1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains OBB-related code.
* \file IceOBB.cpp
* \author Pierre Terdiman
* \date January, 29, 2000
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* An Oriented Bounding Box (OBB).
* \class OBB
* \author Pierre Terdiman
* \version 1.0
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Precompiled Header
#include "Stdafx.h"
using namespace IceMaths;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Tests if a point is contained within the OBB.
* \param p [in] the world point to test
* \return true if inside the OBB
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool OBB::ContainsPoint(const Point& p) const
{
// Point in OBB test using lazy evaluation and early exits
// Translate to box space
Point RelPoint = p - mCenter;
// Point * mRot maps from box space to world space
// mRot * Point maps from world space to box space (what we need here)
float f = mRot.m[0][0] * RelPoint.x + mRot.m[0][1] * RelPoint.y + mRot.m[0][2] * RelPoint.z;
if(f >= mExtents.x || f <= -mExtents.x) return false;
f = mRot.m[1][0] * RelPoint.x + mRot.m[1][1] * RelPoint.y + mRot.m[1][2] * RelPoint.z;
if(f >= mExtents.y || f <= -mExtents.y) return false;
f = mRot.m[2][0] * RelPoint.x + mRot.m[2][1] * RelPoint.y + mRot.m[2][2] * RelPoint.z;
if(f >= mExtents.z || f <= -mExtents.z) return false;
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Builds an OBB from an AABB and a world transform.
* \param aabb [in] the aabb
* \param mat [in] the world transform
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void OBB::Create(const AABB& aabb, const Matrix4x4& mat)
{
// Note: must be coherent with Rotate()
aabb.GetCenter(mCenter);
aabb.GetExtents(mExtents);
// Here we have the same as OBB::Rotate(mat) where the obb is (mCenter, mExtents, Identity).
// So following what's done in Rotate:
// - x-form the center
mCenter *= mat;
// - combine rotation with identity, i.e. just use given matrix
mRot = mat;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes the obb planes.
* \param planes [out] 6 box planes
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool OBB::ComputePlanes(Plane* planes) const
{
// Checkings
if(!planes) return false;
Point Axis0 = mRot[0];
Point Axis1 = mRot[1];
Point Axis2 = mRot[2];
// Writes normals
planes[0].n = Axis0;
planes[1].n = -Axis0;
planes[2].n = Axis1;
planes[3].n = -Axis1;
planes[4].n = Axis2;
planes[5].n = -Axis2;
// Compute a point on each plane
Point p0 = mCenter + Axis0 * mExtents.x;
Point p1 = mCenter - Axis0 * mExtents.x;
Point p2 = mCenter + Axis1 * mExtents.y;
Point p3 = mCenter - Axis1 * mExtents.y;
Point p4 = mCenter + Axis2 * mExtents.z;
Point p5 = mCenter - Axis2 * mExtents.z;
// Compute d
planes[0].d = -(planes[0].n|p0);
planes[1].d = -(planes[1].n|p1);
planes[2].d = -(planes[2].n|p2);
planes[3].d = -(planes[3].n|p3);
planes[4].d = -(planes[4].n|p4);
planes[5].d = -(planes[5].n|p5);
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes the obb points.
* \param pts [out] 8 box points
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool OBB::ComputePoints(Point* pts) const
{
// Checkings
if(!pts) return false;
Point Axis0 = mRot[0];
Point Axis1 = mRot[1];
Point Axis2 = mRot[2];
Axis0 *= mExtents.x;
Axis1 *= mExtents.y;
Axis2 *= mExtents.z;
// 7+------+6 0 = ---
// /| /| 1 = +--
// / | / | 2 = ++-
// / 4+---/--+5 3 = -+-
// 3+------+2 / y z 4 = --+
// | / | / | / 5 = +-+
// |/ |/ |/ 6 = +++
// 0+------+1 *---x 7 = -++
pts[0] = mCenter - Axis0 - Axis1 - Axis2;
pts[1] = mCenter + Axis0 - Axis1 - Axis2;
pts[2] = mCenter + Axis0 + Axis1 - Axis2;
pts[3] = mCenter - Axis0 + Axis1 - Axis2;
pts[4] = mCenter - Axis0 - Axis1 + Axis2;
pts[5] = mCenter + Axis0 - Axis1 + Axis2;
pts[6] = mCenter + Axis0 + Axis1 + Axis2;
pts[7] = mCenter - Axis0 + Axis1 + Axis2;
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes vertex normals.
* \param pts [out] 8 box points
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool OBB::ComputeVertexNormals(Point* pts) const
{
static const float VertexNormals[] =
{
-INVSQRT3, -INVSQRT3, -INVSQRT3,
INVSQRT3, -INVSQRT3, -INVSQRT3,
INVSQRT3, INVSQRT3, -INVSQRT3,
-INVSQRT3, INVSQRT3, -INVSQRT3,
-INVSQRT3, -INVSQRT3, INVSQRT3,
INVSQRT3, -INVSQRT3, INVSQRT3,
INVSQRT3, INVSQRT3, INVSQRT3,
-INVSQRT3, INVSQRT3, INVSQRT3
};
if(!pts) return false;
const Point* VN = (const Point*)VertexNormals;
for(udword i=0;i<8;i++)
{
pts[i] = VN[i] * mRot;
}
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Returns edges.
