understanding we can now provide the correct implementation of our transaction
that uses the employee_employer view:

typedef odb::query<employee_employer> query;

transaction t (db.begin ());
odb::session s;

for (const employee_employer& r:
 db.query<employee_employer> (query::employee::age < 31))
{

157Revision 2.4, February 2015 C++ Object Persistence with ODB

10.2 Object Loading Views

 assert (r.ee->employed_by_ == r.er);
 cout << r.ee->age () << " " << r.er->name () << endl;
}

t.commit ();

It might seem logical, then, to always load all the objects from all the eager relationships with
the view. After all, this will lead to them all being loaded with a single statement. While this
is theoretically true, the reality is slightly more nuanced. If there is a high probability of the
object already have been loaded and sitting in the cache, then not loading the object as part of
the view (and therefore not fetching all its data from the database) might result in better
performance.

Now we can also answer the question about which pointers we can use in object loading
views. From the above discussion it should be clear that if an object that we are loading is also
part of a relationship inside another object that we are loading, then we should use some form
of a shared ownership pointer. If, however, there are no relationships involved, as is the case,
for example, in our employer_named_country and employee_country views
above, then we can use a unique ownership pointer such as unique_ptr .

Note also that your choice of a pointer type can be limited by the "official" object pointer type
assigned to the object (Section 3.3, "Object and View Pointers"). For example, if the object
pointer type is shared_ptr , you will not be able to use unique_ptr to load such an
object into a view since initializing unique_ptr from shared_ptr would be a mistake.

Unless you want to perform your own object cleanup, raw object pointers in views are not
particularly useful. They do have one special semantics, however: If a raw pointer is used as a
view member, then, before creating a new instance, the implementation will check if the
member is NULL. If it is not, then it is assumed to point to an existing instance and the imple-
mentation will load the data into it instead of creating a new one. The primary use of this
special functionality is to implement by-value loading with the ability to detect NULL values.

To illustrate this functionality, consider the following view that load the employee’s residence
country by value:

#pragma db view object(employee) \
 object(country = res: employee::residence_) transient
struct employee_res_country
{
 typedef country* country_ptr;

 #pragma db member(res_) virtual(country_ptr) get(&this.res) \
 set(this.res_null = ((?) == nullptr))

 country res;
 bool res_null;
};

Revision 2.4, February 2015158 C++ Object Persistence with ODB

10.2 Object Loading Views

Here we are using a virtual data member (Section 14.4.13, "virtual ") to add an object
pointer member to the view. Its accessor expression returns the pointer to the res member so
that the implementation can load the data into it. The modifier expression checks the passed
pointer to initialize the NULL value indicator. Here, the two possible values that can be passed
to the modifier expression are the address of the res member that we returned earlier from
the accessor and NULL (strictly speaking, there is a third possibility: the address of an object
that was found in the session cache).

If we are not interested in the NULL indicator, then the above view can simplified to this:

#pragma db view object(employee) \
 object(country = res: employee::residence_) transient
struct employee_res_country
{
 typedef country* country_ptr;

 #pragma db member(res_) virtual(country_ptr) get(&this.res) set()

 country res;
};

That is, we specify an empty modifier expression which leads to the value being ignored.

As another example of by-value loading, consider a view that allows us to load objects into
existing instances that have been allocated outside the view:

#pragma db view object(employee) \
 object(country = res: employee::residence_) \
 object(country = nat: employee::nationality_)
struct employee_country
{
 employee_country (country& r, country& n): res (&r), nat (&n) {}

 country* res;
 country* nat;
};

And here is how we can use this view:

typedef odb::result<employee_country> result;

transaction t (db.begin ());

result r (db.query<employee_country> (...);

for (result::iterator i (r.begin ()); i != r.end (); ++i)
{
 country res, nat;
 employee_country v (res, nat);
 i.load (v);

 if (v.res != nullptr)
 ... // Result is in res.

159Revision 2.4, February 2015 C++ Object Persistence with ODB

10.2 Object Loading Views

 if (v.nat != nullptr)
 ... // Result is in nat.
}

t.commit ();

As a final example of the by-value loading, consider the following view which implements a
slightly more advanced logic: if the object is already in the session cache, then it sets the
pointer data member in the view (er_p) to that. Otherwise, it loads the data into the by-value
instance (er). We can also check whether the pointer data member points to the instance to
distinguish between the two outcomes. And we can check it for nullptr to detect NULL
values.

#pragma db view object(employer)
struct employer_view
{
 // Since we may be getting the pointer as both smart and raw, we
 // need to create a bit of support code to use in the modifier
 // expression.
 //
 void set_er (employer* p) {er_p = p;} // &er or NULL.
 void set_er (shared_ptr<employer> p) {er_p = p.get ();} // From cache.

 #pragma db get(&this.er) set(set_er(?))
 employer* er_p;

 #pragma db transient
 employer er;

 // Return-by-value support (e.g., query_value()).
 //
 employer_view (): er_p (0) {}
 employer_view (const employer_view& x)
 : er_p (x.er_p == &x.er ? &er : x.er_p), er (x.er) {}
};

We can use object loading views with polymorphic objects (Section 8.2, "Polymorphism
Inheritance"). Note, however, that when loading a derived object via the base pointer in a
view, a separate statement will be executed to load the dynamic part of the object. There is no
support for by-value loading for polymorphic objects.

We can also use object loading views with objects without id (Section 14.1.6, "no_id ").
Note, however, that for such objects, NULL values are not automatically detected (since there
is no primary key, which is otherwise guaranteed to be not NULL, there might not be a column
on which to base this detection). The workaround for this limitation is to load an otherwise
not NULL column next to the object which will serve as an indicator. For example:

#pragma db object no_id
class object
{
 ...

Revision 2.4, February 2015160 C++ Object Persistence with ODB

10.2 Object Loading Views

 int n; // NOT NULL
 std::string s;
};

#include <odb/nullable.hxx>

#pragma db view object(object)
struct view
{

 odb::nullable<int> n; // If ’n’ is NULL, then, logically, so is ’o’.
 unique_ptr<object> o;
};

10.3 Table Views

A table view is similar to an object view except that it is based on one or more database tables
instead of persistent objects. Table views are primarily useful when dealing with ad-hoc tables
that are not mapped to persistent classes.

To associate one or more tables with a view we use the db table pragma (Section 14.2.2,
"table "). To associate the second and subsequent tables we repeat the db table pragma
for each additional table. For example, the following view is based on the
employee_extra legacy table we have defined at the beginning of the chapter.

#pragma db view table("employee_extra")
struct employee_vacation
{
 #pragma db column("employee_id") type("INTEGER")
 unsigned long employee_id;

 #pragma db column("vacation_days") type("INTEGER")
 unsigned short vacation_days;
};

Besides the table name in the db table pragma we also have to specify the column name
for each view data member. Note that unlike for object views, the ODB compiler does not try
to automatically come up with column names for table views. Furthermore, we cannot use
references to object members either, since there are no associated objects in table views.
Instead, the actual column name or column expression must be specified as a string literal.
The column name can also be qualified with a table name either in the "table.column"
form or, if either a table or a column name contains a period, in the "table"."column"
form. The following example illustrates the use of a column expression:

#pragma db view table("employee_extra")
struct employee_max_vacation
{
 #pragma db column("max(vacation_days)") type("INTEGER")
 unsigned short max_vacation_days;
};

161Revision 2.4, February 2015 C++ Object Persistence with ODB

10.3 Table Views

Both the asociated table names and the column names can be qualified with a database
schema, for example:

#pragma db view table("hr.employee_extra")
struct employee_max_vacation
{
 #pragma db column("hr.employee_extra.vacation_days") type("INTEGER")
 unsigned short vacation_days;
};

For more information on database schemas and the format of the qualified names, refer to
Section 14.1.8, "schema".

Note also that in the above examples we specified the SQL type for each of the columns to
make sure that the ODB compiler has knowledge of the actual types as specified in the
database schema. This is required to obtain correct and optimal generated code.

The complete syntax of the db table pragma is similar to the db object pragma and is
shown below:

table(" name" [= " alias"] [join-type] [: join-condition])

The name part is a database table name. The optional alias part gives this table an alias. If
provided, the alias must be used instead of the table whenever a reference to a table is used.
Contexts where such a reference may be needed include the join condition (discussed below),
column names, and query expressions. The optional join-type part specifies the way this table
is associated. It can be left , right , full , inner , and cross with left being the
default. Finally, the optional join-condition part provides the criteria which should be used to
associate this table with any of the previously associated tables or, as we will see in Section
10.4, "Mixed Views", objects. Note that while the first associated table can have an alias, it
cannot have a join type or condition.

Similar to object views, for each subsequent associated table the ODB compiler needs a join
condition. However, unlike for object views, for table views the ODB compiler does not try to
come up with one automatically. Furthermore, we cannot use references to object members
corresponding to object relationships either, since there are no associated objects in table
views. Instead, for each subsequent associated table, a join condition must be specified as a
custom query expression. While the syntax of the query expression is the same as in the query
facility used to query the database for objects (Chapter 4, "Querying the Database"), a join
condition for a table is normally specified as a single string literal containing a native SQL
query expression.

As an example of a multi-table view, consider the employee_health table that we define
in addition to employee_extra :

CREATE TABLE employee_health(
 employee_id INTEGER NOT NULL,
 sick_leave_days INTEGER NOT NULL)

Revision 2.4, February 2015162 C++ Object Persistence with ODB

10.3 Table Views

Given these two tables we can now define a view that returns both the vacation and sick leave
information for each employee:

#pragma db view table("employee_extra" = "extra") \
 table("employee_health" = "health": \
 "extra.employee_id = health.employee_id")
struct employee_leave
{
 #pragma db column("extra.employee_id") type("INTEGER")
 unsigned long employee_id;

 #pragma db column("vacation_days") type("INTEGER")
 unsigned short vacation_days;

 #pragma db column("sick_leave_days") type("INTEGER")
 unsigned short sick_leave_days;
};

Querying the database for a table view is the same as for an object view except that we can
only use native query expressions. For example:

typedef odb::query<employee_leave> query;
typedef odb::result<employee_leave> result;

transaction t (db.begin ());

unsigned short v_min = ...
unsigned short l_min = ...

result r (db.query<employee_leave> (
 "vacation_days > " + query::_val(v_min) + "AND"
 "sick_leave_days > " + query::_val(l_min)));

t.commit ();

10.4 Mixed Views

A mixed view has both associated objects and tables. As a first example of a mixed view, let
us improve employee_vacation from the previous section to return the employee’s first
and last names instead of the employee id. To achieve this we have to associate both the
employee object and the employee_extra table with the view:

#pragma db view object(employee) \
 table("employee_extra" = "extra": "extra.employee_id = " + employee::id_)
struct employee_vacation
{
 std::string first;
 std::string last;

 #pragma db column("extra.vacation_days") type("INTEGER")
 unsigned short vacation_days;
};

163Revision 2.4, February 2015 C++ Object Persistence with ODB

10.4 Mixed Views

When querying the database for a mixed view, we can use query members for the parts of the
query expression that involves object members but have to fall back to using the native syntax
for the parts that involve table columns. For example:

typedef odb::query<employee_vacation> query;
typedef odb::result<employee_vacation> result;

transaction t (db.begin ());

result r (db.query<employee_vacation> (
 (query::last == "Doe") + "AND extra.vacation_days <> 0"));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
 cout << i->first << " " << i->last << " " << i->vacation_days << endl;

t.commit ();

As another example, consider a more advanced view that associates two objects via a legacy
table. This view allows us to find the previous employer name for each employee:

#pragma db view object(employee) \
 table("employee_extra" = "extra": "extra.employee_id = " + employee::id_) \
 object(employer: "extra.previous_employer_id = " + employer::id_)
struct employee_prev_employer
{
 std::string first;
 std::string last;

 // If previous_employer_id is NULL, then the name will be NULL as well.
 // We use the odb::nullable wrapper to handle this.
 //
 #pragma db column(employer::name_)
 odb::nullable<std::string> prev_employer_name;
};

10.5 View Query Conditions

Object, table, and mixed views can also specify an optional query condition that should be
used whenever the database is queried for this view. To specify a query condition we use the
db query pragma (Section 14.2.3, "query ").

As an example, consider a view that returns some information about all the employees that are
over a predefined retirement age. One way to implement this would be to define a standard
object view as we have done in the previous sections and then use a query like this:

result r (db.query<employee_retirement> (query::age > 50));

The problem with the above approach is that we have to keep repeating the query::age >
50 expression every time we execute the query, even though this expression always stays the
same. View query conditions allow us to solve this problem. For example:

Revision 2.4, February 2015164 C++ Object Persistence with ODB

10.5 View Query Conditions

#pragma db view object(employee) query(employee::age > 50)
struct employee_retirement
{
 std::string first;
 std::string last;
 unsigned short age;
};

With this improvement we can rewrite our query like this:

result r (db.query<employee_retirement> ());

But what if we may also need to restrict the result set based on some varying criteria, such as
the employee’s last name? Or, in other words, we may need to combine a constant query
expression specified in the db query pragma with the varying expression specified at the
query execution time. To allow this, the db query pragma syntax supports the use of the
special (?) placeholder that indicates the position in the constant query expression where the
runtime expression should be inserted. For example:

#pragma db view object(employee) query(employee::age > 50 && (?))
struct employee_retirement
{
 std::string first;
 std::string last;
 unsigned short name;
};

With this change we can now use additional query criteria in our view:

result r (db.query<employee_retirement> (query::last == "Doe"));

The syntax of the expression in a query condition is the same as in the query facility used to
query the database for objects (Chapter 4, "Querying the Database") except for two differ-
ences. Firstly, for query members, instead of using odb::query<object>::member
names, we refer directly to object members, using the object alias instead of the object name if
an alias was assigned. Secondly, query conditions support the special (?) placeholder which
can be used both in the C++-integrated query expressions as was shown above and in native
SQL expressions specified as string literals. The following view is an example of the latter
case:

#pragma db view table("employee_extra") \
 query("vacation_days <> 0 AND (?)")
struct employee_vacation
{
 ...
};

Another common use case for query conditions are views with the ORDER BY or GROUP BY
clause. Such clauses are normally present in the same form in every query involving such
views. As an example, consider an aggregate view which calculate the minimum and
maximum ages of employees for each employer:

165Revision 2.4, February 2015 C++ Object Persistence with ODB

10.5 View Query Conditions

#pragma db view object(employee) object(employer) \
 query((?) + "GROUP BY" + employer::name_)
struct employer_age
{
 #pragma db column(employer::name_)
 std::string employer_name;

 #pragma db column("min(" + employee::age_ + ")")
 unsigned short min_age;

 #pragma db column("max(" + employee::age_ + ")")
 unsigned short max_age;
};

The query condition can be optionally followed (or replaced, if no constant query expression
is needed) by one or more result modifiers. Currently supported result modifiers are
distinct (which is translated to SELECT DISTINCT) and for_update (which is
translated to FOR UPDATE or equivalent for database systems that support it). As an
example, consider a view that allows us to get some information about employers ordered by
the object id and without any duplicates:

#pragma db view object(employer) object(employee) \
 query((?) + "ORDER BY" + employer::name_, distinct)
struct employer_info
{
 ...
};

If we don’t require ordering, then this view can be re-implemented like this:

#pragma db view object(employer) object(employee) query(distinct)
struct employer_info
{
 ...
};

10.6 Native Views

The last kind of view supported by ODB is a native view. Native views are a low-level mech-
anism for capturing results of native SQL queries, stored procedure calls, etc. Native views
don’t have associated tables or objects. Instead, we use the db query pragma to specify the
native SQL query, which should normally include the select-list and, if applicable, the
from-list. For example, here is how we can re-implement the employee_vacation table
view from Section 10.3 above as a native view:

Revision 2.4, February 2015166 C++ Object Persistence with ODB

10.6 Native Views

#pragma db view query("SELECT employee_id, vacation_days " \
 "FROM employee_extra")
struct employee_vacation
{
 #pragma db type("INTEGER")
 unsigned long employee_id;

 #pragma db type("INTEGER")
 unsigned short vacation_days;
};

In native views the columns in the query select-list are associated with the view data members
in the order specified. That is, the first column is stored in the first member, the second
column — in the second member, and so on. The ODB compiler does not perform any error
checking in this association. As a result you must make sure that the number and order of
columns in the query select-list match the number and order of data members in the view.
This is also the reason why we are not required to provide the column name for each data
member in native views, as is the case for object and table views.

Note also that while it is always possible to implement a table view as a native view, the table
views must be preferred since they are safer. In a native view, if you add, remove, or rear-
range data members without updating the column list in the query, or vice versa, at best, this
will result in a runtime error. In contrast, in a table view such changes will result in the query
being automatically updated.

Similar to object and table views, the query specified for a native view can contain the special
(?) placeholder which is replaced with the query expression specified at the query execution
time. If the native query does not contain a placeholder, as in the example above, then any
query expression specified at the query execution time is appended to the query text along
with the WHERE keyword, if required. The following example shows the usage of the place-
holder:

#pragma db view query("SELECT employee_id, vacation_days " \
 "FROM employee_extra " \
 "WHERE vacation_days <> 0 AND (?)")
struct employee_vacation
{
 ...
};

As another example, consider a view that returns the next value of a database sequence:

#pragma db view query("SELECT nextval(’my_seq’)")
struct sequence_value
{
 unsigned long long value;
};

While this implementation can be acceptable in some cases, it has a number of drawbacks.
Firstly, the name of the sequence is fixed in the view, which means if we have a second
sequence, we will have to define another, almost identical view. Similarly, the operation that

167Revision 2.4, February 2015 C++ Object Persistence with ODB

10.6 Native Views

we perform on the sequence is also fixed. In some situations, instead of returning the next
value, we may need the last value.

Note that we cannot use the placeholder mechanism to resolve these problems since place-
holders can only be used in the WHERE, GROUP BY, and similar clauses. In other words, the
following won’t work:

#pragma db view query("SELECT nextval(’(?)’)")
struct sequence_value
{
 unsigned long long value;
};

result r (db.query<sequence_value> ("my_seq"));

To support these kinds of use cases, ODB allows us to specify the complete query for a native
view at runtime rather than at the view definition. To indicate that a native view has a runtime
query, we can either specify the empty db query pragma or omit the pragma altogether. For
example:

#pragma db view
struct sequence_value
{
 unsigned long long value;
};

Given this view, we can perform the following queries:

typedef odb::query<sequence_value> query;
typedef odb::result<sequence_value> result;

string seq_name = ...

result l (db.query<sequence_value> (
 "SELECT lastval(’" + seq_name + "’)"));

result n (db.query<sequence_value> (
 "SELECT nextval(’" + seq_name + "’)"));

Native views can also be used to call and handle results of stored procedures. The semantics
and limitations of stored procedures vary greatly between database systems while some do not
support this functionality at all. As a result, support for calling stored procedures using native
views is described for each database system in Part II, "Database Systems".

10.7 Other View Features and Limitations

Views cannot be derived from other views. However, you can derive a view from a transient
C++ class. View data members cannot be object pointers. If you need to access data from a
pointed-to object, then you will need to associate such an object with the view. Similarly,
view data members cannot be containers. These two limitations also apply to composite value
types that contain object pointers or containers. Such composite values cannot be used as view

Revision 2.4, February 2015168 C++ Object Persistence with ODB

10.7 Other View Features and Limitations

data members.

On the other hand, composite values that do not contain object pointers or containers can be
used in views. As an example, consider a modified version of the employee persistent class
that stores a person’s name as a composite value:

#pragma db value
class person_name
{
 std::string first_;
 std::string last_;
};

#pragma db object
class employee
{
 ...

 person_name name_;

 ...
};

Given this change, we can re-implement the employee_name view like this:

#pragma db view object(employee)
struct employee_name
{
 person_name name;
};

It is also possible to extract some or all of the nested members of a composite value into indi-
vidual view data members. Here is how we could have defined the employee_name view if
we wanted to keep its original structure:

#pragma db view object(employee)
struct employee_name
{
 #pragma db column(employee::name.first_)
 std::string first;

 #pragma db column(employee::name.last_)
 std::string last;
};

169Revision 2.4, February 2015 C++ Object Persistence with ODB

10.7 Other View Features and Limitations

11 Session
A session is an application’s unit of work that may encompass several database transactions.
In this version of ODB a session is just an object cache. In future versions it may provide
additional functionality, such as delayed database operations and automatic object state
change tracking. As discussed later in Section 11.2, "Custom Sessions", it is also possible to
provide a custom session implementation that provides these or other features.

Session support is optional and can be enabled or disabled on the per object basis using the
db session pragma, for example:

#pragma db object session
class person
{
 ...
};

We can also enable or disable session support for a group of objects at the namespace level:

#pragma db namespace session
namespace accounting
{
 #pragma db object // Session support is enabled.
 class employee
 {
 ...
 };

 #pragma db object session(false) // Session support is disabled.
 class employer
 {
 ...
 };
}

Finally, we can pass the --generate-session ODB compiler option to enable session
support by default. With this option session support will be enabled for all the persistent
classes except those for which it was explicitly disabled using the db session . An alterna-
tive to this method with the same effect is to enable session support for the global namespace:

#pragma db namespace() session

Each thread of execution in an application can have only one active session at a time. A
session is started by creating an instance of the odb::session class and is automatically
terminated when this instance is destroyed. You will need to include the
<odb/session.hxx> header file to make this class available in your application. For
example:

Revision 2.4, February 2015170 C++ Object Persistence with ODB

11 Session

#include <odb/database.hxx>
#include <odb/session.hxx>
#include <odb/transaction.hxx>

using namespace odb::core;

{
 session s;

 // First transaction.
 //
 {
 transaction t (db.begin ());
 ...
 t.commit ();
 }

 // Second transaction.
 //
 {
 transaction t (db.begin ());
 ...
 t.commit ();
 }

 // Session ’s’ is terminated here.
}

The session class has the following interface:

namespace odb
{
 class session
 {
 public:
 session (bool make_current = true);
 ~session ();

 // Copying or assignment of sessions is not supported.
 //
 private:
 session (const session&);
 session& operator= (const session&);

 // Current session interface.
 //
 public:
 static session&
 current ();

 static bool
 has_current ();

 static void
 current (session&);

171Revision 2.4, February 2015 C++ Object Persistence with ODB

11 Session

 static void
 reset_current ();

 static session*
 current_pointer ();

 static void
 current_pointer (session*);

 // Object cache interface.
 //
 public:
 template <typename T>
 struct cache_position {...};

 template <typename T>
 cache_position<T>
 cache_insert (database&,
 const object_traits<T>::id_type&,
 const object_traits<T>::pointer_type&);

 template <typename T>
 object_traits<T>::pointer_type
 cache_find (database&, const object_traits<T>::id_type&) const;

 template <typename T>
 void
 cache_erase (const cache_position<T>&);

 template <typename T>
 void
 cache_erase (database&, const object_traits<T>::id_type&);
 };
}

The session constructor creates a new session and, if the make_current argument is true ,
sets it as a current session for this thread. If we try to make a session current while there is
already another session in effect for this thread, then the constructor throws the
odb::already_in_session exception. The destructor clears the current session for this
thread if this session is the current one.

The static current() accessor returns the currently active session for this thread. If there is
no active session, this function throws the odb::not_in_session exception. We can
check whether there is a session in effect in this thread using the has_current() static
function.

The static current() modifier allows us to set the current session for this thread. The
reset_current() static function clears the current session. These two functions allow for
more advanced use cases, such as multiplexing two or more sessions on the same thread.

Revision 2.4, February 2015172 C++ Object Persistence with ODB

11 Session

The static current_pointer() overloaded functions provided the same functionality but
using pointers. Specifically, the current_pointer() accessor can be used to test whether
there is a current session and get a pointer to it all with a single call.

We normally don’t use the object cache interface directly. However, it could be useful in
some cases, for example, to find out whether an object has already been loaded. Note that
when calling cache_insert() , cache_find() , or the second version of
cache_erase() , you need to specify the template argument (object type) explicitly. It is
also possible to access the underlying cache data structures directly. This can be useful if, for
example, you want to iterate over the objects store in the cache. Refer to the ODB runtime
header files for more details on this direct access.

11.1 Object Cache

A session is an object cache. Every time a session-enabled object is made persistent by calling
the database::persist() function (Section 3.8, "Making Objects Persistent"), loaded
by calling the database::load() or database::find() function (Section 3.9,
"Loading Persistent Objects"), or loaded by iterating over a query result (Section 4.4, "Query
Result"), the pointer to the persistent object, in the form of the canonical object pointer
(Section 3.3, "Object and View Pointers"), is stored in the session. For as long as the session
is in effect, any subsequent calls to load the same object will return the cached instance. When
an object’s state is deleted from the database with the database::erase() function
(Section 3.11, "Deleting Persistent Objects"), the cached object pointer is removed from the
session. For example:

shared_ptr<person> p (new person ("John", "Doe"));

session s;
transaction t (db.begin ());

unsigned long id (db.persist (p)); // p is cached in s.
shared_ptr<person> p1 (db.load<person> (id)); // p1 same as p.

t.commit ();

The per-object caching policies depend on the object pointer kind (Section 6.5, "Using
Custom Smart Pointers"). Objects with a unique pointer, such as std::auto_ptr or
std::unique_ptr , as an object pointer are never cached since it is not possible to have
two such pointers pointing to the same object. When an object is persisted via a pointer or
loaded as a dynamically allocated instance, objects with both raw and shared pointers as
object pointers are cached. If an object is persisted as a reference or loaded into a pre-allo-
cated instance, the object is only cached if its object pointer is a raw pointer.

Also note that when we persist an object as a constant reference or constant pointer, the
session caches such an object as unrestricted (non-const). This can lead to undefined behav-
ior if the object being persisted was actually created as const and is later found in the
session cache and used as non-const . As a result, when using sessions, it is recommended
that all persistent objects be created as non-const instances. The following code fragment

173Revision 2.4, February 2015 C++ Object Persistence with ODB

11.1 Object Cache

illustrates this point:

void save (database& db, shared_ptr<const person> p)
{
 transaction t (db.begin ());
 db.persist (p); // Persisted as const pointer.
 t.commit ();
}

session s;

shared_ptr<const person> p1 (new const person ("John", "Doe"));
unsigned long id1 (save (db, p1)); // p1 is cached in s as non-const.

{
 transaction t (db.begin ());
 shared_ptr<person> p (db.load<person> (id1)); // p == p1
 p->age (30); // Undefined behavior since p1 was created const.
 t.commit ();
}

shared_ptr<const person> p2 (new person ("Jane", "Doe"));
unsigned long id2 (save (db, p2)); // p2 is cached in s as non-const.

{
 transaction t (db.begin ());
 shared_ptr<person> p (db.load<person> (id2)); // p == p2
 p->age (30); // Ok, since p2 was not created const.
 t.commit ();
}

11.2 Custom Sessions

ODB can use a custom session implementation instead of the default odb::session . There
could be multiple reasons for an application to provide its own session. For example, the
application may already include a notion of an object cache or registry which ODB can re-use.
A custom session can also provide additional functionality, such as automatic change track-
ing, delayed database operations, or object eviction. Finally, the session-per-thread approach
used by odb::session may not be suitable for all applications. For instance, some may
need a thread-safe session that can be shared among multiple threads. For an example of a
custom session that implements automatic change tracking by keeping original copies of the
objects, refer to the common/session/custom test in the odb-tests package.

To use a custom session we need to specify its type with the --session-type ODB
compiler command line option. We also need to include its definition into the generated
header file. This can be achieved with the --hxx-prologue option. For example, if our
custom session is called app::session and is defined in the app/session.hxx header
file, then the corresponding ODB compiler options would look like this:

Revision 2.4, February 2015174 C++ Object Persistence with ODB

11.2 Custom Sessions

odb --hxx-prologue "#include \"app/session.hxx\"" \
--session-type ::app::session ...

A custom session should provide the following interface:

class custom_session
{
public:
 template <typename T>
 struct cache_position
 {
 ...
 };

 // Cache management functions.
 //
 template <typename T>
 static cache_position<T>
 _cache_insert (odb::database&,
 const typename odb::object_traits<T>::id_type&,
 const typename odb::object_traits<T>::pointer_type&);

 template <typename T>
 static typename odb::object_traits<T>::pointer_type
 _cache_find (odb::database&,
 const typename odb::object_traits<T>::id_type&);

 template <typename T>
 static void
 _cache_erase (const cache_position<T>&);

 // Notification functions.
 //
 template <typename T>
 static void
 _cache_persist (const cache_position<T>&);

 template <typename T>
 static void
 _cache_load (const cache_position<T>&);

 template <typename T>
 static void
 _cache_update (odb::database&, const T& obj);

 template <typename T>
 static void
 _cache_erase (odb::database&,
 const typename odb::object_traits<T>::id_type&);
};

The cache_position class template represents a position in the cache of the inserted
object. It should be default and copy-constructible as well as copy-assignable. The default
constructor shall create a special empty/NULL position. A call of any of the cache manage-
ment or notification functions with such an empty/NULL position shall be ignored.

175Revision 2.4, February 2015 C++ Object Persistence with ODB

11.2 Custom Sessions

The _cache_insert() function shall add the object into the object cache and return its
position. The _cache_find() function looks an object up in the object cache given its id.
It returns a NULL pointer if the object is not found. The _cache_erase() cache manage-
ment function shall remove the object from the cache. It is called if the database operation that
caused the object to be inserted (for example, load) failed. Note also that after insertion the
object state is undefined. You can only access the object state (for example, make a copy or
clear a flag) from one of the notification functions discussed below.

The notification functions are called after an object has been persisted, loaded, updated, or
erased, respectively. If your session implementation does not need some of the notifications,
you still have to provide their functions, however, you can leave their implementations empty.

Notice also that all the cache management and notification functions are static. This is done in
order to allow for a custom notion of a current session. Normally, the first step a non-empty
implementation will perform is lookup the current session.

Revision 2.4, February 2015176 C++ Object Persistence with ODB

11.2 Custom Sessions

12 Optimistic Concurrency
The ODB transaction model (Section 3.5, "Transactions") guarantees consistency as long as
we perform all the database operations corresponding to a specific application transaction in a
single database transaction. That is, if we load an object within a database transaction and
update it in the same transaction, then we are guaranteed that the object state that we are
updating in the database is exactly the same as the state we have loaded. In other words, it is
impossible for another process or thread to modify the object state in the database between
these load and update operations.

In this chapter we use the term application transaction to refer to a set of operations on persis-
tent objects that an application needs to perform in order to implement some applica-
tion-specific functionality. The term database transaction refers to the set of database opera-
tions performed between the ODB begin() and commit() calls. Up until now we have
treated application transactions and database transactions as essentially the same thing.

While this model is easy to understand and straightforward to use, it may not be suitable for
applications that have long application transactions. The canonical example of such a situation
is an application transaction that requires user input between loading an object and updating
it. Such an operation may take an arbitrary long time to complete and performing it within a
single database transaction will consume database resources as well as prevent other
processes/threads from updating the object for too long.

The solution to this problem is to break up the long-lived application transaction into several
short-lived database transactions. In our example that would mean loading the object in one
database transaction, waiting for user input, and then updating the object in another database
transaction. For example:

unsigned long id = ...;
person p;

{
 transaction t (db.begin ());
 db.load (id, p);
 t.commit ();
}

cerr << "enter age for " << p.first () << " " << p.last () << endl;
unsigned short age;
cin >> age;
p.age (age);

{
 transaction t (db.begin ());
 db.update (p);
 t.commit ();
}

177Revision 2.4, February 2015 C++ Object Persistence with ODB

12 Optimistic Concurrency

This approach works well if we only have one process/thread that can ever update the object.
However, if we have multiple processes/threads modifying the same object, then this
approach does not guarantee consistency anymore. Consider what happens in the above
example if another process updates the person’s last name while we are waiting for the user
input. Since we loaded the object before this change occured, our version of the person’s data
will still have the old name. Once we receive the input from the user, we go ahead and update
the object, overwriting both the old age with the new one (correct) and the new name with the
old one (incorrect).

While there is no way to restore the consistency guarantee in an application transaction that
consists of multiple database transactions, ODB provides a mechanism, called optimistic
concurrency, that allows applications to detect and potentially recover from such inconsisten-
cies.

In essence, the optimistic concurrency model detects mismatches between the current object
state in the database and the state when it was loaded into the application memory. Such a
mismatch would mean that the object was changed by another process or thread. There are
several ways to implement such state mismatch detection. Currently, ODB uses object
versioning while other methods, such as timestamps, may be supported in the future.

To declare a persistent class with the optimistic concurrency model we use the optimistic
pragma (Section 14.1.5, "optimistic "). We also use the version pragma (Section
14.4.16, "version ") to specify which data member will store the object version. For
example:

#pragma db object optimistic
class person
{
 ...

 #pragma db version
 unsigned long version_;
};

The version data member is managed by ODB. It is initialized to 1 when the object is made
persistent and incremented by 1 with each update. The 0 version value is not used by ODB
and the application can use it as a special value, for example, to indicate that the object is tran-
sient. Note that for optimistic concurrency to function properly, the application should not
modify the version member after making the object persistent or loading it from the database
and until deleting the state of this object from the database. To avoid any accidental modifica-
tions to the version member, we can declare it const , for example:

#pragma db object optimistic
class person
{
 ...

 #pragma db version
 const unsigned long version_;
};

Revision 2.4, February 2015178 C++ Object Persistence with ODB

12 Optimistic Concurrency

When we call the database::update() function (Section 3.10, "Updating Persistent
Objects") and pass an object that has an outdated state, the odb::object_changed
exception is thrown. At this point the application has two recovery options: it can abort and
potentially restart the application transaction or it can reload the new object state from the
database, re-apply or merge the changes, and call update() again. Note that aborting an
application transaction that performs updates in multiple database transactions may require
reverting changes that have already been committed to the database. As a result, this strategy
works best if all the updates are performed in the last database transaction of the application
transaction. This way the changes can be reverted by simply rolling back this last database
transaction.

The following example shows how we can reimplement the above transaction using the
second recovery option:

unsigned long id = ...;
person p;

{
 transaction t (db.begin ());
 db.load (id, p);
 t.commit ();
}

cerr << "enter age for " << p.first () << " " << p.last () << endl;
unsigned short age;
cin >> age;
p.age (age);

{
 transaction t (db.begin ());

 try
 {
 db.update (p);
 }
 catch (const object_changed&)
 {
 db.reload (p);
 p.age (age);
 db.update (p);
 }

 t.commit ();
}

An important point to note in the above code fragment is that the second update() call
cannot throw the object_changed exception because we are reloading the state of the
object and updating it within the same database transaction.

Depending on the recovery strategy employed by the application, an application transaction
with a failed update can be significantly more expensive than a successful one. As a result,
optimistic concurrency works best for situations with low to medium contention levels where

179Revision 2.4, February 2015 C++ Object Persistence with ODB

12 Optimistic Concurrency

the majority of the application transactions complete without update conflicts. This is also the
reason why this concurrency model is called optimistic.

In addition to updates, ODB also performs state mismatch detection when we are deleting an
object from the database (Section 3.11, "Deleting Persistent Objects"). To understand why
this can be important, consider the following application transaction:

unsigned long id = ...;
person p;

{
 transaction t (db.begin ());
 db.load (id, p);
 t.commit ();
}

string answer;
cerr << "age is " << p.age () << ", delete?" << endl;
getline (cin, answer);

if (answer == "yes")
{
 transaction t (db.begin ());
 db.erase (p);
 t.commit ();
}

Consider again what happens if another process or thread updates the object by changing the
person’s age while we are waiting for the user input. In this case, the user makes the decision
based on a certain age while we may delete (or not delete) an object that has a completely
different age. Here is how we can fix this problem using optimistic concurrency:

unsigned long id = ...;
person p;

{
 transaction t (db.begin ());
 db.load (id, p);
 t.commit ();
}

string answer;
for (bool done (false); !done;)
{
 if (answer.empty ())
 cerr << "age is " << p.age () << ", delete?" << endl;
 else
 cerr << "age changed to " << p.age () << ", still delete?" << endl;

 getline (cin, answer);

 if (answer == "yes")
 {
 transaction t (db.begin ());

Revision 2.4, February 2015180 C++ Object Persistence with ODB

12 Optimistic Concurrency

 try
 {
 db.erase (p);
 done = true;
 }
 catch (const object_changed&)
 {
 db.reload (p);
 }

 t.commit ();
 }
 else
 done = true;
}

Note that state mismatch detection is performed only if we delete an object by passing the
object instance to the erase() function. If we want to delete an object with the optimistic
concurrency model regardless of its state, then we need to use the erase() function that
deletes an object given its id, for example:

{
 transaction t (db.begin ());
 db.erase (p.id ());
 t.commit ();
}

Finally, note that for persistent classes with the optimistic concurrency model both the
update() function as well as the erase() function that accepts an object instance as its
argument no longer throw the object_not_persistent exception if there is no such
object in the database. Instead, this condition is treated as a change of object state and the
object_changed exception is thrown instead.

For complete sample code that shows how to use optimistic concurrency, refer to the opti-
mistic example in the odb-examples package.

181Revision 2.4, February 2015 C++ Object Persistence with ODB

12 Optimistic Concurrency

13 Database Schema Evolution
When we add new persistent classes or change the existing ones, for example, by adding or
deleting data members, the database schema necessary to store the new object model changes
as well. At the same time, we may have existing databases that contain existing data. If new
versions of your application don’t need to handle old databases, then the schema creating
functionality is all that you need. However, most applications will need to work with data
stored by older versions of the same application.

We will call database schema evolution the overall task of updating the database to match the
changes in the object model. Schema evolution usually consists of two sub-tasks: schema
migration and data migration. Schema migration modifies the database schema to correspond
to the current object model. In a relational database, this, for example, could require adding or
dropping tables and columns. The data migration task involves converting the data stored in
the existing database from the old format to the new one.

If performed manually, database schema evolution is a tedious and error-prone task. As a
result, ODB provides comprehensive support for automated or, more precisely, semi-auto-
mated schema evolution. Specifically, ODB does fully-automatic schema migration and
provides facilities to help you with data migration.

The topic of schema evolution is a complex and sensitive issue since normally there would be
valuable, production data at stake. As a result, the approach taken by ODB is to provide
simple and bullet-proof elementary building blocks (or migration steps) that we can under-
stand and trust. Using these elementary blocks we can then implement more complex migra-
tion scenarios. In particular, ODB does not try to handle data migration automatically since in
most cases this requires understanding of application-specific semantics. In other words, there
is no magic.

There are two general approaches to working with older data: the application can either
convert it to correspond to the new format or it can be made capable of working with multiple
versions of this format. There is also a hybrid approach where the application may convert the
data to the new format gradually as part of its normal functionality. ODB is capable of
handling all these scenarios. That is, there is support for working with older models without
performing any migration (schema or data). Alternatively, we can migrate the schema after
which we have the choice of either also immediately migrating the data (immediate data
migration) or doing it gradually (gradual data migration).

Schema evolution is already a complex task and we should not unnecessarily use a more
complex approach where a simpler one would be sufficient. From the above, the simplest
approach is the immediate schema migration that does not require any data migration. An
example of such a change would be adding a new data member with the default value (Section
14.3.4, "default "). This case ODB can handle completely automatically.

Revision 2.4, February 2015182 C++ Object Persistence with ODB

13 Database Schema Evolution

If we do require data migration, then the next simplest approach is the immediate schema and
data migration. Here we have to write custom migration code. However, it is separate from
the rest of the core application logic and is executed at a well defined point (database migra-
tion). In other words, the core application logic need not be aware of older model versions.
The potential drawback of this approach is performance. It may take a lot of resources and/or
time to convert all the data upfront.

If the immediate migration is not possible, then the next option is the immediate schema
migration followed by the gradual data migration. With this approach, both old and new data
must co-exist in the new database. We also have to change the application logic to both
account for different sources of the same data (for example, when either an old or new version
of the object is loaded) as well as migrate the data when appropriate (for example, when the
old version of the object is updated). At some point, usually when the majority of the data has
been converted, gradual migrations are terminated with an immediate migration.

The most complex approach is working with multiple versions of the database without
performing any migrations, schema or data. ODB does provide support for implementing this
approach (Section 13.4, "Soft Object Model Changes"), however we will not cover it any
further in this chapter. Generally, this will require embedding knowledge about each version
into the core application logic which makes it hard to maintain for any non-trivial object
model.

Note also that when it comes to data migration, we can use the immediate variant for some
changes and gradual for others. We will discuss various migration scenarios in greater detail
in section Section 13.3, "Data Migration".

13.1 Object Model Version and Changelog

To enable schema evolution support in ODB we need to specify the object model version, or,
more precisely, two versions. The first is the base model version. It is the lowest version from
which we will be able to migrate. The second version is the current model version. In ODB
we can migrate from multiple previous versions by successively migrating from one to the
next until we reach the current version. We use the db model version pragma to specify
both the base and current versions.

When we enable schema evolution for the first time, our base and current versions will be the
same, for example:

#pragma db model version(1, 1)

Once we release our application, its users may create databases with the schema correspond-
ing to this version of the object model. This means that if we make any modifications to our
object model that also change the schema, then we will need to be able to migrate the old
databases to this new schema. As a result, before making any new changes after a release, we
increment the current version, for example:

183Revision 2.4, February 2015 C++ Object Persistence with ODB

13.1 Object Model Version and Changelog

#pragma db model version(1, 2)

To put this another way, we can stay on the same version during development and keep
adding new changes to it. But once we release it, any new changes to the object model will
have to be done in a new version.

It is easy to forget to increment the version before making new changes to the object model.
To help solve this problem, the db model version pragma accepts a third optional argu-
ment that specify whether the current version is open or closed for changes. For example:

#pragma db model version(1, 2, open) // Can add new changes to
 // version 2.

#pragma db model version(1, 2, closed) // Can no longer add new
 // changes to version 2.

If the current version is closed, ODB will refuse to accept any new schema changes. In this
situation you would normally increment the current version and mark it as open or you could
re-open the existing version if, for example, you need to fix something. Note, however, that
re-opening versions that have been released will most likely result in migration malfunctions.
By default the version is open.

Normally, an application will have a range of older database versions from which it is able to
migrate. When we change this range by removing support for older versions, we also need to
adjust the base model version. This will make sure that ODB does not keep unnecessary infor-
mation around.

A model version (both base and current) is a 64-bit unsigned integer
(unsigned long long). 0 is reserved to signify special situations, such as the lack of
schema in the database. Other than that, we can use any values as versions as long as they are
monotonically increasing. In particular, we don’t have to start with version 1 and can increase
the versions by any increment.

One versioning approach is to use an independent object model version by starting from
version 1 and also incrementing by 1. The alternative is to make the model version corre-
spond to the application version. For example, if our application is using the X.Y.Z version
format, then we could encode it as a hexadecimal number and use that as our model version,
for example:

#pragma db model version(0x020000, 0x020306) // 2.0.0-2.3.6

Most real-world object models will be spread over multiple header files and it will be burden-
some to repeat the db model version pragma in each of them. The recommended way to
handle this situation is to place the version pragma into a separate header file and include it
into the object model files. If your project already has a header file that defines the application
version, then it is natural to place this pragma there. For example:

Revision 2.4, February 2015184 C++ Object Persistence with ODB

13.1 Object Model Version and Changelog

// version.hxx
//
// Define the application version.
//

#define MYAPP_VERSION 0x020306 // 2.3.6

#ifdef ODB_COMPILER
#pragma db model version(1, 7)
#endif

Note that we can also use macros in the version pragma which allows us to specify all the
versions in a single place. For example:

#define MYAPP_VERSION 0x020306 // 2.3.6
#define MYAPP_BASE_VERSION 0x020000 // 2.0.0

#ifdef ODB_COMPILER
#pragma db model version(MYAPP_BASE_VERSION, MYAPP_VERSION)
#endif

It is also possible to have multiple object models within the same application that have differ-
ent versions. Such models must be independent, that is, no headers from one model shall
include a header from another. You will also need to assign different schema names to each
model with the --schema-name ODB compiler option.

Once we specify the object model version, the ODB compiler starts tracking database schema
changes in a changelog file. Changelog has an XML-based, line-oriented format. It uses XML
in order to provide human readability while also facilitating, if desired, processing and analy-
sis with custom tools. The line orientation makes it easy to review with tools like diff .

The changelog is maintained by the ODB compiler. Specifically, you do not need to make any
manual changes to this file. You will, however, need to keep it around from one invocation of
the ODB compiler to the next. In other words, the changelog file is both the input and the
output of the ODB compiler. This, for example, means that if your project’s source code is
stored in a version control repository, then you will most likely want to store the changelog
there as well. If you delete the changelog, then any ability to do schema migration will be lost.

The only operation that you may want to perform with the changelog is to review the database
schema changes that resulted from the C++ object model changes. For this you can use a tool
like diff or, better yet, the change review facilities offered by your revision control system.
For this purpose the contents of a changelog will be self-explanatory.

As an example, consider the following initial object model:

// person.hxx
//

#include <string>

#pragma db model version(1, 1)

185Revision 2.4, February 2015 C++ Object Persistence with ODB

13.1 Object Model Version and Changelog

#pragma db object
class person
{
 ...

 #pragma db id auto
 unsigned long id_;

 std::string first_;
 std::string last_;
};

We then compile this header file with the ODB compiler (using the PostgreSQL database as
an example):

odb --database pgsql --generate-schema person.hxx

If we now look at the list of generated files, then in addition to the now familiar
person-odb.?xx and person.sql , we will also see person.xml — the changelog
file. Just for illustration, below are the contents of this changelog.

<changelog database="pgsql">
 <model version="1">
 <table name="person" kind="object">
 <column name="id" type="BIGINT" null="false"/>
 <column name="first" type="TEXT" null="false"/>
 <column name="last" type="TEXT" null="false"/>
 <primary-key auto="true">
 <column name="id"/>
 </primary-key>
 </table>
 </model>
</changelog>

Let’s say we now would like to add another data member to the person class — the middle
name. We increment the version and make the change:

#pragma db model version(1, 2)

#pragma db object
class person
{
 ...

 #pragma db id auto
 unsigned long id_;

 std::string first_;
 std::string middle_;
 std::string last_;
};

Revision 2.4, February 2015186 C++ Object Persistence with ODB

13.1 Object Model Version and Changelog

We use exactly the same command line to re-compile our file:

odb --database pgsql --generate-schema person.hxx

This time the ODB compiler will read the old changelog, update it, and write out the new
version. Again, for illustration only, below are the updated changelog contents:

<changelog database="pgsql">
 <changeset version="2">
 <alter-table name="person">
 <add-column name="middle" type="TEXT" null="false"/>
 </alter-table>
 </changeset>

 <model version="1">
 <table name="person" kind="object">
 <column name="id" type="BIGINT" null="false"/>
 <column name="first" type="TEXT" null="false"/>
 <column name="last" type="TEXT" null="false"/>
 <primary-key auto="true">
 <column name="id"/>
 </primary-key>
 </table>
 </model>
</changelog>

Just to reiterate, while the changelog may look like it could be written by hand, it is main-
tained completely automatically by the ODB compiler and the only reason you may want to
look at its contents is to review the database schema changes. For example, if we compare the
above two changelogs with diff , we will get the following summary of the database schema
changes:

--- person.xml.orig
+++ person.xml
@@ -1,4 +1,10 @@
<changelog database="pgsql">
+ <changeset version="2">
+ <alter-table name="person">
+ <add-column name="middle" type="TEXT" null="false"/>
+ </alter-table>
+ </changeset>
+
 <model version="1">
 <table name="person" kind="object">
 <column name="id" type="BIGINT" null="false"/>

The changelog is only written when we generate the database schema, that is, the --gener-
ate-schema option is specified. Invocations of the ODB compiler that only produce the
database support code (C++) do not read or update the changelog. To put it another way, the
changelog tracks changes in the resulting database schema, not the C++ object model.

187Revision 2.4, February 2015 C++ Object Persistence with ODB

13.1 Object Model Version and Changelog

ODB ignores column order when comparing database schemas. This means that we can
re-order data members in a class without causing any schema changes. Member renames,
however, will result in schema changes since the column name changes as well (unless we
specified the column name explicitly). From ODB’s perspective such a rename looks like the
deletion of one data member and the addition of another. If we don’t want this to be treated as
a schema change, then we will need to keep the old column name by explicitly specifying it
with the db column pragma. For example, here is how we can rename middle_ to
middle_name_ without causing any schema changes:

#pragma db model version(1, 2)

#pragma db object
class person
{
 ...

