File: encoding-data.rst

package info (click to toggle)
odc 1.4.6-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,060 kB
  • sloc: cpp: 22,074; f90: 3,707; sh: 999; ansic: 471; python: 382; makefile: 39
file content (499 lines) | stat: -rw-r--r-- 16,254 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
.. index:: Encoding Data

Encoding Data
=============

The encoding process is structured as the reverse of the decoding process. Data in memory is described in an **Encoder** object. This data is then encoded into a sequence of frames and written to an output data stream.

.. index:: Encoding Data; Encoder

Encoder
-------

The **Encoder** provides several options for handling memory layouts, in the same way as the **Decoder**.

Row-major layout
   In :ref:`row-major layout <decoder-row-major-layout>`, consecutive elements in a data row reside adjacent to each other in memory, and the block of memory comprises a sequence of rows.

   .. tabs::

      .. group-tab:: C

         .. code-block:: c

            long nrows = 1000;
            int ncols = 6;
            double data[nrows][ncols];
            // set up the data here...

            odc_encoder_t* encoder = NULL;
            odc_new_encoder(&encoder);

            odc_encoder_add_column(encoder, "column0", ODC_INTEGER);
            odc_encoder_add_column(encoder, "column1", ODC_INTEGER);
            odc_encoder_add_column(encoder, "column2", ODC_REAL);
            odc_encoder_add_column(encoder, "column3", ODC_STRING);
            odc_encoder_add_column(encoder, "column4", ODC_REAL);

            // column3 is a 16-byte string column (hence takes 2 cols in the array --> ncols=6)
            odc_encoder_column_set_data_size(encoder, 3, 16);

            odc_encoder_set_data_array(encoder, data, ncols*sizeof(double), nrows, 0);

            // encode the data here...

            odc_free_encoder(encoder);


      .. group-tab:: C++

         .. note::

            C++ interface does not support data encoding from a row-major layout. In this case, recommended API is C. Alternatively, you can construct a :ref:`custom memory layout <encoder-custom-layout>` encoder instead.


      .. group-tab:: Fortran

         .. code-block:: fortran

            integer(8), parameter :: nrows = 1000
            integer, parameter :: ncols = 6
            real(8), target :: data(ncols, nrows)
            ! set up the data here...

            type(odc_encoder) :: encoder
            logical, parameter :: column_major = .false.
            integer, target :: outunit
            integer(8), target :: bytes_written

            rc = encoder%initialise()

            rc = encoder%add_column("column1", ODC_INTEGER)
            rc = encoder%add_column("column2", ODC_INTEGER)
            rc = encoder%add_column("column3", ODC_REAL)
            rc = encoder%add_column("column4", ODC_STRING)
            rc = encoder%add_column("column5", ODC_REAL)

            ! column4 is a 16-byte string column (hence takes 2 cols in the array --> ncols=6)
            rc = encoder%column_set_data_size(4, 16)

            rc = encoder%set_data(data, column_major)

            ! encode the data here...

            rc = encoder%free()


Column-major layout
   In :ref:`column-major layout <decoder-column-major-layout>`, consecutive elements in a single data column are adjacent to each other in memory, and the block of memory comprises a sequence of columns.

   .. tabs::

      .. group-tab:: C

         .. code-block:: c

            long nrows = 1000;
            int ncols = 6;
            double data[ncols][nrows];
            // set up the data here...

            odc_encoder_t* encoder = NULL;
            odc_new_encoder(&encoder);

            odc_encoder_add_column(encoder, "column0", ODC_INTEGER);
            odc_encoder_add_column(encoder, "column1", ODC_INTEGER);
            odc_encoder_add_column(encoder, "column2", ODC_REAL);
            odc_encoder_add_column(encoder, "column3", ODC_STRING);
            odc_encoder_add_column(encoder, "column4", ODC_REAL);

            // column3 is a 16-byte string column (hence takes 2 cols in the array --> ncols=6)
            odc_encoder_column_set_data_size(encoder, 3, 16);

            odc_encoder_set_data_array(encoder, data, ncols*sizeof(double), nrows, sizeof(double));

            // encode the data here...

            odc_free_encoder(encoder);


      .. group-tab:: C++

         .. note::

            C++ interface does not support data encoding from a column-major layout. In this case, recommended API is C. Alternatively, you can construct a :ref:`custom memory layout <encoder-custom-layout>` encoder instead.


