File: decoding-data.rst

package info (click to toggle)
odc 1.4.6-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,060 kB
  • sloc: cpp: 22,074; f90: 3,707; sh: 999; ansic: 471; python: 382; makefile: 39
file content (798 lines) | stat: -rw-r--r-- 26,717 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
.. index:: Decoding Data

Decoding Data
=============

.. figure:: /_static/odb-2-frame-decoder.svg
   :alt: A Diagram Showing an Overview of the Data Decoding Process

   A Diagram Showing an Overview of the Data Decoding Process


   A **Frame** provides a sliding viewport into a stream of ODB-2 data managed by a **Reader**. The **Decoder** maps the data to be decoded onto a memory layout.


.. index:: Decoding Data; Reader

Reader
------

The **Reader** object is responsible for controlling underlying resources associated with an ODB-2 data stream. We can define the source of the data according to its location (on the network, in memory, in file, etc.) and construct an appropriate **Reader** object.

.. tabs::

   .. group-tab:: C

      .. code-block:: c

         odc_reader_t* reader = NULL;

         int rc = odc_open_path(&reader, "imaginary/path.odb");

         if (rc != ODC_SUCCESS) {
             fprintf(stderr, "Failed to open imaginary/path.odb: %s\n", odc_error_string(rc));
         }
         else {
             /*
              * Do work involving the reader here
              */
             odc_close(reader);
         }


   .. group-tab:: C++

      .. code-block:: cpp

         #include "eckit/io/FileHandle.h"

         FileHandle fh("imaginary/path.odb");
         fh.openForRead();
         AutoClose closer(fh);

         bool aggregated = true;
         Reader reader(fh, aggregated);

         // Do work involving the reader here


   .. group-tab:: Fortran

      .. code-block:: fortran

         type(odc_reader) :: reader
         integer :: rc

         rc = reader%open_path("imaginary/path.odb")

         if (rc /= ODC_SUCCESS) then
             print *, 'Failed to open imaginary/path.odb: ', odc_error_string(rc)
             stop 1
         else
             ! Do work involving the reader here

             rc = reader%close()
         end if


The **Reader** instance then makes the sequence of **Frames** accessible. It also controls if access to :ref:`compatible data <data-compatibility>` is aggregated.

.. tabs::

   .. group-tab:: C

      .. code-block:: c

         odc_frame_t* frame = NULL;

         int rc = odc_new_frame(&frame, reader);

         if (rc != ODC_SUCCESS) {
             fprintf(stderr, "Failed to construct frame: %s\n", odc_error_string(rc));
         }
         else {
             long max_aggregated_rows = 1000000;

             while ((rc = odc_next_frame_aggregated(frame, max_aggregated_rows)) == ODC_SUCCESS) {
                 /*
                  * Do work involving the frame here
                  */
             }

             if (rc != ODC_ITERATION_COMPLETE) {
                 fprintf(stderr, "An error occurred reading the frames: %s\n", odc_error_string(rc));
             }
         }

         rc = odc_free_frame(frame);


   .. group-tab:: C++

      .. code-block:: cpp

         Frame frame;

         while ((frame = reader.next())) {
             // Do work involving the frame here
         }


   .. group-tab:: Fortran

      .. code-block:: fortran

         type(odc_frame) :: frame
         logical, parameter :: aggregated = .true.
         integer, parameter :: max_aggregated_rows = 1000000

         rc = frame%initialise(reader)

         if (rc /= ODC_SUCCESS) then
             print *, "Failed to construct frame: ", odc_error_string(rc)
         else
             rc = frame%next(aggregated, max_aggregated_rows)

             do while (rc == ODC_SUCCESS)
                 ! Do work involving the frame here

                 rc = frame%next(aggregated, max_aggregated_rows)
             end do

             if (rc /= ODC_ITERATION_COMPLETE) then
                 print *, "An error occurred reading the frames: ", odc_error_string(rc)
             end if
         end if


.. index:: Decoding Data; Frame

Frame
-----

A **Frame** provides viewport into a chunk of contiguous data within the ODB-2 stream. This data all has the same columnar structure (i.e. number, names of columns, and associated data types).