 #pragma db column("middle") // Keep the original column name.
 std::string middle_name_;

 ...
};

If your object model consists of a large number of header files and you generate the database
schema for each of them individually, then a changelog will be created for each of your
header files. This may be what you want, however, the large number of changelogs can
quickly become unwieldy. In fact, if you are generating the database schema as standalone
SQL files, then you may have already experienced a similar problem caused by a large
number of .sql files, one for each header.

The solution to both of these problems is to generate a combined database schema file and a
single changelog. For example, assume we have three header files in our object model:
person.hxx , employee.hxx , and employer.hxx . To generate the database support
code we compile them as usual but without specifying the --generate-schema option. In
this case no changelog is created or updated:

odb --database pgsql person.hxx
odb --database pgsql employee.hxx
odb --database pgsql employer.hxx

To generate the database schema, we perform a separate invocation of the ODB compiler.
This time, however, we instruct it to only generate the schema (--gener-
ate-schema-only) and produce it combined (--at-once) for all the files in our object
model:

odb --database pgsql --generate-schema-only --at-once \
--input-name company person.hxx employee.hxx employer.hxx

The result of the above command is a single company.sql file (the name is derived from
the --input-name value) that contains the database schema for our entire object model.
There is also a single corresponding changelog file — company.xml .

Revision 2.4, February 2015188 C++ Object Persistence with ODB

13.1 Object Model Version and Changelog

The same can be achieved for the embedded schema by instructing the ODB compiler to
generate the database creation code into a separate C++ file (--schema-format sepa-
rate):

odb --database pgsql --generate-schema-only --schema-format separate \
--at-once --input-name company person.hxx employee.hxx employer.hxx

The result of this command is a single company-schema.cxx file and, again,
company.xml .

Note also that by default the changelog file is not placed into the directory specified with the
--output-dir option. This is due to the changelog being both an input and an output file
at the same time. As a result, by default, the ODB compiler will place it in the directory of the
input header file.

There is, however, a number of command line options (including --changelog-dir) that
allow us to fine-tune the name and location of the changelog file. For example, you can
instruct the ODB compiler to read the changelog from one file while writing it to another.
This, for example, can be useful if you want to review the changes before discarding the old
file. For more information on these options, refer to the ODB Compiler Command Line
Manual and search for "changelog".

When we were discussing version increments above, we used the terms development and
release. Specifically, we talked about keeping the same object model versions during develop-
ment periods and incrementing them after releases. What is a development period and a
release in this context? These definitions can vary from project to project. Generally, during a
development period we work on one or more changes to the object model that result in the
changes to the database schema. A release is a point where we make our changes available to
someone else who may have an older database to migrate from. In the traditional sense, a
release is a point where you make a new version of your application available to its users.
However, for schema evolution purposes, a release could also mean simply making your
schema-altering changes available to other developers on your team. Let us consider two
common scenarios to illustrate how all this fits together.

One way to setup a project would be to re-use the application development period and appli-
cation release for schema evolution. That is, during a new application version development
we keep a single object model version and when we release the application, we increment the
model version. In this case it makes sense to also reuse the application version as a model
version for consistency. Here is a step-by-step guide for this setup:

1. During development, keep the current object model version open.
2. Before the release (for example, when entering a "feature freeze") close the version.
3. After the release, update the version and open it.
4. For each new feature, review the changeset at the top of the changelog, for example, with

diff or your version control facilities. If you are using a version control, then this is
best done just before committing your changes to the repository.

189Revision 2.4, February 2015 C++ Object Persistence with ODB

13.1 Object Model Version and Changelog

http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/products/odb/doc/odb.xhtml

An alternative way to setup schema versioning in a project would be to define the develop-
ment period as working on a single feature and the release as making this feature available to
other people (developers, testers, etc.) on your team, for example, by committing the changes
to a public version control repository. In this case, the object model version will be indepen-
dent of the application version and can simply be a sequence that starts with 1 and is incre-
mented by 1. Here is a step-by-step guide for this setup:

1. Keep the current model version closed. Once a change is made that affects the database
schema, the ODB compiler will refuse to update the changelog.

2. If the change is legitimate, open a new version, that is, increment the current version and
make it open.

3. Once the feature is implemented and tested, review the final set of database changes
(with diff or your version control facilities), close the version, and commit the changes
to the version control repository (if using).

If you are using a version control repository that supports pre-commit checks, then you may
want to consider adding such a check to make sure the committed version is always closed.

If we are just starting schema evolution in our project, which approach should we choose?
The two approaches will work better in different situations since they have a different set of
advantages and disadvantages. The first approach, which we can call version per application
release, is best suited for simpler projects with smaller releases since otherwise a single
migration will bundle a large number of unrelated actions corresponding to different features.
This can become difficult to review and, if things go wrong, debug.

The second approach, which we can call version per feature, is much more modular and
provides a number of additional benefits. We can perform migrations for each feature as a
discreet step which makes it easier to debug. We can also place each such migration step into
a separate transaction further improving reliability. It also scales much better in larger teams
where multiple developers can work concurrently on features that affect the database schema.
For example, if you find yourself in a situation where another developer on your team used
the same version as you and managed to commit his changes before you (that is, you have a
merge conflict), then you can simply change the version to the next available one, regenerate
the changelog, and continue with your commit.

Overall, unless you have strong reasons to prefer the version per application release approach,
rather choose version per feature even though it may seem more complex at the beginning.
Also, if you do select the first approach, consider provisioning for switching to the second
method by reserving a sub-version number. For example, for an application version in the
form 2.3.4 you can make the object model version to be in the form 0x0203040000 ,
reserving the last two bytes for a sub-version. Later on you can use it to switch to the version
per feature approach.

Revision 2.4, February 2015190 C++ Object Persistence with ODB

13.1 Object Model Version and Changelog

13.2 Schema Migration

Once we enable schema evolution by specifying the object model version, in addition to the
schema creation statements, the ODB compiler starts generating schema migration statements
for each version all the way from the base to the current. As with schema creation, schema
migration can be generated either as a set of SQL files or embedded into the generated C++
code (--schema-format option).

For each migration step, that is from one version to the next, ODB generates two sets of state-
ments: pre-migration and post-migration. The pre-migration statements "relax" the database
schema so that both old and new data can co-exist. At this stage new columns and tables are
added while old constraints are dropped. The post-migration statements "tighten" the database
schema back so that only data conforming to the new format can remain. At this stage old
columns and tables are dropped and new constraints are added. Now you can probably guess
where the data migration fits into this — between the pre and post schema migrations where
we can both access the old data and create the new one.

If the schema is being generated as standalone SQL files, then we end up with a pair of files
for each step: the pre-migration file and the post-migration file. For the person example we
started in the previous section we will have the person-002-pre.sql and
person-002-post.sql files. Here 002 is the version to which we are migrating while
the pre and post suffixes specify the migration stage. So if we wanted to migrate a
person database from version 1 to 2, then we would first execute
person-002-pre.sql , then migrate the data, if any (discussed in more detail in the next
section), and finally execute person-002-post.sql . If our database is several versions
behind, for example the database has version 1 while the current version is 5, then we simply
perform this set of steps for each version until we reach the current version.

If we look at the contents of the person-002-pre.sql file, we will see the following (or
equivalent, depending on the database used) statement:

ALTER TABLE "person"
 ADD COLUMN "middle" TEXT NULL;

As we would expect, this statement adds a new column corresponding to the new data
member. An observant reader would notice, however, that the column is added as NULL even
though we never requested this semantics in our object model. Why is the column added as
NULL? If during migration the person table already contains rows (that is, existing objects),
then an attempt to add a non-NULL column that doesn’t have a default value will fail. As a
result, ODB will initially add a new column that doesn’t have a default value as NULL but
then clean this up at the post-migration stage. This way your data migration code is given a
chance to assign some meaningful values for the new data member for all the existing objects.
Here are the contents of the person-002-post.sql file:

ALTER TABLE "person"
 ALTER COLUMN "middle" SET NOT NULL;

191Revision 2.4, February 2015 C++ Object Persistence with ODB

13.2 Schema Migration

Currently ODB directly supports the following elementary database schema changes:

add table
drop table
add column
drop column
alter column, set NULL/NOT NULL
add foreign key
drop foreign key
add index
drop index

More complex changes can normally be implemented in terms of these building blocks. For
example, to change a type of a data member (which leads to a change of a column type), we
can add a new data member with the desired type (add column), migrate the data, and then
delete the old data member (drop column). ODB will issue diagnostics for cases that are
currently not supported directly. Note also that some database systems (notably SQLite) have
a number of limitations in their support for schema changes. For more information on these
database-specific limitations, refer to the "Limitations" sections in Part II, "Database
Systems".

How do we know what the current database version is? That is, the version from which we
need to migrate? We need to know this, for example, in order to determine the set of migra-
tions we have to perform. By default, when schema evolution is enabled, ODB maintains this
information in a special table called schema_version that has the following (or equiva-
lent, depending on the database used) definition:

CREATE TABLE "schema_version" (
 "name" TEXT NOT NULL PRIMARY KEY,
 "version" BIGINT NOT NULL,
 "migration" BOOLEAN NOT NULL);

The name column is the schema name as specified with the --schema-name option. It is
empty for the default schema. The version column contains the current database version.
And, finally, the migration flag indicates whether we are in the process of migrating the
database, that is, between the pre and post-migration stages.

The schema creation statements (person.sql in our case) create this table and populate it
with the initial model version. For example, if we executed person.sql corresponding to
version 1 of our object model, then name would have been empty (which signifies the default
schema since we didn’t specify --schema-name), version will be 1 and migration
will be FALSE.

The pre-migration statements update the version and set the migration flag to TRUE. Continu-
ing with our example, after executing person-002-pre.sql , version will become 2
and migration will be set to TRUE. The post-migration statements simply clear the migra-
tion flag. In our case, after running person-002-post.sql , version will remain 2

Revision 2.4, February 2015192 C++ Object Persistence with ODB

13.2 Schema Migration

while migration will be reset to FALSE.

Note also that above we mentioned that the schema creation statements (person.sql)
create the schema_version table. This means that if we enable schema evolution support
in the middle of a project, then we could already have existing databases that don’t include
this table. As a result, ODB will not be able to handle migrations for such databases unless we
manually add the schema_version table and populate it with the correct version informa-
tion. For this reason, it is highly recommended that you consider whether to use schema
evolution and, if so, enable it from the beginning of your project.

The odb::database class provides an API for accessing and modifying the current
database version:

namespace odb
{
 typedef unsigned long long schema_version;

 struct LIBODB_EXPORT schema_version_migration
 {
 schema_version_migration (schema_version = 0,
 bool migration = false);

 schema_version version;
 bool migration;

 // This class also provides the ==, !=, <, >, <=, and >= operators.
 // Version ordering is as follows: {1,f} < {2,t} < {2,f} < {3,t}.
 };

 class database
 {
 public:
 ...

 schema_version
 schema_version (const std::string& name = "") const;

 bool
 schema_migration (const std::string& name = "") const;

 const schema_version_migration&
 schema_version_migration (const std::string& name = "") const;

 // Set schema version and migration state manually.
 //
 void
 schema_version_migration (schema_version,
 bool migration,
 const std::string& name = "");

 void
 schema_version_migration (const schema_version_migration&,
 const std::string& name = "");

193Revision 2.4, February 2015 C++ Object Persistence with ODB

13.2 Schema Migration

 // Set default schema version table for all schemas.
 //
 void
 schema_version_table (const std::string& table_name);

 // Set schema version table for a specific schema.
 //
 void
 schema_version_table (const std::string& table_name,
 const std::string& name);
 };
}

The schema_version() and schema_migration() accessors return the current
database version and migration flag, respectively. The optional name argument is the schema
name. If the database schema hasn’t been created (that is, there is no corresponding entry in
the schema_version table or this table does not exist), then schema_version()
returns 0. The schema_version_migration() accessor returns both version and
migration flag together in the schema_version_migration struct .

You may already have a version table in your database or you (or your database administra-
tor) may prefer to keep track of versions your own way. You can instruct ODB not to create
the schema_version table with the --suppress-schema-version option.
However, ODB still needs to know the current database version in order for certain schema
evolution mechanisms to function properly. As a result, in this case, you will need to set the
schema version on the database instance manually using the schema_version_migration()
modifier. Note that the modifier API is not thread-safe. That is, you should not modify the
schema version while other threads may be accessing or modifying the same information.

Note also that the accessors we discussed above will only query the schema_version
table once and, if the version could be determined, cache the result. If, however, the version
could not be determined (that is, schema_version() returned 0), then a subsequent call
will re-query the table. While it is probably a bad idea to modify the database schema while
the application is running (other than via the schema_catalog API, as discussed below), if
for some reason you need ODB to re-query the version, then you can manually set it to 0
using the schema_version_migration() modifier.

It is also possible to change the name of the table that stores the schema version using the
--schema-version-table option. You will also need to specify this alternative name
on the database instance using the schema_version_table() modifier. The first
version specifies the default table that is used for all the schema names. The second version
specifies the table for a specific schema. The table name should be database-quoted, if neces-
sary.

If we are generating our schema migrations as standalone SQL files, then the migration work-
flow could look like this:

Revision 2.4, February 2015194 C++ Object Persistence with ODB

13.2 Schema Migration

1. The database administrator determines the current database version. If migration is
required, then for each migration step (that is, from one version to the next), he performs
the following:

2. Execute the pre-migration file.
3. Execute our application (or a separate migration program) to perform data migration

(discussed later). Our application can determine that is is being executed in the "migra-
tion mode" by calling schema_migration() and then which migration code to run
by calling schema_version() .

4. Execute the post-migration file.

These steps become more integrated and automatic if we embed the schema creation and
migration code into the generated C++ code. Now we can perform schema creation, schema
migration, and data migration as well as determine when each step is necessary programmati-
cally from within the application.

Schema evolution support adds the following extra functions to the
odb::schema_catalog class, which we first discussed in Section 3.4, "Database".

namespace odb
{
 class schema_catalog
 {
 public:
 ...

 // Schema migration.
 //
 static void
 migrate_schema_pre (database&,
 schema_version,
 const std::string& name = "");

 static void
 migrate_schema_post (database&,
 schema_version,
 const std::string& name = "");

 static void
 migrate_schema (database&,
 schema_version,
 const std::string& name = "");

 // Data migration.
 //
 // Discussed in the next section.

 // Combined schema and data migration.
 //
 static void
 migrate (database&,

195Revision 2.4, February 2015 C++ Object Persistence with ODB

13.2 Schema Migration

 schema_version = 0,
 const std::string& name = "");

 // Schema version information.
 //
 static schema_version
 base_version (const database&,
 const std::string& name = "");

 static schema_version
 base_version (database_id,
 const std::string& name = "");

 static schema_version
 current_version (const database&,
 const std::string& name = "");

 static schema_version
 current_version (database_id,
 const std::string& name = "");

 static schema_version
 next_version (const database&,
 schema_version = 0,
 const std::string& name = "");

 static schema_version
 next_version (database_id,
 schema_version,
 const std::string& name = "");
 };
}

The migrate_schema_pre() and migrate_schema_post() static functions
perform a single stage (that is, pre or post) of a single migration step (that is, from one version
to the next). The version argument specifies the version we are migrating to. For instance,
in our person example, if we know that the database version is 1 and the next version is 2,
then we can execute code like this:

transaction t (db.begin ());

schema_catalog::migrate_schema_pre (db, 2);

// Data migration goes here.

schema_catalog::migrate_schema_post (db, 2);

t.commit ();

If you don’t have any data migration code to run, then you can perform both stages with a
single call using the migrate_schema() static function.

Revision 2.4, February 2015196 C++ Object Persistence with ODB

13.2 Schema Migration

The migrate() static function perform both schema and data migration (we discuss data
migration in the next section). It can also perform several migration steps at once. If we don’t
specify its target version, then it will migrate (if necessary) all the way to the current model
version. As an extra convenience, migrate() will also create the database schema if none
exists. As a result, if we don’t have any data migration code or we have registered it with
schema_catalog (as discussed later), then the database schema creation and migration,
whichever is necessary, if at all, can be performed with a single function call:

transaction t (db.begin ());
schema_catalog::migrate (db);
t.commit ();

Note also that schema_catalog is integrated with the odb::database schema version
API. In particular, schema_catalog functions will query and synchronize the schema
version on the database instance if and when required.

The schema_catalog class also allows you to iterate over known versions (remember,
there could be "gaps" in version numbers) with the base_version() ,
current_version() and next_version() static functions. The base_version()
and current_version() functions return the base and current object model versions,
respectively. That is, the lowest version from which we can migrate and the version that we
ultimately want to migrate to. The next_version() function returns the next known
version. If the passed version is greater or equal to the current version, then this function will
return the current version plus one (that is, one past current). If we don’t specify the version,
then next_version() will use the current database version as the starting point. Note also
that the schema version information provided by these functions is only available if we embed
the schema migration code into the generated C++ code. For standalone SQL file migrations
this information is normally not needed since the migration process is directed by an external
entity, such as a database administrator or a script.

Most schema_catalog functions presented above also accept the optional schema name
argument. If the passed schema name is not found, then the odb::unknown_schema
exception is thrown. Similarly, functions that accept the schema version argument will throw
the odb::unknown_schema_version exception if the passed version is invalid. Refer
to Section 3.14, "ODB Exceptions" for more information on these exceptions.

To illustrate how all these parts fit together, consider the following more realistic database
schema management example. Here we want to handle the schema creation in a special way
and perform each migration step in its own transaction.

schema_version v (db.schema_version ());
schema_version bv (schema_catalog::base_version (db));
schema_version cv (schema_catalog::current_version (db));

if (v == 0)
{
 // No schema in the database. Create the schema and
 // initialize the database.
 //

197Revision 2.4, February 2015 C++ Object Persistence with ODB

13.2 Schema Migration

 transaction t (db.begin ());
 schema_catalog::create_schema (db);

 // Populate the database with initial data, if any.

 t.commit ();
}
else if (v < cv)
{
 // Old schema (and data) in the database, migrate them.
 //

 if (v < bv)
 {
 // Error: migration from this version is no longer supported.
 }

 for (v = schema_catalog::next_version (db, v);
 v <= cv;
 v = schema_catalog::next_version (db, v))
 {
 transaction t (db.begin ());
 schema_catalog::migrate_schema_pre (db, v);

 // Data migration goes here.

 schema_catalog::migrate_schema_post (db, v);
 t.commit ();
 }
}
else if (v > cv)
{
 // Error: old application trying to access new database.
}

13.3 Data Migration

In quite a few cases specifying the default value for new data members will be all that’s
required to handle the existing objects. For example, the natural default value for the new
middle name that we have added is an empty string. And we can handle this case with the
db default pragma and without any extra C++ code:

#pragma db model version(1, 2)

#pragma db object
class person
{
 ...

 #pragma db default("")
 std::string middle_;
};

Revision 2.4, February 2015198 C++ Object Persistence with ODB

13.3 Data Migration

However, there will be situations where we would need to perform more elaborate data migra-
tions, that is, convert old data to the new format. As an example, suppose we want to add
gender to our person class. And, instead of leaving it unassigned for all the existing objects,
we will try to guess it from the first name. This is not particularly accurate but it could be
sufficient for our hypothetical application:

#pragma db model version(1, 3)

enum gender {male, female};

#pragma db object
class person
{
 ...

 gender gender_;
};

As we have discussed earlier, there are two ways to perform data migration: immediate and
gradual. To recap, with immediate migration we migrate all the existing objects at once,
normally after the schema pre-migration statements but before the post-migration statements.
With gradual migration, we make sure the new object model can accommodate both old and
new data and gradually migrate existing objects as the application runs and the opportunities
to do so arise, for example, an object is updated.

There is also another option for data migration that is not discussed further in this section.
Instead of using our C++ object model we could execute ad-hoc SQL statements that perform
the necessary conversions and migrations directly on the database server. While in certain
cases this can be a better option from the performance point of view, this approach is often
limited in terms of the migration logic that we can handle.

13.3.1 Immediate Data Migration

Let’s first see how we can implement an immediate migration for the new gender_ data
member we have added above. If we are using standalone SQL files for migration, then we
could add code along these lines somewhere early in main() , before the main application
logic:

int
main ()
{
 ...

 odb::database& db = ...

 // Migrate data if necessary.
 //
 if (db.schema_migration ())
 {
 switch (db.schema_version ())
 {

199Revision 2.4, February 2015 C++ Object Persistence with ODB

13.3.1 Immediate Data Migration

 case 3:
 {
 // Assign gender to all the existing objects.
 //
 transaction t (db.begin ());

 for (person& p: db.query<person> ())
 {
 p.gender (guess_gender (p.first ()));
 db.update (p);
 }

 t.commit ();
 break;
 }
 }
 }

 ...
}

If you have a large number of objects to migrate, it may also be a good idea, from the perfor-
mance point of view, to break one big transaction that we now have into multiple smaller
transactions (Section 3.5, "Transactions"). For example:

case 3:
 {
 transaction t (db.begin ());

 size_t n (0);
 for (person& p: db.query<person> ())
 {
 p.gender (guess_gender (p.first ()));
 db.update (p);

 // Commit the current transaction and start a new one after
 // every 100 updates.
 //
 if (n++ % 100 == 0)
 {
 t.commit ();
 t.reset (db.begin ());
 }
 }

 t.commit ();
 break;
 }

While it looks straightforward enough, as we add more migration snippets, this approach can
quickly become unmaintainable. Instead of having all the migrations in a single function and
determining when to run each piece ourselves, we can package each migration into a separate
function, register it with the schema_catalog class, and let ODB figure out when to run
which migration functions. To support this functionality, schema_catalog provides the

Revision 2.4, February 2015200 C++ Object Persistence with ODB

13.3.1 Immediate Data Migration

following data migration API:

namespace odb
{
 class schema_catalog
 {
 public:
 ...

 // Data migration.
 //
 static std::size_t
 migrate_data (database&,
 schema_version = 0,
 const std::string& name = "");

 typedef void data_migration_function_type (database&);

 // Common (for all the databases) data migration, C++98/03 version:
 //
 template <schema_version v, schema_version base>
 static void
 data_migration_function (data_migration_function_type*,
 const std::string& name = "");

 // Common (for all the databases) data migration, C++11 version:
 //
 template <schema_version v, schema_version base>
 static void
 data_migration_function (std::function<data_migration_function_type>,
 const std::string& name = "");

 // Database-specific data migration, C++98/03 version:
 //
 template <schema_version v, schema_version base>
 static void
 data_migration_function (database&,
 data_migration_function_type*,
 const std::string& name = "");

 template <schema_version v, schema_version base>
 static void
 data_migration_function (database_id,
 data_migration_function_type*,
 const std::string& name = "");

 // Database-specific data migration, C++11 version:
 //
 template <schema_version v, schema_version base>
 static void
 data_migration_function (database&,
 std::function<data_migration_function_type>,
 const std::string& name = "");

 template <schema_version v, schema_version base>

201Revision 2.4, February 2015 C++ Object Persistence with ODB

13.3.1 Immediate Data Migration

 static void
 data_migration_function (database_id,
 std::function<data_migration_function_type>,
 const std::string& name = "");
 };

 // Static data migration function registration, C++98/03 version:
 //
 template <schema_version v, schema_version base>
 struct data_migration_entry
 {
 data_migration_entry (data_migration_function_type*,
 const std::string& name = "");

 data_migration_entry (database_id,
 data_migration_function_type*,
 const std::string& name = "");
 };

 // Static data migration function registration, C++11 version:
 //
 template <schema_version v, schema_version base>
 struct data_migration_entry
 {
 data_migration_entry (std::function<data_migration_function_type>,
 const std::string& name = "");

 data_migration_entry (database_id,
 std::function<data_migration_function_type>,
 const std::string& name = "");
 };
}

The migrate_data() static function performs data migration for the specified version. If
no version is specified, then it will use the current database version and also check whether
the database is in migration, that is, database::schema_migration() returns true .
As a result, all we need to do in our main() is call this function. It will check if migration is
required and if so, call all the migration functions registered for this version. For example:

int
main ()
{
 ...

 database& db = ...

 // Check if we need to migrate any data and do so
 // if that’s the case.
 //
 schema_catalog::migrate_data (db);

 ...
}

Revision 2.4, February 2015202 C++ Object Persistence with ODB

13.3.1 Immediate Data Migration

The migrate_data() function returns the number of migration functions called. You can
use this value for debugging or logging.

The only other step that we need to perform is register our data migration functions with
schema_catalog . At the lower level we can call the data_migration_function()
static function for every migration function we have, for example, at the beginning of
main() . For each version, data migration functions are called in the order of registration.

A more convenient approach, however, is to use the data_migration_entry helper
class template to register the migration functions during static initialization. This way we can
keep the migration function and its registration code next to each other. Here is how we can
reimplement our gender migration code to use this mechanism:

static void
migrate_gender (odb::database& db)
{
 transaction t (db.begin ());

 for (person& p: db.query<person> ())
 {
 p.gender (guess_gender (p.first ()));
 db.update (p);
 }

 t.commit ();
}

static const odb::data_migration_entry<3, MYAPP_BASE_VERSION>
migrate_gender_entry (&migrate_gender);

The first template argument to the data_migration_entry class template is the version
we want this data migration function to be called for. The second template argument is the
base model version. This second argument is necessary to detect the situation where we no
longer need this data migration function. Remember that when we move the base model
version forward, migrations from any version below the new base are no longer possible. We,
however, may still have migration functions registered for those lower versions. Since these
functions will never be called, they are effectively dead code and it would be useful to iden-
tify and remove them. To assist with this, data_migration_entry (and lower lever
data_migration_function()) will check at compile time (that is, static_assert)
that the registration version is greater than the base model version.

In the above example we use the MYAPP_BASE_VERSION macro that is presumably defined
in a central place, for example, version.hxx . This is the recommended approach since we
can update the base version in a single place and have the C++ compiler automatically iden-
tify all the data migration functions that can be removed.

In C++11 we can also create a template alias so that we don’t have to repeat the base model
macro in every registration, for example:

203Revision 2.4, February 2015 C++ Object Persistence with ODB

13.3.1 Immediate Data Migration

template <schema_version v>
using migration_entry = odb::data_migration_entry<v, MYAPP_BASE_VERSION>;

static const migration_entry<3>
migrate_gender_entry (&migrate_gender);

For cases where you need to by-pass the base version check, for example, to implement your
own registration helper, ODB also provides "unsafe" versions of the data_migra-
tion_function() functions that take the version as a function argument rather than as a
template parameter.

In C++11 we can also use lambdas as migration functions, which makes the migration code
more concise:

static const migration_entry<3>
migrate_gender_entry (
 [] (odb::database& db)
 {
 transaction t (db.begin ());

 for (person& p: db.query<person> ())
 {
 p.gender (guess_gender (p.first ()));
 db.update (p);
 }

 t.commit ();
 });

If we are using embedded schema migrations, then both schema and data migration is inte-
grated and can be performed with a single call to the schema_catalog::migrate()
function that we discussed earlier. For example:

int
main ()
{
 ...

 database& db = ...

 // Check if we need to migrate the database and do so
 // if that’s the case.
 //
 {
 transaction t (db.begin ());
 schema_catalog::migrate (db);
 t.commit ();
 }

 ...
}

Revision 2.4, February 2015204 C++ Object Persistence with ODB

13.3.1 Immediate Data Migration

Note, however, that in this case we call migrate() within a transaction (for the schema
migration part) which means that our migration functions will also be called within this trans-
action. As a result, we will need to adjust our migration functions not to start their own trans-
action:

static void
migrate_gender (odb::database& db)
{
 // Assume we are already in a transaction.
 //
 for (person& p: db.query<person> ())
 {
 p.gender (guess_gender (p.first ()));
 db.update (p);
 }
}

If, however, we want more granular transactions, then we can use the lower-level
schema_catalog functions to gain more control, as we have seen at the end of the previ-
ous section. Here is the relevant part of that example with an added data migration call:

 // Old schema (and data) in the database, migrate them.
 //
 for (v = schema_catalog::next_version (db, v);
 v <= cv;
 v = schema_catalog::next_version (db, v))
 {
 transaction t (db.begin ());
 schema_catalog::migrate_schema_pre (db, v);
 schema_catalog::migrate_data (db, v);
 schema_catalog::migrate_schema_post (db, v);
 t.commit ();
 }

13.3.2 Gradual Data Migration

If the number of existing objects that require migration is large, then an all-at-once, immediate
migration, while simple, may not be practical from a performance point of view. In this case,
we can perform a gradual migration as the application does its normal functions.

With gradual migrations, the object model must be capable of representing data that conforms
to both old and new formats at the same time since, in general, the database will contain a
mixture of old and new objects. For example, in case of our gender data member, we need a
special value that represents the "no gender assigned yet" case (an old object). We also need
to assign this special value to all the existing objects during the schema pre-migration stage.
One way to do this would be add a special value to our gender enum and then make it the
default value with the db default pragma. A cleaner and easier approach, however, is to
use NULL as a special value. We can add support for the NULL value semantics to any exist-
ing type by wrapping it with odb::nullable , boost::optional or similar (Section
7.3, "Pointers and NULL Value Semantics"). We also don’t need to specify the default value

205Revision 2.4, February 2015 C++ Object Persistence with ODB

13.3.2 Gradual Data Migration

explicitly since NULL is used automatically. Here is how we can use this approach in our
gender example:

#include <odb/nullable.hxx>

#pragma db object
class person
{
 ...

 odb::nullable<gender> gender_;
};

A variety of strategies can be employed to implement gradual migrations. For example, we
can migrate the data when the object is updated as part of the normal application logic. While
there is no migration cost associated with this approach (the object is updated anyway),
depending on how often objects are typically updated, this strategy can take a long time to
complete. An alternative strategy would be to perform an update whenever an old object is
loaded. Yet another strategy is to have a separate thread that slowly migrates all the old
objects as the application runs.

As an example, let us implement the first approach for our gender migration. While we
could have added the necessary code throughout the application, from the maintenance point
of view, it is best to try and localize the gradual migration logic to the persistent classes that it
affects. And for this database operation callbacks (Section 14.1.7, "callback ") are a very
useful mechanism. In our case, all we have to do is handle the post_load event where we
guess the gender if it is NULL:

#include <odb/core.hxx> // odb::database
#include <odb/callback.hxx> // odb::callback_event
#include <odb/nullable.hxx>

#pragma db object callback(migrate)
class person
{
 ...

 void
 migrate (odb::callback_event e, odb::database&)
 {
 if (e == odb::callback_event::post_load)
 {
 // Guess gender if not assigned.
 //
 if (gender_.null ())
 gender_ = guess_gender (first_);
 }
 }

 odb::nullable<gender> gender_;
};

Revision 2.4, February 2015206 C++ Object Persistence with ODB

13.3.2 Gradual Data Migration

In particular, we don’t have to touch any of the accessors or modifiers or the application logic
— all of them can assume that the value can never be NULL. And when the object is next
updated, the new gender value will be stored automatically.

All gradual migrations normally end up with a terminating immediate migration some number
of versions down the line, when the bulk of the objects has presumably been converted. This
way we don’t have to keep the gradual migration code around forever. Here is how we could
implement a terminating migration for our example:

// person.hxx
//
#pragma db model version(1, 4)

#pragma db object
class person
{
 ...

 gender gender_;
};

// person.cxx
//
static void
migrate_gender (odb::database& db)
{
 typedef odb::query<person> query;

 for (person& p: db.query<person> (query::gender.is_null ()))
 {
 p.gender (guess_gender (p.first ()));
 db.update (p);
 }
}

static const odb::data_migration_entry<4, MYAPP_BASE_VERSION>
migrate_gender_entry (&migrate_gender);

A couple of points to note about this code. Firstly, we removed all the gradual migration logic
(the callback) from the class and replaced it with the immediate migration function. We also
removed the odb::nullable wrapper (and therefore disallowed the NULL values) since
after this migration all the objects will have been converted. Finally, in the migration function,
we only query the database for objects that need migration, that is, have NULL gender.

13.4 Soft Object Model Changes

Let us consider another common kind of object model change: we delete an old member, add
a new one, and need to copy the data from the old to the new, perhaps applying some conver-
sion. For example, we may realize that in our application it is a better idea to store a person’s
name as a single string rather than split it into three fields. So what we would like to do is add
a new data member, let’s call it name_, convert all the existing split names, and then delete

207Revision 2.4, February 2015 C++ Object Persistence with ODB

13.4 Soft Object Model Changes

the first_ , middle_ , and last_ data members.

While this sounds straightforward, there is a problem. If we delete (that is, physically remove
from the source code) the old data members, then we won’t be able to access the old data. The
data will still be available in the database between the schema pre and post-migrations, it is
just we will no longer be able to access it through our object model. And if we keep the old
data members around, then the old data will remain stored in the database even after the
schema post-migration.

There is also a more subtle problem that has to do with existing migrations for the previous
versions. Remember, in version 3 of our person example we added the gender_ data
member. We also have a data migration function which guesses the gender based on the first
name. Deleting the first_ data member from our class will obviously break this code. But
even adding the new name_ data member will cause problems because when we try to update
the object in order to store the new gender, ODB will try to update name_ as well. But there
is no corresponding column in the database yet. When we run this migration function, we are
still several versions away from the point where the name column will be added.

This is a very subtle but also very important implication to understand. Unlike the main appli-
cation logic, which only needs to deal with the current model version, data migration code
works on databases that can be multiple versions behind the current version.

How can we resolve this problem? It appears what we need is the ability to add or delete data
members starting from a specific version. In ODB this mechanism is called soft member addi-
tions and deletions. A soft-added member is only treated as persistent starting from the addi-
tion version. A soft-deleted member is persistent until the deletion version (but including the
migration stage). In its essence, soft model changes allow us to maintain multiple versions of
our object model all with a single set of persistent classes. Let us now see how this functional-
ity can help implement our changes:

#pragma db model version(1, 4)

#pragma db object
class person
{
 ...

 #pragma db id auto
 unsigned long id_;

 #pragma db deleted(4)
 std::string first_;

 #pragma db deleted(4)
 std::string middle_;

 #pragma db deleted(4)
 std::string last_;

 #pragma db added(4)

Revision 2.4, February 2015208 C++ Object Persistence with ODB

13.4 Soft Object Model Changes

 std::string name_;

 gender gender_;
};

The migration function for this change could then look like this:

static void
migrate_name (odb::database& db)
{
 for (person& p: db.query<person> ())
 {
 p.name (p.first () + " " +
 p.middle () + (p.middle ().empty () ? "" : " ") +
 p.last ());
 db.update (p);
 }
}

static const odb::data_migration_entry<4, MYAPP_BASE_VERSION>
migrate_name_entry (&migrate_name);

Note also that no changes are required to the gender migration function.

As you may have noticed, in the code above we assumed that the person class still provides
public accessors for the now deleted data members. This might not be ideal since now they
should not be used by the application logic. The only code that may still need to access them
is the migration functions. The recommended way to resolve this is to remove the acces-
sors/modifiers corresponding to the deleted data member, make migration functions static
functions of the class being migrated, and then access the deleted data members directly. For
example:

#pragma db model version(1, 4)

#pragma db object
class person
{
 ...

private:
 friend class odb::access;

 #pragma db id auto
 unsigned long id_;

 #pragma db deleted(4)
 std::string first_;

 #pragma db deleted(4)
 std::string middle_;

 #pragma db deleted(4)
 std::string last_;

209Revision 2.4, February 2015 C++ Object Persistence with ODB

13.4 Soft Object Model Changes

 #pragma db added(4)
 std::string name_;

 gender gender_;

private:
 static void
 migrate_gender (odb::database&);

 static void
 migrate_name (odb::database&);
};

void person::
migrate_gender (odb::database& db)
{
 for (person& p: db.query<person> ())
 {
 p.gender_ = guess_gender (p.first_);
 db.update (p);
 }
}

static const odb::data_migration_entry<3, MYAPP_BASE_VERSION>
migrate_name_entry (&migrate_gender);

void person::
migrate_name (odb::database& db)
{
 for (person& p: db.query<person> ())
 {
 p.name_ = p.first_ + " " +
 p.middle_ + (p.middle_.empty () ? "" : " ") +
 p.last_;
 db.update (p);
 }
}

static const odb::data_migration_entry<4, MYAPP_BASE_VERSION>
migrate_name_entry (&migrate_name);

Another potential issue with the soft-deletion is the requirement to keep the delete data
members in the class. While they will not be initialized in the normal operation of the applica-
tion (that is, not a migration), this can still be a problem if we need to minimize the memory
footprint of our classes. For example, we may cache a large number of objects in memory and
having three std::string data members can be a significant overhead.

The recommended way to resolve this issue is to place all the deleted data members into a
dynamically allocated composite value type. For example:

#pragma db model version(1, 4)

#pragma db object
class person

Revision 2.4, February 2015210 C++ Object Persistence with ODB

13.4 Soft Object Model Changes

{
 ...

 #pragma db id auto
 unsigned long id_;

 #pragma db added(4)
 std::string name_;

 gender gender_;

 #pragma db value
 struct deleted_data
 {
 #pragma db deleted(4)
 std::string first_;

 #pragma db deleted(4)
 std::string middle_;

 #pragma db deleted(4)
 std::string last_;
 };

 #pragma db column("")
 std::unique_ptr<deleted_data> dd_;

 ...
};

ODB will then automatically allocate the deleted value type if any of the deleted data
members are being loaded. During the normal operation, however, the pointer will stay NULL
and therefore reduce the common case overhead to a single pointer per class. Note that we
make the composite value column prefix empty (the db column("") pragma) in order to
keep the same column names for the deleted data members.

Soft-added and deleted data members can be used in objects, composite values, views, and
container value types. We can also soft-add and delete data members of simple, composite,
pointer to object, and container types. Only special data members, such as the object id and
the optimistic concurrency version, cannot be soft-added or deleted.

It is also possible to soft-delete a persistent class. We can still work with the existing objects
of such a class, however, no table is created in new databases for soft-deleted classes. To put
it another way, a soft-delete class is like an abstract class (no table) but which can still be
loaded, updated, etc. Soft-added persistent classes do not make much sense and are therefore
not supported.

As an example of a soft-deleted class, suppose we want to replace our person class with the
new employee object and migrate the data. Here is how we could do this:

211Revision 2.4, February 2015 C++ Object Persistence with ODB

13.4 Soft Object Model Changes

#pragma db model version(1, 5)

#pragma db object deleted(5)
class person
{
 ...
};

#pragma db object
class employee
{
 ...

 #pragma db id auto
 unsigned long id_;

 std::string name_;
 gender gender_;

 static void
 migrate_person (odb::database&);
};

void employee::
migrate_person (odb::database& db)
{
 for (person& p: db.query<person> ())
 {
 employee e (p.name (), p.gender ());
 db.persist (e);
 }
}

static const odb::data_migration_entry<5, MYAPP_BASE_VERSION>
migrate_person_entry (&migrate_person);

As we have seen above, hard member additions and deletions can (and most likely will) break
existing data migration code. Why, then, not treat all the changes, or at least additions, as
soft? ODB requires you to explicitly request this semantics because support for soft-added
and deleted data members incurs runtime overhead. And there can be plenty of cases where
there is no existing data migration and therefore hard additions and deletions are sufficient.

In some cases a hard addition or deletion will result in a compile-time error. For example, one
of the data migration functions may reference the data member we just deleted. In many
cases, however, such errors can only be detected at runtime, and, worse yet, only when the
migration function is executed. For example, we may hard-add a new data member that an
existing migration function will try to indirectly store in the database as part of an object
update. As a result, it is highly recommended that you always test your application with the
database that starts at the base version so that every data migration function is called and
therefore ensured to still work correctly.

Revision 2.4, February 2015212 C++ Object Persistence with ODB

13.4 Soft Object Model Changes

To help with this problem you can also instruct ODB to warn you about any hard additions or
deletions with the --warn-hard-add , --warn-hard-delete , and --warn-hard
command line options. ODB will only warn you about hard changes in the current version and
only for as long as it is open, which makes this mechanism fairly usable.

You may also be wondering why we have to specify the addition and deletion versions explic-
itly. It may seem like the ODB compiler should be able to figure this out automatically. While
it is theoretically possible, to achieve this, ODB would have to also maintain a separate
changelog of the C++ object model in addition to the database schema changelog it already
maintains. While being a lot more complex, such an additional changelog would also compli-
cate the workflow significantly. In this light, maintaining this change information as part of
the original source files appears to be a cleaner and simpler approach.

As we discussed before, when we move the base model version forward we essentially drop
support for migrations from versions before the new base. As a result, it is no longer neces-
sary to maintain the soft semantics of additions and deletions up to and including the new base
version. ODB will issue diagnostics for all such members and classes. For soft deletions we
can simply remove the data member or class entirely. For soft additions we only need to
remove the db added pragma.

13.4.1 Reuse Inheritance Changes

Besides adding and deleting data members, another way to alter the object’s table is using
reuse-style inheritance. If we add a new reuse base, then, from the database schema point of
view, this is equivalent to adding all its columns to the derived object’s table. Similarly, delet-
ing reuse inheritance results in all the base’s columns being deleted from the derived’s table.

In the future ODB may provide direct support for soft addition and deletion of inheritance.
Currently, however, this semantics can be emulated with soft-added and deleted data
members. The following table describes the most common scenarios depending on where
columns are added or deleted, that is, base table, derived table, or both.

213Revision 2.4, February 2015 C++ Object Persistence with ODB

13.4.1 Reuse Inheritance Changes

DELETE HARD SOFT

In both (delete
inheritance and
base)

Delete inheritance
and base. Move
object id to derived.

Soft-delete base. Mark all data members (except id)
in base as soft-deleted.

In base only
(delete base)

Option 1: mark base
as abstract.
Option 2: move all
the base member to
derived, delete base.

Soft-delete base.

In derived only
(delete inheri-
tance)

Delete inheritance,
add object id to
derived.

Option 1: copy base to a new soft-deleted base,
inherit from it instead. Mark all the data members
(expect id) in this new base as soft-deleted. Note:
we add the new base as soft-deleted to get notified
when we can remove it.
Option 2: Copy all the data members from base to
derived and mark them as soft-deleted in derived.

ADD HARD SOFT

In both (add
new base and
inheritance)

Add new base and inheri-
tance. Potentially move
object id member from
derived to base.

Add new base and mark all its data
members as soft-added. Add inheritance.
Move object id from derived to base.

In base only
(refactor exist-
ing data to new
base)

Add new base and move data
members from derived to
base. Note: in most cases the
new base will be made
abstract which make this
scenario non-schema chang-
ing.

The same as HARD.

In derived only
(add inheri-
tance to exist-
ing base)

Add inheritance, delete
object id in derived.

Copy existing base to a new abstract base
and inherit from it. Mark all the database
members in the new base as soft-added
(except object id). When notified by the
ODB compiler that the soft addition of the
data members is no longer necessary,
delete the copy and inherit from the origi-
nal base.

Revision 2.4, February 2015214 C++ Object Persistence with ODB

13.4.1 Reuse Inheritance Changes

13.4.2 Polymorphism Inheritance Changes

Unlike reuse inheritance, adding or deleting a polymorphic base does not result in the base’s
data members being added or deleted from the derived object’s table because each class in a
polymorphic hierarchy is stored in a separate table. There are, however, other complications
due to the presence of special columns (discriminator in the root table and object id links in
derived tables) which makes altering the hierarchy structure difficult to handle automatically.
Adding or deleting (including soft-deleting) of leaf classes (or leaf sub-hierarchies) in a poly-
morphic hierarchy is fully supported. Any more complex changes, such as adding or deleting
the root or an intermediate base or getting an existing class into or out of a polymorphic hier-
archy can be handled by creating a new leaf class (or leaf sub-hierarchy), soft-deleting the old
class, and migrating the data.

215Revision 2.4, February 2015 C++ Object Persistence with ODB

13.4.2 Polymorphism Inheritance Changes

14 ODB Pragma Language
As we have already seen in previous chapters, ODB uses a pragma-based language to capture
database-specific information about C++ types. This chapter describes the ODB pragma
language in more detail. It can be read together with other chapters in the manual to get a
sense of what kind of configurations and mapping fine-tuning are possible. You can also use
this chapter as a reference at a later stage.

An ODB pragma has the following syntax:

#pragma db qualifier [specifier specifier ...]

The qualifier tells the ODB compiler what kind of C++ construct this pragma describes. Valid
qualifiers are object , view , value , member, namespace , model , index , and map. A
pragma with the object qualifier describes a persistent object type. It tells the ODB
compiler that the C++ class it describes is a persistent class. Similarly, pragmas with the
view qualifier describe view types, the value qualifier describes value types and the
member qualifier is used to describe data members of persistent object, view, and value
types. The namespace qualifier is used to describe common properties of objects, views,
and value types that belong to a C++ namespace while the model qualifier describes the
whole C++ object model. The index qualifier defines a database index. And, finally, the
map qualifier describes a mapping between additional database types and types for which
ODB provides built-in support.

The specifier informs the ODB compiler about a particular database-related property of the
C++ declaration. For example, the id member specifier tells the ODB compiler that this
member contains this object’s identifier. Below is the declaration of the person class that
shows how we can use ODB pragmas:

#pragma db object
class person
{
 ...
private:
 #pragma db member id
 unsigned long id_;
 ...
};

In the above example we don’t explicitly specify which C++ class or data member the pragma
belongs to. Rather, the pragma applies to a C++ declaration that immediately follows the
pragma. Such pragmas are called positioned pragmas. In positioned pragmas that apply to
data members, the member qualifier can be omitted for brevity, for example:

 #pragma db id
 unsigned long id_;

Revision 2.4, February 2015216 C++ Object Persistence with ODB

14 ODB Pragma Language

Note also that if the C++ declaration immediately following a position pragma is incompatible
with the pragma qualifier, an error will be issued. For example:

 #pragma db object // Error: expected class instead of data member.
 unsigned long id_;

While keeping the C++ declarations and database declarations close together eases mainte-
nance and increases readability, we can also place them in different parts of the same header
file or even factor them to a separate file. To achieve this we use the so called named
pragmas. Unlike positioned pragmas, named pragmas explicitly specify the C++ declaration
to which they apply by adding the declaration name after the pragma qualifier. For example:

class person
{
 ...
private:
 unsigned long id_;
 ...
};

#pragma db object(person)
#pragma db member(person::id_) id

Note that in the named pragmas for data members the member qualifier is no longer optional.
The C++ declaration name in the named pragmas is resolved using the standard C++ name
resolution rules, for example:

namespace db
{
 class person
 {
 ...
 private:
 unsigned long id_;
 ...
 };
}

namespace db
{
 #pragma db object(person) // Resolves db::person.
}

#pragma db member(db::person::id_) id

As another example, the following code fragment shows how to use the named value type
pragma to map a C++ type to a native database type:

217Revision 2.4, February 2015 C++ Object Persistence with ODB

14 ODB Pragma Language

#pragma db value(bool) type("INT")

#pragma db object
class person
{
 ...
private:
 bool married_; // Mapped to INT NOT NULL database type.
 ...
};

If we would like to factor the ODB pragmas into a separate file, we can include this file into
the original header file (the one that defines the persistent types) using the #include direc-
tive, for example:

// person.hxx

class person
{
 ...
};

#ifdef ODB_COMPILER
include "person-pragmas.hxx"
#endif

Alternatively, instead of using the #include directive, we can use the --odb-epilogue
option to make the pragmas known to the ODB compiler when compiling the original header
file, for example:

--odb-epilogue ’#include "person-pragmas.hxx"’

The following sections cover the specifiers applicable to all the qualifiers mentioned above.

The C++ header file that defines our persistent classes and normally contains one or more
ODB pragmas is compiled by both the ODB compiler to generate the database support code
and the C++ compiler to build the application. Some C++ compilers issue warnings about
pragmas that they do not recognize. There are several ways to deal with this problem which
are covered at the end of this chapter in Section 14.9, "C++ Compiler Warnings".