      .. group-tab:: Fortran

         .. code-block:: fortran

            integer(8), parameter :: nrows = 1000
            integer, parameter :: ncols = 6
            real(8), target :: data(nrows, ncols)
            ! set up the data here...

            type(odc_encoder) :: encoder
            logical, parameter :: column_major = .true.
            integer, target :: outunit
            integer(8), target :: bytes_written

            rc = encoder%initialise()

            rc = encoder%add_column("column1", ODC_INTEGER)
            rc = encoder%add_column("column2", ODC_INTEGER)
            rc = encoder%add_column("column3", ODC_REAL)
            rc = encoder%add_column("column4", ODC_STRING)
            rc = encoder%add_column("column5", ODC_REAL)

            ! column4 is a 16-byte string column (hence takes 2 cols in the array --> ncols=6)
            rc = encoder%column_set_data_size(4, 16);

            ! column major is the default in Fortran, so the column_major argument can be omitted
            rc = encoder%set_data(data)

            ! encode the data here...

            rc = encoder%free()


.. _`encoder-custom-layout`:

Custom layout
   For a :ref:`custom periodic layout <decoder-custom-layout>`, a periodic memory layout can be specified for each column independently to match the data layout of a specific source of data.

   .. tabs::

      .. group-tab:: C

         .. code-block:: c

            long nrows = 1000;

            uint64_t data0[nrows];
            uint64_t data1[nrows];
            double data2[nrows];
            char data3[nrows][16];
            double data4[nrows];
            // set up the data here...

            odc_encoder_t* encoder = NULL;
            odc_new_encoder(&encoder);

            odc_encoder_set_row_count(encoder, nrows);

            odc_encoder_add_column(encoder, "column0", ODC_INTEGER);
            odc_encoder_add_column(encoder, "column1", ODC_INTEGER);
            odc_encoder_add_column(encoder, "column2", ODC_REAL);
            odc_encoder_add_column(encoder, "column3", ODC_STRING);
            odc_encoder_add_column(encoder, "column4", ODC_REAL);

            // column3 is a 16-byte string column
            odc_encoder_column_set_data_size(encoder, 3, 16);

            odc_encoder_column_set_data_array(encoder, 0, sizeof(uint64_t), sizeof(uint64_t), data0);
            odc_encoder_column_set_data_array(encoder, 1, sizeof(uint64_t), sizeof(uint64_t), data1);
            odc_encoder_column_set_data_array(encoder, 2, sizeof(double), sizeof(double), data2);
            odc_encoder_column_set_data_array(encoder, 3, 16, 16, data3);
            odc_encoder_column_set_data_array(encoder, 4, sizeof(double), sizeof(double), data4);

            // encode the data here...

            odc_free_encoder(encoder);


      .. group-tab:: C++

         .. code-block:: cpp

            size_t nrows = 1000;

            uint64_t data0[nrows];
            uint64_t data1[nrows];
            double data2[nrows];
            char data3[nrows][16];
            double data4[nrows];
            // set up the data here...

            std::vector<ColumnInfo> columns = {
                ColumnInfo{std::string("column0"), ColumnType(INTEGER), sizeof(uint64_t)},
                ColumnInfo{std::string("column1"), ColumnType(INTEGER), sizeof(uint64_t)},
                ColumnInfo{std::string("column2"), ColumnType(REAL), sizeof(double)},
                ColumnInfo{std::string("column3"), ColumnType(STRING), 16},
                ColumnInfo{std::string("column4"), ColumnType(REAL), sizeof(double)},
            };

            std::vector<ConstStridedData> strides {
                // ptr, nrows, element_size, stride
                {data0, nrows, sizeof(uint64_t), sizeof(uint64_t)},
                {data1, nrows, sizeof(uint64_t), sizeof(uint64_t)},
                {data2, nrows, sizeof(double), sizeof(double)},
                {data3, nrows, 16, 16},
                {data4, nrows, sizeof(double), sizeof(double)},
            };

            // encode the data here...