The **Frame** makes metadata about each chunk of data accessible without necessarily decoding the data. This includes row counts and column information.

.. note::

   For the sake of clarity, many code snippets below omit necessary error checking when calling **odc** functions. Please see :doc:`/content/usage-examples` for full, runnable code examples with functional error handling.


.. tabs::

   .. group-tab:: C

      .. code-block:: c

         long row_count;
         int column_count;

         odc_frame_row_count(frame, &row_count);
         odc_frame_column_count(frame, &column_count);

         printf("Row count: %ld\nColumn count: %d\n\n", row_count, column_count);

         for (int col = 0; col < column_count; ++col) {
             const char* name;
             int type;
             int element_size;
             int bitfield_count;

             odc_frame_column_attributes(frame, col, &name, &type, &element_size, &bitfield_count);

             const char* type_name;

             odc_column_type_name(type, &type_name);

             printf("Column %d\n", col);
             printf("  name: %s\n", name);
             printf("  type: %s\n", type_name);
             printf("  size: %d\n", element_size);

             if (type == ODC_BITFIELD) {
                 for (int bf = 0; bf < bitfield_count; ++bf) {
                     const char* bf_name;
                     int bf_offset;
                     int bf_size;

                     odc_frame_bitfield_attributes(frame, col, bf, &bf_name, &bf_offset, &bf_size);

                     printf("  bitfield %d\n", bf);
                     printf("      name: %s\n", bf_name);
                     printf("    offset: %d\n", bf_offset);
                     printf("     nbits: %d\n", bf_size);
                 }
             }
         }


   .. group-tab:: C++

      .. code-block:: cpp

         std::cout << "Row count: " << frame.rowCount() << std::endl;
         std::cout << "Column count: " << frame.columnCount() << std::endl << std::endl;

         int i = 0;
         for (auto const& column : frame.columnInfo()) {
             std::cout << "Column " << i++ << std::endl;
             std::cout << "  name: " << column.name << std::endl;
             std::cout << "  type: " << columnTypeName(column.type) << std::endl;
             std::cout << "  size: " << column.decodedSize << std::endl;

             int j = 0;
             if (column.type == BITFIELD) {
                 for (auto const& bf : column.bitfield) {
                     std::cout << "  bitfield " << j++ << std::endl;
                     std::cout << "      name: " << bf.name << std::endl;
                     std::cout << "      offset: " << bf.offset << std::endl;
                     std::cout << "      nbits: " << bf.size << std::endl;
                 }
             }
         }


   .. group-tab:: Fortran

      .. code-block:: fortran

         integer(8), target :: row_count
         integer, target :: column_count
         integer, target :: col, type, element_size, bitfield_count
         integer, target :: bf, bf_offset, bf_size
         character(:), allocatable, target :: name, type_name, bf_name

         rc = frame%row_count(row_count)
         rc = frame%column_count(column_count)

         print *, "Row count: ", row_count
         print *, "Column count: ", column_count

         do col = 1, column_count
             rc = frame%column_attributes(col, name, type, element_size, bitfield_count=bitfield_count)
             rc = odc_column_type_name(type, type_name)

             print *, "Column ", col
             print *, "  name: ", name
             print *, "  type: ", type_name
             print *, "  size: ", element_size

             if (type == ODC_BITFIELD) then
                 do bf = 1, bitfield_count
                     rc = frame%bitfield_attributes(col, bf, bf_name, bf_offset, bf_size)

                     print *, "  bitfield ", bf
                     print *, "      name: ", bf_name
                     print *, "    offset: ", bf_offset
                     print *, "     nbits: ", bf_size
                 end do
             end if
         end do


The **Frame** object may correspond to one underlying frame within the ODB-2 stream (as described earlier), or may be a logical *aggregated frame* referencing multiple :ref:`compatible frames <data-compatibility>` internally.