14.1 Object Type Pragmas

A pragma with the object qualifier declares a C++ class as a persistent object type. The
qualifier can be optionally followed, in any order, by one or more specifiers summarized in
the table below:

Revision 2.4, February 2015218 C++ Object Persistence with ODB

14.1 Object Type Pragmas

Specifier Summary Section

table table name for a persistent class 14.1.1

pointer pointer type for a persistent class 14.1.2

abstract persistent class is abstract 14.1.3

readonly persistent class is read-only 14.1.4

optimistic persistent class with the optimistic concurrency model 14.1.5

no_id persistent class has no object id 14.1.6

callback database operations callback 14.1.7

schema database schema for a persistent class 14.1.8

polymorphic persistent class is polymorphic 14.1.9

session enable/disable session support for a persistent class 14.1.10

definition definition location for a persistent class 14.1.11

transient all non-virtual data members in a persistent class are transient14.1.12

sectionable support addition of new sections in derived classes 14.1.13

deleted persistent class is soft-deleted 14.1.14

bulk enable bulk operations for a persistent class 14.1.15

14.1.1 table

The table specifier specifies the table name that should be used to store objects of the
persistent class in a relational database. For example:

#pragma db object table("people")
class person
{
 ...
};

If the table name is not specified, the class name is used as the table name. The table name
can be qualified with a database schema, for example:

#pragma db object table("census.people")
class person
{
 ...
};

219Revision 2.4, February 2015 C++ Object Persistence with ODB

14.1.1 table

For more information on database schemas and the format of the qualified names, refer to
Section 14.1.8, "schema".

14.1.2 pointer

The pointer specifier specifies the object pointer type for the persistent class. The object
pointer type is used to return, pass, and cache dynamically allocated instances of a persistent
class. For example:

#pragma db object pointer(std::tr1::shared_ptr<person>)
class person
{
 ...
};

There are several ways to specify an object pointer with the pointer specifier. We can use a
complete pointer type as shown in the example above. Alternatively, we can specify only the
template name of a smart pointer in which case the ODB compiler will automatically append
the class name as a template argument. The following example is therefore equivalent to the
one above:

#pragma db object pointer(std::tr1::shared_ptr)
class person
{
 ...
};

If you would like to use the raw pointer as an object pointer, you can use * as a shortcut:

#pragma db object pointer(*) // Same as pointer(person*)
class person
{
 ...
};

If a pointer type is not explicitly specified, the default pointer, specified at the namespace
level (Section 14.5.1, "pointer ") or with the --default-pointer ODB compiler
option, is used. If neither of these two mechanisms is used to specify the pointer, then the raw
pointer is used by default.

For a more detailed discussion of object pointers, refer to Section 3.3, "Object and View
Pointers".

14.1.3 abstract

The abstract specifier specifies that the persistent class is abstract. An instance of an
abstract class cannot be stored in the database and is normally used as a base for other persis-
tent classes. For example:

Revision 2.4, February 2015220 C++ Object Persistence with ODB

14.1.2 pointer

#pragma db object abstract
class person
{
 ...
};

#pragma db object
class employee: public person
{
 ...
};

#pragma db object
class contractor: public person
{
 ...
};

Persistent classes with pure virtual functions are automatically treated as abstract by the ODB
compiler. For a more detailed discussion of persistent class inheritance, refer to Chapter 8,
"Inheritance".

14.1.4 readonly

The readonly specifier specifies that the persistent class is read-only. The database state of
read-only objects cannot be updated. In particular, this means that you cannot call the
database::update() function (Section 3.10, "Updating Persistent Objects") for such
objects. For example:

#pragma db object readonly
class person
{
 ...
};

Read-only and read-write objects can derive from each other without any restrictions. When a
read-only object derives from a read-write object, the resulting whole object is read-only,
including the part corresponding to the read-write base. On the other hand, when a read-write
object derives from a read-only object, all the data members that correspond to the read-only
base are treated as read-only while the rest is treated as read-write.

Note that it is also possible to declare individual data members (Section 14.4.12, "read-
only ") as well as composite value types (Section 14.3.6, "readonly ") as read-only.

14.1.5 optimistic

The optimistic specifier specifies that the persistent class has the optimistic concurrency
model. A class with the optimistic concurrency model must also specify the data member that
is used to store the object version using the version pragma (Section 14.4.16,
"version "). For example:

221Revision 2.4, February 2015 C++ Object Persistence with ODB

14.1.4 readonly

#pragma db object optimistic
class person
{
 ...

 #pragma db version
 unsigned long version_;
};

If a base class has the optimistic concurrency model, then all its derived classes will automati-
cally have the optimistic concurrency model. The current implementation also requires that in
any given inheritance hierarchy the object id and the version data members reside in the same
class.

For a more detailed discussion of optimistic concurrency, refer to Chapter 12, "Optimistic
Concurrency".

14.1.6 no_id

The no_id specifier specifies that the persistent class has no object id. For example:

#pragma db object no_id
class person
{
 ...
};

A persistent class without an object id has limited functionality. Such a class cannot be loaded
with the database::load() or database::find() functions (Section 3.9, "Loading
Persistent Objects"), updated with the database::update() function (Section 3.10,
"Updating Persistent Objects"), or deleted with the database::erase() function
(Section 3.11, "Deleting Persistent Objects"). To load and delete objects without ids you can
use the database::query() (Chapter 4, "Querying the Database") and
database::erase_query() (Section 3.11, "Deleting Persistent Objects") functions,
respectively. There is no way to update such objects except by using native SQL statements
(Section 3.12, "Executing Native SQL Statements").

Furthermore, persistent classes without object ids cannot have container data members nor
can they be used in object relationships. Such objects are not entered into the session object
cache (Section 11.1, "Object Cache") either.

To declare a persistent class with an object id, use the data member id specifier (Section
14.4.1, "id ").

14.1.7 callback

The callback specifier specifies the persist class member function that should be called
before and after a database operation is performed on an object of this class. For example:

Revision 2.4, February 2015222 C++ Object Persistence with ODB

14.1.6 no_id

#include <odb/callback.hxx>

#pragma db object callback(init)
class person
{
 ...

 void
 init (odb::callback_event, odb::database&);
};

The callback function has the following signature and can be overloaded for constant objects:

void
name (odb::callback_event, odb::database&);

void
name (odb::callback_event, odb::database&) const;

The first argument to the callback function is the event that triggered this call. The
odb::callback_event enum-like type is defined in the <odb/callback.hxx>
header file and has the following interface:

namespace odb
{
 struct callback_event
 {
 enum value
 {
 pre_persist,
 post_persist,
 pre_load,
 post_load,
 pre_update,
 post_update,
 pre_erase,
 post_erase
 };

 callback_event (value v);
 operator value () const;
 };
}

The second argument to the callback function is the database on which the operation is about
to be performed or has just been performed. A callback function can be inline or virtual.

The callback function for the *_persist , *_update , and *_erase events is always
called on the constant object reference while for the *_load events — always on the unre-
stricted reference.

223Revision 2.4, February 2015 C++ Object Persistence with ODB

14.1.7 callback

If only the non-const version of the callback function is provided, then only the *_load
events will be delivered. If only the const version is provided, then all the events will be
delivered to this function. Finally, if both versions are provided, then the *_load events will
be delivered to the non-const version while all others — to the const version. If you need
to modify the object in one of the "const " events, then you can safely cast away
const -ness using the const_cast operator if you know that none of the objects will be
created const. Alternatively, if you cannot make this assumption, then you can declare the
data members you wish to modify as mutable .

A database operations callback can be used to implement object-specific pre and post initial-
izations, registrations, and cleanups. As an example, the following code fragment outlines an
implementation of a person class that maintains the transient age data member in addition
to the persistent date of birth. A callback is used to calculate the value of the former from the
latter every time a person object is loaded from the database.

#include <odb/core.hxx>
#include <odb/callback.hxx>

#pragma db object callback(init)
class person
{
 ...

private:
 friend class odb::access;

 date born_;

 #pragma db transient
 unsigned short age_;

 void
 init (odb::callback_event e, odb::database&)
 {
 switch (e)
 {
 case odb::callback_event::post_load:
 {
 // Calculate age from the date of birth.
 ...
 break;
 }
 default:
 break;
 }
 }
};

Revision 2.4, February 2015224 C++ Object Persistence with ODB

14.1.7 callback

14.1.8 schema

The schema specifier specifies a database schema that should be used for the persistent
class.

In relational databases the term schema can refer to two related but ultimately different
concepts. Normally it means a collection of tables, indexes, sequences, etc., that are created in
the database or the actual DDL statements that create these database objects. Some database
implementations support what would be more accurately called a database namespace but is
also called a schema. In this sense, a schema is a separate namespace in which tables, indexes,
sequences, etc., can be created. For example, two tables that have the same name can coexist
in the same database if they belong to different schemas. In this section when we talk about a
schema, we refer to the database namespace meaning of this term.

When schemas are in use, a database object name is qualified with a schema. For example:

CREATE TABLE accounting.employee (...)

SELECT ... FROM accounting.employee WHERE ...

In the above example accounting is the schema and the employee table belongs to this
schema.

Not all database implementations support schemas. Some implementation that don’t support
schemas (for example, MySQL, SQLite) allow the use of the above syntax to specify the
database name. Yet others may support several levels of qualification. For example, Microsoft
SQL Server has three levels starting with the linked database server, followed by the database,
and then followed by the schema: server1.company1.accounting.employee .
While the actual meaning of the qualifier in a qualified name vary from one database imple-
mentation to another, here we refer to all of them collectively as a schema.

In ODB, a schema for a table of a persistent class can be specified at the class level, C++
namespace level, or the file level. To assign a schema to a specific persistent class we can use
the schema specifier, for example:

#pragma db object schema("accounting")
class employee
{
 ...
};

If we are also assigning a table name, then we can use a shorter notation by specifying both
the schema and the table name in the table specifier:

#pragma db object table("accounting.employee")
class employee
{
 ...
};

225Revision 2.4, February 2015 C++ Object Persistence with ODB

14.1.8 schema

If we want to assign a schema to all the persistent classes in a C++ namespace, then, instead
of specifying the schema for each class, we can specify it once at the C++ namespace level.
For example:

#pragma db namespace schema("accounting")
namespace accounting
{
 #pragma db object
 class employee
 {
 ...
 };

 #pragma db object
 class employer
 {
 ...
 };
}

If we want to assign a schema to all the persistent classes in a file, then we can use the
--schema ODB compiler option. For example:

odb ... --schema accounting ...

An alternative to this approach with the same effect is to assign a schema to the global names-
pace:

#pragma db namespace() schema("accounting")

By default schema qualifications are accumulated starting from the persistent class, continu-
ing with the namespace hierarchy to which this class belongs, and finishing with the schema
specified with the --schema option. For example:

#pragma db namespace schema("audit_db")
namespace audit
{
 #pragma db namespace schema("accounting")
 namespace accounting
 {
 #pragma db object
 class employee
 {
 ...
 };
 }
}

If we compile the above code fragment with the --schema server1 option, then the
employee table will have the server1.audit_db.accounting.employee quali-
fied name.

Revision 2.4, February 2015226 C++ Object Persistence with ODB

14.1.8 schema

In some situations we may want to prevent such accumulation of the qualifications. To
accomplish this we can use the so-called fully-qualified names, which have the empty leading
name component. This is analogous to the C++ fully-qualified names in the ::account-
ing::employee form. For example:

#pragma db namespace schema("accounting")
namespace accounting
{
 #pragma db object schema(".hr")
 class employee
 {
 ...
 };

 #pragma db object
 class employer
 {
 ...
 };
}

In the above code fragment, the employee table will have the hr.employee qualified
name while the employer — accounting.employer . Note also that the empty leading
name component is a special ODB syntax and is not propagated to the actual database names
(using a name like .hr.employee to refer to a table will most likely result in an error).

Auxiliary database objects for a persistent class, such as indexes, sequences, triggers, etc., are
all created in the same schema as the class table. By default, this is also true for the container
tables. However, if you need to store a container table in a different schema, then you can
provide a qualified name using the table specifier, for example:

#pragma db object table("accounting.employee")
class employee
{
 ...

 #pragma db object table("operations.projects")
 std::vector<std::string> projects_;
};

The standard syntax for qualified names used in the schema and table specifiers as well as
the view column specifier (Section 14.4.10, "column (view)") has the " name. name..."
form where, as discussed above, the leading name component can be empty to denote a fully
qualified name. This form, however, doesn’t work if one of the name components contains
periods. To support such cases the alternative form is available: " name"." name" ... For
example:

#pragma db object table("accounting_1.2"."employee")
class employee
{
 ...
};

227Revision 2.4, February 2015 C++ Object Persistence with ODB

14.1.8 schema

Finally, to specify an unqualified name that contains periods we can use the following special
syntax:

#pragma db object schema(."accounting_1.2") table("employee")
class employee
{
 ...
};

Table prefixes (Section 14.5.2, "table ") can be used as an alternative to database schemas if
the target database system does not support schemas.

14.1.9 polymorphic

The polymorphic specifier specifies that the persistent class is polymorphic. For more
information on polymorphism support, refer to Chapter 8, "Inheritance".

14.1.10 session

The session specifier specifies whether to enable session support for the persistent class.
For example:

#pragma db object session // Enable.
class person
{
 ...
};

#pragma db object session(true) // Enable.
class employee
{
 ...
};

#pragma db object session(false) // Disable.
class employer
{
 ...
};

Session support is disabled by default unless the --generate-session ODB compiler
option is specified or session support is enabled at the namespace level (Section 14.5.4,
"session "). For more information on sessions, refer to Chapter 11, "Session".

14.1.11 definition

The definition specifier specifies an alternative definition location for the persistent
class. By default, the ODB compiler generates the database support code for a persistent class
when we compile the header file that defines this class. However, if the definition speci-
fier is used, then the ODB compiler will instead generate the database support code when we
compile the header file containing this pragma.

Revision 2.4, February 2015228 C++ Object Persistence with ODB

14.1.9 polymorphic

For more information on this functionality, refer to Section 14.3.7, "definition ".

14.1.12 transient

The transient specifier instructs the ODB compiler to treat all non-virtual data members
in the persistent class as transient (Section 14.4.1, "transient "). This specifier is primarily
useful when declaring virtual data members, as discussed in Section 14.4.13, "virtual ".

14.1.13 sectionable

The sectionable specifier instructs the ODB compiler to generate support for the addition
of new object sections in derived classes in a hierarchy with the optimistic concurrency
model. For more information on this functionality, refer to Section 9.2, "Sections and Opti-
mistic Concurrency".

14.1.14 deleted

The deleted specifier marks the persistent class as soft-deleted. The single required argu-
ment to this specifier is the deletion version. For more information on this functionality, refer
to Section 13.4, "Soft Object Model Changes".

14.1.15 bulk

The bulk specifier enables bulk operation support for the persistent class. The single
required argument to this specifier is the batch size. For more information on this functional-
ity, refer to Section 15.3, "Bulk Database Operations".

14.2 View Type Pragmas

A pragma with the view qualifier declares a C++ class as a view type. The qualifier can be
optionally followed, in any order, by one or more specifiers summarized in the table below:

Specifier Summary Section

object object associated with a view 14.2.1

table table associated with a view 14.2.2

query view query condition 14.2.3

pointer pointer type for a view 14.2.4

callback database operations callback 14.2.5

definition definition location for a view 14.2.6

transient all non-virtual data members in a view are transient14.2.7

229Revision 2.4, February 2015 C++ Object Persistence with ODB

14.2 View Type Pragmas

For more information on view types refer to Chapter 10, "Views".

14.2.1 object

The object specifier specifies a persistent class that should be associated with the view. For
more information on object associations refer to Section 10.1, "Object Views".

14.2.2 table

The table specifier specifies a database table that should be associated with the view. For
more information on table associations refer to Section 10.3, "Table Views".

14.2.3 query

The query specifier specifies a query condition and, optionally, result modifiers for an
object or table view or a native SQL query for a native view. An empty query specifier indi-
cates that a native SQL query is provided at runtime. For more information on query condi-
tions refer to Section 10.5, "View Query Conditions". For more information on native SQL
queries, refer to Section 10.6, "Native Views".

14.2.4 pointer

The pointer specifier specifies the view pointer type for the view class. Similar to objects,
the view pointer type is used to return dynamically allocated instances of a view class. The
semantics of the pointer specifier for a view are the same as those of the pointer speci-
fier for an object (Section 14.1.2, "pointer ").

14.2.5 callback

The callback specifier specifies the view class member function that should be called
before and after an instance of this view class is created as part of the query result iteration.
The semantics of the callback specifier for a view are similar to those of the callback
specifier for an object (Section 14.1.7, "callback ") except that the only events that can
trigger a callback call in the case of a view are pre_load and post_load .

14.2.6 definition

The definition specifier specifies an alternative definition location for the view class. By
default, the ODB compiler generates the database support code for a view class when we
compile the header file that defines this class. However, if the definition specifier is
used, then the ODB compiler will instead generate the database support code when we
compile the header file containing this pragma.

For more information on this functionality, refer to Section 14.3.7, "definition ".

Revision 2.4, February 2015230 C++ Object Persistence with ODB

14.2.1 object

14.2.7 transient

The transient specifier instructs the ODB compiler to treat all non-virtual data members
in the view class as transient (Section 14.4.1, "transient "). This specifier is primarily
useful when declaring virtual data members, as discussed in Section 14.4.13, "virtual ".

14.3 Value Type Pragmas

A pragma with the value qualifier describes a value type. It can be optionally followed, in
any order, by one or more specifiers summarized in the table below:

231Revision 2.4, February 2015 C++ Object Persistence with ODB

14.3 Value Type Pragmas

Specifier Summary Section

type database type for a value type 14.3.1

id_type
database type for a value type when used as
an object id

14.3.2

null /not_null type can/cannot be NULL 14.3.3

default default value for a value type 14.3.4

options database options for a value type 14.3.5

readonly composite value type is read-only 14.3.6

definition
definition location for a composite value
type

14.3.7

transient
all non-virtual data members in a composite
value are transient

14.3.8

unordered
ordered container should be stored
unordered

14.3.9

index_type database type for a container’s index type 14.3.10

key_type database type for a container’s key type 14.3.11

value_type database type for a container’s value type 14.3.12

value_null /value_not_null container’s value can/cannot be NULL 14.3.13

id_options database options for a container’s id column14.3.14

index_options
database options for a container’s index
column

14.3.15

key_options
database options for a container’s key
column

14.3.16

value_options
database options for a container’s value
column

14.3.17

id_column column name for a container’s object id 14.3.18

index_column column name for a container’s index 14.3.19

key_column column name for a container’s key 14.3.20

value_column column name for a container’s value 14.3.21

Many of the value type specifiers have corresponding member type specifiers with the same
names (Section 14.4, "Data Member Pragmas"). The behavior of such specifiers for members
is similar to that for value types. The only difference is the scope. A particular value type

Revision 2.4, February 2015232 C++ Object Persistence with ODB

14.3 Value Type Pragmas

specifier applies to all the members of this value type that don’t have a pre-member version of
the specifier, while the member specifier always applies only to a single member. Also, with a
few exceptions, member specifiers take precedence over and override parameters specified
with value specifiers.

14.3.1 type

The type specifier specifies the native database type that should be used for data members of
this type. For example:

#pragma db value(bool) type("INT")

#pragma db object
class person
{
 ...

 bool married_; // Mapped to INT NOT NULL database type.
};

The ODB compiler provides the default mapping between common C++ types, such as bool ,
int , and std::string and the database types for each supported database system. For
more information on the default mapping, refer to Part II, "Database Systems". The null and
not_null (Section 14.3.3, "null /not_null ") specifiers can be used to control the NULL
semantics of a type.

In the above example we changed the mapping for the bool type which is now mapped to the
INT database type. In this case, the value pragma is all that is necessary since the ODB
compiler will be able to figure out how to store a boolean value as an integer in the database.
However, there could be situations where the ODB compiler will not know how to handle the
conversion between the C++ and database representations of a value. Consider, as an
example, a situation where the boolean value is stored in the database as a string:

#pragma db value(bool) type("VARCHAR(5)")

The possible database values for the C++ true value could be "true" , or "TRUE" , or
"True" . Or, maybe, all of the above could be valid. The ODB compiler has no way of
knowing how your application wants to convert bool to a string and back. To support such
custom value type mappings, ODB allows you to provide your own database conversion func-
tions by specializing the value_traits class template. The mapping example in the
odb-examples package shows how to do this for all the supported database systems.

14.3.2 id_type

The id_type specifier specifies the native database type that should be used for data
members of this type that are designated as object identifiers (Section 14.4.1, "id "). In
combination with the type specifier (Section 14.3.1, "type ") id_type allows you to map
a C++ type differently depending on whether it is used in an ordinary member or an object id.
For example:

233Revision 2.4, February 2015 C++ Object Persistence with ODB

14.3.1 type

#pragma db value(std::string) type("TEXT") id_type("VARCHAR(128)")

#pragma db object
class person
{
 ...

 #pragma db id
 std::string email_; // Mapped to VARCHAR(128) NOT NULL.

 std::string name_; // Mapped to TEXT NOT NULL.
};

Note that there is no corresponding member type specifier for id_type since the desired
result can be achieved with just the type specifier, for example:

#pragma db object
class person
{
 ...

 #pragma db id type("VARCHAR(128)")
 std::string email_;
};

14.3.3 null /not_null

The null and not_null specifiers specify that a value type or object pointer can or cannot
be NULL, respectively. By default, value types are assumed not to allow NULL values while
object pointers are assumed to allow NULL values. Data members of types that allow NULL
values are mapped in a relational database to columns that allow NULL values. For example:

using std::tr1::shared_ptr;

typedef shared_ptr<std::string> string_ptr;
#pragma db value(string_ptr) type("TEXT") null

#pragma db object
class person
{
 ...

 string_ptr name_; // Mapped to TEXT NULL.
};

typedef shared_ptr<person> person_ptr;
#pragma db value(person_ptr) not_null

The NULL semantics can also be specified on the per-member basis (Section 14.4.6,
"null /not_null "). If both a type and a member have null /not_null specifiers, then
the member specifier takes precedence. If a member specifier relaxes the NULL semantics
(that is, if a member has the null specifier and the type has the explicit not_null speci-
fier), then a warning is issued.

Revision 2.4, February 2015234 C++ Object Persistence with ODB

14.3.3 null/not_null

It is also possible to override a previously specified null /not_null specifier. This is
primarily useful if a third-party type, for example, one provided by a profile library (Part III,
"Profiles"), allows NULL values but in your object model data members of this type should
never be NULL. In this case you can use the not_null specifier to disable NULL values for
this type for the entire translation unit. For example:

// By default, null_string allows NULL values.
//
#include <null-string.hxx>

// Disable NULL values for all the null_string data members.
//
#pragma db value(null_string) not_null

For a more detailed discussion of the NULL semantics for values, refer to Section 7.3, "Point-
ers and NULL Value Semantics". For a more detailed discussion of the NULL semantics for
object pointers, refer to Chapter 6, "Relationships".

14.3.4 default

The default specifier specifies the database default value that should be used for data
members of this type. For example:

#pragma db value(std::string) default("")

#pragma db object
class person
{
 ...

 std::string name_; // Mapped to TEXT NOT NULL DEFAULT ’’.
};

The semantics of the default specifier for a value type are similar to those of the
default specifier for a data member (Section 14.4.7, "default ").

14.3.5 options

The options specifier specifies additional column definition options that should be used for
data members of this type. For example:

#pragma db value(std::string) options("COLLATE binary")

#pragma db object
class person
{
 ...

 std::string name_; // Mapped to TEXT NOT NULL COLLATE binary.
};

235Revision 2.4, February 2015 C++ Object Persistence with ODB

14.3.4 default

The semantics of the options specifier for a value type are similar to those of the
options specifier for a data member (Section 14.4.8, "options ").

14.3.6 readonly

The readonly specifier specifies that the composite value type is read-only. Changes to
data members of a read-only composite value type are ignored when updating the database
state of an object (Section 3.10, "Updating Persistent Objects") containing such a value type.
Note that this specifier is only valid for composite value types. For example:

#pragma db value readonly
class person_name
{
 ...
};

Read-only and read-write composite values can derive from each other without any restric-
tions. When a read-only value derives from a read-write value, the resulting whole value is
read-only, including the part corresponding to the read-write base. On the other hand, when a
read-write value derives from a read-only value, all the data members that correspond to the
read-only base are treated as read-only while the rest is treated as read-write.

Note that it is also possible to declare individual data members (Section 14.4.12, "read-
only ") as well as whole objects (Section 14.1.4, "readonly ") as read-only.

14.3.7 definition

The definition specifier specifies an alternative definition location for the composite
value type. By default, the ODB compiler generates the database support code for a composite
value type when we compile the header file that defines this value type. However, if the
definition specifier is used, then the ODB compiler will instead generate the database
support code when we compile the header file containing this pragma.

This mechanism is primarily useful for converting third-party types to ODB composite value
types. In such cases we normally cannot modify the header files to add the necessary pragmas.
It is also often inconvenient to compile these header files with the ODB compiler. With the
definition specifier we can create a wrapper header that contains the necessary pragmas
and instructs the ODB compiler to generate the database support code for a third-party type
when we compile the wrapper header. As an example, consider struct timeval that is
defined in the <sys/time.h> system header. This type has the following (or similar) defi-
nition:

struct timeval
{
 long tv_sec;
 long tv_usec;
};

Revision 2.4, February 2015236 C++ Object Persistence with ODB

14.3.6 readonly

If we would like to make this type an ODB composite value type, then we can create a
wrapper header, for example time-mapping.hxx , with the following content:

#ifndef TIME_MAPPING_HXX
#define TIME_MAPPING_HXX

#include <sys/time.h>

#pragma db value(timeval) definition
#pragma db member(timeval::tv_sec) column("sec")
#pragma db member(timeval::tv_usec) column("usec")

#endif // TIME_MAPPING_HXX

If we now compile this header with the ODB compiler, the resulting
time-mapping-odb.?xx files will contain the database support code for struct
timeval . To use timeval in our persistent classes, we simply include the
time-mapping.hxx header:

#include <sys/time.h>
#include "time-mapping.hxx"

#pragma db object
class object
{
 timeval timestamp;
};

14.3.8 transient

The transient specifier instructs the ODB compiler to treat all non-virtual data members
in the composite value type as transient (Section 14.4.1, "transient "). This specifier is
primarily useful when declaring virtual data members, as discussed in Section 14.4.13,
"virtual ".

14.3.9 unordered

The unordered specifier specifies that the ordered container should be stored unordered in
the database. The database table for such a container will not contain the index column and
the order in which elements are retrieved from the database may not be the same as the order
in which they were stored. For example:

typedef std::vector<std::string> names;
#pragma db value(names) unordered

For a more detailed discussion of ordered containers and their storage in the database, refer to
Section 5.1, "Ordered Containers".

237Revision 2.4, February 2015 C++ Object Persistence with ODB

14.3.8 transient

14.3.10 index_type

The index_type specifier specifies the native database type that should be used for the
ordered container’s index column. The semantics of index_type are similar to those of the
type specifier (Section 14.3.1, "type "). The native database type is expected to be an
integer type. For example:

typedef std::vector<std::string> names;
#pragma db value(names) index_type("SMALLINT UNSIGNED")

14.3.11 key_type

The key_type specifier specifies the native database type that should be used for the map
container’s key column. The semantics of key_type are similar to those of the type speci-
fier (Section 14.3.1, "type "). For example:

typedef std::map<unsigned short, float> age_weight_map;
#pragma db value(age_weight_map) key_type("INT UNSIGNED")

14.3.12 value_type

The value_type specifier specifies the native database type that should be used for the
container’s value column. The semantics of value_type are similar to those of the type
specifier (Section 14.3.1, "type "). For example:

typedef std::vector<std::string> names;
#pragma db value(names) value_type("VARCHAR(255)")

The value_null and value_not_null (Section 14.3.13,
"value_null /value_not_null ") specifiers can be used to control the NULL semantics
of a value column.

14.3.13 value_null /value_not_null

The value_null and value_not_null specifiers specify that the container type’s
element value can or cannot be NULL, respectively. The semantics of value_null and
value_not_null are similar to those of the null and not_null specifiers (Section
14.3.3, "null /not_null "). For example:

using std::tr1::shared_ptr;

#pragma db object
class account
{
 ...
};

typedef std::vector<shared_ptr<account> > accounts;
#pragma db value(accounts) value_not_null

Revision 2.4, February 2015238 C++ Object Persistence with ODB

14.3.10 index_type

For set and multiset containers (Section 5.2, "Set and Multiset Containers") the element value
is automatically treated as not allowing a NULL value.

14.3.14 id_options

The id_options specifier specifies additional column definition options that should be
used for the container’s id column. For example:

typedef std::vector<std::string> nicknames;
#pragma db value(nicknames) id_options("COLLATE binary")

The semantics of the id_options specifier for a container type are similar to those of the
id_options specifier for a container data member (Section 14.4.29, "id_options ").

14.3.15 index_options

The index_options specifier specifies additional column definition options that should be
used for the container’s index column. For example:

typedef std::vector<std::string> nicknames;
#pragma db value(nicknames) index_options("ZEROFILL")

The semantics of the index_options specifier for a container type are similar to those of
the index_options specifier for a container data member (Section 14.4.30,
"index_options ").

14.3.16 key_options

The key_options specifier specifies additional column definition options that should be
used for the container’s key column. For example:

typedef std::map<std::string, std::string> properties;
#pragma db value(properties) key_options("COLLATE binary")

The semantics of the key_options specifier for a container type are similar to those of the
key_options specifier for a container data member (Section 14.4.31, "key_options ").

14.3.17 value_options

The value_options specifier specifies additional column definition options that should be
used for the container’s value column. For example:

typedef std::set<std::string> nicknames;
#pragma db value(nicknames) value_options("COLLATE binary")

The semantics of the value_options specifier for a container type are similar to those of
the value_options specifier for a container data member (Section 14.4.32,
"value_options ").

239Revision 2.4, February 2015 C++ Object Persistence with ODB

14.3.14 id_options

14.3.18 id_column

The id_column specifier specifies the column name that should be used to store the object
id in the container’s table. For example:

typedef std::vector<std::string> names;
#pragma db value(names) id_column("id")

If the column name is not specified, then object_id is used by default.

14.3.19 index_column

The index_column specifier specifies the column name that should be used to store the
element index in the ordered container’s table. For example:

typedef std::vector<std::string> names;
#pragma db value(names) index_column("name_number")

If the column name is not specified, then index is used by default.

14.3.20 key_column

The key_column specifier specifies the column name that should be used to store the key in
the map container’s table. For example:

typedef std::map<unsigned short, float> age_weight_map;
#pragma db value(age_weight_map) key_column("age")

If the column name is not specified, then key is used by default.

14.3.21 value_column

The value_column specifier specifies the column name that should be used to store the
element value in the container’s table. For example:

typedef std::map<unsigned short, float> age_weight_map;
#pragma db value(age_weight_map) value_column("weight")

If the column name is not specified, then value is used by default.

14.4 Data Member Pragmas

A pragma with the member qualifier or a positioned pragma without a qualifier describes a
data member. It can be optionally followed, in any order, by one or more specifiers summa-
rized in the table below:

Specifier Summary Section

id member is an object id 14.4.1

Revision 2.4, February 2015240 C++ Object Persistence with ODB

14.4 Data Member Pragmas

auto id is assigned by the database 14.4.2

type database type for a member 14.4.3

id_type
database type for a member when used as an
object id

14.4.4

get /set /access member accessor/modifier expressions 14.4.5

null /not_null member can/cannot be NULL 14.4.6

default default value for a member 14.4.7

options database options for a member 14.4.8

column
column name for a member of an object or
composite value

14.4.9

column column name for a member of a view 14.4.10

transient member is not stored in the database 14.4.11

readonly member is read-only 14.4.12

virtual declare a virtual data member 14.4.13

inverse
member is an inverse side of a bidirectional
relationship

14.4.14

on_delete
ON DELETE clause for object pointer
member

14.4.15

version member stores object version 14.4.16

index define database index for a member 14.4.17

unique define unique database index for a member14.4.18

unordered
ordered container should be stored
unordered

14.4.19

table table name for a container 14.4.20

load /update loading/updating behavior for a section 14.4.21

section member belongs to a section 14.4.22

added member is soft-added 14.4.23

deleted member is soft-deleted 14.4.24

index_type database type for a container’s index type 14.4.25

key_type database type for a container’s key type 14.4.26

value_type database type for a container’s value type 14.4.27

241Revision 2.4, February 2015 C++ Object Persistence with ODB

14.4 Data Member Pragmas

value_null /value_not_null container’s value can/cannot be NULL 14.4.28

id_options database options for a container’s id column14.4.29

index_options
database options for a container’s index
column

14.4.30

key_options
database options for a container’s key
column

14.4.31

value_options
database options for a container’s value
column

14.4.32

id_column column name for a container’s object id 14.4.33

index_column column name for a container’s index 14.4.34

key_column column name for a container’s key 14.4.35

value_column column name for a container’s value 14.4.36

Many of the member specifiers have corresponding value type specifiers with the same names
(Section 14.3, "Value Type Pragmas"). The behavior of such specifiers for members is similar
to that for value types. The only difference is the scope. A particular value type specifier
applies to all the members of this value type that don’t have a pre-member version of the
specifier, while the member specifier always applies only to a single member. Also, with a
few exceptions, member specifiers take precedence over and override parameters specified
with value specifiers.

14.4.1 id

The id specifier specifies that the data member contains the object id. In a relational
database, an identifier member is mapped to a primary key. For example:

#pragma db object
class person
{
 ...

 #pragma db id
 std::string email_;
};

Normally, every persistent class has a data member designated as an object’s identifier.
However, it is possible to declare a persistent class without an id using the object no_id
specifier (Section 14.1.6, "no_id ").

Note also that the id specifier cannot be used for data members of composite value types or
views.

Revision 2.4, February 2015242 C++ Object Persistence with ODB

14.4.1 id

14.4.2 auto

The auto specifier specifies that the object’s identifier is automatically assigned by the
database. Only a member that was designated as an object id can have this specifier. For
example:

#pragma db object
class person
{
 ...

 #pragma db id auto
 unsigned long id_;
};

Note that automatically-assigned object ids are not reused. If you have a high object turnover
(that is, objects are routinely made persistent and then erased), then care must be taken not to
run out of object ids. In such situations, using unsigned long long as the identifier type
is a safe choice.

For additional information on the automatic identifier assignment, refer to Section 3.8,
"Making Objects Persistent".

Note also that the auto specifier cannot be specified for data members of composite value
types or views.

14.4.3 type

The type specifier specifies the native database type that should be used for the data
member. For example:

#pragma db object
class person
{
 ...

 #pragma db type("INT")
 bool married_;
};

The null and not_null (Section 14.4.6, "null /not_null ") specifiers can be used to
control the NULL semantics of a data member. It is also possible to specify the database type
on the per-type instead of the per-member basis using the value type specifier (Section
14.3.1, "type ").

243Revision 2.4, February 2015 C++ Object Persistence with ODB

14.4.2 auto

14.4.4 id_type

The id_type specifier specifies the native database type that should be used for the data
member when it is part of an object identifier. This specifier only makes sense when applied
to a member of a composite value type that is used for both id and non-id members. For
example:

#pragma db value
class name
{
 ...

 #pragma db type("VARCHAR(256)") id_type("VARCHAR(64)")
 std::string first_;

 #pragma db type("VARCHAR(256)") id_type("VARCHAR(64)")
 std::string last_;
};

#pragma db object
class person
{
 ...

 #pragma db id
 name name_; // name_.first_, name_.last_ mapped to VARCHAR(64)

 name alias_; // alias_.first_, alias_.last_ mapped to VARCHAR(256)
};

14.4.5 get /set /access

The get and set specifiers specify the data member accessor and modifier expressions,
respectively. If provided, the generated database support code will use these expressions to
access and modify the data member when performing database operations. The access
specifier can be used as a shortcut to specify both the accessor and modifier if they happen to
be the same.

In its simplest form the accessor or modifier expression can be just a name. Such a name
should resolve either to another data member of the same type or to a suitable accessor or
modifier member function. For example:

#pragma db object
class person
{
 ...

public:
 const std::string& name () const;
 void name (const std::string&);

Revision 2.4, February 2015244 C++ Object Persistence with ODB

14.4.4 id_type

private:
 #pragma db access(name)
 std::string name_;
};

A suitable accessor function is a const member function that takes no arguments and whose
return value can be implicitly converted to the const reference to the member type
(const std::string& in the example above). An accessor function that returns a
const reference to the data member is called by-reference accessor. Otherwise, it is called
by-value accessor.

A suitable modifier function can be of two forms. It can be the so called by-reference modifier
which is a member function that takes no arguments and returns a non-const reference to
the data member (std::string& in the example above). Alternatively, it can be the so
called by-value modifier which is a member function taking a single argument — the new
value — that can be implicitly initialized from a variable of the member type
(std::string in the example above). The return value of a by-value modifier, if any, is
ignored. If both by-reference and by-value modifiers are available, then ODB prefers the
by-reference version since it is more efficient. For example:

#pragma db object
class person
{
 ...

public:
 std::string get_name () const; // By-value accessor.
 std::string& set_name (); // By-reference modifier.
 void set_name (std::string const&); // By-value modifier.
private:
 #pragma db get(get_name) \ // Uses by-value accessor.
 set(set_name) // Uses by-reference modifier.
 std::string name_;
};

Note that in many cases it is not necessary to specify accessor and modifier functions explic-
itly since the ODB compiler will try to discover them automatically in case the data member
will be inaccessible to the generated code. In particular, in both of the above examples the
ODB compiler would have successfully discovered the necessary functions. For more infor-
mation on this functionality, refer to Section 3.2, "Declaring Persistent Objects and Values".

Note also that by-value accessors and by-value modifiers cannot be used for certain data
members in certain situations. These limitations are discussed in more detail later in this
section.

Accessor and modifier expressions can be more elaborate than simple names. An accessor
expression is any C++ expression that can be used to initialize a const reference to the
member type. Similar to accessor functions, which are just a special case of accessor expres-
sions, an accessor expression that evaluates to a const reference to the data member is called
by-reference accessor expression. Otherwise, it is called by-value accessor expression.

245Revision 2.4, February 2015 C++ Object Persistence with ODB

14.4.5 get/set/access

Modifier expressions can also be of two forms: by-reference modifier expression and by-value
modifier expression (again, modifier functions are just a special case of modifier expressions).
A by-reference modifier expression is any C++ expression that evaluates to the non-const
reference to the member type. A by-value modifier expression can be a single or multiple
(separated by semicolon) C++ statements with the effect of setting the new member value.

There are two special placeholders that are recognized by the ODB compiler in accessor and
modifier expressions. The first is the this keyword which denotes a reference (note: not a
pointer) to the persistent object. In accessor expressions this reference is const while in
modifier expressions it is non-const . If an expression does not contain the this place-
holder, then the ODB compiler automatically prefixes it with this. sequence.

The second placeholder, the (?) sequence, is used to denote the new value in by-value modi-
fier expressions. The ODB compiler replaces the question mark with the variable name,
keeping the surrounding parenthesis. The following example shows a few more interesting
accessor and modifier expressions:

#pragma db value
struct point
{
 point (int, int);

 int x;
 int y;
};

#pragma db object
class person
{
 ...

 public:
 const char* name () const;
 void name (const char*);
 private:
 #pragma db get(std::string (this.name ())) \
 set(name ((?).c_str ())) // The same as this.name (...).
 std::string name_;

 public:
 const std::unique_ptr<account>& acc () const;
 void acc (std::unique_ptr<account>);
 private:
 #pragma db set(acc (std::move (?)))
 std::unique_ptr<account> acc_;

 public:
 int loc_x () const
 int loc_y () const
 void loc_x (int);
 void loc_y (int);
 private:

Revision 2.4, February 2015246 C++ Object Persistence with ODB

14.4.5 get/set/access

 #pragma db get(point (this.loc_x (), this.loc_y ())) \
 set(this.loc_x ((?).x); this.loc_y ((?).y))
 point loc_;
};

When the data member is of an array type, then the terms "reference" and "member type" in
the above discussion should be replaced with "pointer" and "array element type", respectively.
That is, the accessor expression for an array member is any C++ expression that can be used
to initialize a const pointer to the array element type, and so on. The following example
shows common accessor and modifier signatures for array members:

#pragma db object
class person
{
 ...

 public:
 const char* id () const; // By-reference accessor.
 void id (const char*); // By-value modifier.
 private:
 char id_[16];

 public:
 const char* pub_key () const; // By-reference accessor.
 char* pub_key (); // By-reference modifier.
 private:
 char pub_key_[2048];
};

Accessor and modifier expressions can be used with data members of simple value, composite
value, container, and object pointer types. They can be used for data members in persistent
classes, composite value types, and views. There is also a mechanism related to accessors and
modifiers called virtual data members and which is discussed in Section 14.4.13,
"virtual ".

There are, however, certain limitations when it comes to using by-value accessor and modifier
expressions. First of all, if a by-value modifier is used, then the data member type should be
default-constructible. Furthermore, a composite value type that has a container member
cannot be modified with a by-value modifier. Only a by-reference modifier expression can be
used. The ODB compiler will detect such cases and issue diagnostics. For example:

#pragma db value
struct name
{
 std::string first_;
 std::string last_;
 std::vector<std::string> aliases_;
};

#pragma db object
class person
{
 ...

247Revision 2.4, February 2015 C++ Object Persistence with ODB

14.4.5 get/set/access

public:
 const name& name () const;
 void name (const name&);
private:
 #pragma db access(name) // Error: by-value modifier.
 name name_;
};

In certain database systems it is also not possible to use by-value accessor and modifier
expression with certain database types. The ODB compiler is only able to detect such cases
and issue diagnostics if you specified accessor/modifier function names as opposed to custom
expressions. For more information on these database and type-specific limitations, refer to the
"Limitations" sections in Part II, "Database Systems".

14.4.6 null /not_null

The null and not_null specifiers specify that the data member can or cannot be NULL,
respectively. By default, data members of basic value types for which database mapping is
provided by the ODB compiler do not allow NULL values while data members of object
pointers allow NULL values. Other value types, such as those provided by the profile libraries
(Part III, "Profiles"), may or may not allow NULL values, depending on the semantics of each
value type. Consult the relevant documentation to find out more about the NULL semantics for
such value types. A data member containing the object id (Section 14.4.1, "id ") is automati-
cally treated as not allowing a NULL value. Data members that allow NULL values are
mapped in a relational database to columns that allow NULL values. For example:

using std::tr1::shared_ptr;

#pragma db object
class person
{
 ...

 #pragma db null
 std::string name_;
};

#pragma db object
class account
{
 ...

 #pragma db not_null
 shared_ptr<person> holder_;
};

The NULL semantics can also be specified on the per-type basis (Section 14.3.3,
"null /not_null "). If both a type and a member have null /not_null specifiers, then
the member specifier takes precedence. If a member specifier relaxes the NULL semantics
(that is, if a member has the null specifier and the type has the explicit not_null speci-

Revision 2.4, February 2015248 C++ Object Persistence with ODB

14.4.6 null/not_null

fier), then a warning is issued.

For a more detailed discussion of the NULL semantics for values, refer to Section 7.3, "Point-
ers and NULL Value Semantics". For a more detailed discussion of the NULL semantics for
object pointers, refer to Chapter 6, "Relationships".

14.4.7 default

The default specifier specifies the database default value that should be used for the data
member. For example:

#pragma db object
class person
{
 ...

 #pragma db default(-1)
 int age_; // Mapped to INT NOT NULL DEFAULT -1.
};

A default value can be the special null keyword, a bool literal (true or false), an
integer literal, a floating point literal, a string literal, or an enumerator name. If you need to
specify a default value that is an expression, for example an SQL function call, then you can
use the options specifier (Section 14.4.8, "options ") instead. For example:

enum gender {male, female, undisclosed};

#pragma db object
class person
{
 ...

 #pragma db default(null)
 odb::nullable<std::string> middle_; // DEFAULT NULL

 #pragma db default(false)
 bool married_; // DEFAULT 0/FALSE

 #pragma db default(0.0)
 float weight_; // DEFAULT 0.0

 #pragma db default("Mr")
 string title_; // DEFAULT ’Mr’

 #pragma db default(undisclosed)
 gender gender_; // DEFAULT 2/’undisclosed’

 #pragma db options("DEFAULT CURRENT_TIMESTAMP()")
 date timestamp_; // DEFAULT CURRENT_TIMESTAMP()
};

249Revision 2.4, February 2015 C++ Object Persistence with ODB

14.4.7 default

Default values specified as enumerators are only supported for members that are mapped to an
ENUM or an integer type in the database, which is the case for the automatic mapping of C++
enums and enum classes to suitable database types as performed by the ODB compiler. If you
have mapped a C++ enum or enum class to another database type, then you should use a
literal corresponding to that type to specify the default value. For example:

enum gender {male, female, undisclosed};
#pragma db value(gender) type("VARCHAR(11)")

#pragma db object
class person
{
 ...

 #pragma db default("undisclosed")
 gender gender_; // DEFAULT ’undisclosed’
};

A default value can also be specified on the per-type basis (Section 14.3.4, "default "). An
empty default specifier can be used to reset a default value that was previously specified
on the per-type basis. For example:

#pragma db value(std::string) default("")

#pragma db object
class person
{
 ...

 #pragma db default()
 std::string name_; // No default value.
};

A data member containing the object id (Section 14.4.1, "id ") is automatically treated as not
having a default value even if its type specifies a default value.

Note also that default values do not affect the generated C++ code in any way. In particular,
no automatic initialization of data members with their default values is performed at any
point. If you need such an initialization, you will need to implement it yourself, for example,
in your persistent class constructors. The default values only affect the generated database
schemas and, in the context of ODB, are primarily useful for schema evolution.

Additionally, the default specifier cannot be specified for view data members.

14.4.8 options

The options specifier specifies additional column definition options that should be used for
the data member. For example:

Revision 2.4, February 2015250 C++ Object Persistence with ODB

14.4.8 options

#pragma db object
class person
{
 ...

 #pragma db options("CHECK(email != ’’)")
 std::string email_; // Mapped to TEXT NOT NULL CHECK(email != ’’).
};

Options can also be specified on the per-type basis (Section 14.3.5, "options "). By default,
options are accumulating. That is, the ODB compiler first adds all the options specified for a
value type followed by all the options specified for a data member. To clear the accumulated
options at any point in this sequence you can use an empty options specifier. For example:

#pragma db value(std::string) options("COLLATE binary")

#pragma db object
class person
{
 ...

 std::string first_; // TEXT NOT NULL COLLATE binary

 #pragma db options("CHECK(email != ’’)")
 std::string last_; // TEXT NOT NULL COLLATE binary CHECK(email != ’’)

 #pragma db options()
 std::string title_; // TEXT NOT NULL

 #pragma db options() options("CHECK(email != ’’)")
 std::string email_; // TEXT NOT NULL CHECK(email != ’’)
};

ODB provides dedicated specifiers for specifying column types (Section 14.4.3, "type "),
NULL constraints (Section 14.4.6, "null /not_null "), and default values (Section 14.4.7,
"default "). For ODB to function correctly these specifiers should always be used instead of
the opaque options specifier for these components of a column definition.

Note also that the options specifier cannot be specified for view data members.

14.4.9 column (object, composite value)

The column specifier specifies the column name that should be used to store the data
member of a persistent class or composite value type in a relational database. For example:

#pragma db object
class person
{
 ...

 #pragma db id column("person_id")
 unsigned long id_;
};

251Revision 2.4, February 2015 C++ Object Persistence with ODB

14.4.9 column (object, composite value)

For a member of a composite value type, the column specifier specifies the column name
prefix. Refer to Section 7.2.2, "Composite Value Column and Table Names" for details.

If the column name is not specified, it is derived from the member’s so-called public name. A
public member name is obtained by removing the common data member name decorations,
such as leading and trailing underscores, the m_ prefix, etc.

14.4.10 column (view)

The column specifier can be used to specify the associated object data member, the poten-
tially qualified column name, or the column expression for the data member of a view class.
For more information, refer to Section 10.1, "Object Views" and Section 10.3, "Table Views".

14.4.11 transient

The transient specifier instructs the ODB compiler not to store the data member in the
database. For example:

#pragma db object
class person
{
 ...

 date born_;

 #pragma db transient
 unsigned short age_; // Computed from born_.
};

This pragma is usually used on computed members, pointers and references that are only
meaningful in the application’s memory, as well as utility members such as mutexes, etc.

14.4.12 readonly

The readonly specifier specifies that the data member of an object or composite value type
is read-only. Changes to a read-only data member are ignored when updating the database
state of an object (Section 3.10, "Updating Persistent Objects") containing such a member.
Since views are read-only, it is not necessary to use this specifier for view data members.
Object id (Section 14.4.1, "id ") and inverse (Section 14.4.14, "inverse ") data members are
automatically treated as read-only and must not be explicitly declared as such. For example:

#pragma db object
class person
{
 ...