* \return 24 indices (12 edges) indexing the list returned by ComputePoints()
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
const udword* OBB::GetEdges() const
{
static const udword Indices[] = {
0, 1, 1, 2, 2, 3, 3, 0,
7, 6, 6, 5, 5, 4, 4, 7,
1, 5, 6, 2,
3, 7, 4, 0
};
return Indices;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Returns local edge normals.
* \return edge normals in local space
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
const Point* OBB::GetLocalEdgeNormals() const
{
static const float EdgeNormals[] =
{
0, -INVSQRT2, -INVSQRT2, // 0-1
INVSQRT2, 0, -INVSQRT2, // 1-2
0, INVSQRT2, -INVSQRT2, // 2-3
-INVSQRT2, 0, -INVSQRT2, // 3-0
0, INVSQRT2, INVSQRT2, // 7-6
INVSQRT2, 0, INVSQRT2, // 6-5
0, -INVSQRT2, INVSQRT2, // 5-4
-INVSQRT2, 0, INVSQRT2, // 4-7
INVSQRT2, -INVSQRT2, 0, // 1-5
INVSQRT2, INVSQRT2, 0, // 6-2
-INVSQRT2, INVSQRT2, 0, // 3-7
-INVSQRT2, -INVSQRT2, 0 // 4-0
};
return (const Point*)EdgeNormals;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Returns world edge normal
* \param edge_index [in] 0 <= edge index < 12
* \param world_normal [out] edge normal in world space
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void OBB::ComputeWorldEdgeNormal(udword edge_index, Point& world_normal) const
{
ASSERT(edge_index<12);
world_normal = GetLocalEdgeNormals()[edge_index] * mRot;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Computes an LSS surrounding the OBB.
* \param lss [out] the LSS
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void OBB::ComputeLSS(LSS& lss) const
{
Point Axis0 = mRot[0];
Point Axis1 = mRot[1];
Point Axis2 = mRot[2];
switch(mExtents.LargestAxis())
{
case 0:
lss.mRadius = (mExtents.y + mExtents.z)*0.5f;
lss.mP0 = mCenter + Axis0 * (mExtents.x - lss.mRadius);
lss.mP1 = mCenter - Axis0 * (mExtents.x - lss.mRadius);
break;
case 1:
lss.mRadius = (mExtents.x + mExtents.z)*0.5f;
lss.mP0 = mCenter + Axis1 * (mExtents.y - lss.mRadius);
lss.mP1 = mCenter - Axis1 * (mExtents.y - lss.mRadius);
break;
case 2:
lss.mRadius = (mExtents.x + mExtents.y)*0.5f;
lss.mP0 = mCenter + Axis2 * (mExtents.z - lss.mRadius);
lss.mP1 = mCenter - Axis2 * (mExtents.z - lss.mRadius);
break;
default: {}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Checks the OBB is inside another OBB.
* \param box [in] the other OBB
* \return TRUE if we're inside the other box
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
BOOL OBB::IsInside(const OBB& box) const
{
// Make a 4x4 from the box & inverse it
Matrix4x4 M0Inv;
{
Matrix4x4 M0 = box.mRot;
M0.SetTrans(box.mCenter);
InvertPRMatrix(M0Inv, M0);
}
// With our inversed 4x4, create box1 in space of box0
OBB _1in0;
Rotate(M0Inv, _1in0);
// This should cancel out box0's rotation, i.e. it's now an AABB.
// => Center(0,0,0), Rot(identity)
// The two boxes are in the same space so now we can compare them.
// Create the AABB of (box1 in space of box0)
const Matrix3x3& mtx = _1in0.mRot;
float f = fabsf(mtx.m[0][0] * mExtents.x) + fabsf(mtx.m[1][0] * mExtents.y) + fabsf(mtx.m[2][0] * mExtents.z) - box.mExtents.x;
if(f > _1in0.mCenter.x) return FALSE;
if(-f < _1in0.mCenter.x) return FALSE;
f = fabsf(mtx.m[0][1] * mExtents.x) + fabsf(mtx.m[1][1] * mExtents.y) + fabsf(mtx.m[2][1] * mExtents.z) - box.mExtents.y;
if(f > _1in0.mCenter.y) return FALSE;
if(-f < _1in0.mCenter.y) return FALSE;
f = fabsf(mtx.m[0][2] * mExtents.x) + fabsf(mtx.m[1][2] * mExtents.y) + fabsf(mtx.m[2][2] * mExtents.z) - box.mExtents.z;
if(f > _1in0.mCenter.z) return FALSE;
if(-f < _1in0.mCenter.z) return FALSE;
return TRUE;
}
|