.. index:: Decoding Data; Span

Span
^^^^

The C++ API also provides the **Span** interface. This can be used to determine the set of values encoded for specified columns within a **Frame**. This is especially useful when archiving and indexing data, where only a subset of columns are important for indexing, and it is necessary to extract their values and ensure that they are constant within each **Frame**.

**Span** is also able to enforce a constraint that a **Frame** must have constant values in specified columns, returning an error otherwise.

.. code-block:: cpp

   class ExampleVisitor : public SpanVisitor {
       template <typename T>

       void dumpValues(const std::string& colName, const std::set<T>& vals) {
           std::cout << "name: " << colName << std::endl;
           for (const T& val : vals) {
               std::cout << val << std::endl;
           }
       }

       void operator()(const std::string& colName, const std::set<long>& vals) {
           std::cout << "Column with integer values" << std::endl;
           dumpValues(colName, vals);
       }

       void operator()(const std::string& colName, const std::set<double>& vals) {
           std::cout << "Column with real values" << std::endl;
           dumpValues(colName, vals);
       }

       void operator()(const std::string& colName, const std::set<std::string>& vals) {
           std::cout << "Column with string values" << std::endl;
           dumpValues(colName, vals);
       }
   };

   std::vector<std::string> columns = {
       "column0",
       "column2",
       "column3",
   };

   bool onlyConstantValues = false;

   Span span = frame.span(columns, onlyConstantValues);
   ExampleVisitor v;

   span.visit(v);


.. index:: Decoding Data; Properties

Properties
^^^^^^^^^^

The ODB-2 format allows annotation of any frame of data with an arbitrary dictionary of string key:value pairs. These metadata values are accessible from the **Frame** object.

.. tabs::

   .. group-tab:: C

      .. code-block:: c

         int nproperties;

         // Get number of properties encoded in the frame
         odc_frame_properties_count(frame, &nproperties);

         const char* key;
         const char* value;

         int i;
         for (i = 0; i < nproperties; i++) {

             // Get property key and value by its index
             odc_frame_property_idx(frame, i, &key, &value);

             printf("  Property: %s => %s\n", key, value);
         }

         // Or, get property value by its key
         odc_frame_property(frame, "my_key", &value);

         printf("  Property: my_key => %s\n", value ? value : "(undefined)");


   .. group-tab:: C++

      .. code-block:: cpp

         // Go through all properties
         for (const auto& property : frame.properties()) {
             std::cout << "  Property: " << property.first << " => " << property.second << std::endl;
         }

         // Or, get property value by its key
         auto it = frame.properties().find("my_key");
         std::cout << "  Property: my_key => "
                   << (it != frame.properties().end() ? it->second : "(undefined)") << std::endl;


   .. group-tab:: Fortran

      .. code-block:: fortran

         integer :: nproperties, idx
         character(:), allocatable, target :: key, val
         logical :: exists

         ! Get number of properties encoded in the frame
         rc = frame%properties_count(nproperties)

         do idx = 1, nproperties

            ! Get property key and value by its index
            frame%property_idx(idx, key, val)

            print *, "  Property: ", key, " => ", val
         end do

         ! Or, get property value by its key
         rc = frame%property('my_key', val, exists)

         if (exists) print *, "  Property: my_key => ", val


.. index:: Decoding Data; Decoder

.. _decoder:

Decoder
-------

The **Decoder** specifies how a decoding operation should be carried out. It is configured with the set of columns to be decoded and the data layout in memory into which the data should be decoded.

For typical cases, much of this configuration can be filled in with sensible default values by interrogating the **Frame** object. In these cases all columns will be decoded, and the memory layout will be either simple row-major or column-major. The decoder can allocate memory for these default layouts if required.