 #pragma db readonly
 date born_;
};

Revision 2.4, February 2015252 C++ Object Persistence with ODB

14.4.10 column (view)

Besides simple value members, object pointer, container, and composite value members can
also be declared read-only. A change of a pointed-to object is ignored when updating the state
of a read-only object pointer. Similarly, any changes to the number or order of elements or to
the element values themselves are ignored when updating the state of a read-only container.
Finally, any changes to the members of a read-only composite value type are also ignored
when updating the state of such a composite value.

ODB automatically treats const data members as read-only. For example, the following
person object is equivalent to the above declaration for the database persistence purposes:

#pragma db object
class person
{
 ...

 const date born_; // Automatically read-only.
};

When declaring an object pointer const , make sure to declare the pointer as const rather
than (or in addition to) the object itself. For example:

#pragma db object
class person
{
 ...

 const person* father_; // Read-write pointer to a read-only object.
 person* const mother_; // Read-only pointer to a read-write object.
};

Note that in case of a wrapper type (Section 7.3, "Pointers and NULL Value Semantics"), both
the wrapper and the wrapped type must be const in order for the ODB compiler to automati-
cally treat the data member as read-only. For example:

#pragma db object
class person
{
 ...

 const std::auto_ptr<const date> born_;
};

Read-only members are useful when dealing with asynchronous changes to the state of a data
member in the database which should not be overwritten. In other cases, where the state of a
data member never changes, declaring such a member read-only allows ODB to perform more
efficient object updates. In such cases, however, it is conceptually more correct to declare
such a data member as const rather than as read-only.

Note that it is also possible to declare composite value types (Section 14.3.6, "readonly ")
as well as whole objects (Section 14.1.4, "readonly ") as read-only.

253Revision 2.4, February 2015 C++ Object Persistence with ODB

14.4.12 readonly

14.4.13 virtual

The virtual specifier is used to declare a virtual data member in an object, view, or
composite value type. A virtual data member is an imaginary data member that is only used
for the purpose of database persistence. A virtual data member does not actually exist (that is,
occupy space) in the C++ class. Note also that virtual data members have nothing to do with
C++ virtual functions or virtual inheritance. Specifically, no virtual function call overhead is
incurred when using virtual data members.

To declare a virtual data member we must specify the data member name using the member
specifier. We must also specify the data member type with the virtual specifier. Finally,
the virtual data member declaration must also specify the accessor and modifier expressions,
unless suitable accessor and modifier functions can automatically be found by the ODB
compiler (Section 14.4.5, "get /set /access "). For example:

#pragma db object
class person
{
 ...

 // Transient real data member that actually stores the data.
 //
 #pragma db transient
 std::string name_;

 // Virtual data member.
 //
 #pragma db member(name) virtual(std::string) access(name_)
};

From the pragma language point of view, a virtual data member behaves exactly like a normal
data member. Specifically, we can reference the virtual data member after it has been declared
and use positioned pragmas before its declaration. For example:

#pragma db object
class person
{
 ...

 #pragma db transient
 std::string name_;

 #pragma db access(name_)
 #pragma db member(name) virtual(std::string)
};

#pragma db member(person::name) column("person_name")
#pragma db index member(person::name)

Revision 2.4, February 2015254 C++ Object Persistence with ODB

14.4.13 virtual

We can also declare a virtual data member outside the class scope:

#pragma db object
class person
{
 ...

 std::string name_;
};

#pragma db member(person::name_) transient
#pragma db member(person::name) virtual(std::string) access(name_)

While in the above examples using virtual data members doesn’t seem to yield any benefits,
this mechanism can be useful in a number of situations. As one example, consider the need to
aggregate or dis-aggregate a data member:

#pragma db object
class person
{
 ...

 #pragma db transient
 std::pair<std::string, std::string> name_;

 #pragma db member(first) virtual(std::string) access(name_.first)
 #pragma db member(last) virtual(std::string) access(name_.second)
};

We can also use virtual data members to implement composite object ids that are spread over
multiple data members:

#pragma db value
struct name
{
 name () {}
 name (std::string const& f, std::string const& l)
 : first (f), last(l) {}

 std::string first;
 std::string last;
};

#pragma db object
class person
{
 ...

 #pragma db transient
 std::string first_;

 #pragma db transient
 std::string last_;

255Revision 2.4, February 2015 C++ Object Persistence with ODB

14.4.13 virtual

 #pragma db member(name) virtual(name) id \
 get(::name (this.first_, this.last_)) \
 set(this.first_ = (?).first; this.last_ = (?).last)
};

Another common situation that calls for virtual data members is a class that uses the pimpl
idiom. While the following code fragment outlines the idea, for details refer to the pimpl
example in the odb-examples package.

#pragma db object
class person
{
public:
 std::string const& name () const;
 void name (std::string const&);

 unsigned short age () const;
 void age (unsigned short);

 ...

private:
 class impl;

 #pragma db transient
 impl* pimpl_;

 #pragma db member(name) virtual(std::string) // Uses name().
 #pragma db member(age) virtual(unsigned short) // Uses age().
};

The above example also shows that names used for virtual data members (name and age in
our case) can be the same as the names of accessor/modifier functions. The only names that
virtual data members cannot clash with are those of other data members, virtual or real.

A common pattern in the above examples is the need to declare the real data member that
actually stores the data as transient. If all the real data members in a class are treated as tran-
sient, then we can use the class-level transient specifier (Section 14.1.12, "transient
(object)", Section 14.3.8, "transient (composite value)", Section 14.2.7, "transient
(view)") instead of doing it for each individual member. For example:

#pragma db object transient
class person
{
 ...

 std::string first_; // Transient.
 std::string last_; // Transient.

 #pragma db member(name) virtual(name) ...
};

Revision 2.4, February 2015256 C++ Object Persistence with ODB

14.4.13 virtual

The ability to treat all the real data members as transient becomes more important if we don’t
know the names of these data members. This is often the case when we are working with
third-party types that document the accessor and modifier functions but not the names of their
private data members. As an example, consider the point class defined in a third-party
<point> header file:

class point
{
public:
 point ();
 point (int x, int y);

 int x () const;
 int y () const;

 void x (int);
 void y (int);

private:
 ...
};

To convert this class to an ODB composite value type we could create the
point-mapping.hxx file with the following content:

#include <point>

#pragma db value(point) transient definition
#pragma db member(point::x) virtual(int)
#pragma db member(point::y) virtual(int)

Virtual data members can be of simple value, composite value, container, or object pointer
types. They can be used in persistent classes, composite value types, and views.

14.4.14 inverse

The inverse specifier specifies that the data member of an object pointer or a container of
object pointers type is an inverse side of a bidirectional object relationship. The single
required argument to this specifier is the corresponding data member name in the referenced
object. For example:

using std::tr1::shared_ptr;
using std::tr1::weak_ptr;

class person;

#pragma db object pointer(shared_ptr)
class employer
{
 ...

 std::vector<shared_ptr<person> > employees_;

257Revision 2.4, February 2015 C++ Object Persistence with ODB

14.4.14 inverse

};

#pragma db object pointer(shared_ptr)
class person
{
 ...

 #pragma db inverse(employee_)
 weak_ptr<employer> employer_;
};

An inverse member does not have a corresponding column or, in case of a container, table in
the resulting database schema. Instead, the column or table from the referenced object is used
to retrieve the relationship information. Only ordered and set containers can be used for
inverse members. If an inverse member is of an ordered container type, it is automatically
marked as unordered (Section 14.4.19, "unordered ").

For a more detailed discussion of inverse members, refer to Section 6.2, "Bidirectional Rela-
tionships".

14.4.15 on_delete

The on_delete specifier specifies the on-delete semantics for a data member of an object
pointer or a container of object pointers type. The single required argument to this specifier
must be either cascade or set_null .

The on_delete specifier is translated directly to the corresponding ON DELETE SQL
clause. That is, if cascade is specified, then when a pointed-to object is erased from the
database, the database state of the pointing object is automatically erased as well. If
set_null is specified, then when a pointed-to object is erased from the database, the
database state of the pointing object is automatically updated to set the pointer column to
NULL. For example:

#pragma db object
class employer
{
 ...

 #pragma db id auto
 unsigned long id_;
};

#pragma db object
class person
{
 ...

 #pragma db on_delete(cascade)
 employer* employer_;
};

unsigned long id;

Revision 2.4, February 2015258 C++ Object Persistence with ODB

14.4.15 on_delete

{
 employer e;
 person p;
 p.employer_ = &e;

 transaction t (db.begin ());

 id = db.persist (e);
 db.persist (p);

 t.commit ();
}

{
 transaction t (db.begin ());

 // Database state of the person object is erased as well.
 //
 db.erase<employer> (id);

 t.commit ();
}

Note that this is a database-level functionality and care must be taken in order not to end up
with inconsistent object states in the application’s memory and database. The following
example illustrates the kind of problems one may encounter:

#pragma db object
class employer
{
 ...
};

#pragma db object
class person
{
 ...

 #pragma db on_delete(set_null)
 employer* employer_;
};

employer e;
person p;
p.employer_ = &e;

{
 transaction t (db.begin ());
 db.persist (e);
 db.persist (p);
 t.commit ();
}

{

259Revision 2.4, February 2015 C++ Object Persistence with ODB

14.4.15 on_delete

 transaction t (db.begin ());

 // The employer column is set to NULL in the database but
 // not the p.employer_ data member in the application.
 //
 db.erase (e);
 t.commit ();
}

{
 transaction t (db.begin ());

 // Override the employer column with an invalid pointer.
 //
 db.update (p);

 t.commit ();
}

Note that even optimistic concurrency will not resolve such issues unless you are using
database-level support for optimistic concurrency as well (for example, ROWVERSION in
SQL Server).

The on_delete specifier is only valid for non-inverse object pointer data members. If the
set_null semantics is used, then the pointer must allow the NULL value.

14.4.16 version

The version specifier specifies that the data member stores the object version used to
support optimistic concurrency. If a class has a version data member, then it must also be
declared as having the optimistic concurrency model using the optimistic pragma
(Section 14.1.5, "optimistic "). For example:

#pragma db object optimistic
class person
{
 ...

 #pragma db version
 unsigned long version_;
};

A version member must be of an integral C++ type and must map to an integer or similar
database type. Note also that object versions are not reused. If you have a high update
frequency, then care must be taken not to run out of versions. In such situations, using
unsigned long long as the version type is a safe choice.

For a more detailed discussion of optimistic concurrency, refer to Chapter 12, "Optimistic
Concurrency".

Revision 2.4, February 2015260 C++ Object Persistence with ODB

14.4.16 version

14.4.17 index

The index specifier instructs the ODB compiler to define a database index for the data
member. For example:

#pragma db object
class person
{
 ...

 #pragma db index
 std::string name_;
};

For more information on defining database indexes, refer to Section 14.7, "Index Definition
Pragmas".

14.4.18 unique

The index specifier instructs the ODB compiler to define a unique database index for the
data member. For example:

#pragma db object
class person
{
 ...

 #pragma db unique
 std::string name_;
};

For more information on defining database indexes, refer to Section 14.7, "Index Definition
Pragmas".

14.4.19 unordered

The unordered specifier specifies that the member of an ordered container type should be
stored unordered in the database. The database table for such a member will not contain the
index column and the order in which elements are retrieved from the database may not be the
same as the order in which they were stored. For example:

#pragma db object
class person
{
 ...

 #pragma db unordered
 std::vector<std::string> nicknames_;
};

261Revision 2.4, February 2015 C++ Object Persistence with ODB

14.4.17 index

For a more detailed discussion of ordered containers and their storage in the database, refer to
Section 5.1, "Ordered Containers".

14.4.20 table

The table specifier specifies the table name that should be used to store the contents of the
container member. For example:

#pragma db object
class person
{
 ...

 #pragma db table("nicknames")
 std::vector<std::string> nicknames_;
};

If the table name is not specified, then the container table name is constructed by concatenat-
ing the object’s table name, underscore, and the public member name. The public member
name is obtained by removing the common member name decorations, such as leading and
trailing underscores, the m_ prefix, etc. In the example above, without the table specifier,
the container’s table name would have been person_nicknames .

The table specifier can also be used for members of composite value types. In this case it
specifies the table name prefix for container members inside the composite value type. Refer
to Section 7.2.2, "Composite Value Column and Table Names" for details.

The container table name can be qualified with a database schema, for example:

#pragma db object
class person
{
 ...

 #pragma db table("extras.nicknames")
 std::vector<std::string> nicknames_;
};

For more information on database schemas and the format of the qualified names, refer to
Section 14.1.8, "schema".

14.4.21 load /update

The load and update specifiers specify the loading and updating behavior for an object
section, respectively. Valid values for the load specifier are eager (default) and lazy .
Valid values for the update specifier are always (default), change , and manual . For
more information on object sections, refer to Chapter 9, "Sections".

Revision 2.4, February 2015262 C++ Object Persistence with ODB

14.4.20 table

14.4.22 section

The section specifier indicates that a data member of a persistent class belongs to an object
section. The single required argument to this specifier is the name of the section data member.
This specifier can only be used on direct data members of a persistent class. For more infor-
mation on object sections, refer to Chapter 9, "Sections".

14.4.23 added

The added specifier marks the data member as soft-added. The single required argument to
this specifier is the addition version. For more information on this functionality, refer to
Section 13.4, "Soft Object Model Changes".

14.4.24 deleted

The deleted specifier marks the data member as soft-deleted. The single required argument
to this specifier is the deletion version. For more information on this functionality, refer to
Section 13.4, "Soft Object Model Changes".

14.4.25 index_type

The index_type specifier specifies the native database type that should be used for an
ordered container’s index column of the data member. The semantics of index_type are
similar to those of the type specifier (Section 14.4.3, "type "). The native database type is
expected to be an integer type. For example:

#pragma db object
class person
{
 ...

 #pragma db index_type("SMALLINT UNSIGNED")
 std::vector<std::string> nicknames_;
};

14.4.26 key_type

The key_type specifier specifies the native database type that should be used for a map
container’s key column of the data member. The semantics of key_type are similar to those
of the type specifier (Section 14.4.3, "type "). For example:

#pragma db object
class person
{
 ...

 #pragma db key_type("INT UNSIGNED")
 std::map<unsigned short, float> age_weight_map_;
};

263Revision 2.4, February 2015 C++ Object Persistence with ODB

14.4.22 section

14.4.27 value_type

The value_type specifier specifies the native database type that should be used for a
container’s value column of the data member. The semantics of value_type are similar to
those of the type specifier (Section 14.4.3, "type "). For example:

#pragma db object
class person
{
 ...

 #pragma db value_type("VARCHAR(255)")
 std::vector<std::string> nicknames_;
};

The value_null and value_not_null (Section 14.4.28,
"value_null /value_not_null ") specifiers can be used to control the NULL semantics
of a value column.

14.4.28 value_null /value_not_null

The value_null and value_not_null specifiers specify that a container’s element
value for the data member can or cannot be NULL, respectively. The semantics of
value_null and value_not_null are similar to those of the null and not_null
specifiers (Section 14.4.6, "null /not_null "). For example:

using std::tr1::shared_ptr;

#pragma db object
class person
{
 ...
};

#pragma db object
class account
{
 ...

 #pragma db value_not_null
 std::vector<shared_ptr<person> > holders_;
};

For set and multiset containers (Section 5.2, "Set and Multiset Containers") the element value
is automatically treated as not allowing a NULL value.

Revision 2.4, February 2015264 C++ Object Persistence with ODB

14.4.27 value_type

14.4.29 id_options

The id_options specifier specifies additional column definition options that should be
used for a container’s id column of the data member. For example:

#pragma db object
class person
{
 ...

 #pragma db id options("COLLATE binary")
 std::string name_;

 #pragma db id_options("COLLATE binary")
 std::vector<std::string> nicknames_;
};

The semantics of id_options are similar to those of the options specifier (Section
14.4.8, "options ").

14.4.30 index_options

The index_options specifier specifies additional column definition options that should be
used for a container’s index column of the data member. For example:

#pragma db object
class person
{
 ...

 #pragma db index_options("ZEROFILL")
 std::vector<std::string> nicknames_;
};

The semantics of index_options are similar to those of the options specifier (Section
14.4.8, "options ").

14.4.31 key_options

The key_options specifier specifies additional column definition options that should be
used for a container’s key column of the data member. For example:

#pragma db object
class person
{
 ...

 #pragma db key_options("COLLATE binary")
 std::map<std::string, std::string> properties_;
};

265Revision 2.4, February 2015 C++ Object Persistence with ODB

14.4.29 id_options

The semantics of key_options are similar to those of the options specifier (Section
14.4.8, "options ").

14.4.32 value_options

The value_options specifier specifies additional column definition options that should be
used for a container’s value column of the data member. For example:

#pragma db object
class person
{
 ...

 #pragma db value_options("COLLATE binary")
 std::set<std::string> nicknames_;
};

The semantics of value_options are similar to those of the options specifier (Section
14.4.8, "options ").

14.4.33 id_column

The id_column specifier specifies the column name that should be used to store the object
id in a container’s table for the data member. The semantics of id_column are similar to
those of the column specifier (Section 14.4.9, "column "). For example:

#pragma db object
class person
{
 ...

 #pragma db id_column("person_id")
 std::vector<std::string> nicknames_;
};

If the column name is not specified, then object_id is used by default.

14.4.34 index_column

The index_column specifier specifies the column name that should be used to store the
element index in an ordered container’s table for the data member. The semantics of
index_column are similar to those of the column specifier (Section 14.4.9, "column ").
For example:

Revision 2.4, February 2015266 C++ Object Persistence with ODB

14.4.32 value_options

#pragma db object
class person
{
 ...

 #pragma db index_column("nickname_number")
 std::vector<std::string> nicknames_;
};

If the column name is not specified, then index is used by default.

14.4.35 key_column

The key_column specifier specifies the column name that should be used to store the key in
a map container’s table for the data member. The semantics of key_column are similar to
those of the column specifier (Section 14.4.9, "column "). For example:

#pragma db object
class person
{
 ...

 #pragma db key_column("age")
 std::map<unsigned short, float> age_weight_map_;
};

If the column name is not specified, then key is used by default.

14.4.36 value_column

The value_column specifier specifies the column name that should be used to store the
element value in a container’s table for the data member. The semantics of value_column
are similar to those of the column specifier (Section 14.4.9, "column "). For example:

#pragma db object
class person
{
 ...

 #pragma db value_column("weight")
 std::map<unsigned short, float> age_weight_map_;
};

If the column name is not specified, then value is used by default.

14.5 Namespace Pragmas

A pragma with the namespace qualifier describes a C++ namespace. Similar to other quali-
fiers, namespace can also refer to a named C++ namespace, for example:

267Revision 2.4, February 2015 C++ Object Persistence with ODB

14.5 Namespace Pragmas

namespace test
{
 ...
}

#pragma db namespace(test) ...

To refer to the global namespace in the namespace qualifier the following special syntax is
used:

#pragma db namespace()

The namespace qualifier can be optionally followed, in any order, by one or more specifiers
summarized in the table below:

Specifier Summary Section

pointer pointer type for persistent classes and views inside a namespace 14.5.1

table table name prefix for persistent classes inside a namespace 14.5.2

schema database schema for persistent classes inside a namespace 14.5.3

session
enable/disable session support for persistent classes inside a names-
pace

14.5.4

14.5.1 pointer

The pointer specifier specifies the default pointer type for persistent classes and views
inside the namespace. For example:

#pragma db namespace pointer(std::tr1::shared_ptr)
namespace accounting
{
 #pragma db object
 class employee
 {
 ...
 };

 #pragma db object
 class employer
 {
 ...
 };
}

There are only two valid ways to specify a pointer with the pointer specifier at the names-
pace level. We can specify the template name of a smart pointer in which case the ODB
compiler will automatically append the class name as a template argument. Or we can use *
to denote a raw pointer.

Revision 2.4, February 2015268 C++ Object Persistence with ODB

14.5.1 pointer

Note also that we can always override the default pointer specified at the namespace level for
any persistent class or view inside this namespace. For example:

#pragma db namespace pointer(std::unique_ptr)
namespace accounting
{
 #pragma db object pointer(std::shared_ptr)
 class employee
 {
 ...
 };

 #pragma db object
 class employer
 {
 ...
 };
}

For a more detailed discussion of object and view pointers, refer to Section 3.3, "Object and
View Pointers".

14.5.2 table

The table specifier specifies a table prefix that should be added to table names of persistent
classes inside the namespace. For example:

#pragma db namespace table("acc_")
namespace accounting
{
 #pragma db object table("employees")
 class employee
 {
 ...
 };

 #pragma db object table("employers")
 class employer
 {
 ...
 };
}

In the above example the resulting table names will be acc_employees and
acc_employers .

The table name prefix can also be specified with the --table-prefix ODB compiler
option. Note that table prefixes specified at the namespace level as well as with the command
line option are accumulated. For example:

269Revision 2.4, February 2015 C++ Object Persistence with ODB

14.5.2 table

#pragma db namespace() table("audit_")

#pragma db namespace table("hr_")
namespace hr
{
 #pragma db object table("employees")
 class employee
 {
 ...
 };
}

#pragma db object table("employers")
class employer
{
 ...
};

If we compile the above example with the --table-prefix test_ option, then the
employee class table will be called test_audit_hr_employees and employer —
test_audit_employers .

Table prefixes can be used as an alternative to database schemas (Section 14.1.8, "schema")
if the target database system does not support schemas.

14.5.3 schema

The schema specifier specifies a database schema that should be used for persistent classes
inside the namespace. For more information on specifying a database schema refer to Section
14.1.8, "schema".

14.5.4 session

The session specifier specifies whether to enable session support for persistent classes
inside the namespace. For example:

#pragma db namespace session
namespace hr
{
 #pragma db object // Enabled.
 class employee
 {
 ...
 };

 #pragma db object session(false) // Disabled.
 class employer
 {
 ...
 };
}

Revision 2.4, February 2015270 C++ Object Persistence with ODB

14.5.3 schema

Session support is disabled by default unless the --generate-session ODB compiler
option is specified. Session support specified at the namespace level can be overridden on the
per object basis (Section 14.1.10, "session "). For more information on sessions, refer to
Chapter 11, "Session".

14.6 Object Model Pragmas

A pragma with the model qualifier describes the whole C++ object model. For example:

#pragma db model ...

The model qualifier can be followed, in any order, by one or more specifiers summarized in
the table below:

Specifier Summary Section

version object model version14.6.1

14.6.1 version

The version specifier specifies the object model version when schema evolution support is
used. The first two required arguments to this specifier are the base and current model
versions, respectively. The third optional argument specifies whether the current version is
open for changes. Valid values for this argument are open (the default) and closed . For
more information on this functionality, refer to Chapter 13, "Database Schema Evolution".

14.7 Index Definition Pragmas

While it is possible to manually add indexes to the generated database schema, it is more
convenient to do this as part of the persistent class definitions. A pragma with the index
qualifier describes a database index. It has the following general format:

#pragma db index[("<name>")] \
 [unique|type("<type>")] \
 [method("<method>")] \
 [options("<index-options>")] \
 member(<name>[, "<column-options>"])... \
 members(<name>[,<name>...])...

The index qualifier can optionally specify the index name. If the index name is not speci-
fied, then one is automatically derived by appending the _i suffix to the column name of the
index member. If the name is not specified and the index contains multiple members, then the
index definition is invalid.

The optional type , method , and options clauses specify the index type, for example
UNIQUE, index method, for example BTREE, and index options, respectively. The unique
clause is a shortcut for type("UNIQUE") . Note that not all database systems support speci-
fying an index method or options. For more information on the database system-specific index

271Revision 2.4, February 2015 C++ Object Persistence with ODB

14.6 Object Model Pragmas

types, methods, and options, refer to Part II, "Database Systems".

To specify index members we can use the member or members clauses, or a mix of the two.
The member clause allows us to specify a single index member with optional column
options, for example, "ASC" . If we need to create a composite index that contains multiple
members, then we can repeat the member clause several times or, if the members don’t have
any column options, we can use a single members clause instead. Similar to the index type,
method, and options, the format of column options is database system-specific. For more
details, refer to Part II, "Database Systems".

The following code fragment shows some typical examples of index definitions:

#pragma db object
class object
{
 ...

 int x;
 int y;
 int z1;
 int z2;

 // An index for member x with automatically-assigned name x_i.
 //
 #pragma db index member(x)

 // A unique index named y_index for member y which is sorted in
 // the descending order. The index is using the BTREE method.
 //
 #pragma db index("y_index") unique method("BTREE") member(y, "DESC")

 // A composite BITMAP index named z_i for members z1 and z2.
 //
 #pragma db index("z_i") type("BITMAP") members(z1, z2)
};

ODB also offers a shortcut for defining an index with the default method and options for a
single data member. Such an index can be defined using the index (Section 14.4.17,
"index ") or unique (Section 14.4.18, "unique ") member specifier. For example:

#pragma db object
class object
{
 ...

 #pragma db index
 int x;

 #pragma db type("INT") unique
 int y;
};

Revision 2.4, February 2015272 C++ Object Persistence with ODB

14.7 Index Definition Pragmas

The above example is semantically equivalent to the following more verbose version:

#pragma db object
class object
{
 ...

 int x;

 #pragma db type("INT")
 int y;

 #pragma db index member(x)
 #pragma db index unique member(y)
};

While it is convenient to define an index inside a persistent class, it is also possible to do that
out of the class body. In this case, the index name, if specified, must be prefixed with the
potentially-qualified class name. For example:

namespace n
{
 #pragma db object
 class object
 {
 ...

 int x;
 int y;
 };

 // An index for member x in persistent class object with automatically-
 // assigned name x_i.
 //
 #pragma db index(object) member(x)
}

// An index named y_index for member y in persistent class n::object.
//
#pragma db index(n::object::"y_index") member(y)

It is possible to define an index on a member that is of a composite value type or on some of
its nested members. For example:

#pragma db value
struct point
{
 int x;
 int y;
 int z;
};

#pragma db object
class object

273Revision 2.4, February 2015 C++ Object Persistence with ODB

14.7 Index Definition Pragmas

{
 // An index that includes all of the p1’s nested members.
 //
 #pragma db index
 point p1;

 point p2;

 // An index that includes only p2.x and p2.y.
 //
 #pragma db index("p2_xy_i") members(p2.x, p2.y)
};

When generating a schema for a container member (Chapter 5, "Containers"), ODB automati-
cally defines two indexes on the container table. One is for the object id that references the
object table and the other is for the index column in case the container is ordered (Section 5.1,
"Ordered Containers"). By default these indexes use the default index name, type, method,
and options. The index pragma allows us to customize these two indexes by recognizing the
special id and index nested member names when specified after a container member. For
example:

#pragma db object
class object
{
 std::vector<int> v;

 // Change the container id index name.
 //
 #pragma db index("id_index") member(v.id)

 // Change the container index index method.
 //
 #pragma db index method("BTREE") member(v.index)
};

14.8 Database Type Mapping Pragmas

A pragma with the map qualifier describes a mapping between two database types. For each
database system ODB provides built-in support for a core set of database types, such as inte-
gers, strings, binary, etc. However, many database systems provide extended types such as
geospatial types, user-defined types, and collections (arrays, table types, key-value stores,
etc). In order to support such extended types, ODB allows us to map them to one of the
built-in types, normally a string or a binary. Given the text or binary representation of the data
we can then extract it into our chosen C++ data type and thus establish a mapping between an
extended database type and its C++ equivalent.

The map pragma has the following format:

Revision 2.4, February 2015274 C++ Object Persistence with ODB

14.8 Database Type Mapping Pragmas

#pragma db map type("regex") as("subst") [to("subst")] [from("subst")]

The type clause specifies the name of the database type that we are mapping. We will refer
to it as the mapped type from now on. The name of the mapped type is a Perl-like regular
expression pattern that is matched in the case-insensitive mode.

The as clause specifies the name of the database type that we are mapping the mapped type
to. We will refer to it as the interface type from now on. The name of the interface type is a
regular expression substitution and should expand to a name of a database type for which
ODB provides built-in support.

The optional to and from clauses specify the database conversion expressions between the
mapped type and the interface type. The to expression converts from the interface type to the
mapped type and from converts in the other direction. If no explicit conversion is required
for either direction, then the corresponding clause can be omitted. The conversion expressions
are regular expression substitutions. They must contain the special (?) placeholder which
will be replaced with the actual value to be converted. Turning on SQL statement tracing
(Section 3.13, "Tracing SQL Statement Execution") can be useful for debugging conversion
expressions. This allows you to see the substituted expressions as used in the actual state-
ments.

As an example, the following map pragma maps the PostgreSQL array of INTEGER’s to
TEXT:

#pragma db map type("INTEGER *\\[(\\d*)\\]") \
 as("TEXT") \
 to("(?)::INTEGER[$1]") \
 from("(?)::TEXT")

With the above mapping we can now have a persistent class that has a member of the Post-
greSQL array type:

#pragma db object
class object
{
 ...

 #pragma db type("INTEGER[]")
 std::string array_;
};

In PostgreSQL the array literal has the {n1,n2,...} form. As a result, we need to make
sure that we pass the correct text representation in the array_ member, for example:

object o;
o.array_ = "{1,2,3}";
db.persist (o);

275Revision 2.4, February 2015 C++ Object Persistence with ODB

14.8 Database Type Mapping Pragmas

Of course, std::string is not the most natural representation of an array of integers in
C++. Instead, std::vector<int> would have been much more appropriate. To add
support for mapping std::vector<int> to PostgreSQL INTEGER[] we need to provide
a value_traits specialization that implements conversion between the PostgreSQL text
representation of an array and std::vector<int> . Below is a sample implementation:

namespace odb
{
 namespace pgsql
 {
 template <>
 class value_traits<std::vector<int>, id_string>
 {
 public:
 typedef std::vector<int> value_type;
 typedef value_type query_type;
 typedef details::buffer image_type;

 static void
 set_value (value_type& v,
 const details::buffer& b,
 std::size_t n,
 bool is_null)
 {
 v.clear ();

 if (!is_null)
 {
 char c;
 std::istringstream is (std::string (b.data (), n));

 is >> c; // ’{’

 for (c = static_cast<char> (is.peek ()); c != ’}’; is >> c)
 {
 v.push_back (int ());
 is >> v.back ();
 }
 }
 }

 static void
 set_image (details::buffer& b,
 std::size_t& n,
 bool& is_null,
 const value_type& v)
 {
 is_null = false;
 std::ostringstream os;

 os << ’{’;

 for (value_type::const_iterator i (v.begin ()), e (v.end ());
 i != e;)
 {

Revision 2.4, February 2015276 C++ Object Persistence with ODB

14.8 Database Type Mapping Pragmas

 os << *i;

 if (++i != e)
 os << ’,’;
 }

 os << ’}’;

 const std::string& s (os.str ());
 n = s.size ();

 if (n > b.capacity ())
 b.capacity (n);

 std::memcpy (b.data (), s.c_str (), n);
 }
 };
 }
}

Once this specialization is included in the generated code (see the mapping example in the
odb-examples package for details), we can use std::vector<int> instead of
std::string in our persistent class:

#pragma db object
class object
{
 ...

 #pragma db type("INTEGER[]")
 std::vector<int> array_;
};

If we wanted to always map std::vector<int> to PostgreSQL INTEGER[] , then we
could instead write:

typedef std::vector<int> int_vector;
#pragma db value(int_vector) type("INTEGER[]")

#pragma db object
class object
{
 ...

 std::vector<int> array_; // Mapped to INTEGER[].
};

While the above example only shows how to handle PostgreSQL arrays, other types in Post-
greSQL and in other databases can be supported in a similar way. The odb-tests package
contains a set of tests in the <database>/custom directories that, for each database,
shows how to provide custom mapping for some of the extended types.

277Revision 2.4, February 2015 C++ Object Persistence with ODB

14.8 Database Type Mapping Pragmas

14.9 C++ Compiler Warnings

When a C++ header file defining persistent classes and containing ODB pragmas is used to
build the application, the C++ compiler may issue warnings about pragmas that it doesn’t
recognize. There are several ways to deal with this problem. The easiest is to disable such
warnings using one of the compiler-specific command line options or warning control
pragmas. This method is described in the following sub-section for popular C++ compilers.

There are also several C++ compiler-independent methods that we can employ. The first is to
use the PRAGMA_DB macro, defined in <odb/core.hxx> , instead of using #pragma db
directly. This macro expands to the ODB pragma when compiled with the ODB compiler and
to an empty declaration when compiled with other compilers. The following example shows
how we can use this macro:

#include <odb/core.hxx>

PRAGMA_DB(object)
class person
{
 ...

 PRAGMA_DB(id)
 unsigned long id_;
};

An alternative to using the PRAGMA_DB macro is to group the #pragma db directives in
blocks that are conditionally included into compilation only when compiled with the ODB
compiler. For example:

class person
{
 ...

 unsigned long id_;
};

#ifdef ODB_COMPILER
pragma db object(person)
pragma db member(person::id_) id
#endif

The disadvantage of this approach is that it can quickly become overly verbose when posi-
tioned pragmas are used.

14.9.1 GNU C++

GNU g++ does not issue warnings about unknown pragmas unless requested with the -Wall
command line option. To disable only the unknown pragma warning, we can add the
-Wno-unknown-pragmas option after -Wall , for example:

Revision 2.4, February 2015278 C++ Object Persistence with ODB

14.9 C++ Compiler Warnings

g++ -Wall -Wno-unknown-pragmas ...

14.9.2 Visual C++

Microsoft Visual C++ issues an unknown pragma warning (C4068) at warning level 1 or
higher. This means that unless we have disabled the warnings altogether (level 0), we will see
this warning.

To disable this warning via the compiler command line, we can add the /wd4068 C++
compiler option in Visual Studio 2008 and earlier. In Visual Studio 2010 and later there is
now a special GUI field where we can enter warning numbers that should be disabled. Simply
enter 4068 into this field.

We can also disable this warning for only a specific header or a fragment of a header using the
warning control pragma. For example:

#include <odb/core.hxx>

#pragma warning (push)
#pragma warning (disable:4068)

#pragma db object
class person
{
 ...

 #pragma db id
 unsigned long id_;
};

#pragma warning (pop)

14.9.3 Sun C++

The Sun C++ compiler does not issue warnings about unknown pragmas unless the +w or
+w2 option is specified. To disable only the unknown pragma warning we can add the
-erroff=unknownpragma option anywhere on the command line, for example:

CC +w -erroff=unknownpragma ...

14.9.4 IBM XL C++

IBM XL C++ issues an unknown pragma warning (1540-1401) by default. To disable this
warning we can add the -qsuppress=1540-1401 command line option, for example:

xlC -qsuppress=1540-1401 ...

279Revision 2.4, February 2015 C++ Object Persistence with ODB

14.9.2 Visual C++

14.9.5 HP aC++

HP aC++ (aCC) issues an unknown pragma warning (2161) by default. To disable this
warning we can add the +W2161 command line option, for example:

aCC +W2161 ...

14.9.6 Clang

Clang does not issue warnings about unknown pragmas unless requested with the -Wall
command line option. To disable only the unknown pragma warning, we can add the
-Wno-unknown-pragmas option after -Wall , for example:

clang++ -Wall -Wno-unknown-pragmas ...

We can also disable this warning for only a specific header or a fragment of a header using the
warning control pragma. For example:

#include <odb/core.hxx>

#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunknown-pragmas"

#pragma db object
class person
{
 ...

 #pragma db id
 unsigned long id_;
};

#pragma clang diagnostic pop

Revision 2.4, February 2015280 C++ Object Persistence with ODB

14.9.5 HP aC++

15 Advanced Techniques and Mechanisms
This chapter covers more advanced techniques and mechanisms provided by ODB that may
be useful in certain situations.

15.1 Transaction Callbacks

The ODB transaction class (odb::transaction) allows an application to register a call-
back that will be called after the transaction is finalized, that is, committed or rolled back.
This mechanism can be used, for example, to restore values that were updated during the
transaction execution to their original states if the transaction is rolled back.

The callback management interface of the transaction class is shown below.

namespace odb
{
 class transaction
 {
 ...

 public:
 static const unsigned short event_commit = 0x01;
 static const unsigned short event_rollback = 0x02;
 static const unsigned short event_all = event_commit | event_rollback;

 typedef void (*callback_type) (
 unsigned short event, void* key, unsigned long long data);

 void
 callback_register (callback_type callback,
 void* key,
 unsigned short event = event_all,
 unsigned long long data = 0,
 transaction** state = 0);

 void
 callback_unregister (void* key);

 void
 callback_update (void* key,
 unsigned short event,
 unsigned long long data = 0,
 transaction** state = 0);
 }
}

The callback_register() function registers a post-commit/rollback callback. The
callback argument is the function that should be called. The key argument is used by the
transaction to identify this callback. It is also normally used to pass an address of the data
object on which the callback function will work. The event argument is the bitwise-or of the

281Revision 2.4, February 2015 C++ Object Persistence with ODB

15 Advanced Techniques and Mechanisms

events that should trigger the callback.

The optional data argument can be used to store any POD user data that doesn’t exceed 8
bytes in size and doesn’t require alignment greater than unsigned long long . For
example, we could store an old value of a flag or a counter that needs to be restored in case of
a roll back.

The optional state argument can be used to indicate that the callback has been unregistered
because the transaction was finalized. In this case the transaction automatically resets the
passed pointer to 0. This is primarily useful if we are interested in only one of the events
(commit or rollback).

The callback_unregister() function unregisters a previously registered callback. If
the number of registered callbacks is large, then this can be a slow operation. Generally, the
callback mechanism is optimized for cases where the callbacks stay registered until the trans-
action is finalized.

Note also that you don’t need to unregister a callback that has been called or auto-reset using
the state argument passed to callback_register() . This function does nothing if the
key is not found.

The callback_update() function can be used to update the event , data , and state
values of a previously registered callback. Similar to callback_unregister() , this is a
potentially slow operation.

When the callback is called, it is passed the event that triggered it, as well as the key and
data values that were passed to the callback_register() function. Note also that the
order in which the callbacks are called is unspecified. The rollback event can be triggered by
an exception. In this case, if the callback throws, the program will be terminated.

The following example shows how we can use transaction callbacks together with database
operation callbacks (Section 14.1.7, "callback ") to manage the object’s "dirty" flag.

#include <odb/callback.hxx>
#include <odb/transaction.hxx>

#pragma db object callback(update)
class object
{
 ...

 #pragma db transient
 mutable bool dirty_;

 // Non-NULL value indicates that we are registered
 // with this transaction.
 //
 #pragma db transient
 mutable odb::transaction* tran_;

 void

Revision 2.4, February 2015282 C++ Object Persistence with ODB

15.1 Transaction Callbacks

 update (odb::callback_event e, odb::database&) const
 {
 using namespace odb::core;

 if (e == callback_event::post_update)
 return;

 // Mark the object as clean again but register a
 // transaction callback in case the update is rolled
 // back.
 //
 tran_ = &transaction::current ();
 tran_->callback_register (&rollback,
 const_cast<object*> (this),
 transaction::event_rollback,
 0,
 &tran_);
 dirty_ = false;
 }

 static void
 rollback (unsigned short, void* key, unsigned long long)
 {
 // Restore the dirty flag since the changes have been
 // rolled back.
 //
 object& o (*static_cast<object*> (key));
 o.dirty_ = true;
 }

 ~object ()
 {
 // Unregister the callback if we are going away before
 // the transaction.
 //
 if (tran_ != 0)
 tran_->callback_unregister (this);
 }
};

15.2 Persistent Class Template Instantiations

Similar to composite value types (Section 7.2, "Composite Value Types"), a persistent object
can be defined as an instantiation of a C++ class template, for example:

template <typename T>
class person
{
 ...

 T first_;
 T last_;
};

283Revision 2.4, February 2015 C++ Object Persistence with ODB

15.2 Persistent Class Template Instantiations

typedef person<std::string> std_person;

#pragma db object(std_person)
#pragma db member(std_person::last_) id

Note that the database support code for such a persistent object is generated when compiling
the header containing the db object pragma and not the header containing the template
definition or the typedef name. This allows us to use templates defined in other files, for
example:

#include <utility> // std::pair

typedef std::pair<unsigned int, std::string> person;
#pragma db object(person)
#pragma db member(person::first) id auto column("id")
#pragma db member(person::second) column("name")

You may also have to explicitly specify the object type in calls to certain database class
functions due to the inability do distinguish, at the API level, between smart pointers and
persistent objects defined as class template instantiations. For example:

person p;

db.update (p); // Error.
db.reload (p); // Error.
db.erase (p); // Error.

db.update<person> (p); // Ok.
db.reload<person> (p); // Ok.
db.erase<person> (p); // Ok.

It also makes sense to factor persistent data members that do not depend on template argu-
ments into a common, non-template base class. The following more realistic example illus-
trates this approach:

#pragma db object abstract
class base_common
{
 ...

 #pragma db id auto
 unsigned long id;
};

template <typename T>
class base: public base_common
{
 ...

 T value;
};

typedef base<std::string> string_base;
#pragma db object(string_base) abstract

Revision 2.4, February 2015284 C++ Object Persistence with ODB

15.2 Persistent Class Template Instantiations

#pragma db object
class derived: public string_base
{
 ...
};

15.3 Bulk Database Operations

Some database systems supported by ODB provide a mechanism, often called bulk or batch
statement execution, that allows us to execute the same SQL statement on multiple sets of
data at once and with a single database API call. This often results in significantly better
performance if we need to execute the same statement for a large number of data sets (thou-
sands to millions).

ODB translates this mechanism to bulk operations which allow us to persist, update, or erase a
range of objects in the database. Currently, from all the database systems supported by ODB,
only Oracle and Microsoft SQL Server are capable of bulk operations. There is also currently
no emulation of the bulk API for other databases nor dynamic multi-database support. As a
result, if you are using dynamic multi-database support, you will need to "drop down" to static
support in order to access the bulk API. Refer to Chapter 16, "Multi-Database Support" for
details.

As we will discuss later in this section, bulk operations have complex failure semantics that is
dictated by the underlying database API. As a result, support for bulk persist, update, and
erase is limited to persistent classes for which these operations can be performed with a single
database statement execution. In particular, bulk operations are not available for polymorphic
objects (Section 8.2, "Polymorphism Inheritance") or objects that have containers (inverse
containers of object pointers are an exception). Furthermore, for objects that have sections
(Chapter 9, "Sections") the bulk update operation will only be available if all the sections are
manually-updated. On the other hand, bulk operations are supported for objects that use opti-
mistic concurrency (Chapter 12, "Optimistic Concurrency") or have no object id (Section
14.1.6, "no_id ").

To enable the generation of bulk operation support for a persistent class we use the bulk
pragma. For example:

#pragma db object bulk(5000)
class person
{
 ...

 #pragma db id auto
 unsigned long id;
};

The single argument to the bulk pragma is the batch size. The batch size specifies the
maximum number of data sets that should be handled with a single underlying statement
execution. If the range that we want to perform the bulk operation on contains more objects

285Revision 2.4, February 2015 C++ Object Persistence with ODB

15.3 Bulk Database Operations

than the batch size, then ODB will split this operation into multiple underlying statement
executions (batches). To illustrate this point with an example, suppose we want to persist
53,000 objects and the batch size is 5,000. ODB will then execute the statement 11 times, the
first 10 times with 5,000 data sets each, and the last time with the remaining 3,000 data sets.

The commonly used batch sizes are in the 2,000-5,000 range, though smaller or larger batches
could provide better performance, depending on the situation. As a result, it is recommended
to experiment with different batch sizes to determine the optimum number for a particular
object and its use-cases. Note also that you may achieve better performance by also splitting a
large bulk operation into multiple transactions (Section 3.5, "Transactions").

For database systems that do not support bulk operations the bulk pragma is ignored. It is
also possible to specify different batch sizes for different database systems by using the
database prefix, for example:

#pragma db object mssql:bulk(3000) oracle:bulk(4000)
class person
{
 ...
};

Note that while specifying the batch size at compile time might seem inflexible, this approach
allows ODB to place internal arrays of the fixed batch size on the stack rather than allocating
them in the dynamic memory. However, specifying the batch size at runtime may be
supported in the future.

Once the bulk support is enabled for a particular object, we can use the following database
functions to perform bulk operations:

template <typename I>
void
persist (I begin, I end, bool continue_failed = true);

template <typename I>
void
update (I begin, I end, bool continue_failed = true);

template <typename I>
void
erase (I obj_begin, I obj_end, bool continue_failed = true);

template <typename T, typename I>
void
erase (I id_begin, I id_end, bool continue_failed = true);

Every bulk API function expects a range of elements, passed in the canonical C++ form as a
pair of input iterators. In case of persist() , update() , and the first erase() overload,
we pass a range of objects, either as references or as pointers, raw or smart. The following
example illustrates the most common scenarios using the persist() call:

Revision 2.4, February 2015286 C++ Object Persistence with ODB

15.3 Bulk Database Operations

// C array of objects.
//
person a[2] {{"John", "Doe"}, {"Jane", "Doe"}};

db.persist (a, a + sizeof(a) / sizeof(a[0]));

// Vector of objects.
//
std::vector<person> v {{"John", "Doe"}, {"Jane", "Doe"}};

db.persist (v.begin (), v.end ());

// C array of raw pointers to objects.
//
person p1 ("John", "Doe");
person p2 ("Jane", "Doe");
person* pa[2] {&p1, &p2};

db.persist (pa, pa + sizeof(pa) / sizeof(pa[0]));

// Vector of raw pointers to objects.
//
std::vector<person*> pv {&p1, &p2};

db.persist (pv.begin (), pv.end ());

// Vector of smart (shared) pointers to objects.
//
std::vector<std::shared_ptr<person>> sv {
 std::make_shared<person> ("John", "Doe"),
 std::make_shared<person> ("Jane", "Doe")};

db.persist (sv.begin (), sv.end ());

The ability to perform a bulk operation on a range of raw pointers to objects can be especially
useful when the application stores objects in a way that does not easily conform to the pair of
iterators interface. In such cases we can create a temporary container of shallow pointers to
objects and use that to perform the bulk operation, for example:

struct person_entry
{
 person obj;

 // Some additional data.
 ...
};

typedef std::vector<person_entry> people;

void
persist (odb::database& db, people& p)

287Revision 2.4, February 2015 C++ Object Persistence with ODB

15.3 Bulk Database Operations

{
 std::vector<person*> tmp;
 tmp.reserve (p.size ());
 std::for_each (p.begin (),
 p.end (),
 [&tmp] (person_entry& pe)
 {
 tmp.push_back (&pe.obj);
 });

 db.persist (tmp.begin (), tmp.end ());
}

The second overload of the bulk erase() function allows us to pass a range of object ids
rather than objects themselves. As with the corresponding non-bulk version, we have to
specify the object type explicitly, for example:

std::vector<unsigned long> ids {1, 2};

db.erase<person> (ids.begin (), ids.end ());

Conceptually, a bulk operation is equivalent to performing the corresponding non-bulk
version in a loop, except when it comes to the failure semantics. Both databases that currently
are capable of bulk operations (Oracle and SQL Server) do not stop when a data set in a batch
fails (for example, because of a unique constraint violation). Instead, they continue executing
subsequent data sets until every element in the batch has been attempted. The
continue_failed argument in the bulk functions listed above specifies whether ODB
should extend this behavior and continue with subsequent batches if the one it has tried to
execute has failed elements. The default behavior is to continue.