      .. group-tab:: Fortran

         .. code-block:: fortran

            use, intrinsic :: iso_c_binding

            integer(8), parameter :: nrows = 1000
            integer(8), target :: data1(nrows)
            integer(8), target :: data2(nrows)
            real(8), target :: data3(nrows)
            character(16), target :: data4(nrows)
            real(8), target :: data5(nrows)
            ! set up the data here...

            type(odc_encoder) :: encoder
            integer, target :: outunit
            integer(8), target :: bytes_written

            rc = encoder%initialise()

            rc = encoder%set_row_count(nrows)

            rc = encoder%add_column("column1", ODC_INTEGER)
            rc = encoder%add_column("column2", ODC_INTEGER)
            rc = encoder%add_column("column3", ODC_REAL)
            rc = encoder%add_column("column4", ODC_STRING)
            rc = encoder%add_column("column5", ODC_REAL)

            ! column4 is a 16-byte string column
            rc = encoder%column_set_data_size(4, 16)

            rc = encoder%column_set_data_array(1, 8, stride=8, data=c_loc(data1))
            rc = encoder%column_set_data_array(2, 8, stride=8, data=c_loc(data2))
            rc = encoder%column_set_data_array(3, 8, stride=8, data=c_loc(data3))
            rc = encoder%column_set_data_array(4, 16, stride=16, data=c_loc(data4))
            rc = encoder%column_set_data_array(5, 8, stride=8, data=c_loc(data5))

            ! encode the data here...

            rc = encoder%free()

Once an **Encoder** describing the data has been constructed, the data can be encoded into frames.

.. tabs::

   .. group-tab:: C

      C supports data encoding in three ways.

      File descriptor
         Data can be encoded into an already open file descriptor using ``odc_encode_to_file_descriptor()`` function.

         .. code-block:: c

            #include <fcntl.h>
            #include <unistd.h>

            int file_descriptor = open("imaginary/path.odb", O_CREAT|O_TRUNC|O_WRONLY, 0666);
            long bytes_encoded;

            odc_encode_to_file_descriptor(encoder, file_descriptor, &bytes_encoded);

            close(file_descriptor);


      Memory buffer
         Data can be encoded into a pre-allocated memory buffer using ``odc_encode_to_buffer()`` function.

         .. code-block:: c

            char buffer[4096];
            long bytes_encoded;

            odc_encode_to_buffer(encoder, buffer, sizeof(buffer), &bytes_encoded);


         .. note::

            In case an insufficiently large buffer is supplied, an error will be returned.


      Stream handler
         Data can be encoded via a stream handler using ``odc_encode_to_stream()`` function. A write callback function is called for each chunk of data to be written to the output stream in an analogue to the POSIX ``write()`` function.

         .. code-block:: c

            long write_fn(void* context, const void* buffer, long length) {
                // user defined action
                return length; // return handled length
            }

            // user defined context, passed unchanged to callback
            void* context;
            long bytes_encoded;

            odc_encode_to_stream(encoder, context, write_fn, &bytes_encoded);


   .. group-tab:: C++``

      C++ supports data encoding into `eckit`_ ``DataHandle`` objects. There are a range of available ``DataHandle`` classes supporting a wide range of output types, and they can be extended as required to support other outputs.

      ``FileHandle`` (eckit)
         .. code-block:: cpp

            #include "eckit/io/FileHandle.h"

            const Length length;

            FileHandle fh("imaginary/path.odb");
            fh.openForWrite(length);
            AutoClose closer(fh);

            encode(fh, columns, strides);


   .. group-tab:: Fortran

      Fortran supports data encoding to standard I/O.