.. tabs::

   .. group-tab:: C

      .. code-block:: c

         odc_decoder_t* decoder = NULL;

         odc_new_decoder(&decoder);
         odc_decoder_defaults_from_frame(decoder, frame);

         long rows_decoded;
         odc_decode(decoder, frame, &rows_decoded);
         printf("Decoded %ld rows\n", rows_decoded);

         const void* data;
         long width;
         long height;
         bool columnMajor;
         odc_decoder_data_array(decoder, &data, &width, &height, &columnMajor);

         /* Note that these values describe the _array_ not the frame.
          * The array in memory is allowed to be bigger than strictly required
          * to store the data */

         printf("Decoded into a 2D array:\n");
         printf("  First element location: %p\n", data);
         printf("  Table width (bytes): %ld\n", width);
         printf("  Table height (rows): %ld\n", height);
         printf("  Column major: %s\n", (columnMajor ? "true" : "false"));


   .. group-tab:: C++

      .. note::

         C++ interface does not support automatic decoding of frame data. In this case, recommended API is C. Alternatively, you can construct a :ref:`custom memory layout <decoder-custom-layout>` decoder instead.


   .. group-tab:: Fortran

      .. code-block:: fortran

         type(odc_decoder) :: decoder
         integer(8), target :: rows_decoded
         real(8), pointer :: data(:,:)
         logical :: column_major

         rc = decoder%initialise()
         rc = decoder%defaults_from_frame(frame)

         rc = decoder%decode(frame, rows_decoded)
         print *, "Decoded ", rows_decoded, " rows"

         rc = decoder%data(data, column_major)

         print *, "Decoded into a 2D array:"
         print *, "  First element location: ", loc(data(1,1))
         print *, "  Table width (columns): ", size(data, 2)
         print *, "  Table height (rows): ", size(data, 1)
         print *, "  Column major: ", merge(" true", "false", column_major)

         rc = decoder%free()


A **Decoder** instance can be reused if the set of columns and the desired memory layout is the same for multiple frames.

.. note::

   The **Decoder** does not have to be filled in from the information in the **Frame**, and certainly not from the current one. A decoder can be reused. For example in the case of a sequence of :ref:`incompatible frames <data-compatibility>` that have just two columns in common, it is possible to use one decoder to extract just those two columns from all the frames.


The **Decoder** provides several options for handling memory layouts.


.. _`decoder-row-major-layout`:

Row-major layout
   In row-major layout, the consecutive elements of a single data row reside adjacent to each other in memory. The stride between elements in the same column is the width of each row, representing a contiguous block in memory. In row-major mode, the width of each row is the combined size of all cells.

   .. figure:: /_static/odb-2-row-major.svg
      :alt: A Diagram Showing a Row-major Layout

      A Diagram Showing a Row-major Layout


   Row-major is the default method of storing multidimensional arrays in C and C++.

   .. tabs::

      .. group-tab:: C

         .. code-block:: c

            /*
             * Construct a decoder that will decode 5 named columns into a row-major
             * data layout
             */

            odc_decoder_t* decoder;
            odc_new_decoder(&decoder);

            odc_decoder_add_column(decoder, "column0");
            odc_decoder_add_column(decoder, "column1");
            odc_decoder_add_column(decoder, "column2");
            odc_decoder_add_column(decoder, "column3");
            odc_decoder_add_column(decoder, "column4");

            /* column3 is a 16-byte string column (hence takes 2 cols in the array --> ncols=6) */
            odc_decoder_column_set_data_size("column3", 3, 16);

            int nrows = 1000;
            int ncols = 6;
            double data[nrows][ncols];

            odc_decoder_set_data_array(decoder, data, ncols*sizeof(double), nrows, /* columnMajor */false);

            long rows_decoded;
            odc_decode(decoder, frame, &rows_decoded);

            /* And use the data ... */


      .. group-tab:: C++

         .. note::

            C++ interface does not support automated decoding of frame data into row-major layout. In this case, recommended API is C. Alternatively, you can construct a :ref:`custom memory layout <decoder-custom-layout>` decoder instead.