The consequence of this failure semantics is that we may have multiple elements in the range
failed for different reasons. For example, if we tried to persist a number of objects, some of
them might have failed because they are already persistent while others — because of a
unique constraint violation. As a result, ODB uses the special odb::multiple_excep-
tions class to report failures in the bulk API functions. This exception is thrown if one or
more elements in the range have failed and it contains the error information in the form of
other ODB exception for each failed position. The multiple_exceptions class has the
following interface:

struct multiple_exceptions: odb::exception
{
 // Element type.
 //
 struct value_type
 {
 std::size_t
 position () const;

 const odb::exception&
 exception () const;

Revision 2.4, February 2015288 C++ Object Persistence with ODB

15.3 Bulk Database Operations

 bool
 maybe () const;
 };

 // Iteration.
 //
 typedef std::set<value_type> set_type;

 typedef set_type::const_iterator iterator;
 typedef set_type::const_iterator const_iterator;

 iterator
 begin () const;

 iterator
 end () const;

 // Lookup.
 //
 const value_type*
 operator[] (std::size_t) const;

 // Severity, failed and attempted counts.
 //
 std::size_t
 attempted () const;

 std::size_t
 failed () const;

 bool
 fatal () const;

 void
 fatal (bool);

 // Direct data access.
 //
 const set_type&
 set () const;

 // odb::exception interface.
 //
 virtual const char*
 what () const throw ();
};

The multiple_exceptions class has a map-like interface with the key being the posi-
tion in the range and the value being the exception plus the maybe flag (discussed below). As
a result, we can either iterate over the failed positions or we can check whether a specific
position in the range has failed. The following example shows what a catch -handler for this
exception might look like:

289Revision 2.4, February 2015 C++ Object Persistence with ODB

15.3 Bulk Database Operations

std::vector<person> objs {{"John", "Doe"}, {"Jane", "Doe"}};

try
{
 db.persist (objs.begin (), objs.end ());
}
catch (const odb::multiple_exceptions& me)
{
 for (const auto& v: me)
 {
 size_t p (v.position ());

 try
 {
 throw v.exception ();
 }
 catch (const odb::object_already_persistent&)
 {
 cerr << p << ": duplicate id: " << objs[p].id () << endl;
 }
 catch (const odb::exception& e)
 {
 cerr << p << ": " << e.what () << endl;
 }
 }
}

If, however, all we want is to show the diagnostics to the user, then the string returned by the
what() function will contain the error information for each failed position. Here is what it
might look like (using Oracle as an example):

multiple exceptions, 4 elements attempted, 2 failed:
[0] object already persistent
[3] 1: ORA-00001: unique constraint (ODB_TEST.person_last_i) violated

Both databases that currently are capable of bulk operations return a total count of affected
rows rather than individual counts for each data set. This limitation prevents ODB from being
able to always determine which elements in the batch haven’t affected any rows and, for the
update and erase operations, translate this to the object_not_persistent exceptions.
As a result, if some elements in the batch haven’t affected any rows and ODB is unable to
determine exactly which ones, it will mark all the elements in this batch as "maybe not persis-
tent". That is, it will insert the object_not_persistent exception and set the maybe
flag for every position in the batch. The diagnostics string returned by what() will also
reflect this situation, for example (assuming batch size of 3):

multiple exceptions, 4 elements attempted, 4 failed:
[0-2] (some) object not persistent
[3] object not persistent

The way to handle and recover from such "maybe failures" will have to be applica-
tion-specific. For example, for some applications the fact that some objects no longer exist in
the database when performing bulk erase might be an ignorable error. If, however, the appli-

Revision 2.4, February 2015290 C++ Object Persistence with ODB

15.3 Bulk Database Operations

cation needs to determine exactly which elements in the batch have failed, then a load()
call will be required for each element in the batch (or a query using a view to avoid loading all
the data members; Chapter 10, "Views"). This is also something to keep in mind when select-
ing the batch size since for larger sizes it will be more expensive (more loads to perform) to
handle such "maybe failures". If the failures are not uncommon, as is the case, for example,
when using optimistic concurrency, then it may make sense to use a smaller batch.

The lookup operator (operator[]) returns NULL if the element at this position has no
exception. Note also that the returned value is value_type* and not odb::exception*
in order to provide access to the maybe flag discussed above.

The multiple_exceptions class also provides access to the number of positions
attempted (the attempted() accessor) and failed (the failed() accessor). Note that the
failed count includes the "maybe failed" positions.

The multiple_exceptions exception can also be fatal. If the fatal() accessor returns
true , then (some of) the exceptions were fatal. In this case, even for positions that did not
fail, no attempts were made to complete the operation and the transaction must be aborted.

If fatal() returns false, then the operation on the elements that don’t have an exception has
succeeded. The application can ignore the errors or try to correct the errors and re-attempt the
operation on the elements that did fail. In either case, the transaction can be committed.

An example of a fatal exception would be the situation where the execution of the underlying
statement failed summarily, without attempting any data sets, for instance, because of an error
in the statement itself.

The fatal() modifier allows you to "upgrade" an exception to fatal, for example, for
specific database error codes.

291Revision 2.4, February 2015 C++ Object Persistence with ODB

15.3 Bulk Database Operations

PART II DATABASE SYSTEMS
Part II covers topics specific to the database system implementations and their support in
ODB. The first chapter in Part II discusses how to use multiple database systems in the same
application. The subsequent chapters describe the system-specific database classes as well
as the default mapping between basic C++ value types and native database types. Part II
consists of the following chapters.

16 Multi-Database Support

17 MySQL Database

18 SQLite Database

19 PostgreSQL Database

20 Oracle Database

21 Microsoft SQL Server Database

Revision 2.4, February 2015292 C++ Object Persistence with ODB

PART II DATABASE SYSTEMS

16 Multi-Database Support
Some applications may need to access multiple database systems, either simultaneously or
one at a time. For example, an application may utilize an embedded database such as SQLite
as a local cache and use a client-server database such as PostgreSQL for more permanent but
slower to access remote storage. Or an application may need to be able to store its data in any
database selected at runtime by the user. Yet another scenario is the data migration from one
database system to another. In this case, multi-database support is only required for a short
period. It is also plausible that an application implements all three of these scenarios, that is, it
uses SQLite as a local cache, allows the user to select the remote database system, and
supports data migration from one remote database system to another.

ODB provides two types of multi-database support: static and dynamic. With static support
we use the database system-specific interfaces to perform database operations. That is, instead
of using odb::database , odb::transaction , or odb::query , we would use, for
example, odb::sqlite::database , odb::sqlite::transaction , or
odb::sqlite::query to access an SQLite database.

In contrast, with dynamic multi-database support we can use the common interface to access
any database without having to know which one it is. At runtime, ODB will automatically
dispatch a call on the common interface to the specific database implementation based on the
actual database instance being used. In fact, this mechanism is very similar to C++ virtual
functions.

Both static and dynamic multi-database support have a different set of advantages and disad-
vantages which makes them more or less suitable for different use cases. Static support has
zero overhead compared to single-database support and allows us to use database
system-specific features, extensions, etc. At the same time, the code that we write will be tied
to the specific database system. As a result, this type of multi-database support is more suit-
able for situations where different parts of an application access different but specific database
systems. For example, using SQLite as a local cache most likely falls into this category since
we are using a specific database system (SQLite) and the code that will check the cache will
most likely (but not necessarily) be separate from the code that interact with the remote
database. Another example where static multi-database support might be more suitable is a
once-off data migration from one database system to another. In this case both the source and
target are specific database systems. In contrast, if data migration from one database system to
another is a general feature in an application, then dynamic multi-database support might be
more suitable.

The main advantage of dynamic multi-database support is the database system-independence
of the code that we write. The same application code will work with any database system
supported by ODB and the generated database support code can be packaged into separate
libraries and loaded dynamically by the application. The disadvantages of dynamic support
are slight overhead and certain limitations in functionality compared to static support (see
Section 16.2, "Dynamic Multi-Database Support" for details). As a result, dynamic
multi-database support is most suitable to situations where we need the same code to work

293Revision 2.4, February 2015 C++ Object Persistence with ODB

16 Multi-Database Support

with a range of database systems. For example, if your application must be able to store its
data in any database selected by the user, then dynamic support is probably the best option.

Note also that it is possible to mix and match static and dynamic support in the same applica-
tion. In fact, dynamic support is built on top of static support so it is possible to use the same
database system both "statically" and "dynamically". In particular, the ability to "drop down"
from dynamic to static support can be used to overcome the functionality limitations
mentioned above. Finally, single-database support is just a special case of static
multi-database support with a single database system.

By default ODB assumes single-database support. To enable multi-database support we use
the --multi-database (or -m) ODB compiler option. This option is also used to specify
the support type: static or dynamic . For example:

odb -m static ... person.hxx

With multi-database support enabled, we can now generate the database support code for
several database systems. This can be accomplished either with a single ODB compiler invo-
cation by specifying multiple --database (or -d) options or with multiple ODB compiler
invocations. Both approaches produce the same result, for example:

odb -m static -d common -d sqlite -d pgsql person.hxx

Is equivalent to:

odb -m static -d common person.hxx
odb -m static -d sqlite person.hxx
odb -m static -d pgsql person.hxx

Notice that the first -d option has common as its value. This is not a real database system.
Rather, it instructs the ODB compiler to generate code that is common to all the database
systems and, in case of dynamic support, is also the common interfaces.

If you look at the result of the above commands, you will also notice changes in the output
file names. In the single-database mode the ODB compiler produces a single set of the
person-odb.?xx files which contain both the common as well as the database specific
generated code (since there is only one database system in use, there is no reason to split the
two). In contrast, in the multi-database mode, the person-odb.?xx set of files contains the
common code while the database system-specific code is written to files in the form
person-odb-<db>.?xx . That is, person-odb-sqlite.?xx for SQLite,
person-odb-pgsql.?xx for PostgreSQL, etc.

If we need dynamic support for some databases and static for others, then the common code
must be generated in the dynamic mode. For example, if we need static support for SQLite
and dynamic support for PostgreSQL and Oracle, then the ODB compiler invocations could
look like this:

Revision 2.4, February 2015294 C++ Object Persistence with ODB

16 Multi-Database Support

odb -m dynamic -d common person.hxx
odb -m static -d sqlite person.hxx
odb -m dynamic -d pgsql person.hxx
odb -m dynamic -d oracle person.hxx

With multi-database support enabled, it is possible to restrict ODB pragmas to apply only to a
specific database system (unrestricted pragmas apply to all the databases). For example:

#pragma db object
class person
{
 ...

 #pragma db pgsql:type("VARCHAR(128)") sqlite:type("TEXT")
 std::string name_;

 unsigned short age_;

 #pragma db pgsql index member(age_)
};

Above, the pragma for the name_ data member shows the use of a database prefix (for
example, pgsql:) that only applies to the specifier that follows. The pragma that defines an
index on the age_ data member shows the use of a database prefix that applies to the whole
pragma. In this case the database name must immediately follow the db keyword.

Similar to pragmas, ODB compiler options that determine the kind (for example,
--schema-format), names (for example, --odb-file-suffix), or content (for
example, prologue and epilogue options) of the output files can be prefixed with the database
name. For example:

odb --odb-file-suffix common:-odb-common ...

Dynamic multi-database support requires consistent mapping across all the databases. That is,
the same classes and data members should be mapped to objects, simple/composite values,
etc., for all the databases. In contrast, static multi-database support does not have this restric-
tion. Specifically, with static support, some data members can be transient for some database
systems. Similarly, the same class (for example, point) can be mapped to a simple value in
one database (for example, to the POINT PostgreSQL type) and to a composite value in
another (for example, in SQLite, which does not have a built-in point type).

The following sections discuss static and dynamic multi-database support in more detail.

16.1 Static Multi-Database Support

With static multi-database support, instead of including person-odb.hxx , application
source code has to include person-odb-<db>.hxx header files corresponding to the
database systems that will be used.

295Revision 2.4, February 2015 C++ Object Persistence with ODB

16.1 Static Multi-Database Support

The application code has to also use database system-specific interfaces when performing
database operations. As an example, consider the following transaction in a single-database
application. It uses the common interfaces, that is, classes from the odb namespace.

#include "person-odb.hxx"

odb::database& db = ...

typedef odb::query<person> query;
typedef odb::result<person> result;

odb::transaction t (db.begin ());
result r (db.query<person> (query::age < 30));
...
t.commit ();

In an application that employs static multi-database support the same transaction for SQLite
would be rewritten like this:

#include "person-odb-sqlite.hxx"

odb::sqlite::database& db = ...

typedef odb::sqlite::query<person> query;
typedef odb::result<person> result; // odb:: not odb::sqlite::

odb::sqlite::transaction t (db.begin ());
result r (db.query<person> (query::age < 30));
...
t.commit ();

That is, the database , transaction , and query classes now come from the
odb::sqlite namespace instead of odb . Other classes that have database system-specific
interfaces are connection , statement , and tracer . Note that all of them derive from
the corresponding common versions. It is also possible to use common transaction ,
connection , and statement classes with static support, if desired.

Notice that we didn’t use the odb::sqlite namespace for the result class template.
This is because result is database system-independent. All other classes defined in names-
pace odb , except those specifically mentioned above, are database system-independent. In
particular, result , prepared_query , session , schema_catalog , and all the
exceptions are database system-independent.

Writing odb::sqlite:: before every name can quickly become burdensome. As we have
seen before, in single-database applications that use the common interface we can add the
using namespace directive to avoid qualifying each name. For example:

#include "person-odb.hxx"

odb::database& db = ...

{

Revision 2.4, February 2015296 C++ Object Persistence with ODB

16.1 Static Multi-Database Support

 using namespace odb::core;

 typedef query<person> person_query;
 typedef result<person> person_result;

 transaction t (db.begin ());
 person_result r (db.query<person> (person_query::age < 30));
 ...
 t.commit ();
}

A similar mechanism is available in multi-database support. Each database runtime defines
the odb::<db>::core namespace that contains all the database system-independent
names as well as the database system-specific ones for this database. Here is how we can
rewire the above transaction using this approach:

#include "person-odb-sqlite.hxx"

odb::sqlite::database& db = ...

{
 using namespace odb::sqlite::core;

 typedef query<person> person_query;
 typedef result<person> person_result;

 transaction t (db.begin ());
 person_result r (db.query<person> (person_query::age < 30));
 ...
 t.commit ();
}

If the using namespace directive cannot be used, for example, because the same code
fragment accesses several databases, then we can still make the namespace qualifications
more concise by assigning shorter aliases to database namespaces. For example:

#include "person-odb-pgsql.hxx"
#include "person-odb-sqlite.hxx"

namespace pg = odb::pgsql;
namespace sl = odb::sqlite;

pg::database& pg_db = ...
sl::database& sl_db = ...

typedef pg::query<person> pg_query;
typedef sl::query<person> sl_query;
typedef odb::result<person> result;

// First check the local cache.
//
odb::transaction t (sl_db.begin ()); // Note: using common transaction.
result r (sl_db.query<person> (sl_query::age < 30));

297Revision 2.4, February 2015 C++ Object Persistence with ODB

16.1 Static Multi-Database Support

// If no hits, try the remote database.
//
if (r.empty ())
{
 t.commit (); // End the SQLite transaction.
 t.reset (pg_db.begin ()); // Start the PostgreSQL transaction.

 r = pg_db.query<person> (pg_query::age < 30);
}

// Handle the result.
//
...

t.commit ();

With static multi-database support we can make one of the databases the default database with
the --default-database option. The default database can be accessed via the common
interface, just like with single-database support. For example:

odb -m static -d common -d pgsql -d sqlite --default-database pgsql ...

The default database mechanism can be useful when one of the databases is primary or when
retrofitting multi-database support into an existing single-database application. For example,
if we are adding SQLite as a local cache into an existing application that uses PostgreSQL as
its only database, then by making PostgreSQL the default database we avoid having to change
all the existing code. Note that if dynamic multi-database support is enabled, then the
common (dynamic) interface is always made the default database.

16.2 Dynamic Multi-Database Support

With dynamic multi-database support, application source code only needs to include the
person-odb.hxx header file, just like with single-database support. In particular, we don’t
need to include any of the person-odb-<db>.hxx files unless we would also like to use
certain database systems in the static multi-database mode.

When performing database operations, the application code uses the common interfaces from
the odb namespace, just like with single-database support. As an example, consider a func-
tion that can be used to load an object either from a local SQLite cache or a remote Post-
greSQL database (in reality, this function can be used with any database system support by
ODB provided we generated the database support code for this database and linked it into our
application):

#include "person-odb.hxx"

std::unique_ptr<person>
load (odb::database& db, const std::string& name)
{
 odb::transaction t (db.begin ());
 std::unique_ptr<person> p (db.find (name));
 t.commit ();

Revision 2.4, February 2015298 C++ Object Persistence with ODB

16.2 Dynamic Multi-Database Support

 return p;
}

odb::pgsql::database& pg_db = ...
odb::sqlite::database& sl_db = ...

// First try the local cache.
//
std::unique_ptr<person> p (load (sl_db, "John Doe"));

// If not found, try the remote database.
//
if (p == 0)
 p = load (pg_db, "John Doe");

...

As you can see, we can use dynamic multi-database support just like single-database support
except that now our code can work with different database systems. Note, however, one
difference: with single-database support we could perform database operations using either
the common odb::database or a database system-specific (for example,
odb::sqlite::database) interface with the same effect. In contrast, with dynamic
multi-database support, the use of the database system-specific interface results in the switch
to the static mode (for which, as was mentioned earlier, we would need to include the corre-
sponding person-odb-<db>.hxx header file). As we will discuss shortly, switching from
dynamic to static mode can be used to overcome limitations imposed by dynamic
multi-database support.

Dynamic multi-database support has certain overheads and limitations compared to static
support. For database operations, the generated code maintains function tables that are used to
dispatch calls to the database system-specific implementations. In single-database and static
multi-database support, the query type implements a thin wrapper around the underlying
database system’s SELECT statement. With dynamic multi-database support, because the
underlying database system is only known at query execution (or preparation) time, the
query type stores a database system-independent representation of the query that is then
translated to the database system-specific form. Because of this database system-independent
representation, dynamic support queries have a number of limitations. Specifically, dynamic
queries do not support parameter binding in native query fragments. They also make copies of
by-value parameterd (by-reference parameters can be used to remove this overhead). Finally,
parameters of array types (for example, char[256]) can only be bound by-reference.

As we mentioned earlier, switching from dynamic to static mode can be an effective way to
overcome these limitations. As an example, consider a function that prints the list of people of
a certain age. The caller also specified the limit on the number of entries to print. Some
database systems, for example, PostgreSQL, allow us to propagate this limit to the database
server with the LIMIT clause. To add this clause we would need to construct a native query
fragment and, as we discussed above, we won’t be able to bind a parameter (the limit) while
in the dynamic mode. The following implementation shows how we can overcome this by
switching to the static mode and using the PostgreSQL-specific interface:

299Revision 2.4, February 2015 C++ Object Persistence with ODB

16.2 Dynamic Multi-Database Support

#include "person-odb.hxx"
#include "person-odb-pgsql.hxx" // Needed for static mode.

void
print (odb::database& db, unsigned short age, unsigned long limit)
{
 typedef odb::query<person> query;
 typedef odb::result<person> result;

 odb::transaction t (db.begin ());

 query q (query::age == age);
 result r;

 if (db.id () == odb::id_pgsql)
 {
 // We are using PostgreSQL. Drop down to the static mode and
 // add the LIMIT clause to the query.
 //
 namespace pg = odb::pgsql;
 typedef pg::query<person> pg_query;

 pg::database& pg_db (static_cast<pg::database&> (db));
 pg_query pg_q (pg_query (q) + "LIMIT" + pg_query::_val (limit));
 r = pg_db.query<person> (pg_q);
 }
 else
 r = db.query<person> (q);

 // Handle the result up to the limit elements.
 //
 ...

 t.commit ();
}

odb::pgsql::database& pg_db = ...
odb::sqlite::database& sl_db = ...

print (sl_db, 30, 100);
print (sl_db, 30, 100);

A few things to note about this example. First, we use the database::id() function to
determine the actual database system we use. This function has the following signature:

namespace odb
{
 enum database_id
 {
 id_mysql,
 id_sqlite,
 id_pgsql,
 id_oracle,
 id_mssql,
 id_common

Revision 2.4, February 2015300 C++ Object Persistence with ODB

16.2 Dynamic Multi-Database Support

 };

 class database
 {
 public:
 ...

 database_id
 id () const;
 }
}

Note that database::id() can never return the id_common value.

The other thing to note is how we translate the dynamic query to the database system-specific
one (the pg_query (q) expression). Every odb::<db>::query class provides such a
translation constructor.

16.2.2 Dynamic Loading of Database Support Code

With dynamic multi-database support, the generated database support code automatically
registers itself with the function tables that we mentioned earlier. This makes it possible to
package the generated code for each database into a separate dynamic-link library (Windows
DLL) or dynamic shared object (Unix DSO; collectively referred to as DLLs from now on)
and load/unload them from the application dynamically using APIs such as Win32 LoadLi-
brary() or POSIX dlopen() . This allows the application address space to contain code
only for database systems that are actually needed in any particular moment. Another advan-
tage of this approach is the ability to distribute individual database system support separately.

This section provides an overview of how to package the generated database support code into
DLLs for both Windows and Unix using GNU/Linux as an example. Note also that if static
multi-database support is used for a particular database system, then the dynamic loading
cannot be used for this database. It is, however, still possible to package the generated code
into a DLL but this DLL will have to be linked to the executable at link-time rather than at
runtime. If dynamic loading is desirable in this situation, then another alternative would be to
package the functionality that requires static support together with the database support code
into the DLL and import this functionality dynamically using the GetProcAddress()
(Win32) or dlsym() (Unix) function.

The first step in packaging the generated code into DLLs is to set up the symbol exporting.
This step is required for Windows DLLs but is optional for Unix DSOs. Most modern Unix
systems (such as GNU/Linux) provide control over symbol visibility, which is a mechanism
similar to Windows symbol exporting. Notable advantages of using this mechanism to explic-
itly specify which symbols are visible include smaller Unix DSOs and faster load times. If,
however, you are not planning to control symbol visibility on Unix, then you can skip directly
to the second step below.

301Revision 2.4, February 2015 C++ Object Persistence with ODB

16.2.2 Dynamic Loading of Database Support Code

An important point to understand is that we only need to export the common interface, that is,
the classes defined in the person-odb.hxx header. In particular, we don’t need to export
the database system-specific classes defined in the person-odb-<db>.hxx , unless we are
also using this database in the static mode (in which case, the procedure described below will
need to be repeated for that database as well).

The ODB compiler provides two command line options, --export-symbol and
--extern-symbol , which can be used to insert the export and extern macros in all the
necessary places in the generated header file. You are probably familiar with the concept of
export macro which expands to an export directive if we are building the DLL and to an
import directive if we are building client code. The extern macro is a supplementary mecha-
nism which is necessary to export explicit template instantiations used by the generated code
when query support is enabled. As we will see shortly, the extern macro must expand into the
extern C++ keyword in certain situations and must be left undefined in others. To manage
all these macro definitions, it is customary to create the so called export header. Based on a
single macro that is normally defined in the project file or on the command line and which
indicates whether we are building the DLL or client code, the export header file sets the
export and extern macros to their appropriate values. Continuing with our person example, on
Windows the export header, which we will call person-export.hxx , could look like this:

// person-export.hxx
//
// Define PERSON_BUILD_DLL if we are building the DLL. Leave it
// undefined in client code.
//
#ifndef PERSON_EXPORT_HXX
#define PERSON_EXPORT_HXX

#ifdef PERSON_BUILD_DLL
define PERSON_EXPORT __declspec(dllexport)
#else
define PERSON_EXPORT __declspec(dllimport)
define PERSON_EXTERN extern
#endif

#endif // PERSON_EXPORT_HXX

The equivalent export header for GCC on GNU/Linux is shown below. Note also that on
GNU/Linux, by default, all symbols are visible and we need to add the GCC -fvisibil-
ity=hidden option to make them hidden by default.

// person-export.hxx
//
#ifndef PERSON_EXPORT_HXX
#define PERSON_EXPORT_HXX

#define PERSON_EXPORT __attribute__ ((visibility ("default")))
#define PERSON_EXTERN extern

#endif // PERSON_EXPORT_HXX

Revision 2.4, February 2015302 C++ Object Persistence with ODB

16.2.2 Dynamic Loading of Database Support Code

Next we need to export the person persistent class using the export macro and re-compile
our person.hxx file with the --export-symbol and --extern-symbol options.
We will also need to include person-export.hxx into the generated
person-odb.hxx file. For that we use the --hxx-prologue option. Here is how we
can do this with multiple invocations of the ODB compiler:

odb -m dynamic -d common --hxx-prologue "#include \"person-export.hxx\"" \
--export-symbol PERSON_EXPORT --extern-symbol PERSON_EXTERN person.hxx

odb -m dynamic -d sqlite person.hxx
odb -m dynamic -d pgsql person.hxx

It is also possible to achieve the same with a single invocation. Here we need to restrict some
option values to apply only to the common database:

odb -m dynamic -d common -d sqlite -d pgsql \
--hxx-prologue "common:#include \"person-export.hxx\"" \
--export-symbol common:PERSON_EXPORT --extern-symbol common:PERSON_EXTERN \
person.hxx

The second step in packaging the generated code into DLLs is to decide where to place the
generated common interface code. One option is to place it into a DLL of its own so that we
will end up with (replace *.dll with lib*.so for Unix): person.dll plus
person-sqlite.dll and person-pgsql.dll , which both link to person.dll , as
well as person.exe , which links to person.dll and dynamically loads
person-sqlite.dll and/or person-pgsql.dll . If this is the organization that you
prefer, then the next step is to build all the DLLs as you normally would any other DLL,
placing person-odb.cxx and person.cxx into person.dll ,
person-odb-sqlite.cxx into person-sqlite.dll , etc. Note that in the pure
dynamic multi-database support, person-sqlite.dll and person-pgsql.dll do
not export any symbols.

We can improve on the above organization by getting rid of person.dll , which is not
really necessary unless we have multiple executables sharing the same database support. To
achieve this, we will place person-odb.cxx into person.exe and export its symbols
from the executable instead of a DLL. Exporting symbols from an executable is a seldom used
functionality, especially on Windows, however, it is well supported on both Windows and
most Unix platforms. Note also that this approach won’t work if we also use one of the
databases in the static mode.

On Windows all we have to do is place person-odb.cxx into the executable and compile
it as we would in a DLL (that is, with the PERSON_BUILD_DLL macro defined). If
Windows linker detects that an executable exports any symbols, then it will automatically
create the corresponding import library (person.lib in our case). We then use this import
library to build person-sqlite.dll and person-pgsql.dll as before.

To export symbols from an executable on GNU/Linux all we need to do is add the
-rdynamic option when linking our executable.

303Revision 2.4, February 2015 C++ Object Persistence with ODB

16.2.2 Dynamic Loading of Database Support Code

17 MySQL Database
To generate support code for the MySQL database you will need to pass the
"--database mysql " (or "-d mysql ") option to the ODB compiler. Your application
will also need to link to the MySQL ODB runtime library (libodb-mysql). All
MySQL-specific ODB classes are defined in the odb::mysql namespace.

17.1 MySQL Type Mapping

The following table summarizes the default mapping between basic C++ value types and
MySQL database types. This mapping can be customized on the per-type and per-member
basis using the ODB Pragma Language (Chapter 14, "ODB Pragma Language").

C++ Type MySQL Type Default NULL Semantics

bool TINYINT(1) NOT NULL

char CHAR(1) NOT NULL

signed char TINYINT NOT NULL

unsigned char TINYINT UNSIGNED NOT NULL

short SMALLINT NOT NULL

unsigned short SMALLINT UNSIGNED NOT NULL

int INT NOT NULL

unsigned int INT UNSIGNED NOT NULL

long BIGINT NOT NULL

unsigned long BIGINT UNSIGNED NOT NULL

long long BIGINT NOT NULL

unsigned long long BIGINT UNSIGNED NOT NULL

float FLOAT NOT NULL

double DOUBLE NOT NULL

std::string TEXT/VARCHAR(255) NOT NULL

char[N] VARCHAR(N-1) NOT NULL

It is possible to map the char C++ type to an integer database type (for example, TINYINT)
using the db type pragma (Section 14.4.3, "type ").

Revision 2.4, February 2015304 C++ Object Persistence with ODB

17 MySQL Database

Note that the std::string type is mapped differently depending on whether a member of
this type is an object id or not. If the member is an object id, then for this member
std::string is mapped to the VARCHAR(255) MySQL type. Otherwise, it is mapped to
TEXT.

Additionally, by default, C++ enums and C++11 enum classes are automatically mapped to
suitable MySQL types. Contiguous enumerations with the zero first enumerator are mapped to
the MySQL ENUM type. All other enumerations are mapped to the MySQL types correspond-
ing to their underlying integral types (see table above). In both cases the default NULL seman-
tics is NOT NULL. For example:

enum color {red, green, blue};
enum class taste: unsigned char
{
 bitter = 1, // Non-zero first enumerator.
 sweet,
 sour = 4, // Non-contiguous.
 salty
};

#pragma db object
class object
{
 ...

 color color_; // Mapped to ENUM (’red’, ’green’, ’blue’) NOT NULL.
 taste taste_; // Mapped to TINYNT UNSIGNED NOT NULL.
};

It is also possible to add support for additional MySQL types, such as geospatial types. For
more information, refer to Section 14.8, "Database Type Mapping Pragmas".

17.1.1 String Type Mapping

The MySQL ODB runtime library provides support for mapping the std::string ,
char[N] , and std::array<char, N> types to the MySQL CHAR, VARCHAR, TEXT,
NCHAR, and NVARCHAR types. However, these mappings are not enabled by default (in
particular, by default, std::array will be treated as a container). To enable the alternative
mappings for these types we need to specify the database type explicitly using the db type
pragma (Section 14.4.3, "type "), for example:

#pragma db object
class object
{
 ...

 #pragma db type("CHAR(2)")
 char state_[2];

 #pragma db type("VARCHAR(128)")
 std::string name_;
};

305Revision 2.4, February 2015 C++ Object Persistence with ODB

17.1.1 String Type Mapping

Alternatively, this can be done on the per-type basis, for example:

#pragma db value(std::string) type("VARCHAR(128)")

#pragma db object
class object
{
 ...

 std::string name_; // Mapped to VARCHAR(128).
};

The char[N] and std::array<char, N> values may or may not be zero-terminated.
When extracting such values from the database, ODB will append the zero terminator if there
is enough space.

17.1.2 Binary Type Mapping

The MySQL ODB runtime library provides support for mapping the
std::vector<char> , std::vector<unsigned char> , char[N] ,
unsigned char[N] , std::array<char, N> , and std::array<unsigned
char, N> types to the MySQL BINARY, VARBINARY, and BLOB types. However, these
mappings are not enabled by default (in particular, by default, std::vector and
std::array will be treated as containers). To enable the alternative mappings for these
types we need to specify the database type explicitly using the db type pragma (Section
14.4.3, "type "), for example:

#pragma db object
class object
{
 ...

 #pragma db type("BLOB")
 std::vector<char> buf_;

 #pragma db type("BINARY(16)")
 unsigned char uuid_[16];
};

Alternatively, this can be done on the per-type basis, for example:

typedef std::vector<char> buffer;
#pragma db value(buffer) type("BLOB")

#pragma db object
class object
{
 ...

 buffer buf_; // Mapped to BLOB.
};

Revision 2.4, February 2015306 C++ Object Persistence with ODB

17.1.2 Binary Type Mapping

Note also that in native queries (Chapter 4, "Querying the Database") char[N] and
std::array<char, N> parameters are by default passed as a string rather than a binary.
To pass such parameters as a binary, we need to specify the database type explicitly in the
_val() /_ref() calls. Note also that we don’t need to do this for the integrated queries, for
example:

char u[16] = {...};

db.query<object> ("uuid = " + query::_val<odb::mysql::id_blob> (u));
db.query<object> (query::uuid == query::_ref (u));

17.2 MySQL Database Class

The MySQL database class has the following interface:

namespace odb
{
 namespace mysql
 {
 class database: public odb::database
 {
 public:
 database (const char* user,
 const char* passwd,
 const char* db,
 const char* host = 0,
 unsigned int port = 0,
 const char* socket = 0,
 const char* charset = 0,
 unsigned long client_flags = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& user,
 const std::string& passwd,
 const std::string& db,
 const std::string& host = "",
 unsigned int port = 0,
 const std::string* socket = 0,
 const std::string& charset = "",
 unsigned long client_flags = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& user,
 const std::string* passwd,
 const std::string& db,
 const std::string& host = "",
 unsigned int port = 0,
 const std::string* socket = 0,
 const std::string& charset = "",
 unsigned long client_flags = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& user,

307Revision 2.4, February 2015 C++ Object Persistence with ODB

17.2 MySQL Database Class

 const std::string& passwd,
 const std::string& db,
 const std::string& host,
 unsigned int port,
 const std::string& socket,
 const std::string& charset = "",
 unsigned long client_flags = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& user,
 const std::string* passwd,
 const std::string& db,
 const std::string& host,
 unsigned int port,
 const std::string& socket,
 const std::string& charset = "",
 unsigned long client_flags = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (int& argc,
 char* argv[],
 bool erase = false,
 const std::string& charset = "",
 unsigned long client_flags = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 static void
 print_usage (std::ostream&);

 public:
 const char*
 user () const;

 const char*
 password () const;

 const char*
 db () const;

 const char*
 host () const;

 unsigned int
 port () const;

 const char*
 socket () const;

 const char*
 charset () const;

 unsigned long
 client_flags () const;

 public:
 connection_ptr

Revision 2.4, February 2015308 C++ Object Persistence with ODB

17.2 MySQL Database Class

 connection ();
 };
 }
}

You will need to include the <odb/mysql/database.hxx> header file to make this
class available in your application.

The overloaded database constructors allow us to specify MySQL database parameters that
should be used when connecting to the database. In MySQL NULL and an empty string are
treated as the same values for all the string parameters except password and socket .

The charset argument allows us to specify the client character set, that is, the character set
in which the application will encode its text data. Note that this can be different from the
MySQL server character set. If this argument is not specified or is empty, then the default
MySQL client character set is used, normally latin1 . Commonly used values for this argu-
ment are latin1 (equivalent to Windows cp1252 and similar to ISO-8859-1) and utf8 . For
other possible values as well as more information on character set support in MySQL, refer to
the MySQL documentation.

The client_flags argument allows us to specify various MySQL client library flags. For
more information on the possible values, refer to the MySQL C API documentation. The
CLIENT_FOUND_ROWS flag is always set by the MySQL ODB runtime regardless of
whether it was passed in the client_flags argument.

The last constructor extracts the database parameters from the command line. The following
options are recognized:

 --user <login>
 --password <password>
 --database <name>
 --host <host>
 --port <integer>
 --socket <socket>
 --options-file <file>

The --options-file option allows us to specify some or all of the database options in a
file with each option appearing on a separate line followed by a space and an option value.

If the erase argument to this constructor is true, then the above options are removed from
the argv array and the argc count is updated accordingly. This is primarily useful if your
application accepts other options or arguments and you would like to get the MySQL options
out of the argv array.

This constructor throws the odb::mysql::cli_exception exception if the MySQL
option values are missing or invalid. See section Section 17.4, "MySQL Exceptions" for more
information on this exception.

309Revision 2.4, February 2015 C++ Object Persistence with ODB

17.2 MySQL Database Class

The static print_usage() function prints the list of options with short descriptions that
are recognized by this constructor.

The last argument to all of the constructors is a pointer to the connection factory. In
C++98/03, it is std::auto_ptr while in C++11 std::unique_ptr is used instead. If
we pass a non-NULL value, the database instance assumes ownership of the factory instance.
The connection factory interface as well as the available implementations are described in the
next section.

The set of accessor functions following the constructors allows us to query the parameters of
the database instance.

The connection() function returns a pointer to the MySQL database connection encapsu-
lated by the odb::mysql::connection class. For more information on
mysql::connection , refer to Section 17.3, "MySQL Connection and Connection
Factory".

17.3 MySQL Connection and Connection Factory

The mysql::connection class has the following interface:

namespace odb
{
 namespace mysql
 {
 class connection: public odb::connection
 {
 public:
 connection (database&);
 connection (database&, MYSQL*);

 MYSQL*
 handle ();
 };

 typedef details::shared_ptr<connection> connection_ptr;
 }
}

For more information on the odb::connection interface, refer to Section 3.6, "Connec-
tions". The first overloaded mysql::connection constructor establishes a new MySQL
connection. The second constructor allows us to create a connection instance by providing
an already connected native MySQL handle. Note that the connection instance assumes
ownership of this handle. The handle() accessor returns the MySQL handle corresponding
to the connection.

The mysql::connection_factory abstract class has the following interface:

Revision 2.4, February 2015310 C++ Object Persistence with ODB

17.3 MySQL Connection and Connection Factory

namespace odb
{
 namespace mysql
 {
 class connection_factory
 {
 public:
 virtual void
 database (database&) = 0;

 virtual connection_ptr
 connect () = 0;
 };
 }
}

The database() function is called when a connection factory is associated with a database
instance. This happens in the odb::mysql::database class constructors. The
connect() function is called whenever a database connection is requested.

The two implementations of the connection_factory interface provided by the MySQL
ODB runtime are new_connection_factory and connection_pool_factory .
You will need to include the <odb/mysql/connection-factory.hxx> header file to
make the connection_factory interface and these implementation classes available in
your application.

The new_connection_factory class creates a new connection whenever one is
requested. When a connection is no longer needed, it is released and closed. The
new_connection_factory class has the following interface:

namespace odb
{
 namespace mysql
 {
 class new_connection_factory: public connection_factory
 {
 public:
 new_connection_factory ();
 };
};

The connection_pool_factory class implements a connection pool. It has the follow-
ing interface:

namespace odb
{
 namespace mysql
 {
 class connection_pool_factory: public connection_factory
 {
 public:
 connection_pool_factory (std::size_t max_connections = 0,
 std::size_t min_connections = 0,

311Revision 2.4, February 2015 C++ Object Persistence with ODB

17.3 MySQL Connection and Connection Factory

 bool ping = true);

 protected:
 class pooled_connection: public connection
 {
 public:
 pooled_connection (database_type&);
 pooled_connection (database_type&, MYSQL*);
 };

 typedef details::shared_ptr<pooled_connection> pooled_connection_ptr;

 virtual pooled_connection_ptr
 create ();
 };
};

The max_connections argument in the connection_pool_factory constructor
specifies the maximum number of concurrent connections that this pool factory will maintain.
Similarly, the min_connections argument specifies the minimum number of available
connections that should be kept open. The ping argument specifies whether the factory
should validate the connection before returning it to the caller.

Whenever a connection is requested, the pool factory first checks if there is an unused connec-
tion that can be returned. If there is none, the pool factory checks the max_connections
value to see if a new connection can be created. If the total number of connections maintained
by the pool is less than this value, then a new connection is created and returned. Otherwise,
the caller is blocked until a connection becomes available.

When a connection is released, the pool factory first checks if there are blocked callers
waiting for a connection. If so, then one of them is unblocked and is given the connection.
Otherwise, the pool factory checks whether the total number of connections maintained by the
pool is greater than the min_connections value. If that’s the case, the connection is
closed. Otherwise, the connection is added to the pool of available connections to be returned
on the next request. In other words, if the number of connections maintained by the pool
exceeds min_connections and there are no callers waiting for a new connection, then the
pool will close the excess connections.

If the max_connections value is 0, then the pool will create a new connection whenever
all of the existing connections are in use. If the min_connections value is 0, then the pool
will never close a connection and instead maintain all the connections that were ever created.

Connection validation (the ping argument) is useful if your application may experience long
periods of inactivity. In such cases the MySQL server may close network connections that
have been inactive for too long. If during connection validation the pool factory detects that
the connection has been terminated, it silently closes it and tries to find or create another
connection instead.

Revision 2.4, February 2015312 C++ Object Persistence with ODB

17.3 MySQL Connection and Connection Factory

The create() virtual function is called whenever the pool needs to create a new connec-
tion. By deriving from the connection_pool_factory class and overriding this func-
tion we can implement custom connection establishment and configuration.

If you pass NULL as the connection factory to one of the database constructors, then the
connection_pool_factory instance will be created by default with the min and max
connections values set to 0 and connection validation enabled. The following code fragment
shows how we can pass our own connection factory instance:

#include <odb/database.hxx>

#include <odb/mysql/database.hxx>
#include <odb/mysql/connection-factory.hxx>

int
main (int argc, char* argv[])
{
 auto_ptr<odb::mysql::connection_factory> f (
 new odb::mysql::connection_pool_factory (20));

 auto_ptr<odb::database> db (
 new mysql::database (argc, argv, false, 0, f));
}

17.4 MySQL Exceptions

The MySQL ODB runtime library defines the following MySQL-specific exceptions:

namespace odb
{
 namespace mysql
 {
 class database_exception: odb::database_exception
 {
 public:
 unsigned int
 error () const;

 const std::string&
 sqlstate () const;

 const std::string&
 message () const;

 virtual const char*
 what () const throw ();
 };

 class cli_exception: odb::exception
 {
 public:
 virtual const char*

313Revision 2.4, February 2015 C++ Object Persistence with ODB

17.4 MySQL Exceptions

 what () const throw ();
 };
 }
}

You will need to include the <odb/mysql/exceptions.hxx> header file to make these
exceptions available in your application.

The odb::mysql::database_exception is thrown if a MySQL database operation
fails. The MySQL-specific error information is accessible via the error() , sqlstate() ,
and message() functions. All this information is also combined and returned in a
human-readable form by the what() function.

The odb::mysql::cli_exception is thrown by the command line parsing constructor
of the odb::mysql::database class if the MySQL option values are missing or invalid.
The what() function returns a human-readable description of an error.

17.5 MySQL Limitations

The following sections describe MySQL-specific limitations imposed by the current MySQL
and ODB runtime versions.

17.5.1 Foreign Key Constraints

ODB relies on standard SQL behavior which requires that foreign key constraints checking is
deferred until the transaction is committed. The only behaviors supported by MySQL are to
either check such constraints immediately (InnoDB engine) or to ignore foreign key
constraints altogether (all other engines). As a result, by default, schemas generated by the
ODB compiler for MySQL have foreign key definitions commented out. They are retained
only for documentation.

You can override the default behavior and instruct the ODB compiler to generate
non-deferrable foreign keys by specifying the --fkeys-deferrable-mode
not_deferrable ODB compiler option. Note, however, that in this case the order in
which you persist, update, and erase objects within a transaction becomes important.

17.6 MySQL Index Definitions

When the index pragma (Section 14.7, "Index Definition Pragmas") is used to define a
MySQL index, the type clause specifies the index type (for example, UNIQUE, FULLTEXT,
SPATIAL), the method clause specifies the index method (for example, BTREE, HASH),
and the options clause is not used. The column options can be used to specify column
length limits and the sort order. For example:

Revision 2.4, February 2015314 C++ Object Persistence with ODB

17.5 MySQL Limitations

#pragma db object
class object
{
 ...

 std::string name_;

 #pragma db index method("HASH") member(name_, "(100) DESC")
};

17.7 MySQL Stored Procedures

ODB native views (Section 10.6, "Native Views") can be used to call MySQL stored proce-
dures. For example, assuming we are using the person class from Chapter 2, "Hello World
Example" (and the corresponding person table), we can create a stored procedure that given
the min and max ages returns some information about all the people in that range:

CREATE PROCEDURE person_range (
 IN min_age SMALLINT,
 IN max_age SMALLINT)
BEGIN
 SELECT age, first, last FROM person
 WHERE age >= min_age AND age <= max_age;
END

Given the above stored procedure we can then define an ODB view that can be used to call it
and retrieve its result:

#pragma db view query("CALL person_range((?))")
struct person_range
{
 unsigned short age;
 std::string first;
 std::string last;
};

The following example shows how we can use the above view to print the list of people in a
specific age range:

typedef odb::query<person_range> query;
typedef odb::result<person_range> result;

transaction t (db.begin ());

result r (
 db.query<person_range> (
 query::_val (1) + "," + query::_val (18)));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
 cerr << i->first << " " << i->last << " " << i->age << endl;

t.commit ();

315Revision 2.4, February 2015 C++ Object Persistence with ODB

17.7 MySQL Stored Procedures

Note that as with all native views, the order and types of data members must match those of
columns in the SELECT list inside the stored procedure.

There are also a number of limitations when it comes to support for MySQL stored proce-
dures in ODB views. First of all, you have to use MySQL server and client libraries version
5.5.3 or later since this is the version in which support for calling stored procedures with
prepared statements was first added (the mysql_stmt_next_result() function).

In MySQL, a stored procedure can produce multiple results. For example, if a stored proce-
dure executes several SELECT statements, then the result of calling such a procedure consists
of two row sets, one for each SELECT statement. Additionally, if the procedure has any OUT
or INOUT parameters, then their values are returned as an additional special row set contain-
ing only a single row. Because such multiple row sets can contain varying number and type of
columns, they cannot be all extracted into a single view. As a result, an ODB view will only
extract the data from the first row set and ignore all the subsequent ones.

In particular, this means that we can use an ODB view to extract the values of the OUT and
INOUT parameters provided that the stored procedure does not generate any other row sets.
For example:

CREATE PROCEDURE person_min_max_age (
 OUT min_age SMALLINT,
 OUT max_age SMALLINT)
BEGIN
 SELECT MIN(age), MAX(age) INTO min_age, max_age FROM person;
END

#pragma db view query("CALL person_min_max_age((?))")
struct person_min_max_age
{
 unsigned short min_age;
 unsigned short max_age;
};

typedef odb::query<person_min_max_age> query;

transaction t (db.begin ());

// We know this query always returns a single row, so use query_value().
// We have to pass dummy values for OUT parameters.
//
person_min_max_age mma (
 db.query_value<person_min_max_age> (
 query::_val (0) + "," + query::_val (0)));

cerr << mma.min_age << " " << mma.max_age << endl;

t.commit ();

Revision 2.4, February 2015316 C++ Object Persistence with ODB

17.7 MySQL Stored Procedures

Another limitation that stems from having multiple results is the inability to cache the result
of a stored procedure call. In other words, a MySQL stored procedure call always produces an
uncached query result (Section 4.4, "Query Result").

317Revision 2.4, February 2015 C++ Object Persistence with ODB

17.7 MySQL Stored Procedures

18 SQLite Database
To generate support code for the SQLite database you will need to pass the
"--database sqlite " (or "-d sqlite ") option to the ODB compiler. Your applica-
tion will also need to link to the SQLite ODB runtime library (libodb-sqlite). All
SQLite-specific ODB classes are defined in the odb::sqlite namespace.

18.1 SQLite Type Mapping

The following table summarizes the default mapping between basic C++ value types and
SQLite database types. This mapping can be customized on the per-type and per-member
basis using the ODB Pragma Language (Chapter 14, "ODB Pragma Language").

C++ Type SQLite Type Default NULL Semantics

bool INTEGER NOT NULL

char TEXT NOT NULL

signed char INTEGER NOT NULL

unsigned char INTEGER NOT NULL

short INTEGER NOT NULL

unsigned short INTEGER NOT NULL

int INTEGER NOT NULL

unsigned int INTEGER NOT NULL

long INTEGER NOT NULL

unsigned long INTEGER NOT NULL

long long INTEGER NOT NULL

unsigned long long INTEGER NOT NULL

float REAL NULL

double REAL NULL

std::string TEXT NOT NULL

char[N] TEXT NOT NULL

std::wstring (Windows only) TEXT NOT NULL

wchar_t[N] (Windows only) TEXT NOT NULL

Revision 2.4, February 2015318 C++ Object Persistence with ODB

18 SQLite Database

It is possible to map the char C++ type to the INTEGER SQLite type using the db type
pragma (Section 14.4.3, "type ").

SQLite represents the NaN FLOAT value as a NULL value. As a result, columns of the float
and double types are by default declared as NULL. However, you can override this by
explicitly declaring them as NOT NULL with the db not_null pragma (Section 14.4.6,
"null/not_null ").

Additionally, by default, C++ enums and C++11 enum classes are automatically mapped to
the SQLite INTEGER type with the default NULL semantics being NOT NULL. For example:

enum color {red, green, blue};
enum class taste: unsigned char
{
 bitter = 1,
 sweet,
 sour = 4,
 salty
};

#pragma db object
class object
{
 ...

 color color_; // Automatically mapped to INTEGER.
 taste taste_; // Automatically mapped to INTEGER.
};

Note also that SQLite only operates with signed integers and the largest value that an SQLite
database can store is a signed 64-bit integer. As a result, greater unsigned long and
unsigned long long values will be represented in the database as negative values.

It is also possible to add support for additional SQLite types, such as NUMERIC. For more
information, refer to Section 14.8, "Database Type Mapping Pragmas".

18.1.1 String Type Mapping

The SQLite ODB runtime library provides support for mapping the std::array<char,
N> and, on Windows, std::array<wchar_t, N> types to the SQLite TEXT type.
However, this mapping is not enabled by default (in particular, by default, std::array will
be treated as a container). To enable the alternative mapping for this type we need to specify
the database type explicitly using the db type pragma (Section 14.4.3, "type "), for
example:

319Revision 2.4, February 2015 C++ Object Persistence with ODB

18.1.1 String Type Mapping

#pragma db object
class object
{
 ...