      .. code-block:: fortran

         integer :: outunit
         integer(8), target :: bytes_written

         open(newunit=outunit, file="imaginary/path.odb", access="stream", form="unformatted")
         rc = encoder%encode(outunit, bytes_written)
         close(outunit)


.. index:: Encoding Data; Bitfields

Bitfields
---------

Bitfield columns can be used to store data for *flags*, up to a maximum of 32-bits per column. Within an integer, the bits can be identified and named by their offset. Groups of bits can be named and identified as well as individual bits, therefore each item has an offset and a size.

   .. tabs::

      .. group-tab:: C

         .. code-block:: c

            long nrows = 1000;
            int ncols = 1;
            uint64_t data[nrows];
            // set up the data here...

            odc_encoder_t* encoder = NULL;
            odc_new_encoder(&encoder);

            odc_encoder_set_row_count(encoder, nrows);

            odc_encoder_add_column(encoder, "flags", ODC_BITFIELD);

            odc_encoder_column_add_bitfield(encoder, 0, "flag_a", 1);
            odc_encoder_column_add_bitfield(encoder, 0, "flag_b", 2);
            odc_encoder_column_add_bitfield(encoder, 0, "flag_c", 3);
            odc_encoder_column_add_bitfield(encoder, 0, "flag_d", 1);

            odc_encoder_column_set_data_array(encoder, 0, sizeof(uint64_t), sizeof(uint64_t), data);

            // encode the data here...

            odc_free_encoder(encoder);


      .. group-tab:: C++

         .. code-block:: cpp

            size_t nrows = 1000;
            uint64_t data[nrows];
            // set up the data here...

            std::vector<ColumnInfo::Bit> bitfields = {
                // name, size, offset+=size(n-1)
                {"flag_a", 1, 0},
                {"flag_b", 2, 1},
                {"flag_c", 3, 3},
                {"flag_d", 1, 6},
            };

            std::vector<ColumnInfo> columns = {
                ColumnInfo{std::string("flags"), ColumnType(BITFIELD), sizeof(uint64_t), bitfields},
            };

            std::vector<ConstStridedData> strides {
                // ptr, nrows, element_size, stride
                {data, nrows, sizeof(uint64_t), sizeof(uint64_t)},
            };

            // encode the data here...


      .. group-tab:: Fortran

         .. code-block:: fortran

            integer(8), parameter :: nrows = 1000
            integer, parameter :: ncols = 1
            integer(8), target :: data(nrows)
            ! set up the data here...

            type(odc_encoder) :: encoder

            rc = encoder%initialise()

            rc = encoder%set_row_count(nrows)

            rc = encoder%add_column("flags", ODC_BITFIELD)

            rc = encoder%column_add_bitfield(1, "flag_a", 1)
            rc = encoder%column_add_bitfield(1, "flag_b", 2)
            rc = encoder%column_add_bitfield(1, "flag_c", 3)
            rc = encoder%column_add_bitfield(1, "flag_d", 1)

            rc = encoder%column_set_data_array(1, 8, stride=8, data=c_loc(data))

            ! encode the data here...

            rc = encoder%free()


.. index:: Encoding Data; Properties

Properties
----------

An arbitrary dictionary of string key:value pairs can be associated with a frame.

.. tabs::

   .. group-tab:: C

      .. code-block:: c

         const char* property_key = "encoded_by";
         const char* property_value = "ECMWF";

         odc_encoder_add_property(encoder, property_key, property_value);


   .. group-tab:: C++

      .. code-block:: cpp

         std::map<std::string, std::string> properties = {
             { "encoded_by", "ECMWF" },
         };

         // pass properties to encode()


   .. group-tab:: Fortran

      .. code-block:: fortran

         rc = encoder%add_property("encoded_by", "ECMWF")


.. _`eckit`: https://github.com/ecmwf/eckit