      .. group-tab:: Fortran

         .. code-block:: fortran

            ! Construct a decoder that will decode 5 named columns into a row-major
            ! data layout

            integer(8), parameter :: nrows = 1000
            integer, parameter :: ncols = 6
            real(8), target :: data(ncols, nrows)
            logical, parameter :: column_major = .false.

            rc = decoder%initialise(column_major)

            rc = decoder%add_column("column1")
            rc = decoder%add_column("column2")
            rc = decoder%add_column("column3")
            rc = decoder%add_column("column4")
            rc = decoder%add_column("column5")

            ! column4 is a 16-byte string column (hence takes 2 cols in the array --> ncols=6)
            rc = decoder%column_set_data_size("column4", 4, 16);

            rc = decoder%set_data(data, column_major)

            rc = decoder%decode(frame, rows_decoded)
            print *, "Decoded ", rows_decoded, " rows"

            ! And use the data ...


.. _`decoder-column-major-layout`:

Column-major layout
   In a column-major layout, the consecutive elements of a single data column reside adjacent to each other in memory. The stride between elements in the same column is thus the size of the decoded data element, and the columns are arranged sequentially in memory.

   To support C and Fortran 2D array indexing, in column-major mode the data element sizes are always 64-bit. In the case of string columns that are wider than 8-bytes this results in the strings being split across multiple columns in memory.

   .. figure:: /_static/odb-2-column-major.svg
      :alt: A Diagram Showing a Column-major Layout

      A Diagram Showing a Column-major Layout


   Column-major is the default method of storing multidimensional arrays in Fortran.

   .. tabs::

      .. group-tab:: C

         .. code-block:: c

            /*
             * Construct a decoder that will decode 5 named columns into a column-major
             * data layout
             */

            odc_decoder_t* decoder;
            odc_new_decoder(&decoder);

            odc_decoder_add_column(decoder, "column0");
            odc_decoder_add_column(decoder, "column1");
            odc_decoder_add_column(decoder, "column2");
            odc_decoder_add_column(decoder, "column3");
            odc_decoder_add_column(decoder, "column4");

            /* column3 is a 16-byte string column (hence takes 2 cols in the array --> ncols=6) */
            odc_decoder_column_set_data_size("column3", 3, 16);

            int nrows = 1000;
            int ncols = 6;
            double data[ncols][nrows];

            odc_decoder_set_data_array(decoder, data, ncols*sizeof(double), nrows, /* columnMajor */true);

            long rows_decoded;
            odc_decode(decoder, frame, &rows_decoded);

            /* And use the data ... */


      .. group-tab:: C++

         .. note::

            C++ interface does not support decoding of frame data into column-major layout. In this case, recommended API is C. Alternatively, you can construct a :ref:`custom memory layout <decoder-custom-layout>` decoder instead.


      .. group-tab:: Fortran

         .. code-block:: fortran

            ! Construct a decoder that will decode 5 named columns into a column-major
            ! data layout

            integer(8), parameter :: nrows = 1000
            integer, parameter :: ncols = 6
            real(8), target :: data(nrows, ncols)
            logical, parameter :: column_major = .true.

            rc = decoder%initialise(column_major)

            rc = decoder%add_column("column1")
            rc = decoder%add_column("column2")
            rc = decoder%add_column("column3")
            rc = decoder%add_column("column4")
            rc = decoder%add_column("column5")

            ! column4 is a 16-byte string column (hence takes 2 cols in the array --> ncols=6)
            rc = decoder%column_set_data_size("column4", 4, 16);

            ! column major is the default in Fortran, so the column_major argument can be omitted
            rc = decoder%set_data(data)

            rc = decoder%decode(frame, rows_decoded)
            print *, "Decoded ", rows_decoded, " rows"

            ! And use the data ...


.. _`decoder-custom-layout`:

Custom layout
   A periodic memory layout can be explicitly specified for each column to be decoded. This comprises a memory location for the first data element, the size of each data element, the spacing (or stride) between each data element and the maximum number of rows that can be decoded.

   As an example, this is used to implement an efficient decoder to *pandas* ``DataFrames`` in *pyodc*, by specifying the internal memory layout of the constructed ``DataFrame``.