 #pragma db type("TEXT")
 std::array<char, 128> name_;
};

Alternatively, this can be done on the per-type basis, for example:

typedef std::array<char, 128> name_type;
#pragma db value(name_type) type("TEXT")

#pragma db object
class object
{
 ...

 name_type name_; // Mapped to TEXT.
};

The char[N] , std::array<char, N> , wchar_t[N] , and
std::array<wchar_t, N> values may or may not be zero-terminated. When extracting
such values from the database, ODB will append the zero terminator if there is enough space.

18.1.2 Binary Type Mapping

The SQLite ODB runtime library provides support for mapping the std::vector<char> ,
std::vector<unsigned char> , char[N] , unsigned char[N] ,
std::array<char, N> , and std::array<unsigned char, N> types to the
SQLite BLOB type. However, these mappings are not enabled by default (in particular, by
default, std::vector and std::array will be treated as containers). To enable the
alternative mappings for these types we need to specify the database type explicitly using the
db type pragma (Section 14.4.3, "type "), for example:

#pragma db object
class object
{
 ...

 #pragma db type("BLOB")
 std::vector<char> buf_;

 #pragma db type("BLOB")
 unsigned char uuid_[16];
};

Alternatively, this can be done on the per-type basis, for example:

Revision 2.4, February 2015320 C++ Object Persistence with ODB

18.1.2 Binary Type Mapping

typedef std::vector<char> buffer;
#pragma db value(buffer) type("BLOB")

#pragma db object
class object
{
 ...

 buffer buf_; // Mapped to BLOB.
};

Note also that in native queries (Chapter 4, "Querying the Database") char[N] and
std::array<char, N> parameters are by default passed as a string rather than a binary.
To pass such parameters as a binary, we need to specify the database type explicitly in the
_val() /_ref() calls. Note also that we don’t need to do this for the integrated queries, for
example:

char u[16] = {...};

db.query<object> ("uuid = " + query::_val<odb::sqlite::id_blob> (u));
db.query<object> (query::uuid == query::_ref (u));

18.2 SQLite Database Class

The SQLite database class has the following interface:

namespace odb
{
 namespace sqlite
 {
 class database: public odb::database
 {
 public:
 database (const std::string& name,
 int flags = SQLITE_OPEN_READWRITE,
 bool foreign_keys = true,
 const std::string& vfs = "",
 std::[auto|unique]_ptr<connection_factory> = 0);

#ifdef _WIN32
 database (const std::wstring& name,
 int flags = SQLITE_OPEN_READWRITE,
 bool foreign_keys = true,
 const std::string& vfs = "",
 std::[auto|unique]_ptr<connection_factory> = 0);
#endif

 database (int& argc,
 char* argv[],
 bool erase = false,
 int flags = SQLITE_OPEN_READWRITE,
 bool foreign_keys = true,
 const std::string& vfs = "",

321Revision 2.4, February 2015 C++ Object Persistence with ODB

18.2 SQLite Database Class

 std::[auto|unique]_ptr<connection_factory> = 0);

 static void
 print_usage (std::ostream&);

 public:
 const std::string&
 name () const;

 int
 flags () const;

 public:
 transaction
 begin_immediate ();

 transaction
 begin_exclusive ();

 public:
 connection_ptr
 connection ();
 };
 }
}

You will need to include the <odb/sqlite/database.hxx> header file to make this
class available in your application.

The first constructor opens the specified SQLite database. The name argument is the database
file name to open in the UTF-8 encoding. If this argument is empty, then a temporary, on-disk
database is created. If this argument is the :memory: special value, then a temporary,
in-memory database is created. The flags argument allows us to specify SQLite opening
flags. For more information on the possible values, refer to the sqlite3_open_v2()
function description in the SQLite C API documentation. The foreign_keys argument
specifies whether foreign key constraints checking should be enabled. See Section 18.5.3,
"Foreign Key Constraints" for more information on foreign keys. The vfs argument specifies
the SQLite virtual file system module that should be used to access the database. If this argu-
ment is empty, then the default vfs module is used. Again, refer to the
sqlite3_open_v2() function documentation for detail.

The following example shows how we can open the test.db database in the read-write
mode and create it if it does not exist:

auto_ptr<odb::database> db (
 new odb::sqlite::database (
 "test.db",
 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE));

The second constructor is the same as the first except that the database name is passes as
std::wstring in the UTF-16 encoding. This constructor is only available when compiling
for Windows.

Revision 2.4, February 2015322 C++ Object Persistence with ODB

18.2 SQLite Database Class

The third constructor extracts the database parameters from the command line. The following
options are recognized:

 --database <name>
 --create
 --read-only
 --options-file <file>

By default, this constructor opens the database in the read-write mode
(SQLITE_OPEN_READWRITE flag). If the --create flag is specified, then the database
file is created if it does not already exist (SQLITE_OPEN_CREATE flag). If the
--read-only flag is specified, then the database is opened in the read-only mode
(SQLITE_OPEN_READONLY flag instead of SQLITE_OPEN_READWRITE). The
--options-file option allows us to specify some or all of the database options in a file
with each option appearing on a separate line followed by a space and an option value.

If the erase argument to this constructor is true, then the above options are removed from
the argv array and the argc count is updated accordingly. This is primarily useful if your
application accepts other options or arguments and you would like to get the SQLite options
out of the argv array.

The flags argument has the same semantics as in the first constructor. Flags from the
command line always override the corresponding values specified with this argument.

The third constructor throws the odb::sqlite::cli_exception exception if the
SQLite option values are missing or invalid. See Section 18.4, "SQLite Exceptions" for more
information on this exception.

The static print_usage() function prints the list of options with short descriptions that
are recognized by the third constructor.

The last argument to all of the constructors is a pointer to the connection factory. In
C++98/03, it is std::auto_ptr while in C++11 std::unique_ptr is used instead. If
we pass a non-NULL value, the database instance assumes ownership of the factory instance.
The connection factory interface as well as the available implementations are described in the
next section.

The set of accessor functions following the constructors allows us to query the parameters of
the database instance.

The begin_immediate() and begin_exclusive() functions are the SQLite-specific
extensions to the standard odb::database::begin() function (see Section 3.5, "Trans-
actions"). They allow us to start an immediate (BEGIN IMMEDIATE) and an exclusive
(BEGIN EXCLUSIVE) SQLite transaction, respectively. For more information on the seman-
tics of the immediate and exclusive transactions, refer to the BEGIN statement description in
the SQLite documentation.

323Revision 2.4, February 2015 C++ Object Persistence with ODB

18.2 SQLite Database Class

The connection() function returns a pointer to the SQLite database connection encapsu-
lated by the odb::sqlite::connection class. For more information on
sqlite::connection , refer to Section 18.3, "SQLite Connection and Connection
Factory".

18.3 SQLite Connection and Connection Factory

The sqlite::connection class has the following interface:

namespace odb
{
 namespace sqlite
 {
 class connection: public odb::connection
 {
 public:
 connection (database&, int extra_flags = 0);
 connection (database&, sqlite3*);

 transaction
 begin_immediate ();

 transaction
 begin_exclusive ();

 sqlite3*
 handle ();
 };

 typedef details::shared_ptr<connection> connection_ptr;
 }
}

For more information on the odb::connection interface, refer to Section 3.6, "Connec-
tions". The first overloaded sqlite::connection constructor opens a new SQLite
connection. The extra_flags argument can be used to specify extra
sqlite3_open_v2() flags that are combined with the flags specified in the
sqlite::database constructor. The second constructor allows us to create a connec-
tion instance by providing an already open native SQLite handle. Note that the connec-
tion instance assumes ownership of this handle.

The begin_immediate() and begin_exclusive() functions allow us to start an
immediate and an exclusive SQLite transaction on the connection, respectively. Their seman-
tics are equivalent to the corresponding functions defined in the sqlite::database class
(Section 18.2, "SQLite Database Class"). The handle() accessor returns the SQLite handle
corresponding to the connection.

The sqlite::connection_factory abstract class has the following interface:

Revision 2.4, February 2015324 C++ Object Persistence with ODB

18.3 SQLite Connection and Connection Factory

namespace odb
{
 namespace sqlite
 {
 class connection_factory
 {
 public:
 virtual void
 database (database&) = 0;

 virtual connection_ptr
 connect () = 0;
 };
 }
}

The database() function is called when a connection factory is associated with a database
instance. This happens in the odb::sqlite::database class constructors. The
connect() function is called whenever a database connection is requested.

The three implementations of the connection_factory interface provided by the SQLite
ODB runtime library are single_connection_factory , new_connec-
tion_factory , and connection_pool_factory . You will need to include the
<odb/sqlite/connection-factory.hxx> header file to make the connec-
tion_factory interface and these implementation classes available in your application.

The single_connection_factory class creates a single connection that is shared
between all the threads in an application. If the connection is currently not in use, then it is
returned to the caller. Otherwise, the caller is blocked until the connection becomes available.
The single_connection_factory class has the following interface:

namespace odb
{
 namespace sqlite
 {
 class single_connection_factory: public connection_factory
 {
 public:
 single_connection_factory ();

 protected:
 class single_connection: public connection
 {
 public:
 single_connection (database_type&);
 single_connection (database_type&, MYSQL*);
 };

 typedef details::shared_ptr<single_connection> single_connection_ptr;

325Revision 2.4, February 2015 C++ Object Persistence with ODB

18.3 SQLite Connection and Connection Factory

 virtual single_connection_ptr
 create ();
 };
};

The create() virtual function is called when the factory needs to create the connection. By
deriving from the single_connection_factory class and overriding this function we
can implement custom connection establishment and configuration.

The new_connection_factory class creates a new connection whenever one is
requested. When a connection is no longer needed, it is released and closed. The
new_connection_factory class has the following interface:

namespace odb
{
 namespace sqlite
 {
 class new_connection_factory: public connection_factory
 {
 public:
 new_connection_factory ();
 };
};

The connection_pool_factory class implements a connection pool. It has the follow-
ing interface:

namespace odb
{
 namespace sqlite
 {
 class connection_pool_factory: public connection_factory
 {
 public:
 connection_pool_factory (std::size_t max_connections = 0,
 std::size_t min_connections = 0);

 protected:
 class pooled_connection: public connection
 {
 public:
 pooled_connection (database_type&, int extra_flags = 0);
 pooled_connection (database_type&, sqlite3*);
 };

 typedef details::shared_ptr<pooled_connection> pooled_connection_ptr;

 virtual pooled_connection_ptr
 create ();
 };
};

Revision 2.4, February 2015326 C++ Object Persistence with ODB

18.3 SQLite Connection and Connection Factory

The max_connections argument in the connection_pool_factory constructor
specifies the maximum number of concurrent connections that this pool factory will maintain.
Similarly, the min_connections argument specifies the minimum number of available
connections that should be kept open.

Whenever a connection is requested, the pool factory first checks if there is an unused connec-
tion that can be returned. If there is none, the pool factory checks the max_connections
value to see if a new connection can be created. If the total number of connections maintained
by the pool is less than this value, then a new connection is created and returned. Otherwise,
the caller is blocked until a connection becomes available.

When a connection is released, the pool factory first checks if there are blocked callers
waiting for a connection. If so, then one of them is unblocked and is given the connection.
Otherwise, the pool factory checks whether the total number of connections maintained by the
pool is greater than the min_connections value. If that’s the case, the connection is
closed. Otherwise, the connection is added to the pool of available connections to be returned
on the next request. In other words, if the number of connections maintained by the pool
exceeds min_connections and there are no callers waiting for a new connection, then the
pool will close the excess connections.

If the max_connections value is 0, then the pool will create a new connection whenever
all of the existing connections are in use. If the min_connections value is 0, then the pool
will never close a connection and instead maintain all the connections that were ever created.

The create() virtual function is called whenever the pool needs to create a new connec-
tion. By deriving from the connection_pool_factory class and overriding this func-
tion we can implement custom connection establishment and configuration.

By default, connections created by new_connection_factory and connec-
tion_pool_factory enable the SQLite shared cache mode and use the unlock notify
functionality to aid concurrency. To disable the shared cache mode you can pass the
SQLITE_OPEN_PRIVATECACHE flag when creating the database instance. For more infor-
mation on the shared cache mode refer to the SQLite documentation.

If you pass NULL as the connection factory to one of the database constructors, then the
connection_pool_factory instance will be created by default with the min and max
connections values set to 0. The following code fragment shows how we can pass our own
connection factory instance:

#include <odb/database.hxx>

#include <odb/sqlite/database.hxx>
#include <odb/sqlite/connection-factory.hxx>

int
main (int argc, char* argv[])
{
 auto_ptr<odb::sqlite::connection_factory> f (
 new odb::sqlite::connection_pool_factory (20));

327Revision 2.4, February 2015 C++ Object Persistence with ODB

18.3 SQLite Connection and Connection Factory

 auto_ptr<odb::database> db (
 new sqlite::database (argc, argv, false, SQLITE_OPEN_READWRITE, f));
}

18.4 SQLite Exceptions

The SQLite ODB runtime library defines the following SQLite-specific exceptions:

namespace odb
{
 namespace sqlite
 {
 class forced_rollback: odb::recoverable
 {
 public:
 virtual const char*
 what () const throw ();
 };

 class database_exception: odb::database_exception
 {
 public:
 int
 error () const

 int
 extended_error () const;

 const std::string&
 message () const;

 virtual const char*
 what () const throw ();
 };

 class cli_exception: odb::exception
 {
 public:
 virtual const char*
 what () const throw ();
 };
 }
}

You will need to include the <odb/sqlite/exceptions.hxx> header file to make
these exceptions available in your application.

The odb::sqlite::forced_rollback exception is thrown if SQLite is forcing the
current transaction to roll back. For more information on this behavior refer to Section 18.5.6,
"Forced Rollback".

Revision 2.4, February 2015328 C++ Object Persistence with ODB

18.4 SQLite Exceptions

The odb::sqlite::database_exception is thrown if an SQLite database operation
fails. The SQLite-specific error information is accessible via the error() ,
extended_error() , and message() functions. All this information is also combined
and returned in a human-readable form by the what() function.

The odb::sqlite::cli_exception is thrown by the command line parsing construc-
tor of the odb::sqlite::database class if the SQLite option values are missing or
invalid. The what() function returns a human-readable description of an error.

18.5 SQLite Limitations

The following sections describe SQLite-specific limitations imposed by the current SQLite
and ODB runtime versions.

18.5.1 Query Result Caching

SQLite ODB runtime implementation does not perform query result caching (Section 4.4,
"Query Result") even when explicitly requested. The SQLite API supports interleaving execu-
tion of multiple prepared statements on a single connection. As a result, with SQLite, it is
possible to have multiple uncached results and calls to other database functions do not invali-
date them. The only limitation of the uncached SQLite results is the unavailability of the
result::size() function. If you call this function on an SQLite query result, then the
odb::result_not_cached exception (Section 3.14, "ODB Exceptions") is always
thrown. Future versions of the SQLite ODB runtime library may add support for result
caching.

18.5.2 Automatic Assignment of Object Ids

Due to SQLite API limitations, every automatically assigned object id (Section 14.4.2,
"auto ") should have the INTEGER SQLite type. While SQLite will treat other integer type
names (such as INT , BIGINT , etc.) as INTEGER, automatic id assignment will not work. By
default, ODB maps all C++ integral types to INTEGER. This means that the only situation
that requires consideration is the assignment of a custom database type using the db type
pragma (Section 14.4.3, "type "). For example:

#pragma db object
class person
{
 ...

 //#pragma db id auto type("INT") // Will not work.
 //#pragma db id auto type("INTEGER") // Ok.
 #pragma db id auto // Ok, Mapped to INTEGER.
 unsigned int id_;
};

329Revision 2.4, February 2015 C++ Object Persistence with ODB

18.5 SQLite Limitations

18.5.3 Foreign Key Constraints

By default the SQLite ODB runtime enables foreign key constraints checking (PRAGMA
foreign_keys=ON). You can disable foreign keys by passing false as the
foreign_keys argument to one of the odb::sqlite::database constructors.
Foreign keys will also be disabled if the SQLite library is built without support for foreign
keys (SQLITE_OMIT_FOREIGN_KEY and SQLITE_OMIT_TRIGGER macros) or if you
are using an SQLite version prior to 3.6.19, which does not support foreign key constraints
checking.

If foreign key constraints checking is disabled or not available, then inconsistencies in object
relationships will not be detected. Furthermore, using the erase_query() function
(Section 3.11, "Deleting Persistent Objects") to delete persistent objects that contain contain-
ers will not work correctly. Container data for such objects will not be deleted.

When foreign key constraints checking is enabled, then you may get the "foreign key
constraint failed" error while re-creating the database schema. This error is due to bugs in the
SQLite DDL foreign keys support. The recommended work-around for this problem is to
temporarily disable foreign key constraints checking while re-creating the schema. The
following code fragment shows how this can be done:

#include <odb/connection.hxx>
#include <odb/transaction.hxx>
#include <odb/schema-catalog.hxx>

odb::database& db = ...

{
 odb::connection_ptr c (db.connection ());

 c->execute ("PRAGMA foreign_keys=OFF");

 odb::transaction t (c->begin ());
 odb::schema_catalog::create_schema (db);
 t.commit ();

 c->execute ("PRAGMA foreign_keys=ON");
}

Finally, ODB assumes the standard SQL behavior which requires that foreign key constraints
checking is deferred until the transaction is committed. Default SQLite behavior is to check
such constraints immediately. As a result, when used with ODB, a custom database schema
that defines foreign key constraints may need to declare such constraints as DEFERRABLE
INITIALLY DEFERRED , as shown in the following example. By default, schemas gener-
ated by the ODB compiler meet this requirement automatically.

CREATE TABLE Employee (
 ...
 employer INTEGER REFERENCES Employer(id)
 DEFERRABLE INITIALLY DEFERRED);

Revision 2.4, February 2015330 C++ Object Persistence with ODB

18.5.3 Foreign Key Constraints

You can override the default behavior and instruct the ODB compiler to generate
non-deferrable foreign keys by specifying the --fkeys-deferrable-mode
not_deferrable ODB compiler option. Note, however, that in this case the order in
which you persist, update, and erase objects within a transaction becomes important.

18.5.4 Constraint Violations

Due to the granularity of the SQLite error codes, it is impossible to distinguish between the
duplicate primary key and other constraint violations. As a result, when making an object
persistent, the SQLite ODB runtime will translate all constraint violation errors to the
object_already_persistent exception (Section 3.14, "ODB Exceptions").

18.5.5 Sharing of Queries

As discussed in Section 4.3, "Executing a Query", a query instance that does not have any
by-reference parameters is immutable and can be shared between multiple threads without
synchronization. Currently, the SQLite ODB runtime does not support this functionality.
Future versions of the library will remove this limitation.

18.5.6 Forced Rollback

In SQLite 3.7.11 or later, if one of the connections participating in the shared cache rolls back
a transaction, then ongoing transactions on other connections in the shared cache may also be
forced to roll back. An example of such behavior would be a read-only transaction that is
forced to roll back while iterating over the query result because another transaction on another
connection was rolled back.

If a transaction is being forced to roll back by SQLite, then ODB throws
odb::sqlite::forced_rollback (Section 18.4, "SQLite Exceptions") which is a
recoverable exception (3.7 Error Handling and Recovery). As a result, the recommended way
to handle this exception is to re-execute the affected transaction.

18.5.7 Database Schema Evolution

From the list of schema migration changes supported by ODB (Section 13.2, "Schema Migra-
tion"), the following are not supported by SQLite:

drop column
alter column, set NULL/NOT NULL
add foreign key
drop foreign key

The biggest problem is the lack of support for dropping columns. This means that it would be
impossible to delete a data member in a persistent class. To work around this limitation ODB
implements logical delete for columns that allow NULL values. In this case, instead of drop-
ping the column (in the post-migration stage), the schema migration statements will automati-
cally reset this column in all the existing rows to NULL. Any new rows that are inserted later

331Revision 2.4, February 2015 C++ Object Persistence with ODB

18.5.4 Constraint Violations

will also automatically have this column set to NULL (unless the column specifies a default
value).

Since it is also impossible to change the column’s NULL/NOT NULL attribute after it has
been added, to make schema evolution support usable in SQLite, all the columns should be
added as NULL even if semantically they should not allow NULL values. We should also
normally refrain from assigning default values to columns (Section 14.4.7, default), unless
the space overhead of a default value is not a concern. Explicitly making all the data members
NULL would be burdensome and ODB provides the --sqlite-override-null
command line option that forces all the columns, even those that were explicitly marked NOT
NULL, to be NULL in SQLite.

SQLite only supports adding foreign keys as part of the column addition. As a result, we can
only add a new data member of an object pointer type if it points to an object with a simple
(single-column) object id.

SQLite also doesn’t support dropping foreign keys. Leaving a foreign key around works well
with logical delete unless we also want to delete the pointed-to object. In this case we will
have to leave an empty table corresponding to the pointed-to object around. An alternative
would be to make a copy of the pointing object without the object pointer, migrate the data,
and then delete both the old pointing and the pointed-to objects. Since this will result in drop-
ping the pointing table, the foreign key will be dropped as well. Yet another, more radical,
solution to this problem is to disable foreign keys checking altogether (see the
foreign_keys SQLite pragma).

To summarize, to make schema evolution support usable in SQLite we should pass the
--sqlite-override-null option when compiling our persistent classes and also
refrain from assigning default values to data members. Note also that this has to be done from
the start so that every column is added as NULL and therefore can be logically deleted later. In
particular, you cannot add the --sqlite-override-null option when you realize you
need to delete a data member. At this point it is too late since the column has already been
added as NOT NULL in existing databases. We should also avoid composite object ids if we
are planning to use object relationships.

18.6 SQLite Index Definitions

When the index pragma (Section 14.7, "Index Definition Pragmas") is used to define an
SQLite index, the type clause specifies the index type (for example, UNIQUE) while the
method and options clauses are not used. The column options can be used to specify
collations and the sort order. For example:

Revision 2.4, February 2015332 C++ Object Persistence with ODB

18.6 SQLite Index Definitions

#pragma db object
class object
{
 ...

 std::string name_;

 #pragma db index member(name_, "COLLATE binary DESC")
};

Index names in SQLite are database-global. To avoid name clashes, ODB automatically
prefixes each index name with the table name on which it is defined.

333Revision 2.4, February 2015 C++ Object Persistence with ODB

18.6 SQLite Index Definitions

19 PostgreSQL Database
To generate support code for the PostgreSQL database you will need to pass the
"--database pgsql " (or "-d pgsql ") option to the ODB compiler. Your application
will also need to link to the PostgreSQL ODB runtime library (libodb-pgsql). All Post-
greSQL-specific ODB classes are defined in the odb::pgsql namespace.

ODB utilizes prepared statements extensively. Support for prepared statements was added in
PostgreSQL version 7.4 with the introduction of the messaging protocol version 3.0. For this
reason, ODB supports only PostgreSQL version 7.4 and later.

19.1 PostgreSQL Type Mapping

The following table summarizes the default mapping between basic C++ value types and
PostgreSQL database types. This mapping can be customized on the per-type and per-member
basis using the ODB Pragma Language (Chapter 14, "ODB Pragma Language").

C++ Type PostgreSQL Type Default NULL Semantics

bool BOOLEAN NOT NULL

char CHAR(1) NOT NULL

signed char SMALLINT NOT NULL

unsigned char SMALLINT NOT NULL

short SMALLINT NULL NOT NULL

unsigned short SMALLINT NOT NULL

int INTEGER NOT NULL

unsigned int INTEGER NOT NULL

long BIGINT NOT NULL

unsigned long BIGINT NOT NULL

long long BIGINT NOT NULL

unsigned long long BIGINT NOT NULL

float REAL NOT NULL

double DOUBLE PRECISION NOT NULL

std::string TEXT NOT NULL

char[N] VARCHAR(N-1) NOT NULL

Revision 2.4, February 2015334 C++ Object Persistence with ODB

19 PostgreSQL Database

It is possible to map the char C++ type to an integer database type (for example, SMALL-
INT) using the db type pragma (Section 14.4.3, "type ").

Additionally, by default, C++ enums and C++11 enum classes are automatically mapped to
the PostgreSQL types corresponding to their underlying integral types (see table above). The
default NULL semantics is NOT NULL. For example:

enum color {red, green, blue};
enum class taste: unsigned char
{
 bitter = 1,
 sweet,
 sour = 4,
 salty
};

#pragma db object
class object
{
 ...

 color color_; // Automatically mapped to INTEGER.
 taste taste_; // Automatically mapped to SMALLINT.
};

Note also that because PostgreSQL does not support unsigned integers, the
unsigned short , unsigned int , and unsigned long /unsigned long long
C++ types are by default mapped to the SMALLINT, INTEGER, and BIGINT PostgreSQL
types, respectively. The sign bit of the value stored by the database for these types will
contain the most significant bit of the actual unsigned value being persisted.

It is also possible to add support for additional PostgreSQL types, such as NUMERIC, geome-
try types, XML, JSON, enumeration types, composite types, arrays, geospatial types, and the
key-value store (HSTORE). For more information, refer to Section 14.8, "Database Type
Mapping Pragmas".

19.1.1 String Type Mapping

The PostgreSQL ODB runtime library provides support for mapping the std::string ,
char[N] , and std::array<char, N> types to the PostgreSQL CHAR, VARCHAR, and
TEXT types. However, these mappings are not enabled by default (in particular, by default,
std::array will be treated as a container). To enable the alternative mappings for these
types we need to specify the database type explicitly using the db type pragma (Section
14.4.3, "type "), for example:

335Revision 2.4, February 2015 C++ Object Persistence with ODB

19.1.1 String Type Mapping

#pragma db object
class object
{
 ...

 #pragma db type("CHAR(2)")
 char state_[2];

 #pragma db type("VARCHAR(128)")
 std::string name_;
};

Alternatively, this can be done on the per-type basis, for example:

#pragma db value(std::string) type("VARCHAR(128)")

#pragma db object
class object
{
 ...

 std::string name_; // Mapped to VARCHAR(128).
};

The char[N] and std::array<char, N> values may or may not be zero-terminated.
When extracting such values from the database, ODB will append the zero terminator if there
is enough space.

19.1.2 Binary Type and UUID Mapping

The PostgreSQL ODB runtime library provides support for mapping the
std::vector<char> , std::vector<unsigned char> , char[N] ,
unsigned char[N] , std::array<char, N> , and std::array<unsigned
char, N> types to the PostgreSQL BYTEA type. There is also support for mapping the
char[16] array to the PostgreSQL UUID type. However, these mappings are not enabled by
default (in particular, by default, std::vector and std::array will be treated as
containers). To enable the alternative mappings for these types we need to specify the
database type explicitly using the db type pragma (Section 14.4.3, "type "), for example:

#pragma db object
class object
{
 ...

 #pragma db type("UUID")
 char uuid_[16];

 #pragma db type("BYTEA")
 std::vector<char> buf_;

 #pragma db type("BYTEA")
 unsigned char data_[256];
};

Revision 2.4, February 2015336 C++ Object Persistence with ODB

19.1.2 Binary Type and UUID Mapping

Alternatively, this can be done on the per-type basis, for example:

typedef std::vector<char> buffer;
#pragma db value(buffer) type("BYTEA")

#pragma db object
class object
{
 ...

 buffer buf_; // Mapped to BYTEA.
};

Note also that in native queries (Chapter 4, "Querying the Database") char[N] and
std::array<char, N> parameters are by default passed as a string rather than a binary.
To pass such parameters as a binary, we need to specify the database type explicitly in the
_val() /_ref() calls. Note also that we don’t need to do this for the integrated queries, for
example:

char u[16] = {...};

db.query<object> ("uuid = " + query::_val<odb::pgsql::id_uuid> (u));
db.query<object> ("buf = " + query::_val<odb::pgsql::id_bytea> (u));
db.query<object> (query::uuid == query::_ref (u));

19.2 PostgreSQL Database Class

The PostgreSQL database class has the following interface:

namespace odb
{
 namespace pgsql
 {
 class database: public odb::database
 {
 public:
 database (const std::string& user,
 const std::string& password,
 const std::string& db,
 const std::string& host = "",
 unsigned int port = 0,
 const std::string& extra_conninfo = "",
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& user,
 const std::string& password,
 const std::string& db,
 const std::string& host,
 const std::string& socket_ext,
 const std::string& extra_conninfo = "",
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& conninfo,

337Revision 2.4, February 2015 C++ Object Persistence with ODB

19.2 PostgreSQL Database Class

 std::[auto|unique]_ptr<connection_factory> = 0);

 database (int& argc,
 char* argv[],
 bool erase = false,
 const std::string& extra_conninfo = "",
 std::[auto|unique]_ptr<connection_factory> = 0);

 static void
 print_usage (std::ostream&);

 public:
 const std::string&
 user () const;

 const std::string&
 password () const;

 const std::string&
 db () const;

 const std::string&
 host () const;

 unsigned int
 port () const;

 const std::string&
 socket_ext () const;

 const std::string&
 extra_conninfo () const;

 const std::string&
 conninfo () const;

 public:
 connection_ptr
 connection ();
 };
 }
}

You will need to include the <odb/pgsql/database.hxx> header file to make this
class available in your application.

The overloaded database constructors allow us to specify the PostgreSQL database param-
eters that should be used when connecting to the database. The port argument in the first
constructor is an integer value specifying the TCP/IP port number to connect to. A zero port
number indicates that the default port should be used. The socket_ext argument in the
second constructor is a string value specifying the UNIX-domain socket file name extension.

Revision 2.4, February 2015338 C++ Object Persistence with ODB

19.2 PostgreSQL Database Class

The third constructor allows us to specify all the database parameters as a single conninfo
string. All other constructors accept additional database connection parameters as the
extra_conninfo argument. For more information about the format of the conninfo
string, refer to the PQconnectdb() function description in the PostgreSQL documentation.
In the case of extra_conninfo , all the database parameters provided in this string will
take precedence over those explicitly specified with other constructor arguments.

The last constructor extracts the database parameters from the command line. The following
options are recognized:

 --user <login> | --username <login>
 --password <password>
 --database <name> | --dbname <name>
 --host <host>
 --port <integer>
 --options-file <file>

The --options-file option allows us to specify some or all of the database options in a
file with each option appearing on a separate line followed by a space and an option value.

If the erase argument to this constructor is true, then the above options are removed from
the argv array and the argc count is updated accordingly. This is primarily useful if your
application accepts other options or arguments and you would like to get the PostgreSQL
options out of the argv array.

This constructor throws the odb::pgsql::cli_exception exception if the PostgreSQL
option values are missing or invalid. See section Section 19.4, "PostgreSQL Exceptions" for
more information on this exception.

The static print_usage() function prints the list of options with short descriptions that
are recognized by this constructor.

The last argument to all of the constructors is a pointer to the connection factory. In
C++98/03, it is std::auto_ptr while in C++11 std::unique_ptr is used instead. If
we pass a non-NULL value, the database instance assumes ownership of the factory instance.
The connection factory interface as well as the available implementations are described in the
next section.

The set of accessor functions following the constructors allows us to query the parameters of
the database instance. Note that the conninfo() accessor returns a complete
conninfo string which includes parameters that were explicitly specified with the various
constructor arguments, as well as the extra parameters passed in the extra_conninfo
argument. The extra_conninfo() accessor will return the conninfo string as passed
in the extra_conninfo argument.

The connection() function returns a pointer to the PostgreSQL database connection
encapsulated by the odb::pgsql::connection class. For more information on
pgsql::connection , refer to Section 19.3, "PostgreSQL Connection and Connection
Factory".

339Revision 2.4, February 2015 C++ Object Persistence with ODB

19.2 PostgreSQL Database Class

19.3 PostgreSQL Connection and Connection Factory

The pgsql::connection class has the following interface:

namespace odb
{
 namespace pgsql
 {
 class connection: public odb::connection
 {
 public:
 connection (database&);
 connection (database&, PGconn*);

 PGconn*
 handle ();
 };

 typedef details::shared_ptr<connection> connection_ptr;
 }
}

For more information on the odb::connection interface, refer to Section 3.6, "Connec-
tions". The first overloaded pgsql::connection constructor establishes a new Post-
greSQL connection. The second constructor allows us to create a connection instance by
providing an already connected native PostgreSQL handle. Note that the connection
instance assumes ownership of this handle. The handle() accessor returns the PostgreSQL
handle corresponding to the connection.

The pgsql::connection_factory abstract class has the following interface:

namespace odb
{
 namespace pgsql
 {
 class connection_factory
 {
 public:
 virtual void
 database (database&) = 0;

 virtual connection_ptr
 connect () = 0;
 };
 }
}

The database() function is called when a connection factory is associated with a database
instance. This happens in the odb::pgsql::database class constructors. The
connect() function is called whenever a database connection is requested.

Revision 2.4, February 2015340 C++ Object Persistence with ODB

19.3 PostgreSQL Connection and Connection Factory

The two implementations of the connection_factory interface provided by the Post-
greSQL ODB runtime are new_connection_factory and connec-
tion_pool_factory . You will need to include the <odb/pgsql/connec-
tion-factory.hxx> header file to make the connection_factory interface and
these implementation classes available in your application.

The new_connection_factory class creates a new connection whenever one is
requested. When a connection is no longer needed, it is released and closed. The
new_connection_factory class has the following interface:

namespace odb
{
 namespace pgsql
 {
 class new_connection_factory: public connection_factory
 {
 public:
 new_connection_factory ();
 };
};

The connection_pool_factory class implements a connection pool. It has the follow-
ing interface:

namespace odb
{
 namespace pgsql
 {
 class connection_pool_factory: public connection_factory
 {
 public:
 connection_pool_factory (std::size_t max_connections = 0,
 std::size_t min_connections = 0);

 protected:
 class pooled_connection: public connection
 {
 public:
 pooled_connection (database_type&);
 pooled_connection (database_type&, PGconn*);
 };

 typedef details::shared_ptr<pooled_connection> pooled_connection_ptr;

 virtual pooled_connection_ptr
 create ();
 };
};

The max_connections argument in the connection_pool_factory constructor
specifies the maximum number of concurrent connections that this pool factory will maintain.
Similarly, the min_connections argument specifies the minimum number of available
connections that should be kept open.

341Revision 2.4, February 2015 C++ Object Persistence with ODB

19.3 PostgreSQL Connection and Connection Factory

Whenever a connection is requested, the pool factory first checks if there is an unused connec-
tion that can be returned. If there is none, the pool factory checks the max_connections
value to see if a new connection can be created. If the total number of connections maintained
by the pool is less than this value, then a new connection is created and returned. Otherwise,
the caller is blocked until a connection becomes available.

When a connection is released, the pool factory first checks if there are blocked callers
waiting for a connection. If so, then one of them is unblocked and is given the connection.
Otherwise, the pool factory checks whether the total number of connections maintained by the
pool is greater than the min_connections value. If that’s the case, the connection is
closed. Otherwise, the connection is added to the pool of available connections to be returned
on the next request. In other words, if the number of connections maintained by the pool
exceeds min_connections and there are no callers waiting for a new connection, the pool
will close the excess connections.

If the max_connections value is 0, then the pool will create a new connection whenever
all of the existing connections are in use. If the min_connections value is 0, then the pool
will never close a connection and instead maintain all the connections that were ever created.

The create() virtual function is called whenever the pool needs to create a new connec-
tion. By deriving from the connection_pool_factory class and overriding this func-
tion we can implement custom connection establishment and configuration.

If you pass NULL as the connection factory to one of the database constructors, then the
connection_pool_factory instance will be created by default with the min and max
connections values set to 0. The following code fragment shows how we can pass our own
connection factory instance:

#include <odb/database.hxx>

#include <odb/pgsql/database.hxx>
#include <odb/pgsql/connection-factory.hxx>

int
main (int argc, char* argv[])
{
 auto_ptr<odb::pgsql::connection_factory> f (
 new odb::pgsql::connection_pool_factory (20));

 auto_ptr<odb::database> db (
 new pgsql::database (argc, argv, false, "", f));
}

19.4 PostgreSQL Exceptions

The PostgreSQL ODB runtime library defines the following PostgreSQL-specific exceptions:

Revision 2.4, February 2015342 C++ Object Persistence with ODB

19.4 PostgreSQL Exceptions

namespace odb
{
 namespace pgsql
 {
 class database_exception: odb::database_exception
 {
 public:
 const std::string&
 message () const;

 const std::string&
 sqlstate () const;

 virtual const char*
 what () const throw ();
 };

 class cli_exception: odb::exception
 {
 public:
 virtual const char*
 what () const throw ();
 };
 }
}

You will need to include the <odb/pgsql/exceptions.hxx> header file to make these
exceptions available in your application.

The odb::pgsql::database_exception is thrown if a PostgreSQL database opera-
tion fails. The PostgreSQL-specific error information is accessible via the message() and
sqlstate() functions. All this information is also combined and returned in a human-read-
able form by the what() function.

The odb::pgsql::cli_exception is thrown by the command line parsing constructor
of the odb::pgsql::database class if the PostgreSQL option values are missing or
invalid. The what() function returns a human-readable description of an error.

19.5 PostgreSQL Limitations

The following sections describe PostgreSQL-specific limitations imposed by the current Post-
greSQL and ODB runtime versions.

19.5.1 Query Result Caching

The PostgreSQL ODB runtime implementation will always return a cached query result
(Section 4.4, "Query Result") even when explicitly requested not to. This is a limitation of the
PostgreSQL client library (libpq) which does not support uncached (streaming) query
results.

343Revision 2.4, February 2015 C++ Object Persistence with ODB

19.5 PostgreSQL Limitations

19.5.2 Foreign Key Constraints

ODB assumes the standard SQL behavior which requires that foreign key constraints check-
ing is deferred until the transaction is committed. Default PostgreSQL behavior is to check
such constraints immediately. As a result, when used with ODB, a custom database schema
that defines foreign key constraints may need to declare such constraints as INITIALLY
DEFERRED, as shown in the following example. By default, schemas generated by the ODB
compiler meet this requirement automatically.

CREATE TABLE Employee (
 ...
 employer BIGINT REFERENCES Employer(id) INITIALLY DEFERRED);

You can override the default behavior and instruct the ODB compiler to generate
non-deferrable foreign keys by specifying the --fkeys-deferrable-mode
not_deferrable ODB compiler option. Note, however, that in this case the order in
which you persist, update, and erase objects within a transaction becomes important.

19.5.3 Unique Constraint Violations

Due to the granularity of the PostgreSQL error codes, it is impossible to distinguish between
the duplicate primary key and other unique constraint violations. As a result, when making an
object persistent, the PostgreSQL ODB runtime will translate all unique constraint violation
errors to the object_already_persistent exception (Section 3.14, "ODB Excep-
tions").

19.5.4 Date-Time Format

ODB expects the PostgreSQL server to use integers as a binary format for the date-time types,
which is the default for most PostgreSQL configurations. When creating a connection, ODB
examines the integer_datetimes PostgreSQL server parameter and if it is false ,
odb::pgsql::database_exception is thrown. You may check the value of this
parameter for your server by executing the following SQL query:

SHOW integer_datetimes

19.5.5 Timezones

ODB does not currently natively support the PostgreSQL date-time types with timezone infor-
mation. However, these types can be accessed by mapping them to one of the natively
supported types, as discussed in Section 14.8, "Database Type Mapping Pragmas".

19.5.6 NUMERIC Type Support

Support for the PostgreSQL NUMERIC type is limited to providing a binary buffer containing
the binary representation of the value. For more information on the binary format used to store
NUMERIC values refer to the PostgreSQL documentation. An alternative approach to access-
ing NUMERIC values is to map this type to one of the natively supported ones, as discussed in

Revision 2.4, February 2015344 C++ Object Persistence with ODB

19.5.2 Foreign Key Constraints

Section 14.8, "Database Type Mapping Pragmas".

19.6 PostgreSQL Index Definitions

When the index pragma (Section 14.7, "Index Definition Pragmas") is used to define a Post-
greSQL index, the type clause specifies the index type (for example, UNIQUE), the method
clause specifies the index method (for example, BTREE, HASH, GIN, etc.), and the options
clause specifies additional index options, such as storage parameters, table spaces, and the
WHERE predicate. To support the definition of concurrent indexes, the type clause can end
with the word CONCURRENTLY (upper and lower cases are recognized). The column options
can be used to specify collations, operator classes, and the sort order. For example:

#pragma db object
class object
{
 ...

 std::string name_;

 #pragma db index \
 type("UNIQUE CONCURRENTLY") \
 method("HASH") \
 member(name_, "DESC") \
 options("WITH(FILLFACTOR = 80)")
};

Index names in PostgreSQL are schema-global. To avoid name clashes, ODB automatically
prefixes each index name with the table name on which it is defined.

345Revision 2.4, February 2015 C++ Object Persistence with ODB

19.6 PostgreSQL Index Definitions

20 Oracle Database
To generate support code for the Oracle database you will need to pass the
"--database oracle " (or "-d oracle ") option to the ODB compiler. Your applica-
tion will also need to link to the Oracle ODB runtime library (libodb-oracle). All
Oracle-specific ODB classes are defined in the odb::oracle namespace.

20.1 Oracle Type Mapping

The following table summarizes the default mapping between basic C++ value types and
Oracle database types. This mapping can be customized on the per-type and per-member basis
using the ODB Pragma Language (Chapter 14, "ODB Pragma Language").

C++ Type Oracle Type Default NULL Semantics

bool NUMBER(1) NOT NULL

char CHAR(1) NOT NULL

signed char NUMBER(3) NOT NULL

unsigned char NUMBER(3) NOT NULL

short NUMBER(5) NOT NULL

unsigned short NUMBER(5) NOT NULL

int NUMBER(10) NOT NULL

unsigned int NUMBER(10) NOT NULL

long NUMBER(19) NOT NULL

unsigned long NUMBER(20) NOT NULL

long long NUMBER(19) NOT NULL

unsigned long long NUMBER(20) NOT NULL

float BINARY_FLOAT NOT NULL

double BINARY_DOUBLENOT NULL

std::string VARCHAR2(512) NULL

char[N] VARCHAR2(N-1) NULL

It is possible to map the char C++ type to an integer database type (for example,
NUMBER(3)) using the db type pragma (Section 14.4.3, "type ").

Revision 2.4, February 2015346 C++ Object Persistence with ODB

20 Oracle Database

In Oracle empty VARCHAR2 and NVARCHAR2 strings are represented as a NULL value. As a
result, columns of the std::string and char[N] types are by default declared as NULL
except for primary key columns. However, you can override this by explicitly declaring such
columns as NOT NULL with the db not_null pragma (Section 14.4.6,
"null/not_null "). This also means that for object ids that are mapped to these Oracle
types, an empty string is an invalid value.

Additionally, by default, C++ enums and C++11 enum classes are automatically mapped to
the Oracle types corresponding to their underlying integral types (see table above). The
default NULL semantics is NOT NULL. For example:

enum color {red, green, blue};
enum class taste: unsigned char
{
 bitter = 1,
 sweet,
 sour = 4,
 salty
};

#pragma db object
class object
{
 ...

 color color_; // Automatically mapped to NUMBER(10).
 taste taste_; // Automatically mapped to NUMBER(3).
};

It is also possible to add support for additional Oracle types, such as XML, geospatial types,
user-defined types, and collections (arrays, table types). For more information, refer to
Section 14.8, "Database Type Mapping Pragmas".

20.1.1 String Type Mapping

The Oracle ODB runtime library provides support for mapping the std::string ,
char[N] , and std::array<char, N> types to the Oracle CHAR, VARCHAR2, CLOB,
NCHAR, NVARCHAR2, and NCLOB types. However, these mappings are not enabled by
default (in particular, by default, std::array will be treated as a container). To enable the
alternative mappings for these types we need to specify the database type explicitly using the
db type pragma (Section 14.4.3, "type "), for example:

#pragma db object
class object
{
 ...

 #pragma db type ("CHAR(2)")
 char state_[2];

 #pragma db type ("VARCHAR(128)") null

347Revision 2.4, February 2015 C++ Object Persistence with ODB

20.1.1 String Type Mapping

 std::string name_;

 #pragma db type ("CLOB")
 std::string text_;
};

Alternatively, this can be done on the per-type basis, for example:

#pragma db value(std::string) type("VARCHAR(128)") null

#pragma db object
class object
{
 ...

 std::string name_; // Mapped to VARCHAR(128).

 #pragma db type ("CLOB")
 std::string text_; // Mapped to CLOB.
};

The char[N] and std::array<char, N> values may or may not be zero-terminated.
When extracting such values from the database, ODB will append the zero terminator if there
is enough space.

20.1.2 Binary Type Mapping

The Oracle ODB runtime library provides support for mapping the std::vector<char> ,
std::vector<unsigned char> , char[N] , unsigned char[N] ,
std::array<char, N> , and std::array<unsigned char, N> types to the
Oracle BLOB and RAW types. However, these mappings are not enabled by default (in particu-
lar, by default, std::vector and std::array will be treated as containers). To enable
the alternative mappings for these types we need to specify the database type explicitly using
the db type pragma (Section 14.4.3, "type "), for example:

#pragma db object
class object
{
 ...

 #pragma db type("BLOB")
 std::vector<char> buf_;

 #pragma db type("RAW(16)")
 unsigned char uuid_[16];
};

Alternatively, this can be done on the per-type basis, for example:

Revision 2.4, February 2015348 C++ Object Persistence with ODB

20.1.2 Binary Type Mapping

typedef std::vector<char> buffer;
#pragma db value(buffer) type("BLOB")

#pragma db object
class object
{
 ...

 buffer buf_; // Mapped to BLOB.
};

Note also that in native queries (Chapter 4, "Querying the Database") char[N] and
std::array<char, N> parameters are by default passed as a string rather than a binary.
To pass such parameters as a binary, we need to specify the database type explicitly in the
_val() /_ref() calls. Note also that we don’t need to do this for the integrated queries, for
example:

char u[16] = {...};

db.query<object> ("uuid = " + query::_val<odb::oracle::id_raw> (u));
db.query<object> (query::uuid == query::_ref (u));

20.2 Oracle Database Class

The Oracle database class encapsulates the OCI environment handle as well as the
database connection string and user credentials that are used to establish connections to the
database. It has the following interface:

namespace odb
{
 namespace oracle
 {
 class database: public odb::database
 {
 public:
 database (const std::string& user,
 const std::string& password,
 const std::string& db,
 ub2 charset = 0,
 ub2 ncharset = 0,
 OCIEnv* environment = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& user,
 const std::string& password,
 const std::string& service,
 const std::string& host,
 unsigned int port = 0,
 ub2 charset = 0,
 ub2 ncharset = 0,
 OCIEnv* environment = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

349Revision 2.4, February 2015 C++ Object Persistence with ODB

20.2 Oracle Database Class

 database (int& argc,
 char* argv[],
 bool erase = false,
 ub2 charset = 0,
 ub2 ncharset = 0,
 OCIEnv* environment = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 static void
 print_usage (std::ostream&);

 public:
 const std::string&
 user () const;

 const std::string&
 password () const;

 const std::string&
 db () const;

 const std::string&
 service () const;

 const std::string&
 host () const;

 unsigned int
 port () const;

 ub2
 charset () const;

 ub2
 ncharset () const;

 OCIEnv*
 environment ();

 public:
 connection_ptr
 connection ();
 };
 }
}

You will need to include the <odb/oracle/database.hxx> header file to make this
class available in your application.

The overloaded database constructors allow us to specify the Oracle database parameters
that should be used when connecting to the database. The db argument in the first constructor
is a connection identifier that specifies the database to connect to. For more information on
the format of the connection identifier, refer to the Oracle documentation.

Revision 2.4, February 2015350 C++ Object Persistence with ODB

20.2 Oracle Database Class

The second constructor allows us to specify the individual components of a connection identi-
fier as the service , host , and port arguments. If the host argument is empty, then
localhost is used by default. Similarly, if the port argument is zero, then the default port is
used.

The last constructor extracts the database parameters from the command line. The following
options are recognized:

 --user <login>
 --password <password>
 --database <connect-id>
 --service <name>
 --host <host>
 --port <integer>
 --options-file <file>

The --options-file option allows us to specify some or all of the database options in a
file with each option appearing on a separate line followed by a space and an option value.
Note that it is invalid to specify the --database option together with --service ,
--host , or --port options.

If the erase argument to this constructor is true, then the above options are removed from
the argv array and the argc count is updated accordingly. This is primarily useful if your
application accepts other options or arguments and you would like to get the Oracle options
out of the argv array.

This constructor throws the odb::oracle::cli_exception exception if the Oracle
option values are missing or invalid. See section Section 20.4, "Oracle Exceptions" for more
information on this exception.

The static print_usage() function prints the list of options with short descriptions that
are recognized by this constructor.

Additionally, all the constructors have the charset , ncharset , and environment argu-
ments. The charset argument specifies the client-side database character encoding. Charac-
ter data corresponding to the CHAR, VARCHAR2, and CLOB types will be delivered to and
received from the application in this encoding. Similarly, the ncharset argument specifies
the client-side national character encoding. Character data corresponding to the NCHAR,
NVARCHAR2, and NCLOB types will be delivered to and received from the application in this
encoding. For the complete list of available character encoding values, refer to the Oracle
documentation. Commonly used encoding values are 873 (UTF-8), 31 (ISO-8859-1), and
1000 (UTF-16). If the database character encoding is not specified, then the NLS_LANG
environment/registry variable is used. Similarly, if the national character encoding is not spec-
ified, then the NLS_NCHAR environment/registry variable is used. For more information on
character encodings, refer to the OCIEnvNlsCreate() function in the Oracle Call Inter-
face (OCI) documentation.

351Revision 2.4, February 2015 C++ Object Persistence with ODB

20.2 Oracle Database Class

The environment argument allows us to provide a custom OCI environment handle. If this
argument is not NULL, then the passed handle is used in all the OCI function calls made by
this database class instance. Note also that the database instance does not assume
ownership of the passed environment handle and this handle should be valid for the lifetime
of the database instance. If a custom environment handle is used, then the charset and
ncharset arguments have no effect.

The last argument to all of the constructors is a pointer to the connection factory. In
C++98/03, it is std::auto_ptr while in C++11 std::unique_ptr is used instead. If
we pass a non-NULL value, the database instance assumes ownership of the factory instance.
The connection factory interface as well as the available implementations are described in the
next section.

The set of accessor functions following the constructors allows us to query the parameters of
the database instance.

The connection() function returns a pointer to the Oracle database connection encapsu-
lated by the odb::oracle::connection class. For more information on
oracle::connection , refer to Section 20.3, "Oracle Connection and Connection
Factory".

20.3 Oracle Connection and Connection Factory

The oracle::connection class has the following interface:

namespace odb
{
 namespace oracle
 {
 class connection: public odb::connection
 {
 public:
 connection (database&);
 connection (database&, OCISvcCtx*);

 OCISvcCtx*
 handle ();

 OCIError*
 error_handle ();

 details::buffer&
 lob_buffer ();
 };

 typedef details::shared_ptr<connection> connection_ptr;
 }
}

Revision 2.4, February 2015352 C++ Object Persistence with ODB

20.3 Oracle Connection and Connection Factory

For more information on the odb::connection interface, refer to Section 3.6, "Connec-
tions". The first overloaded oracle::connection constructor creates a new OCI service
context. The OCI statement caching is enabled for the underlying session while the OCI
connection pooling and session pooling are not used. The second constructor allows us to
create a connection instance by providing an already connected Oracle service context.
Note that the connection instance assumes ownership of this handle. The handle()
accessor returns the OCI service context handle associated with the connection instance.

An OCI error handle is allocated for each connection instance and is available via the
error_handle() accessor function.

Additionally, each connection instance maintains a large object (LOB) buffer. This buffer
is used by the Oracle ODB runtime as an intermediate storage for piecewise handling of LOB
data. By default, the LOB buffer has zero initial capacity and is expanded to 4096 bytes when
the first LOB operation is performed. If your application requires a bigger or smaller LOB
buffer, you can specify a custom capacity using the lob_buffer() accessor.

The oracle::connection_factory abstract class has the following interface:

namespace odb
{
 namespace oracle
 {
 class connection_factory
 {
 public:
 virtual void
 database (database&) = 0;

 virtual connection_ptr
 connect () = 0;
 };
 }
}

The database() function is called when a connection factory is associated with a database
instance. This happens in the odb::oracle::database class constructors. The
connect() function is called whenever a database connection is requested.

The two implementations of the connection_factory interface provided by the Oracle
ODB runtime are new_connection_factory and connection_pool_factory .
You will need to include the <odb/oracle/connection-factory.hxx> header file
to make the connection_factory interface and these implementation classes available
in your application.

The new_connection_factory class creates a new connection whenever one is
requested. When a connection is no longer needed, it is released and closed. The
new_connection_factory class has the following interface:

353Revision 2.4, February 2015 C++ Object Persistence with ODB

20.3 Oracle Connection and Connection Factory

namespace odb
{
 namespace oracle
 {
 class new_connection_factory: public connection_factory
 {
 public:
 new_connection_factory ();
 };
};

The connection_pool_factory class implements a connection pool. It has the follow-
ing interface:

namespace odb
{
 namespace oracle
 {
 class connection_pool_factory: public connection_factory
 {
 public:
 connection_pool_factory (std::size_t max_connections = 0,
 std::size_t min_connections = 0);

 protected:
 class pooled_connection: public connection
 {
 public:
 pooled_connection (database_type&);
 pooled_connection (database_type&, OCISvcCtx*);
 };

 typedef details::shared_ptr<pooled_connection> pooled_connection_ptr;

 virtual pooled_connection_ptr
 create ();
 };
};

The max_connections argument in the connection_pool_factory constructor
specifies the maximum number of concurrent connections that this pool factory will maintain.
Similarly, the min_connections argument specifies the minimum number of available
connections that should be kept open.

Whenever a connection is requested, the pool factory first checks if there is an unused connec-
tion that can be returned. If there is none, the pool factory checks the max_connections
value to see if a new connection can be created. If the total number of connections maintained
by the pool is less than this value, then a new connection is created and returned. Otherwise,
the caller is blocked until a connection becomes available.

Revision 2.4, February 2015354 C++ Object Persistence with ODB

20.3 Oracle Connection and Connection Factory

When a connection is released, the pool factory first checks if there are blocked callers
waiting for a connection. If so, then one of them is unblocked and is given the connection.
Otherwise, the pool factory checks whether the total number of connections maintained by the
pool is greater than the min_connections value. If that’s the case, the connection is
closed. Otherwise, the connection is added to the pool of available connections to be returned
on the next request. In other words, if the number of connections maintained by the pool
exceeds min_connections and there are no callers waiting for a new connection, the pool
will close the excess connections.

If the max_connections value is 0, then the pool will create a new connection whenever
all of the existing connections are in use. If the min_connections value is 0, then the pool
will never close a connection and instead maintain all the connections that were ever created.

The create() virtual function is called whenever the pool needs to create a new connec-
tion. By deriving from the connection_pool_factory class and overriding this func-
tion we can implement custom connection establishment and configuration.

If you pass NULL as the connection factory to one of the database constructors, then the
connection_pool_factory instance will be created by default with the min and max
connections values set to 0. The following code fragment shows how we can pass our own
connection factory instance:

#include <odb/database.hxx>

#include <odb/oracle/database.hxx>
#include <odb/oracle/connection-factory.hxx>

int
main (int argc, char* argv[])
{
 auto_ptr<odb::oracle::connection_factory> f (
 new odb::oracle::connection_pool_factory (20));

 auto_ptr<odb::database> db (
 new oracle::database (argc, argv, false, 0, 0, 0, f));
}

20.4 Oracle Exceptions

The Oracle ODB runtime library defines the following Oracle-specific exceptions:

namespace odb
{
 namespace oracle
 {
 class database_exception: odb::database_exception
 {
 public:
 class record
 {
 public:

355Revision 2.4, February 2015 C++ Object Persistence with ODB

20.4 Oracle Exceptions

 sb4
 error () const;

 const std::string&
 message () const;
 };

 typedef std::vector<record> records;

 typedef records::size_type size_type;
 typedef records::const_iterator iterator;

 iterator
 begin () const;

 iterator
 end () const;

 size_type
 size () const;

 virtual const char*
 what () const throw ();
 };

 class cli_exception: odb::exception
 {
 public:
 virtual const char*
 what () const throw ();
 };

 class invalid_oci_handle: odb::exception
 {
 public:
 virtual const char*
 what () const throw ();
 };
 }
}

You will need to include the <odb/oracle/exceptions.hxx> header file to make
these exceptions available in your application.

The odb::oracle::database_exception is thrown if an Oracle database operation
fails. The Oracle-specific error information is stored as a series of records, each containing the
error code as a signed 4-byte integer and the message string. All this information is also
combined and returned in a human-readable form by the what() function.

The odb::oracle::cli_exception is thrown by the command line parsing construc-
tor of the odb::oracle::database class if the Oracle option values are missing or
invalid. The what() function returns a human-readable description of an error.

Revision 2.4, February 2015356 C++ Object Persistence with ODB

20.4 Oracle Exceptions

The odb::oracle::invalid_oci_handle is thrown if an invalid handle is passed to
an OCI function or if an OCI function was unable to allocate a handle. The former normally
indicates a programming error while the latter indicates an out of memory condition. The
what() function returns a human-readable description of an error.

20.5 Oracle Limitations

The following sections describe Oracle-specific limitations imposed by the current Oracle and
ODB runtime versions.

20.5.1 Identifier Truncation

Oracle limits the length of database identifiers (table, column, etc., names) to 30 characters.
The ODB compiler automatically truncates any identifier that is longer than 30 characters.
This, however, can lead to duplicate names. A common symptom of this problem are errors
during the database schema creation indicating that a database object with the same name
already exists. To resolve this problem we can assign custom, shorter identifiers using the
db table and db column pragmas (Chapter 14, "ODB Pragma Language"). For
example:

#pragma db object
class long_class_name
{
 ...

 std::vector<int> long_container_x_;
 std::vector<int> long_container_y_;
};

In the above example, the names of the two container tables will be
long_class_name_long_container_x_ and
long_class_name_long_container_y_ . However, when truncated to 30 characters,
they both become long_class_name_long_container . To resolve this collision we
can assign a custom table name for each container:

#pragma db object
class long_class_name
{
 ...

 #pragma db table("long_class_name_cont_x")
 std::vector<int> long_container_x_;

 #pragma db table("long_class_name_cont_y")
 std::vector<int> long_container_y_;
};

357Revision 2.4, February 2015 C++ Object Persistence with ODB

20.5 Oracle Limitations

20.5.2 Query Result Caching

Oracle ODB runtime implementation does not perform query result caching (Section 4.4,
"Query Result") even when explicitly requested. The OCI API supports interleaving execution
of multiple prepared statements on a single connection. As a result, with OCI, it is possible to
have multiple uncached results and calls to other database functions do not invalidate them.
The only limitation of the uncached Oracle results is the unavailability of the
result::size() function. If you call this function on an Oracle query result, then the
odb::result_not_cached exception (Section 3.14, "ODB Exceptions") is always
thrown. Future versions of the Oracle ODB runtime library may add support for result
caching.

20.5.3 Foreign Key Constraints

ODB assumes the standard SQL behavior which requires that foreign key constraints check-
ing is deferred until the transaction is committed. Default Oracle behavior is to check such
constraints immediately. As a result, when used with ODB, a custom database schema that
defines foreign key constraints may need to declare such constraints as INITIALLY
DEFERRED, as shown in the following example. By default, schemas generated by the ODB
compiler meet this requirement automatically.

CREATE TABLE Employee (
 ...
 employer NUMBER(20) REFERENCES Employer(id)
 DEFERRABLE INITIALLY DEFERRED);

You can override the default behavior and instruct the ODB compiler to generate
non-deferrable foreign keys by specifying the --fkeys-deferrable-mode
not_deferrable ODB compiler option. Note, however, that in this case the order in
which you persist, update, and erase objects within a transaction becomes important.

20.5.4 Unique Constraint Violations

Due to the granularity of the Oracle error codes, it is impossible to distinguish between the
duplicate primary key and other unique constraint violations. As a result, when making an
object persistent, the Oracle ODB runtime will translate all unique constraint violation errors
to the object_already_persistent exception (Section 3.14, "ODB Exceptions").

20.5.5 Large FLOAT and NUMBER Types

The Oracle FLOAT type with a binary precision greater than 53 and fixed-point NUMBER type
with a decimal precision greater than 15 cannot be automatically extracted into the C++
float and double types. Instead, the Oracle ODB runtime uses a 21-byte buffer containing
the binary representation of a value as an image type for such FLOAT and NUMBER types. In
order to convert them into an application-specific large number representation, you will need
to provide a suitable value_traits template specialization. For more information on the
binary format used to store the FLOAT and NUMBER values, refer to the Oracle Call Interface

Revision 2.4, February 2015358 C++ Object Persistence with ODB

20.5.2 Query Result Caching

(OCI) documentation.

An alternative approach to accessing large FLOAT and NUMBER values is to map these type to
one of the natively supported ones, as discussed in Section 14.8, "Database Type Mapping
Pragmas".

Note that a NUMBER type that is used to represent a floating point number (declared by speci-
fying NUMBER without any range and scale) can be extracted into the C++ float and
double types.

20.5.6 Timezones

ODB does not currently support the Oracle date-time types with timezone information.
However, these types can be accessed by mapping them to one of the natively supported
types, as discussed in Section 14.8, "Database Type Mapping Pragmas".

20.5.7 LONG Types

ODB does not support the deprecated Oracle LONG and LONG RAW data types. However,
these types can be accessed by mapping them to one of the natively supported types, as
discussed in Section 14.8, "Database Type Mapping Pragmas".

20.5.8 LOB Types and By-Value Accessors/Modifiers

As discussed in Section 14.4.5, "get /set /access ", by-value accessor and modifier expres-
sions cannot be used with data members of Oracle large object (LOB) data types: BLOB,
CLOB, and NCLOB. The Oracle ODB runtime uses streaming for reading/writing LOB data
directly from/to data members. As a result, by-reference accessors and modifiers should be
used for these data types.

20.5.9 Database Schema Evolution

In Oracle, the type of the name column in the schema_version table is
VARCHAR2(512). Because this column is a primary key and VARCHAR2 represents empty
strings as NULL values, it is impossible to store an empty string in this column, which is what
is used to represent the default schema name. As a result, in Oracle, the empty schema name
is stored as a string containing a single space character. ODB performs all the necessary trans-
lations automatically and normally you do not need to worry about this implementation detail
unless you are querying or modifying the schema_version table directly.

20.6 Oracle Index Definitions

When the index pragma (Section 14.7, "Index Definition Pragmas") is used to define an
Oracle index, the type clause specifies the index type (for example, UNIQUE, BITMAP), the
method clause is not used, and the options clause specifies additional index properties,
such as partitioning, table spaces, etc. The column options can be used to specify the sort
order. For example:

359Revision 2.4, February 2015 C++ Object Persistence with ODB

20.6 Oracle Index Definitions

#pragma db object
class object
{
 ...

 std::string name_;

 #pragma db index \
 type("BITMAP") \
 member(name_, "DESC") \
 options("TABLESPACE TBS1")
};

Index names in Oracle are schema-global. To avoid name clashes, ODB automatically
prefixes each index name with the table name on which it is defined.

Revision 2.4, February 2015360 C++ Object Persistence with ODB

20.6 Oracle Index Definitions

21 Microsoft SQL Server Database
To generate support code for the SQL Server database you will need to pass the
"--database mssql " (or "-d mssql ") option to the ODB compiler. Your application
will also need to link to the SQL Server ODB runtime library (libodb-mssql). All SQL
Server-specific ODB classes are defined in the odb::mssql namespace.

21.1 SQL Server Type Mapping

The following table summarizes the default mapping between basic C++ value types and SQL
Server database types. This mapping can be customized on the per-type and per-member basis
using the ODB Pragma Language (Chapter 14, "ODB Pragma Language").

361Revision 2.4, February 2015 C++ Object Persistence with ODB

21 Microsoft SQL Server Database

C++ Type SQL Server Type
Default NULL Seman-

tics

bool BIT NOT NULL

char CHAR(1) NOT NULL

signed char TINYINT NOT NULL

unsigned char TINYINT NOT NULL

short SMALLINT NOT NULL

unsigned short SMALLINT NOT NULL

int INT NOT NULL

unsigned int INT NOT NULL

long BIGINT NOT NULL

unsigned long BIGINT NOT NULL

long long BIGINT NOT NULL

unsigned long
long

BIGINT NOT NULL

float REAL NOT NULL

double FLOAT NOT NULL

std::string VARCHAR(512)/VARCHAR(256) NOT NULL

char[N] VARCHAR(N-1) NOT NULL

std::wstring NVARCHAR(512)/NVARCHAR(256) NOT NULL

wchar_t[N] NVARCHAR(N-1) NOT NULL

GUID UNIQUEIDENTIFIER NOT NULL

It is possible to map the char C++ type to an integer database type (for example, TINYINT)
using the db type pragma (Section 14.4.3, "type ").

Note that the std::string and std::wstring types are mapped differently depending
on whether a member of one of these types is an object id or not. If the member is an object
id, then for this member std::string is mapped to VARCHAR(256) and
std::wstring — to NVARCHAR(256). Otherwise, std::string is mapped to
VARCHAR(512) and std::wstring — to NVARCHAR(512). Note also that you can
always change this mapping using the db type pragma (Section 14.4.3, "type ").

Revision 2.4, February 2015362 C++ Object Persistence with ODB

21.1 SQL Server Type Mapping

Additionally, by default, C++ enums and C++11 enum classes are automatically mapped to
the SQL Server types corresponding to their underlying integral types (see table above). The
default NULL semantics is NOT NULL. For example:

enum color {red, green, blue};
enum class taste: unsigned char
{
 bitter = 1,
 sweet,
 sour = 4,
 salty
};

#pragma db object
class object
{
 ...

 color color_; // Automatically mapped to INT.
 taste taste_; // Automatically mapped to TINYINT.
};

Note also that because SQL Server does not support unsigned integers, the
unsigned short , unsigned int , and unsigned long /unsigned long long
C++ types are by default mapped to the SMALLINT, INT , and BIGINT SQL Server types,
respectively. The sign bit of the value stored by the database for these types will contain the
most significant bit of the actual unsigned value being persisted. Similarly, because there is no
signed version of the TINYINT SQL Server type, by default, the signed char C++ type is
mapped to TINYINT . As a result, the most significant bit of the value stored by the database
for this type will contain the sign bit of the actual signed value being persisted.

It is also possible to add support for additional SQL Server types, such as geospatial types,
XML, and user-defined types. For more information, refer to Section 14.8, "Database Type
Mapping Pragmas".

21.1.1 String Type Mapping

The SQL Server ODB runtime library provides support for mapping the std::string ,
char[N] , and std::array<char, N> types to the SQL Server CHAR, VARCHAR, and
TEXT types as well as the std::wstring , wchar_t[N] , and
std::array<wchar_t, N> types to NCHAR, NVARCHAR, and NTEXT. However, these
mappings are not enabled by default (in particular, by default, std::array will be treated
as a container). To enable the alternative mappings for these types we need to specify the
database type explicitly using the db type pragma (Section 14.4.3, "type "), for example:

363Revision 2.4, February 2015 C++ Object Persistence with ODB

21.1.1 String Type Mapping

#pragma db object
class object
{
 ...

 #pragma db type ("CHAR(2)")
 char state_[2];

 #pragma db type ("NVARCHAR(max)")
 std::wstring text_;
};

Alternatively, this can be done on the per-type basis, for example:

#pragma db value(std::wstring) type("NVARCHAR(max)")

#pragma db object
class object
{
 ...

 std::wstring text_; // Mapped to NVARCHAR(max).
};

The char[N] , std::array<char, N> , wchar_t[N] , and
std::array<wchar_t, N> values may or may not be zero-terminated. When extracting
such values from the database, ODB will append the zero terminator if there is enough space.

See also Section 21.1.4, "Long String and Binary Types" for certain limitations of long string
types.

21.1.2 Binary Type and UNIQUEIDENTIFIER Mapping

The SQL Server ODB runtime library also provides support for mapping the
std::vector<char> , std::vector<unsigned char> , char[N] ,
unsigned char[N] , std::array<char, N> , and std::array<unsigned
char, N> types to the SQL Server BINARY, VARBINARY, and IMAGE types. There is also
support for mapping the char[16] array to the SQL Server UNIQUEIDENTIFIER type.
However, these mappings are not enabled by default (in particular, by default,
std::vector and std::array will be treated as containers). To enable the alternative
mappings for these types we need to specify the database type explicitly using the db type
pragma (Section 14.4.3, "type "), for example:

#pragma db object
class object
{
 ...

 #pragma db type("UNIQUEIDENTIFIER")
 char uuid_[16];

 #pragma db type("VARBINARY(max)")

Revision 2.4, February 2015364 C++ Object Persistence with ODB

21.1.2 Binary Type and UNIQUEIDENTIFIER Mapping

 std::vector<char> buf_;

 #pragma db type("BINARY(256)")
 unsigned char data_[256];
};

Alternatively, this can be done on the per-type basis, for example:

typedef std::vector<char> buffer;
#pragma db value(buffer) type("VARBINARY(max)")

#pragma db object
class object
{
 ...

 buffer buf_; // Mapped to VARBINARY(max).
};

Note also that in native queries (Chapter 4, "Querying the Database") char[N] and
std::array<char, N> parameters are by default passed as a string rather than a binary.
To pass such parameters as a binary, we need to specify the database type explicitly in the
_val() /_ref() calls. Note also that we don’t need to do this for the integrated queries, for
example:

char u[16] = {...};

db.query<object> ("uuid = " + query::_val<odb::mssql::id_binary> (u));
db.query<object> (
 "uuid = " + query::_val<odb::mssql::id_uniqueidentifier> (u));
db.query<object> (query::uuid == query::_ref (u));

See also Section 21.1.4, "Long String and Binary Types" for certain limitations of long binary
types.

21.1.3 ROWVERSION Mapping

ROWVERSION is a special SQL Server data type that is automatically incremented by the
database server whenever a row is inserted or updated. As such, it is normally used to imple-
ment optimistic concurrency and ODB provides support for using ROWVERSION instead of
the more portable approach for optimistic concurrency (Chapter 12, "Optimistic Concur-
rency").

ROWVERSION is a 64-bit value which is mapped by ODB to unsigned long long . As a
result, to use ROWVERSION for optimistic concurrency we need to make sure that the version
column is of the unsigned long long type. We also need to explicitly specify that it
should be mapped to the ROWVERSION data type. For example:

365Revision 2.4, February 2015 C++ Object Persistence with ODB

21.1.3 ROWVERSION Mapping

#pragma db object optimistic
class person
{
 ...

 #pragma db version type("ROWVERSION")
 unsigned long long version_;
};

21.1.4 Long String and Binary Types

For SQL Server, ODB handles character, national character, and binary data in two different
ways depending on its maximum length. If the maximum length (in bytes) is less than or
equal to the limit specified with the --mssql-short-limit ODB compiler option (1024
by default), then it is treated as short data, otherwise — long data. For short data ODB
pre-allocates an intermediate buffer of the maximum size and binds it directly to a parameter
or result column. This way the underlying database API (ODBC) can read/write directly
from/to this buffer. In the case of long data, the data is read/written in chunks using the
SQLGetData() /SQLPutData() ODBC functions. While the long data approach reduces
the amount of memory used by the application, it may require greater CPU resources.

Long data has a number of limitations. In particular, when setting a custom short data limit,
make sure that it is sufficiently large so that no object id in the application is treated as long
data. It is also impossible to load an object or view with long data more than once as part of a
query result iteration (Section 4.4, "Query Result"). Any such attempt will result in the
odb::mssql::long_data_reload exception (Section 21.4, "SQL Server Excep-
tions"). For example:

#pragma db object
class object
{
 ...

 int num_;

 #pragma db type("VARCHAR(max)") // Long data.
 std::string str_;
};

typedef odb::query<object> query;
typedef odb::result<object> result;

transaction t (db.begin ());

result r (db.query<object> (query::num < 100));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
{
 if (!i->str_.empty ()) // First load.
 {
 object o;
 i.load (o); // Error: second load, long_data_reload is thrown.

Revision 2.4, February 2015366 C++ Object Persistence with ODB

21.1.4 Long String and Binary Types

 }
}

t.commit ();

Finally, if a native view (Section 10.6, "Native Views") contains one or more long data
members, then such members should come last both in the select-list of the native SQL query
and the list of data members in the C++ class.

21.2 SQL Server Database Class

The SQL Server database class encapsulates the ODBC environment handle as well as the
server instance address and user credentials that are used to establish connections to the
database. It has the following interface:

namespace odb
{
 namespace mssql
 {
 enum protocol
 {
 protocol_auto,
 protocol_tcp, // TCP/IP.
 protocol_lpc, // Shared memory (local procedure call).
 protocol_np // Named pipes.
 };

 enum transaction_isolation
 {
 isolation_read_uncommitted,
 isolation_read_committed, // SQL Server default.
 isolation_repeatable_read,
 isolation_snapshot,
 isolation_serializable
 };

 class database: public odb::database
 {
 public:
 typedef protocol protocol_type;
 typedef transaction_isolation transaction_isolation_type;

 database (const std::string& user,
 const std::string& password,
 const std::string& db,
 const std::string& server,
 const std::string& driver = "",
 const std::string& extra_connect_string = "",
 transaction_isolation_type = isolation_read_committed,
 SQLHENV environment = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& user,

367Revision 2.4, February 2015 C++ Object Persistence with ODB

21.2 SQL Server Database Class

 const std::string& password,
 const std::string& db,
 protocol_type protocol = protocol_auto,
 const std::string& host = "",
 const std::string& instance = "",
 const std::string& driver = "",
 const std::string& extra_connect_string = "",
 transaction_isolation_type = isolation_read_committed,
 SQLHENV environment = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& user,
 const std::string& password,
 const std::string& db,
 const std::string& host,
 unsigned int port,
 const std::string& driver = "",
 const std::string& extra_connect_string = "",
 transaction_isolation_type = isolation_read_committed,
 SQLHENV environment = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& connect_string,
 transaction_isolation_type = isolation_read_committed,
 SQLHENV environment = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (int& argc,
 char* argv[],
 bool erase = false,
 const std::string& extra_connect_string = "",
 transaction_isolation_type = isolation_read_committed,
 SQLHENV environment = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 static void
 print_usage (std::ostream&);

 public:
 const std::string&
 user () const;

 const std::string&
 password () const;

 const std::string&
 db () const;

 protocol_type
 protocol () const;

 const std::string&
 host () const;

 const std::string&
 instance () const;

Revision 2.4, February 2015368 C++ Object Persistence with ODB

21.2 SQL Server Database Class

 unsigned int
 port () const;

 const std::string&
 server () const;

 const std::string&
 driver () const;

 const std::string&
 extra_connect_string () const;

 transaction_isolation_type
 transaction_isolation () const;

 const std::string&
 connect_string () const;

 SQLHENV
 environment ();

 public:
 connection_ptr
 connection ();
 };
 }
}

You will need to include the <odb/mssql/database.hxx> header file to make this
class available in your application.

The overloaded database constructors allow us to specify the SQL Server database param-
eters that should be used when connecting to the database. The user and password argu-
ments specify the login name and password. If user is empty, then Windows authentication
is used and the password argument is ignored. The db argument specifies the database
name to open. If it is empty, then the default database for the user is used.

The server argument in the first constructor specifies the SQL Server instance address in
the standard SQL Server address format:

[protocol:] host[\ instance][, port]

Where protocol can be tcp (TCP/IP), lpc (shared memory), or np (named pipe). If
protocol is not specified, then a suitable protocol is automatically selected based on the SQL
Server Native Client configuration. The host component can be a host name or an IP
address. If instance is not specified, then the default SQL Server instance is assumed. If
port is not specified, then the default SQL Server port is used (1433). Note that you would
normally specify either the instance name or the port, but not both. If both are specified, then
the instance name is ignored by the SQL Server Native Client ODBC driver. For more infor-
mation on the format of the SQL Server address, refer to the SQL Server Native Client ODBC
driver documentation.

369Revision 2.4, February 2015 C++ Object Persistence with ODB

21.2 SQL Server Database Class

The second and third constructors allow us to specify all these address components (protocol,
host, instance, and port) as separate arguments. The third constructor always connects using
TCP/IP to the specified host and port.

The driver argument specifies the SQL Server Native Client ODBC driver that should be
used to connect to the database. If not specified, then the latest available version is used. The
following examples show common ways of connecting to the database using the first three
constructors:

// Connect to the default SQL Server instance on the local machine
// using the default protocol. Login as ’test’ with password ’secret’
// and open the ’example_db’ database.
//
odb::mssql::database db1 ("test",
 "secret",
 "example_db");

// As above except use Windows authentication and open the default
// database for this user.
//
odb::mssql::database db2 ("",
 "",
 "");

// Connect to the default SQL Server instance on ’onega’ using the
// default protocol. Login as ’test’ with password ’secret’ and open
// the ’example_db’ database.
//
odb::mssql::database db3 ("test",
 "secret",
 "example_db"
 "onega");

// As above but connect to the ’production’ SQL Server instance.
//
odb::mssql::database db4 ("test",
 "secret",
 "example_db"
 "onega\\production");

// Same as above but specify protocol, host, and instance as separate
// arguments.
//
odb::mssql::database db5 ("test",
 "secret",
 "example_db",
 odb::mssql::protocol_auto,
 "onega",
 "production");

// As above, but use TCP/IP as the protocol.
//
odb::mssql::database db6 ("test",
 "secret",

Revision 2.4, February 2015370 C++ Object Persistence with ODB

21.2 SQL Server Database Class

 "example_db"
 "tcp:onega\\production");

// Same as above but using separate arguments.
//
odb::mssql::database db7 ("test",
 "secret",
 "example_db",
 odb::mssql::protocol_tcp,
 "onega",
 "production");

// As above, but use TCP/IP port instead of the instance name.
//
odb::mssql::database db8 ("test",
 "secret",
 "example_db"
 "tcp:onega,1435");

// Same as above but using separate arguments. Note that here we
// don’t need to specify protocol explicitly since it can only
// be TCP/IP.
//
odb::mssql::database db9 ("test",
 "secret",
 "example_db",
 "onega",
 1435);

// As above but use the specific SQL Server Native Client ODBC
// driver version.
//
odb::mssql::database dbA ("test",
 "secret",
 "example_db"
 "tcp:onega,1435",
 "SQL Server Native Client 10.0");

The fourth constructor allows us to pass a custom ODBC connection string that provides all
the information necessary to connect to the database. Note also that all the other constructors
have the extra_connect_string argument which can be used to specify additional
ODBC connection attributes. For more information on the format of the ODBC connection
string, refer to the SQL Server Native Client ODBC driver documentation.

The last constructor extracts the database parameters from the command line. The following
options are recognized:

 --user | -U <login>
 --password | -P <password>
 --database | -d <name>
 --server | -S <address>
 --driver <name>
 --options-file <file>

371Revision 2.4, February 2015 C++ Object Persistence with ODB

21.2 SQL Server Database Class

The --options-file option allows us to specify some or all of the database options in a
file with each option appearing on a separate line followed by a space and an option value.

If the erase argument to this constructor is true, then the above options are removed from
the argv array and the argc count is updated accordingly. This is primarily useful if your
application accepts other options or arguments and you would like to get the SQL Server
options out of the argv array.

This constructor throws the odb::mssql::cli_exception exception if the SQL Server
option values are missing or invalid. See section Section 21.4, "SQL Server Exceptions" for
more information on this exception.

The static print_usage() function prints the list of options with short descriptions that
are recognized by this constructor.

Additionally, all the constructors have the transaction_isolation and environ-
ment arguments. The transaction_isolation argument allows us to specify an alter-
native transaction isolation level that should be used by all the connections created by this
database instance. The environment argument allows us to provide a custom ODBC envi-
ronment handle. If this argument is not NULL, then the passed handle is used in all the ODBC
function calls made by this database instance. Note also that the database instance does
not assume ownership of the passed environment handle and this handle should be valid for
the lifetime of the database instance.

The last argument to all of the constructors is a pointer to the connection factory. In
C++98/03, it is std::auto_ptr while in C++11 std::unique_ptr is used instead. If
we pass a non-NULL value, the database instance assumes ownership of the factory instance.
The connection factory interface as well as the available implementations are described in the
next section.

The set of accessor functions following the constructors allows us to query the parameters of
the database instance.

The connection() function returns a pointer to the SQL Server database connection
encapsulated by the odb::mssql::connection class. For more information on
mssql::connection , refer to Section 21.3, "SQL Server Connection and Connection
Factory".

21.3 SQL Server Connection and Connection Factory

The mssql::connection class has the following interface:

namespace odb
{
 namespace mssql
 {
 class connection: public odb::connection
 {

Revision 2.4, February 2015372 C++ Object Persistence with ODB

21.3 SQL Server Connection and Connection Factory

 public:
 connection (database&);
 connection (database&, SQLHDBC handle);

 SQLHDBC
 handle ();

 details::buffer&
 long_data_buffer ();
 };

 typedef details::shared_ptr<connection> connection_ptr;
 }
}

For more information on the odb::connection interface, refer to Section 3.6, "Connec-
tions". The first overloaded mssql::connection constructor creates a new ODBC
connection. The created connection is configured to use the manual commit mode with multi-
ple active result sets (MARS) enabled. The second constructor allows us to create a connec-
tion instance by providing an already established ODBC connection. Note that the
connection instance assumes ownership of this handle. The handle() accessor returns
the underlying ODBC connection handle associated with the connection instance.

Additionally, each connection instance maintains a long data buffer. This buffer is used
by the SQL Server ODB runtime as an intermediate storage for piecewise handling of long
data. By default, the long data buffer has zero initial capacity and is expanded to 4096 bytes
when the first long data operation is performed. If your application requires a bigger or
smaller long data buffer, you can specify a custom capacity using the
long_data_buffer() accessor.

The mssql::connection_factory abstract class has the following interface:

namespace odb
{
 namespace mssql
 {
 class connection_factory
 {
 public:
 virtual void
 database (database&) = 0;

 virtual connection_ptr
 connect () = 0;
 };
 }
}

The database() function is called when a connection factory is associated with a database
instance. This happens in the odb::mssql::database class constructors. The
connect() function is called whenever a database connection is requested.

373Revision 2.4, February 2015 C++ Object Persistence with ODB

21.3 SQL Server Connection and Connection Factory

The two implementations of the connection_factory interface provided by the SQL
Server ODB runtime are new_connection_factory and connec-
tion_pool_factory . You will need to include the <odb/mssql/connec-
tion-factory.hxx> header file to make the connection_factory interface and
these implementation classes available in your application.

The new_connection_factory class creates a new connection whenever one is
requested. When a connection is no longer needed, it is released and closed. The
new_connection_factory class has the following interface:

namespace odb
{
 namespace mssql
 {
 class new_connection_factory: public connection_factory
 {
 public:
 new_connection_factory ();
 };
};

The connection_pool_factory class implements a connection pool. It has the follow-
ing interface:

namespace odb
{
 namespace mssql
 {
 class connection_pool_factory: public connection_factory
 {
 public:
 connection_pool_factory (std::size_t max_connections = 0,
 std::size_t min_connections = 0);

 protected:
 class pooled_connection: public connection
 {
 public:
 pooled_connection (database_type&);
 pooled_connection (database_type&, SQLHDBC handle);
 };

 typedef details::shared_ptr<pooled_connection> pooled_connection_ptr;

 virtual pooled_connection_ptr
 create ();
 };
};

The max_connections argument in the connection_pool_factory constructor
specifies the maximum number of concurrent connections that this pool factory will maintain.
Similarly, the min_connections argument specifies the minimum number of available
connections that should be kept open.

Revision 2.4, February 2015374 C++ Object Persistence with ODB

21.3 SQL Server Connection and Connection Factory

Whenever a connection is requested, the pool factory first checks if there is an unused connec-
tion that can be returned. If there is none, the pool factory checks the max_connections
value to see if a new connection can be created. If the total number of connections maintained
by the pool is less than this value, then a new connection is created and returned. Otherwise,
the caller is blocked until a connection becomes available.

When a connection is released, the pool factory first checks if there are blocked callers
waiting for a connection. If so, then one of them is unblocked and is given the connection.
Otherwise, the pool factory checks whether the total number of connections maintained by the
pool is greater than the min_connections value. If that’s the case, the connection is
closed. Otherwise, the connection is added to the pool of available connections to be returned
on the next request. In other words, if the number of connections maintained by the pool
exceeds min_connections and there are no callers waiting for a new connection, the pool
will close the excess connections.

If the max_connections value is 0, then the pool will create a new connection whenever
all of the existing connections are in use. If the min_connections value is 0, then the pool
will never close a connection and instead maintain all the connections that were ever created.

The create() virtual function is called whenever the pool needs to create a new connec-
tion. By deriving from the connection_pool_factory class and overriding this func-
tion we can implement custom connection establishment and configuration.

If you pass NULL as the connection factory to one of the database constructors, then the
connection_pool_factory instance will be created by default with the min and max
connections values set to 0. The following code fragment shows how we can pass our own
connection factory instance:

#include <odb/database.hxx>

#include <odb/mssql/database.hxx>
#include <odb/mssql/connection-factory.hxx>

int
main (int argc, char* argv[])
{
 auto_ptr<odb::mssql::connection_factory> f (
 new odb::mssql::connection_pool_factory (20));

 auto_ptr<odb::database> db (
 new mssql::database (argc, argv, false, "", 0, f));
}

21.4 SQL Server Exceptions

The SQL Server ODB runtime library defines the following SQL Server-specific exceptions:

375Revision 2.4, February 2015 C++ Object Persistence with ODB

21.4 SQL Server Exceptions

namespace odb
{
 namespace mssql
 {
 class database_exception: odb::database_exception
 {
 public:
 class record
 {
 public:
 SQLINTEGER
 error () const;

 const std::string&
 sqlstate () const;

 const std::string&
 message () const;
 };

 typedef std::vector<record> records;

 typedef records::size_type size_type;
 typedef records::const_iterator iterator;

 iterator
 begin () const;

 iterator
 end () const;

 size_type
 size () const;

 virtual const char*
 what () const throw ();
 };

 class cli_exception: odb::exception
 {
 public:
 virtual const char*
 what () const throw ();
 };

 class long_data_reload: odb::exception
 {
 public:
 virtual const char*
 what () const throw ();
 };
 }
}

Revision 2.4, February 2015376 C++ Object Persistence with ODB

21.4 SQL Server Exceptions

You will need to include the <odb/mssql/exceptions.hxx> header file to make these
exceptions available in your application.

The odb::mssql::database_exception is thrown if an SQL Server database opera-
tion fails. The SQL Server-specific error information is stored as a series of records, each
containing the error code as a signed 4-byte integer, the SQLSTATE code, and the message
string. All this information is also combined and returned in a human-readable form by the
what() function.

The odb::mssql::cli_exception is thrown by the command line parsing constructor
of the odb::mssql::database class if the SQL Server option values are missing or
invalid. The what() function returns a human-readable description of an error.

The odb::mssql::long_data_reload is thrown if an attempt is made to re-load an
object or view with long data as part of a query result iteration. For more information, refer to
Section 21.1, "SQL Server Type Mapping".

21.5 SQL Server Limitations

The following sections describe SQL Server-specific limitations imposed by the current SQL
Server and ODB runtime versions.

21.5.1 Query Result Caching

SQL Server ODB runtime implementation does not perform query result caching (Section 4.4,
"Query Result") even when explicitly requested. The ODBC API and the SQL Server Native
Client ODBC driver support interleaving execution of multiple prepared statements on a
single connection. As a result, it is possible to have multiple uncached results and calls to
other database functions do not invalidate them. The only limitation of the uncached SQL
Server results is the unavailability of the result::size() function. If you call this func-
tion on an SQL Server query result, then the odb::result_not_cached exception
(Section 3.14, "ODB Exceptions") is always thrown. Future versions of the SQL Server ODB
runtime library may add support for result caching.

21.5.2 Foreign Key Constraints

ODB assumes the standard SQL behavior which requires that foreign key constraints check-
ing is deferred until the transaction is committed. The only behavior supported by SQL Server
is to check such constraints immediately. As a result, by default, schemas generated by the
ODB compiler for SQL Server have foreign key definitions commented out. They are retained
only for documentation.

You can override the default behavior and instruct the ODB compiler to generate
non-deferrable foreign keys by specifying the --fkeys-deferrable-mode
not_deferrable ODB compiler option. Note, however, that in this case the order in
which you persist, update, and erase objects within a transaction becomes important.

377Revision 2.4, February 2015 C++ Object Persistence with ODB

21.5 SQL Server Limitations

21.5.3 Unique Constraint Violations

Due to the granularity of the ODBC error codes, it is impossible to distinguish between the
duplicate primary key and other unique constraint violations. As a result, when making an
object persistent, the SQL Server ODB runtime will translate all unique constraint violation
errors to the object_already_persistent exception (Section 3.14, "ODB Excep-
tions").

21.5.4 Multi-threaded Windows Applications

Multi-threaded Windows applications must use the
_beginthread() /_beginthreadex() and _endthread() /_endthreadex()
CRT functions instead of the CreateThread() and EndThread() Win32 functions to
start and terminate threads. This is a limitation of the ODBC implementation on Windows.

21.5.5 Affected Row Count and DDL Statements

SQL Server always returns zero as the number of affected rows for DDL statements. In partic-
ular, this means that the database::execute() (Section 3.12, "Executing Native SQL
Statements") function will always return zero for such statements.

21.5.6 Long Data and Auto Object Ids, ROWVERSION

SQL Server 2005 has a bug that causes it to fail on an INSERT or UPDATE statement with
the OUTPUT clause (used to return automatically assigned object ids as well as ROWVERSION
values) if one of the inserted columns is long data. The symptom of this bug in ODB is an
exception thrown by the database::persist() or database::update() function
when used on an object that contains long data and has an automatically assigned object id or
uses ROWVERSION-based optimistic concurrency (Section 21.1.1, "ROWVERSION Support").
The error message reads "This operation conflicts with another pending operation on this
transaction. The operation failed."

For automatically assigned object ids ODB includes a workaround for this bug which uses a
less efficient method to obtain id values for objects that contain long data. To enable this
workaround you need to specify that the generated code will be used with SQL Server 2005 or
later by passing the --mssql-server-version 9.0 ODB compiler option.

For ROWVERSION-based optimistic concurrency no workaround is currently provided. The
ODB compiler will issue an error for objects that use ROWVERSION for optimistic concur-
rency and containing long data.

21.5.7 Long Data and By-Value Accessors/Modifiers

As discussed in Section 14.4.5, "get /set /access ", by-value accessor and modifier expres-
sions cannot be used with data members of long data types. The SQL Server ODB runtime
uses streaming for reading/writing long data directly from/to data members. As a result,
by-reference accessors and modifiers should be used for these data types.

Revision 2.4, February 2015378 C++ Object Persistence with ODB

21.5.3 Unique Constraint Violations

21.5.8 Bulk Update and ROWVERSION

The bulk update operation (Section 15.3, "Bulk Database Operations") is not yet supported for
persistent classes that use ROWVERSION-based optimistic concurrency. For such classes the
bulk update() function is not available. The bulk persist and erase support is still provided.

21.6 SQL Server Index Definitions

When the index pragma (Section 14.7, "Index Definition Pragmas") is used to define an
SQL Server index, the type clause specifies the index type (for example, UNIQUE, CLUS-
TERED), the method clause is not used, and the options clause specifies additional index
properties. The column options can be used to specify the sort order. For example:

#pragma db object
class object
{
 ...

 std::string name_;

 #pragma db index \
 type("UNIQUE CLUSTERED") \
 member(name_, "DESC") \
 options("WITH(FILLFACTOR = 80)")
};

21.7 SQL Server Stored Procedures

ODB native views (Section 10.6, "Native Views") can be used to call SQL Server stored
procedures. For example, assuming we are using the person class from Chapter 2, "Hello
World Example" (and the corresponding person table), we can create a stored procedure
that given the min and max ages returns some information about all the people in that range:

CREATE PROCEDURE dbo.person_range (
 @min_age SMALLINT,
 @max_age SMALLINT)
AS
 SELECT age, first, last FROM person
 WHERE age >= @min_age AND age <= @max_age;

Given the above stored procedure we can then define an ODB view that can be used to call it
and retrieve its result:

#pragma db view query("EXEC person_range (?)")
struct person_range
{
 unsigned short age;
 std::string first;
 std::string last;
};

379Revision 2.4, February 2015 C++ Object Persistence with ODB

21.6 SQL Server Index Definitions

The following example shows how we can use the above view to print the list of people in a
specific age range:

typedef odb::query<person_range> query;
typedef odb::result<person_range> result;

transaction t (db.begin ());

result r (
 db.query<person_range> (
 query::_val (1) + "," + query::_val (18)));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
 cerr << i->first << " " << i->last << " " << i->age << endl;

t.commit ();

Note that as with all native views, the order and types of data members must match those of
columns in the SELECT list inside the stored procedure.

There are also a number of limitations when it comes to calling SQL Server stored procedures
with ODB views. There is currently no support for output parameters, however, this is
planned for a future version. In the meantime, to call a stored procedure that has output
parameters we have to use a wrapper procedure that converts such parameters to a SELECT
result. For example, given the following procedure that calculates the age range of the people
in our database:

CREATE PROCEDURE dbo.person_age_range (
 @min_age SMALLINT = NULL OUTPUT,
 @max_age SMALLINT = NULL OUTPUT)
AS
 SELECT @min_age = MIN(age), @max_age = MAX(max) FROM person;

We can create a wrapper procedure like this:

CREATE PROCEDURE dbo.person_age_range_odb
AS
 DECLARE @min_age SMALLINT, @max_age SMALLINT;
 EXEC person_age_range @min_age OUTPUT, @max_age OUTPUT;
 SELECT @min_age, @max_age;

And a view like this:

#pragma db view query("EXEC person_age_range_odb")
struct person_age_range
{
 unsigned short min_age;
 unsigned short max_age;
};

Revision 2.4, February 2015380 C++ Object Persistence with ODB

21.7 SQL Server Stored Procedures

Which we can then use to call the stored procedure:

transaction t (db.begin ());

person_age_range ar (db.query_value<person_age_range> ());
cerr << ar.min_age << " " << ar.max_age << endl;

t.commit ();

In SQL Server, a stored procedure can produce multiple results. For example, if a stored
procedure executes several SELECT statements, then the result of calling such a procedure
consists of two row sets, one for each SELECT statement. Because such multiple row sets can
contain varying number and type of columns, they cannot be all extracted into a single view.
Consequently, these kind of stored procedures are currently not supported.

A stored procedure may also produce no row sets at all. For example, a stored procedure that
only executes DML statements would exhibit this behavior. To call such a procedure we use
an empty view, for example:

CREATE PROCEDURE dbo.insert_person (
 @first VARCHAR(512),
 @last VARCHAR(512),
 @age SMALLINT)
AS
 INSERT INTO person(first, last, age)
 VALUES(@first, @last, @age);

#pragma db view
struct no_result {};

transaction t (db.begin ());

db.query_one<no_result> (
 "EXEC insert_person" +
 query::_val ("John") + "," +
 query::_val ("Doe") + "," +
 query::_val (21));

t.commit ();

Finally, an SQL Server stored procedure can also return an integer status code. Similar to
output parameters, this code can only be observed by an ODB view if it is converted to a
SELECT result. For more information on how to do this and for other examples of stored
procedure calls, refer to the mssql/stored-proc test in the odb-tests package.

381Revision 2.4, February 2015 C++ Object Persistence with ODB

21.7 SQL Server Stored Procedures

PART III PROFILES
Part III covers the integration of ODB with popular C++ frameworks and libraries. It consists
of the following chapters.

22 Profiles Introduction

23 Boost Profile

24 Qt Profile

Revision 2.4, February 2015382 C++ Object Persistence with ODB

PART III PROFILES

22 Profiles Introduction
ODB profiles are a generic mechanism for integrating ODB with widely-used C++ frame-
works and libraries. A profile provides glue code which allows you to seamlessly persist
various components, such as smart pointers, containers, and value types found in these frame-
works or libraries. The code necessary to implement a profile is packaged into the so called
profile library. For example, the Boost profile implementation is provided by the
libodb-boost profile library.

Besides linking the profile library to our application, it is also necessary to let the ODB
compiler know which profiles we are using. This is accomplished with the --profile (or
-p alias) option. For example:

odb --profile boost ...