   .. tabs::

      .. group-tab:: C

         .. code-block:: c

            /*
             * Construct a decoder that will decode 5 named columns into a custom
             * data layout
             */

            odc_decoder_t* decoder;
            odc_new_decoder(&decoder);

            odc_decoder_add_column(decoder, "column0");
            odc_decoder_add_column(decoder, "column1");
            odc_decoder_add_column(decoder, "column2");
            odc_decoder_add_column(decoder, "column3");
            odc_decoder_add_column(decoder, "column4");

            /* column3 is a 16-byte string column */
            odc_decoder_column_set_data_size("column3", 3, 16);

            int nrows = 1000;

            odc_decoder_set_row_count(decoder, nrows);

            uint64_t data0[nrows];
            uint64_t data1[nrows];
            double   data2[nrows];
            char     data3[nrows][16];
            double   data4[nrows];

            odc_decoder_column_set_data_array(decoder, 0, sizeof(uint64_t), sizeof(uint64_t), data0);
            odc_decoder_column_set_data_array(decoder, 1, sizeof(uint64_t), sizeof(uint64_t), data1);
            odc_decoder_column_set_data_array(decoder, 2, sizeof(double), sizeof(double), data2);
            odc_decoder_column_set_data_array(decoder, 3, 16, 16, data3);
            odc_decoder_column_set_data_array(decoder, 4, sizeof(double), sizeof(double), data4);

            long rows_decoded;
            odc_decode(decoder, frame, &rows_decoded);

            /* And use the data ... */


      .. group-tab:: C++

         .. code-block:: cpp

            // Construct a decoder that will decode 5 named columns into a custom
            // data layout

            size_t nrows = frame.rowCount();

            uint64_t data0[nrows];
            uint64_t data1[nrows];
            double data2[nrows];
            char data3[nrows][16];
            double data4[nrows];

            std::vector<std::string> columns {
                "column0",
                "column1",
                "column2",
                "column3",
                "column4",
            };

            std::vector<StridedData> strides {
                // ptr, nrows, element_size, stride
                {data0, nrows, sizeof(uint64_t), sizeof(uint64_t)},
                {data1, nrows, sizeof(uint64_t), sizeof(uint64_t)},
                {data2, nrows, sizeof(double), sizeof(double)},
                {data3, nrows, 16, 16}, // column3 is a 16-byte string column
                {data4, nrows, sizeof(double), sizeof(double)},
            };

            Decoder decoder(columns, strides);
            decoder.decode(frame);

            // And use the data ...


      .. group-tab:: Fortran

         .. code-block:: fortran

            ! Construct a decoder that will decode 5 named columns into a custom
            ! data layout

            use, intrinsic :: iso_c_binding

            integer(8), parameter :: nrows = 1000
            integer(8), target :: data1(nrows)
            integer(8), target :: data2(nrows)
            real(8), target :: data3(nrows)
            character(16), target :: data4(nrows)
            real(8), target :: data5(nrows)

            rc = decoder%initialise()

            rc = decoder%add_column("column1")
            rc = decoder%add_column("column2")
            rc = decoder%add_column("column3")
            rc = decoder%add_column("column4")
            rc = decoder%add_column("column5")

            ! column4 is a 16-byte string column (hence takes 2 cols in the array --> ncols=6)
            rc = decoder%column_set_data_size("column4", 4, 16);

            rc = decoder%set_row_count(nrows)

            rc = decoder%column_set_data_array(1, 8, 8, c_loc(data1))
            rc = decoder%column_set_data_array(2, 8, 8, c_loc(data2))
            rc = decoder%column_set_data_array(3, 8, 8, c_loc(data3))
            rc = decoder%column_set_data_array(4, 16, 16, c_loc(data4))
            rc = decoder%column_set_data_array(5, 8, 8, c_loc(data5))

            rc = decoder%decode(frame, rows_decoded)
            print *, "Decoded ", rows_decoded, " rows"

            ! And use the data ...


.. note::

   Decoded string data is not explicitly null terminated, although strings shorter than the cell size are null padded. If a decoded string is equal in length to the maximum length it will have no null termination, and as such the user *must* account for this by specifying a maximum length when reading decoded strings.