Some profiles, especially those covering frameworks or libraries that consist of multiple
sub-libraries, provide sub-profiles that allow you to pick and choose which components you
would like to use in your application. For example, the boost profile contains the
boost/data-time sub-profile. If we are only interested in the date_time types, then
we can pass boost/data-time instead of boost to the --profile option, for
example:

odb --profile boost/date-time ...

To summarize, you will need to perform the following steps in order to make use of a profile
in your application:

1. ODB compiler: if necessary, specify the path to the profile library headers (-I option).
2. ODB compiler: specify the profile you would like to use with the --profile option.
3. C++ compiler: if necessary, specify the path to the profile library headers (normally -I

option).
4. Linker: link the profile library to the application.

The remaining chapters in this part of the manual describe the standard profiles provided by
ODB.

383Revision 2.4, February 2015 C++ Object Persistence with ODB

22 Profiles Introduction

23 Boost Profile
The ODB profile implementation for Boost is provided by the libodb-boost library and
consists of multiple sub-profiles corresponding to the individual Boost libraries. To enable all
the available Boost sub-profiles, pass boost as the profile name to the --profile ODB
compiler option. Alternatively, you can enable only specific sub-profiles by passing individ-
ual sub-profile names to --profile . The following sections in this chapter discuss each
Boost sub-profile in detail. The boost example in the odb-examples package shows how
to enable and use the Boost profile.

Some sub-profiles may throw exceptions to indicate error conditions, such as the inability to
store a specific value in a particular database system. All such exceptions derive from the
odb::boost::exception class which in turn derives from the root of the ODB excep-
tion hierarchy, class odb::exception (Section 3.14, "ODB Exceptions"). The
odb::boost::exception class is defined in the <odb/boost/exception.hxx>
header file and has the same interface as odb::exception . Concrete exceptions that can
be thrown by the Boost sub-profiles are described in the following sections.

23.1 Smart Pointers Library

The smart-ptr sub-profile provides persistence support for a subset of smart pointers from
the Boost smart_ptr library. To enable only this profile, pass boost/smart-ptr to the
--profile ODB compiler option.

The currently supported smart pointers are boost::shared_ptr and
boost::weak_ptr . For more information on using smart pointers as pointers to objects
and views, refer to Section 3.3, "Object and View Pointers" and Chapter 6, "Relationships".
For more information on using smart pointers as pointers to values, refer to Section 7.3,
"Pointers and NULL Value Semantics". When used as a pointer to a value, only
boost::shared_ptr is supported. For example:

#pragma db object
class person
{
 ...

 #pragma db null
 boost::shared_ptr<std::string> middle_name_;
};

To provide finer grained control over object relationship loading, the smart-ptr
sub-profile also provides the lazy counterparts for the above pointers:
odb::boost::lazy_shared_ptr and odb::boost::lazy_weak_ptr . You will
need to include the <odb/boost/lazy-ptr.hxx> header file to make the lazy variants
available in your application. For a description of the lazy pointer interface and semantics
refer to Section 6.4, "Lazy Pointers". The following example shows how we can use these
smart pointers to establish a relationship between persistent objects.

Revision 2.4, February 2015384 C++ Object Persistence with ODB

23 Boost Profile

class employee;

#pragma db object
class position
{
 ...

 #pragma db inverse(position_)
 odb::boost::lazy_weak_ptr<employee> employee_;
};

#pragma db object
class employee
{
 ...

 #pragma db not_null
 boost::shared_ptr<position> position_;
};

Besides providing persistence support for the above smart pointers, the smart-ptr
sub-profile also changes the default pointer (Section 3.3, "Object and View Pointers") to
boost::shared_ptr . In particular, this means that database functions that return dynami-
cally allocated objects and views will return them as boost::shared_ptr pointers. To
override this behavior, add the --default-pointer option specifying the alternative
pointer type after the --profile option.

23.2 Unordered Containers Library

The unordered sub-profile provides persistence support for the containers from the Boost
unordered library. To enable only this profile, pass boost/unordered to the
--profile ODB compiler option.

The supported containers are boost::unordered_set , boost::unordered_map ,
boost::unordered_multiset , and boost::unordered_multimap . For more
information on using the set and multiset containers with ODB, refer to Section 5.2, "Set and
Multiset Containers". For more information on using the map and multimap containers with
ODB, refer to Section 5.3, "Map and Multimap Containers". The following example shows
how the unordered_set container may be used within a persistent object.

#pragma db object
class person
{
 ...
 boost::unordered_set<std::string> emails_;
};

385Revision 2.4, February 2015 C++ Object Persistence with ODB

23.2 Unordered Containers Library

23.3 Multi-Index Container Library

The multi-index sub-profile provides persistence support for
boost::multi_index_container from the Boost Multi-Index library. To enable only
this profile, pass boost/multi-index to the --profile ODB compiler option. The
following example shows how multi_index_container may be used within a persis-
tent object.

namespace mi = boost::multi_index;

#pragma db object
class person
{
 ...

 typedef
 mi::multi_index_container<
 std::string,
 mi::indexed_by<
 mi::sequenced<>,
 mi::ordered_unique<mi::identity<std::string> >
 >
 > emails;

 emails emails_;
};

Note that a multi_index_container instantiation is stored differently in the database
depending on whether it has any sequenced or random_access indexes. If it does, then
it is treated as an ordered container (Section 5.1, "Ordered Containers") with the first such
index establishing the order. Otherwise, it is treated as a set container (Section 5.2, "Set and
Multiset Containers").

Note also that there is a terminology clash between ODB and Boost Multi-Index. The ODB
term ordered container translates to Multi-Index terms sequenced index and random access
index while the ODB term set container translates to Multi-Index terms ordered index and
hashed index.

The emails container from the above example is stored as an ordered container. In contrast,
the following aliases container is stored as a set.

namespace mi = boost::multi_index;

#pragma db value
struct name
{
 std::string first;
 std::string last;
};

bool operator< (const name&, const name&);

Revision 2.4, February 2015386 C++ Object Persistence with ODB

23.3 Multi-Index Container Library

#pragma db object
class person
{
 ...

 typedef
 mi::multi_index_container<
 name,
 mi::indexed_by<
 mi::ordered_unique<mi::identity<name> >
 mi::ordered_non_unique<
 mi::member<name, std::string, &name::first>
 >,
 mi::ordered_non_unique<
 mi::member<name, std::string, &name::last>
 >
 >
 > aliases;

 aliases aliases_;
};

23.4 Optional Library

The optional sub-profile provides persistence support for the boost::optional
container from the Boost optional library. To enable only this profile, pass
boost/optional to the --profile ODB compiler option.

In a relational database boost::optional is mapped to a column that can have a NULL
value. Similar to odb::nullable (Section 7.3, "Pointers and NULL Value Semantics"), it
can be used to add the NULL semantics to existing C++ types. For example:

#include <boost/optional.hpp>

#pragma db object
class person
{
 ...

 std::string first_; // TEXT NOT NULL
 boost::optional<std::string> middle_; // TEXT NULL
 std::string last_; // TEXT NOT NULL
};

Note also that similar to odb::nullable , when this profile is used, the NULL values are
automatically enabled for data members of the boost::optional type.

387Revision 2.4, February 2015 C++ Object Persistence with ODB

23.4 Optional Library

23.5 Date Time Library

The date-time sub-profile provides persistence support for a subset of types from the
Boost date_time library. It is further subdivided into two sub-profiles, gregorian and
posix_time . The gregorian sub-profile provides support for types from the
boost::gregorian namespace, while the posix-time sub-profile provides support for
types from the boost::posix_time namespace. To enable the entire date-time
sub-profile, pass boost/date-time to the --profile ODB compiler option. To enable
only the gregorian sub-profile, pass boost/date-time/gregorian , and to enable
only the posix-time sub-profile, pass boost/date-time/posix-time .

The only type that the gregorian sub-profile currently supports is gregorian::date .
The types currently supported by the posix-time sub-profile are posix_time::ptime
and posix_time::time_duration . The manner in which these types are persisted is
database system dependent and is discussed in the sub-sections that follow. The example
below shows how gregorian::date may be used within a persistent object.

#pragma db object
class person
{
 ...
 boost::gregorian::date date_of_birth_;
};

Concrete exceptions that can be thrown by the date-time sub-profile implementation are
presented below.

namespace odb
{
 namespace boost
 {
 namespace date_time
 {
 struct special_value: odb::boost::exception
 {
 virtual const char*
 what () const throw ();
 };

 struct value_out_of_range: odb::boost::exception
 {
 virtual const char*
 what () const throw ();
 };
 }
 }
}

You will need to include the <odb/boost/date-time/exceptions.hxx> header file
to make these exceptions available in your application.

Revision 2.4, February 2015388 C++ Object Persistence with ODB

23.5 Date Time Library

The special_value exception is thrown if an attempt is made to store a Boost date-time
special value that cannot be represented in the target database. The value_out_of_range
exception is thrown if an attempt is made to store a date-time value that is out of the target
database range. The specific conditions under which these exceptions are thrown are database
system dependent and are discussed in more detail in the following sub-sections.

23.5.1 MySQL Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost
date_time types and the MySQL database types.

Boost date_time Type MySQL Type Default NULL Semantics

gregorian::date DATE NULL

posix_time::ptime DATETIME NULL

posix_time::time_duration TIME NULL

The Boost special value date_time::not_a_date_time is stored as a NULL value in a
MySQL database.

The posix-time sub-profile implementation also provides support for mapping
posix_time::ptime to the TIMESTAMP MySQL type. However, this mapping has to be
explicitly requested using the db type pragma (Section 14.4.3, "type "), as shown in the
following example:

#pragma db object
class person
{
 ...
 #pragma db type("TIMESTAMP") not_null
 boost::posix_time::ptime updated_;
};

Starting with MySQL version 5.6.4 it is possible to store fractional seconds up to microsecond
precision in TIME, DATETIME, and TIMESTAMP columns. However, to enable sub-second
precision, the corresponding type with the desired precision has to be specified explicitly, as
shown in the following example:

#pragma db object
class person
{
 ...
 #pragma db type("DATETIME(6)") // Microsecond precision.
 boost::posix_time::ptime updated_;
};

389Revision 2.4, February 2015 C++ Object Persistence with ODB

23.5.1 MySQL Database Type Mapping

Alternatively, you can enable sub-second precision on the per-type basis, for example:

#pragma db value(boost::posix_time::ptime) type("DATETIME(6)")

#pragma db object
class person
{
 ...
 boost::posix_time::ptime created_; // Microsecond precision.
 boost::posix_time::ptime updated_; // Microsecond precision.
};

Some valid Boost date-time values cannot be stored in a MySQL database. An attempt to
persist any Boost date-time special value other than date_time::not_a_date_time
will result in the special_value exception. An attempt to persist a Boost date-time value
that is out of the MySQL type range will result in the out_of_range exception. Refer to
the MySQL documentation for more information on the MySQL data type ranges.

23.5.2 SQLite Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost
date_time types and the SQLite database types.

Boost date_time Type SQLite Type Default NULL Semantics

gregorian::date TEXT NULL

posix_time::ptime TEXT NULL

posix_time::time_duration TEXT NULL

The Boost special value date_time::not_a_date_time is stored as a NULL value in
an SQLite database.

The date-time sub-profile implementation also provides support for mapping grego-
rian::date and posix_time::ptime to the INTEGER SQLite type, with the integer
value representing the UNIX time. Similarly, an alternative mapping for
posix_time::time_duration to the INTEGER type represents the duration as a
number of seconds. These mappings have to be explicitly requested using the db type
pragma (Section 14.4.3, "type "), as shown in the following example:

#pragma db object
class person
{
 ...
 #pragma db type("INTEGER")
 boost::gregorian::date born_;
};

Revision 2.4, February 2015390 C++ Object Persistence with ODB

23.5.2 SQLite Database Type Mapping

Some valid Boost date-time values cannot be stored in an SQLite database. An attempt to
persist any Boost date-time special value other than date_time::not_a_date_time
will result in the special_value exception. An attempt to persist a negative
posix_time::time_duration value as SQLite TEXT will result in the
out_of_range exception.

23.5.3 PostgreSQL Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost
date_time types and the PostgreSQL database types.

Boost date_time Type PostgreSQL Type Default NULL Semantics

gregorian::date DATE NULL

posix_time::ptime TIMESTAMP NULL

posix_time::time_duration TIME NULL

The Boost special value date_time::not_a_date_time is stored as a NULL value in a
PostgreSQL database. posix_time::ptime values representing the special values
date_time::pos_infin and date_time::neg_infin are stored as the special
PostgreSQL TIMESTAMP values infinity and -infinity , respectively.

Some valid Boost date-time values cannot be stored in a PostgreSQL database. The Post-
greSQL TIME type represents a clock time, and can therefore only store positive durations
with a total length of time less than 24 hours. An attempt to persist a
posix_time::time_duration value outside of this range will result in the
value_out_of_range exception. An attempt to persist a
posix_time::time_duration value representing any special value other than
date_time::not_a_date_time will result in the special_value exception.

23.5.4 Oracle Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost
date_time types and the Oracle database types.

Boost date_time Type Oracle Type
Default NULL

Semantics

gregorian::date DATE NULL

posix_time::ptime TIMESTAMP NULL

posix_time::time_duration
INTERVAL DAY TO
SECOND

NULL

391Revision 2.4, February 2015 C++ Object Persistence with ODB

23.5.3 PostgreSQL Database Type Mapping

The Boost special value date_time::not_a_date_time is stored as a NULL value in
an Oracle database.

The date-time sub-profile implementation also provides support for mapping
posix_time::ptime to the DATE Oracle type with fractional seconds that may be stored
in a ptime instance being ignored. This alternative mapping has to be explicitly requested
using the db type pragma (Section 14.4.3, "type "), as shown in the following example:

#pragma db object
class person
{
 ...
 #pragma db type("DATE")
 boost::posix_time::ptime updated_;
};

Some valid Boost date-time values cannot be stored in an Oracle database. An attempt to
persist a gregorian::date , posix_time::ptime , or
posix_time::time_duration value representing any special value other than
date_time::not_a_date_time will result in the special_value exception.

23.5.5 SQL Server Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost
date_time types and the SQL Server database types.

Boost date_time Type SQL Server Type Default NULL Semantics

gregorian::date DATE NULL

posix_time::ptime DATETIME2 NULL

posix_time::time_duration TIME NULL

The Boost special value date_time::not_a_date_time is stored as a NULL value in
an SQL Server database.

Note that the DATE, TIME, and DATETIME2 types are only available in SQL Server 2008
and later. SQL Server 2005 only supports the DATETIME and SMALLDATETIME date-time
types. The new types are also unavailable when connecting to an SQL Server 2008 or later
with the SQL Server 2005 Native Client ODBC driver.

The date-time sub-profile implementation provides support for mapping
posix_time::ptime to the DATETIME and SMALLDATETIME types, however, this
mapping has to be explicitly requested using the db type pragma (Section 14.4.3, "type "),
as shown in the following example:

Revision 2.4, February 2015392 C++ Object Persistence with ODB

23.5.5 SQL Server Database Type Mapping

#pragma db object
class person
{
 ...
 #pragma db type("DATETIME")
 boost::posix_time::ptime updated_;
};

Some valid Boost date-time values cannot be stored in an SQL Server database. An attempt to
persist a gregorian::date , posix_time::ptime , or
posix_time::time_duration value representing any special value other than
date_time::not_a_date_time will result in the special_value exception. The
range of the TIME type in SQL server is from 00:00:00.0000000 to
23:59:59.9999999 . An attempt to persist a posix_time::time_duration value
out of this range will result in the value_out_of_range exception.

23.6 Uuid Library

The uuid sub-profile provides persistence support for the uuid type from the Boost uuid
library. To enable only this profile, pass boost/uuid to the --profile ODB compiler
option.

The manner in which these types are persisted is database system dependent and is discussed
in the sub-sections that follow. By default a data member of the uuid type is mapped to a
database column with NULL enabled and nil uuid instances are stored as a NULL value.
However, you can change this behavior by declaring the data member NOT NULL with the
not_null pragma (Section 14.4.6, "null /not_null "). In this case, or if the data member
is an object id, the implementation will store nil uuid instances as zero UUID values
({00000000-0000-0000-0000-000000000000}). For example:

#pragma db object
class object
{
 ...

 boost::uuids::uuid x_; // Nil values stored as NULL.

 #pragma db not_null
 boost::uuids::uuid y_; // Nil values stored as zero.
};

23.6.1 MySQL Database Type Mapping

The following table summarizes the default mapping between the Boost uuid type and the
MySQL database type.

Boost Type MySQL Type Default NULL Semantics

boost::uuids::uuid BINARY(16) NULL

393Revision 2.4, February 2015 C++ Object Persistence with ODB

23.6 Uuid Library

23.6.2 SQLite Database Type Mapping

The following table summarizes the default mapping between the Boost uuid type and the
SQLite database type.

Boost Type SQLite Type Default NULL Semantics

boost::uuids::uuid BLOB NULL

23.6.3 PostgreSQL Database Type Mapping

The following table summarizes the default mapping between the Boost uuid type and the
PostgreSQL database type.

Boost Type PostgreSQL Type Default NULL Semantics

boost::uuids::uuid UUID NULL

23.6.4 Oracle Database Type Mapping

The following table summarizes the default mapping between the Boost uuid type and the
Oracle database type.

Boost Type Oracle Type Default NULL Semantics

boost::uuids::uuid RAW(16) NULL

23.6.5 SQL Server Database Type Mapping

The following table summarizes the default mapping between the Boost uuid type and the
SQL Server database type.

Boost Type SQL Server Type Default NULL Semantics

boost::uuids::uuid UNIQUEIDENTIFIER NULL

Revision 2.4, February 2015394 C++ Object Persistence with ODB

23.6.2 SQLite Database Type Mapping

24 Qt Profile
The ODB profile implementation for Qt is provided by the libodb-qt library. Both Qt4
and Qt5 as well as C++98/03 and C++11 are supported.

The Qt profile consists of multiple sub-profiles corresponding to the common type groups
within Qt. Currently, only types from the QtCore module are supported. To enable all the
available Qt sub-profiles, pass qt as the profile name to the --profile ODB compiler
option. Alternatively, you can enable only specific sub-profiles by passing individual
sub-profile names to --profile . The following sections in this chapter discuss each Qt
sub-profile in detail. The qt example in the odb-examples package shows how to enable
and use the Qt profile.

Some sub-profiles may throw exceptions to indicate error conditions, such as the inability to
store a specific value in a particular database system. All such exceptions derive from the
odb::qt::exception class which in turn derives from the root of the ODB exception
hierarchy, class odb::exception (Section 3.14, "ODB Exceptions"). The
odb::qt::exception class is defined in the <odb/qt/exception.hxx> header file
and has the same interface as odb::exception . Concrete exceptions that can be thrown
by the Qt sub-profiles are described in the following sections.

24.1 Basic Types Library

The basic sub-profile provides persistence support for basic types defined by Qt. To enable
only this profile, pass qt/basic to the --profile ODB compiler option.

The currently supported basic types are QString , QByteArray , and QUuid . The manner
in which these types are persisted is database system dependent and is discussed in the
sub-sections that follow. The example below shows how QString may be used within a
persistent object.

#pragma db object
class Person
{
 ...
 QString name_;
};

By default a data member of the QUuid type is mapped to a database column with NULL
enabled and null QUuid instances are stored as a NULL value. However, you can change this
behavior by declaring the data member NOT NULL with the not_null pragma (Section
14.4.6, "null /not_null "). In this case, or if the data member is an object id, the imple-
mentation will store null QUuid instances as zero UUID values
({00000000-0000-0000-0000-000000000000}). For example:

395Revision 2.4, February 2015 C++ Object Persistence with ODB

24 Qt Profile

#pragma db object
class object
{
 ...

 QUuid x_; // Null values stored as NULL.

 #pragma db not_null
 QUuid y_; // Null values stored as zero.
};

24.1.1 MySQL Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt
types and the MySQL database types.

Qt Type MySQL Type Default NULL Semantics

QString TEXT/VARCHAR(255) NULL

QByteArray BLOB NULL

QUuid BINARY(16) NULL

Instances of the QString and QByteArray types are stored as a NULL value if their
isNull() member function returns true .

Note also that the QString type is mapped differently depending on whether a member of
this type is an object id or not. If the member is an object id, then for this member QString
is mapped to the VARCHAR(255) MySQL type. Otherwise, it is mapped to TEXT.

The basic sub-profile also provides support for mapping QString to the CHAR, NCHAR,
and NVARCHAR MySQL types. However, these alternative mappings have to be explicitly
requested using the db type pragma (Section 14.4.3, "type"), as shown in the following
example:

#pragma db object
class Person
{
 ...

 #pragma db type("CHAR(2)") not_null
 QString licenseState_;
};

24.1.2 SQLite Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt
types and the SQLite database types.

Revision 2.4, February 2015396 C++ Object Persistence with ODB

24.1.1 MySQL Database Type Mapping

Qt Type SQLite Type Default NULL Semantics

QString TEXT NULL

QByteArray BLOB NULL

QUuid BLOB NULL

Instances of the QString and QByteArray types are stored as a NULL value if their
isNull() member function returns true .

24.1.3 PostgreSQL Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt
types and the PostgreSQL database types.

Qt Type PostgreSQL Type Default NULL Semantics

QString TEXT NULL

QByteArray BYTEA NULL

QUuid UUID NULL

Instances of the QString and QByteArray types are stored as a NULL value if their
isNull() member function returns true .

The basic sub-profile also provides support for mapping QString to the CHAR and
VARCHAR PostgreSQL types. However, these alternative mappings have to be explicitly
requested using the db type pragma (Section 14.4.3, "type"), as shown in the following
example:

#pragma db object
class Person
{
 ...

 #pragma db type("CHAR(2)") not_null
 QString licenseState_;
};

24.1.4 Oracle Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt
types and the Oracle database types.

397Revision 2.4, February 2015 C++ Object Persistence with ODB

24.1.3 PostgreSQL Database Type Mapping

Qt Type Oracle Type Default NULL Semantics

QString VARCHAR2(512) NULL

QByteArray BLOB NULL

QUuid RAW(16) NULL

Instances of the QString and QByteArray types are stored as a NULL value if their
isNull() member function returns true .

The basic sub-profile also provides support for mapping QString to the CHAR, NCHAR,
NVARCHAR, CLOB, and NCLOB Oracle types, and for mapping QByteArray to the RAW
Oracle type. However, these alternative mappings have to be explicitly requested using the
db type pragma (Section 14.4.3, "type"), as shown in the following example:

#pragma db object
class Person
{
 ...

 #pragma db type("CLOB") not_null
 QString firstName_;

 #pragma db type("RAW(16)") null
 QByteArray uuid_;
};

24.1.5 SQL Server Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt
types and the SQL Server database types.

Qt Type SQL Server Type Default NULL Semantics

QString VARCHAR(512)/VARCHAR(256) NULL

QByteArray VARBINARY(max) NULL

QUuid UNIQUEIDENTIFIER NULL

Instances of the QString and QByteArray types are stored as a NULL value if their
isNull() member function returns true .

Note also that the QString type is mapped differently depending on whether a member of
this type is an object id or not. If the member is an object id, then for this member QString
is mapped to the VARCHAR(256) SQL Server type. Otherwise, it is mapped to
VARCHAR(512).

Revision 2.4, February 2015398 C++ Object Persistence with ODB

24.1.5 SQL Server Database Type Mapping

The basic sub-profile also provides support for mapping QString to the CHAR, NCHAR,
NVARCHAR, TEXT, and NTEXT SQL Server types, and for mapping QByteArray to the
BINARY and IMAGE SQL Server types. However, these alternative mappings have to be
explicitly requested using the db type pragma (Section 14.4.3, "type"), as shown in the
following example:

#pragma db object
class Person
{
 ...

 #pragma db type("NVARCHAR(256)") not_null
 QString firstName_;

 #pragma db type("BINARY(16)") null
 QByteArray uuid_;
};

24.2 Smart Pointers Library

The smart-ptr sub-profile provides persistence support the Qt smart pointers. To enable
only this profile, pass qt/smart-ptr to the --profile ODB compiler option.

The currently supported smart pointers are QSharedPointer and QWeakPointer . For
more information on using smart pointers as pointers to objects and views, refer to Section
3.3, "Object and View Pointers" and Chapter 6, "Relationships". For more information on
using smart pointers as pointers to values, refer to Section 7.3, "Pointers and NULL Value
Semantics". When used as a pointer to a value, only QSharedPointer is supported. For
example:

#pragma db object
class person
{
 ...

 #pragma db null
 QSharedPointer<QString> middle_name_;
};

To provide finer grained control over object relationship loading, the smart-ptr
sub-profile also provides the lazy counterparts for the above pointers: QLazyShared-
Pointer and QLazyWeakPointer . You will need to include the
<odb/qt/lazy-ptr.hxx> header file to make the lazy variants available in your applica-
tion. For a description of the lazy pointer interface and semantics refer to Section 6.4, "Lazy
Pointers". The following example shows how we can use these smart pointers to establish a
relationship between persistent objects.

class Employee;

#pragma db object
class Position

399Revision 2.4, February 2015 C++ Object Persistence with ODB

24.2 Smart Pointers Library

{
 ...

 #pragma db inverse(position_)
 QLazyWeakPointer<Employee> employee_;
};

#pragma db object
class Employee
{
 ...

 #pragma db not_null
 QSharedPointer<Position> position_;
};

Besides providing persistence support for the above smart pointers, the smart-ptr
sub-profile also changes the default pointer (Section 3.3, "Object and View Pointers") to
QSharedPointer . In particular, this means that database functions that return dynamically
allocated objects and views will return them as QSharedPointer pointers. To override this
behavior, add the --default-pointer option specifying the alternative pointer type after
the --profile option.

24.3 Containers Library

The containers sub-profile provides persistence support for Qt containers. To enable only
this profile, pass qt/containers to the --profile ODB compiler option.

The currently supported ordered containers are QVector , QList , and QLinkedList .
Supported map containers are QMap, QMultiMap , QHash, and QMultiHash . The
supported set container is QSet . For more information on using containers with ODB, refer
to Chapter 5, "Containers". The following example shows how the QSet container may be
used within a persistent object.

#pragma db object
class Person
{
 ...
 QSet<QString> emails_;
};

The containers sub-profile also provide a change-tracking equivalent for QList (Section
24.3.1, "Change-Tracking QList ") with support for other Qt container equivalents planned
for future releases. For general information on change-tracking containers refer to Section 5.4,
"Change-Tracking Containers".

Revision 2.4, February 2015400 C++ Object Persistence with ODB

24.3 Containers Library

24.3.1 Change-Tracking QList

Class template QOdbList , defined in <odb/qt/list.hxx> , is a change-tracking equiva-
lent for QList . It is implemented in terms of QList and is implicit-convertible to and
implicit-constructible from const QList& . In particular, this means that we can use
QOdbList instance anywhere const QList& is expected. In addition, QOdbList
constant iterator (const_iterator) is the same type as that of QList .

QOdbList incurs 2-bit per element overhead in order to store the change state. It cannot be
stored unordered in the database (Section 14.4.19 "unordered ") but can be used as an
inverse side of a relationship (6.2 "Bidirectional Relationships"). In this case, no change track-
ing is performed since no state for such a container is stored in the database.

The number of database operations required to update the state of QOdbList corresponds
well to the complexity of QList functions, except for prepend() /push_front() . In
particular, adding or removing an element from the back of the list (for example, with
append() /push_back() and removeLast() /pop_back()), requires only a single
database statement execution. In contrast, inserting or erasing an element at the beginning or
in the middle of the list will require a database statement for every element that follows it.

QOdbList replicates most of the QList interface as defined in both Qt4 and Qt5 and
includes support for C++11. However, functions and operators that provide direct write access
to the elements had to be altered or disabled in order to support change tracking. Additional
functions used to interface with QList and to control the change tracking state were also
added. The following listing summarizes the differences between the QOdbList and QList
interfaces. Any QList function or operator not mentioned in this listing has exactly the same
signature and semantics in QOdbList . Functions and operators that were disabled are shown
as commented out and are followed by functions/operators that replace them.

template <typename T>
class QOdbList
{
 ...

 // Element access.
 //

 //T& operator[] (int);
 T& modify (int);

 //T& first();
 T& modifyFirst();

 //T& last();
 T& modifyLast();

 //T& front();
 T& modify_front();

 //T& back();

401Revision 2.4, February 2015 C++ Object Persistence with ODB

24.3.1 Change-Tracking QList

 T& modify_back();

 // Iterators.
 //
 typedef typename QList<T>::const_iterator const_iterator;

 class iterator
 {
 ...

 // Element Access.
 //

 //reference operator* () const;
 const_reference operator* () const;
 reference modify () const;

 //pointer operator-> () const;
 const_pointer operator-> () const;

 //reference operator[] (difference_type);
 const_reference operator[] (difference_type);
 reference modify (difference_type) const;

 // Interfacing with QList::iterator.
 //
 typename QList<T>::iterator base () const;
 };

 // Return QList iterators. The begin() functions mark all
 // the elements as modified.
 //
 typename QList<T>::iterator mbegin ();
 typename QList<T>::iterator modifyBegin ();
 typename QList<T>::iterator mend ();
 typename QList<T>::iterator modifyEnd ();

 // Interfacing with QList.
 //
 QOdbList (const QList<T>&);
 QOdbList (QList<T>&&); // C++11 only.

 QOdbList& operator= (const QList<T>&);
 QOdbList& operator= (QList<T>&&);

 operator const QList<T>& () const;
 QList<T>& base ();
 const QList<T>& base () const;

 // Change tracking.
 //
 bool _tracking () const;
 void _start () const;
 void _stop () const;
 void _arm (transaction&) const;
};

Revision 2.4, February 2015402 C++ Object Persistence with ODB

24.3.1 Change-Tracking QList

The following example highlights some of the differences between the two interfaces. QList
versions are commented out.

#include <QtCore/QList>
#include <odb/qt/list.hxx>

void f (const QList<int>&);

QOdbList<int> l ({1, 2, 3});

f (l); // Ok, implicit conversion.

if (l[1] == 2) // Ok, const access.
 //l[1]++;
 l.modify (1)++;

//l.last () = 4;
l.modifyLast () = 4;

for (auto i (l.begin ()); i != l.end (); ++i)
{
 if (*i != 0) // Ok, const access.
 //*i += 10;
 i.modify () += 10;
}

qSort (l.modifyBegin (), l.modifyEnd ());

Note also the subtle difference between copy/move construction and copy/move assignment
of QOdbList instances. While copy/move constructor will copy/move both the elements as
well as their change state, in contrast, assignment is tracked as any other change to the vector
content.

The QListIterator and QMutableListIterator equivalents are also provided.
These are QOdbListIterator and QMutableOdbListIterator and are defined in
<odb/qt/list-iterator.hxx> and <odb/qt/mutable-list-itera-
tor.hxx> , respectively.

QOdbListIterator has exactly the same interface and semantics as QListIterator .
In fact, we can use QListIterator to iterate over a QOdbList instance.

QMutableOdbListIterator also has exactly the same interface as QMutableLis-
tIterator . Note, however, that any element that such an iterator passes over with the call
to next() is marked as modified.

24.4 Date Time Library

The date-time sub-profile provides persistence support for the Qt date-time types. To
enable only this profile, pass qt/date-time to the --profile ODB compiler option.

403Revision 2.4, February 2015 C++ Object Persistence with ODB

24.4 Date Time Library

The currently supported date-time types are QDate , QTime, and QDateTime . The manner
in which these types are persisted is database system dependent and is discussed in the
sub-sections that follow. The example below shows how QDate may be used within a persis-
tent object.

#pragma db object
class Person
{
 ...
 QDate dateOfBirth_;
};

The single concrete exception that can be thrown by the date-time sub-profile implemen-
tation is presented below.

namespace odb
{
 namespace qt
 {
 namespace date_time
 {
 struct value_out_of_range: odb::qt::exception
 {
 virtual const char*
 what () const throw ();
 };
 }
 }
}

You will need to include the <odb/qt/date-time/exceptions.hxx> header file to
make this exception available in your application.

The value_out_of_range exception is thrown if an attempt is made to store a date-time
value that is out of the target database range. The specific conditions under which it is thrown
is database system dependent and is discussed in more detail in the following sub-sections.

24.4.1 MySQL Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt
date-time types and the MySQL database types.

Qt Date Time Type MySQL Type Default NULL Semantics

QDate DATE NULL

QTime TIME NULL

QDateTime DATETIME NULL

Revision 2.4, February 2015404 C++ Object Persistence with ODB

24.4.1 MySQL Database Type Mapping

Instances of the QDate , QTime, and QDateTime types are stored as a NULL value if their
isNull() member function returns true.

The date-time sub-profile implementation also provides support for mapping QDate-
Time to the TIMESTAMP MySQL type. However, this mapping has to be explicitly requested
using the db type pragma (Section 14.4.3, "type "), as shown in the following example:

#pragma db object
class Person
{
 ...
 #pragma db type("TIMESTAMP") not_null
 QDateTime updated_;
};

Starting with MySQL version 5.6.4 it is possible to store fractional seconds up to microsecond
precision in TIME, DATETIME, and TIMESTAMP columns. However, to enable sub-second
precision, the corresponding type with the desired precision has to be specified explicitly, as
shown in the following example:

#pragma db object
class Person
{
 ...
 #pragma db type("DATETIME(3)") // Millisecond precision.
 QDateTime updated_;
};

Alternatively, you can enable sub-second precision on the per-type basis, for example:

#pragma db value(QDateTime) type("DATETIME(3)")

#pragma db object
class Person
{
 ...
 QDateTime created_; // Millisecond precision.
 QDateTime updated_; // Millisecond precision.
};

Some valid Qt date-time values cannot be stored in a MySQL database. An attempt to persist
a Qt date-time value that is out of the MySQL type range will result in the out_of_range
exception. Refer to the MySQL documentation for more information on the MySQL data type
ranges.

24.4.2 SQLite Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt
date-time types and the SQLite database types.

405Revision 2.4, February 2015 C++ Object Persistence with ODB

24.4.2 SQLite Database Type Mapping

Qt Date Time Type SQLite Type Default NULL Semantics

QDate TEXT NULL

QTime TEXT NULL

QDateTime TEXT NULL

Instances of the QDate , QTime, and QDateTime types are stored as a NULL value if their
isNull() member function returns true.

The date-time sub-profile implementation also provides support for mapping QDate and
QDateTime to the SQLite INTEGER type, with the integer value representing the UNIX
time. Similarly, an alternative mapping for QTime to the INTEGER type represents a clock
time as the number of seconds since midnight. These mappings have to be explicitly requested
using the db type pragma (Section 14.4.3, "type "), as shown in the following example:

#pragma db object
class Person
{
 ...
 #pragma db type("INTEGER")
 QDate born_;
};

Some valid Qt date-time values cannot be stored in an SQLite database. An attempt to persist
any Qt date-time value representing a negative UNIX time (any point in time prior to the
1970-01-01 00:00:00 UNIX time epoch) as an SQLite INTEGER will result in the
out_of_range exception.

24.4.3 PostgreSQL Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt
date-time types and the PostgreSQL database types.

Qt Date Time Type PostgreSQL Type Default NULL Semantics

QDate DATE NULL

QTime TIME NULL

QDateTime TIMESTAMP NULL

Instances of the QDate , QTime, and QDateTime types are stored as a NULL value if their
isNull() member function returns true.

Revision 2.4, February 2015406 C++ Object Persistence with ODB

24.4.3 PostgreSQL Database Type Mapping

24.4.4 Oracle Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt
date-time types and the Oracle database types.

Qt Date Time Type Oracle Type Default NULL Semantics

QDate DATE NULL

QTime INTERVAL DAY(0) TO SECOND(3) NULL

QDateTime TIMESTAMP(3) NULL

Instances of the QDate , QTime, and QDateTime types are stored as a NULL value if their
isNull() member function returns true.

The date-time sub-profile implementation also provides support for mapping QDate-
Time to the DATE Oracle type with fractional seconds that may be stored in a QDateTime
instance being ignored. This alternative mapping has to be explicitly requested using the
db type pragma (Section 14.4.3, "type "), as shown in the following example:

#pragma db object
class person
{
 ...
 #pragma db type("DATE")
 QDateTime updated_;
};

24.4.5 SQL Server Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt
date-time types and the SQL Server database types.

Qt Date Time Type SQL Server Type Default NULL Semantics

QDate DATE NULL

QTime TIME(3) NULL

QDateTime DATETIME2(3) NULL

Instances of the QDate , QTime, and QDateTime types are stored as a NULL value if their
isNull() member function returns true.

Note that the DATE, TIME, and DATETIME2 types are only available in SQL Server 2008
and later. SQL Server 2005 only supports the DATETIME and SMALLDATETIME date-time
types. The new types are also unavailable when connecting to an SQL Server 2008 or later
with the SQL Server 2005 Native Client ODBC driver.

407Revision 2.4, February 2015 C++ Object Persistence with ODB

24.4.4 Oracle Database Type Mapping

The date-time sub-profile implementation provides support for mapping QDateTime to
the DATETIME and SMALLDATETIME types, however, this mapping has to be explicitly
requested using the db type pragma (Section 14.4.3, "type "), as shown in the following
example:

#pragma db object
class person
{
 ...
 #pragma db type("DATETIME")
 QDateTime updated_;
};

Revision 2.4, February 2015408 C++ Object Persistence with ODB

24.4.5 SQL Server Database Type Mapping

	Preface
	About This Document
	More Information

	PART I€€ OBJECT-RELATIONAL MAPPING
	1 Introduction
	1.1 Architecture and Workflow
	1.2 Benefits
	1.3 Supported C++ Standards

	2 Hello World Example
	2.1 Declaring Persistent Classes
	2.2 Generating Database Support Code
	2.3 Compiling and Running
	2.4 Making Objects Persistent
	2.5 Querying the Database for Objects
	2.6 Updating Persistent Objects
	2.7 Defining and Using Views
	2.8 Deleting Persistent Objects
	2.9 Changing Persistent Classes
	2.10 Working with Multiple Databases
	2.11 Summary

	3 Working with Persistent Objects
	3.1 Concepts and Terminology
	3.2 Declaring Persistent Objects and Values
	3.3 Object and View Pointers
	3.4 Database
	3.5 Transactions
	3.6 Connections
	3.7 Error Handling and Recovery
	3.8 Making Objects Persistent
	3.9 Loading Persistent Objects
	3.10 Updating Persistent Objects
	3.11 Deleting Persistent Objects
	3.12 Executing Native SQL Statements
	3.13 Tracing SQL Statement Execution
	3.14 ODB Exceptions

	4 Querying the Database
	4.1 ODB Query Language
	4.2 Parameter Binding
	4.3 Executing a Query
	4.4 Query Result
	4.5 Prepared Queries

	5 Containers
	5.1 Ordered Containers
	5.2 Set and Multiset Containers
	5.3 Map and Multimap Containers
	5.4 Change-Tracking Containers
	5.4.1 Change-Tracking vector

	5.5 Using Custom Containers

	6 Relationships
	6.1 Unidirectional Relationships
	6.1.1 To-One Relationships
	6.1.2 To-Many Relationships

	6.2 Bidirectional Relationships
	6.2.1 One-to-One Relationships
	6.2.2 One-to-Many Relationships
	6.2.3 Many-to-Many Relationships

	6.3 Circular Relationships
	6.4 Lazy Pointers
	6.5 Using Custom Smart Pointers

	7 Value Types
	7.1 Simple Value Types
	7.2 Composite Value Types
	7.2.1 Composite Object Ids
	7.2.2 Composite Value Column and Table Names

	7.3 Pointers and NULL Value Semantics

	8 Inheritance
	8.1 Reuse Inheritance
	8.2 Polymorphism Inheritance
	8.2.1 Performance and Limitations

	8.3 Mixed Inheritance

	9 Sections
	9.1 Sections and Inheritance
	9.2 Sections and Optimistic Concurrency
	9.3 Sections and Lazy Pointers
	9.4 Sections and Change-Tracking Containers

	10 Views
	10.1 Object Views
	10.2 Object Loading Views
	10.3 Table Views
	10.4 Mixed Views
	10.5 View Query Conditions
	10.6 Native Views
	10.7 Other View Features and Limitations

	11 Session
	11.1 Object Cache
	11.2 Custom Sessions

	12 Optimistic Concurrency
	13 Database Schema Evolution
	13.1 Object Model Version and Changelog
	13.2 Schema Migration
	13.3 Data Migration
	13.3.1 Immediate Data Migration
	13.3.2 Gradual Data Migration
	13.4 Soft Object Model Changes
	13.4.1 Reuse Inheritance Changes
	13.4.2 Polymorphism Inheritance Changes

	14 ODB Pragma Language
	14.1 Object Type Pragmas
	14.1.1 table
	14.1.2 pointer
	14.1.3 abstract
	14.1.4 readonly
	14.1.5 optimistic
	14.1.6 no_id
	14.1.7 callback
	14.1.8 schema
	14.1.9 polymorphic
	14.1.10 session
	14.1.11 definition
	14.1.12 transient
	14.1.13 sectionable
	14.1.14 deleted
	14.1.15 bulk

	14.2 View Type Pragmas
	14.2.1 object
	14.2.2 table
	14.2.3 query
	14.2.4 pointer
	14.2.5 callback
	14.2.6 definition
	14.2.7 transient

	14.3 Value Type Pragmas
	14.3.1 type
	14.3.2 id_type
	14.3.3 null/not_null
	14.3.4 default
	14.3.5 options
	14.3.6 readonly
	14.3.7 definition
	14.3.8 transient
	14.3.9 unordered
	14.3.10 index_type
	14.3.11 key_type
	14.3.12 value_type
	14.3.13 value_null/value_not_null
	14.3.14 id_options
	14.3.15 index_options
	14.3.16 key_options
	14.3.17 value_options
	14.3.18 id_column
	14.3.19 index_column
	14.3.20 key_column
	14.3.21 value_column

	14.4 Data Member Pragmas
	14.4.1 id
	14.4.2 auto
	14.4.3 type
	14.4.4 id_type
	14.4.5 get/set/access
	14.4.6 null/not_null
	14.4.7 default
	14.4.8 options
	14.4.9 column (object, composite value)
	14.4.10 column (view)
	14.4.11 transient
	14.4.12 readonly
	14.4.13 virtual
	14.4.14 inverse
	14.4.15 on_delete
	14.4.16 version
	14.4.17 index
	14.4.18 unique
	14.4.19 unordered
	14.4.20 table
	14.4.21 load/update
	14.4.22 section
	14.4.23 added
	14.4.24 deleted
	14.4.25 index_type
	14.4.26 key_type
	14.4.27 value_type
	14.4.28 value_null/value_not_null
	14.4.29 id_options
	14.4.30 index_options
	14.4.31 key_options
	14.4.32 value_options
	14.4.33 id_column
	14.4.34 index_column
	14.4.35 key_column
	14.4.36 value_column

	14.5 Namespace Pragmas
	14.5.1 pointer
	14.5.2 table
	14.5.3 schema
	14.5.4 session

	14.6 Object Model Pragmas
	14.6.1 version

	14.7 Index Definition Pragmas
	14.8 Database Type Mapping Pragmas
	14.9 C++ Compiler Warnings
	14.9.1 GNU C++
	14.9.2 Visual C++
	14.9.3 Sun C++
	14.9.4 IBM XL C++
	14.9.5 HP aC++
	14.9.6 Clang

	15 Advanced Techniques and Mechanisms
	15.1 Transaction Callbacks
	15.2 Persistent Class Template Instantiations
	15.3 Bulk Database Operations

	PART II€€ DATABASE SYSTEMS
	16 Multi-Database Support
	16.1 Static Multi-Database Support
	16.2 Dynamic Multi-Database Support
	16.2.2 Dynamic Loading of Database Support Code

	17 MySQL Database
	17.1 MySQL Type Mapping
	17.1.1 String Type Mapping
	17.1.2 Binary Type Mapping

	17.2 MySQL Database Class
	17.3 MySQL Connection and Connection Factory
	17.4 MySQL Exceptions
	17.5 MySQL Limitations
	17.5.1 Foreign Key Constraints

	17.6 MySQL Index Definitions
	17.7 MySQL Stored Procedures

	18 SQLite Database
	18.1 SQLite Type Mapping
	18.1.1 String Type Mapping
	18.1.2 Binary Type Mapping

	18.2 SQLite Database Class
	18.3 SQLite Connection and Connection Factory
	18.4 SQLite Exceptions
	18.5 SQLite Limitations
	18.5.1 Query Result Caching
	18.5.2 Automatic Assignment of Object Ids
	18.5.3 Foreign Key Constraints
	18.5.4 Constraint Violations
	18.5.5 Sharing of Queries
	18.5.6 Forced Rollback
	18.5.7 Database Schema Evolution

	18.6 SQLite Index Definitions

	19 PostgreSQL Database
	19.1 PostgreSQL Type Mapping
	19.1.1 String Type Mapping
	19.1.2 Binary Type and UUID Mapping

	19.2 PostgreSQL Database Class
	19.3 PostgreSQL Connection and Connection Factory
	19.4 PostgreSQL Exceptions
	19.5 PostgreSQL Limitations
	19.5.1 Query Result Caching
	19.5.2 Foreign Key Constraints
	19.5.3 Unique Constraint Violations
	19.5.4 Date-Time Format
	19.5.5 Timezones
	19.5.6 NUMERIC Type Support

	19.6 PostgreSQL Index Definitions

	20 Oracle Database
	20.1 Oracle Type Mapping
	20.1.1 String Type Mapping
	20.1.2 Binary Type Mapping

	20.2 Oracle Database Class
	20.3 Oracle Connection and Connection Factory
	20.4 Oracle Exceptions
	20.5 Oracle Limitations
	20.5.1 Identifier Truncation
	20.5.2 Query Result Caching
	20.5.3 Foreign Key Constraints
	20.5.4 Unique Constraint Violations
	20.5.5 Large FLOAT and NUMBER Types
	20.5.6 Timezones
	20.5.7 LONG Types
	20.5.8 LOB Types and By-Value Accessors/Modifiers
	20.5.9 Database Schema Evolution

	20.6 Oracle Index Definitions

	21 Microsoft SQL Server Database
	21.1 SQL Server Type Mapping
	21.1.1 String Type Mapping
	21.1.2 Binary Type and UNIQUEIDENTIFIER Mapping
	21.1.3 ROWVERSION Mapping
	21.1.4 Long String and Binary Types

	21.2 SQL Server Database Class
	21.3 SQL Server Connection and Connection Factory
	21.4 SQL Server Exceptions
	21.5 SQL Server Limitations
	21.5.1 Query Result Caching
	21.5.2 Foreign Key Constraints
	21.5.3 Unique Constraint Violations
	21.5.4 Multi-threaded Windows Applications
	21.5.5 Affected Row Count and DDL Statements
	21.5.6 Long Data and Auto Object Ids, ROWVERSION
	21.5.7 Long Data and By-Value Accessors/Modifiers
	21.5.8 Bulk Update and ROWVERSION

	21.6 SQL Server Index Definitions
	21.7 SQL Server Stored Procedures

	PART III€€ PROFILES
	22 Profiles Introduction
	23 Boost Profile
	23.1 Smart Pointers Library
	23.2 Unordered Containers Library
	23.3 Multi-Index Container Library
	23.4 Optional Library
	23.5 Date Time Library
	23.5.1 MySQL Database Type Mapping
	23.5.2 SQLite Database Type Mapping
	23.5.3 PostgreSQL Database Type Mapping
	23.5.4 Oracle Database Type Mapping
	23.5.5 SQL Server Database Type Mapping

	23.6 Uuid Library
	23.6.1 MySQL Database Type Mapping
	23.6.2 SQLite Database Type Mapping
	23.6.3 PostgreSQL Database Type Mapping
	23.6.4 Oracle Database Type Mapping
	23.6.5 SQL Server Database Type Mapping

	24 Qt Profile
	24.1 Basic Types Library
	24.1.1 MySQL Database Type Mapping
	24.1.2 SQLite Database Type Mapping
	24.1.3 PostgreSQL Database Type Mapping
	24.1.4 Oracle Database Type Mapping
	24.1.5 SQL Server Database Type Mapping

	24.2 Smart Pointers Library
	24.3 Containers Library
	24.3.1 Change-Tracking QList

	24.4 Date Time Library
	24.4.1 MySQL Database Type Mapping
	24.4.2 SQLite Database Type Mapping
	24.4.3 PostgreSQL Database Type Mapping
	24.4.4 Oracle Database Type Mapping
	24.4.5 SQL Server Database Type Mapping

