1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
|
######################################################################
# Python Open Dynamics Engine Wrapper
# Copyright (C) 2004 PyODE developers (see file AUTHORS)
# All rights reserved.
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of EITHER:
# (1) The GNU Lesser General Public License as published by the Free
# Software Foundation; either version 2.1 of the License, or (at
# your option) any later version. The text of the GNU Lesser
# General Public License is included with this library in the
# file LICENSE.
# (2) The BSD-style license that is included with this library in
# the file LICENSE-BSD.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
# LICENSE and LICENSE-BSD for more details.
######################################################################
from ode cimport *
paramLoStop = 0
paramHiStop = 1
paramVel = 2
paramLoVel = 3
paramHiVel = 4
paramFMax = 5
paramFudgeFactor = 6
paramBounce = 7
paramCFM = 8
paramStopERP = 9
paramStopCFM = 10
paramSuspensionERP = 11
paramSuspensionCFM = 12
paramERP = 13
ParamLoStop = 0
ParamHiStop = 1
ParamVel = 2
ParamLoVel = 3
ParamHiVel = 4
ParamFMax = 5
ParamFudgeFactor = 6
ParamBounce = 7
ParamCFM = 8
ParamStopERP = 9
ParamStopCFM = 10
ParamSuspensionERP = 11
ParamSuspensionCFM = 12
ParamERP = 13
ParamLoStop2 = 256 + 0
ParamHiStop2 = 256 + 1
ParamVel2 = 256 + 2
ParamLoVel2 = 256 + 3
ParamHiVel2 = 256 + 4
ParamFMax2 = 256 + 5
ParamFudgeFactor2 = 256 + 6
ParamBounce2 = 256 + 7
ParamCFM2 = 256 + 8
ParamStopERP2 = 256 + 9
ParamStopCFM2 = 256 + 10
ParamSuspensionERP2 = 256 + 11
ParamSuspensionCFM2 = 256 + 12
ParamERP2 = 256 + 13
ParamLoStop3 = 512 + 0
ParamHiStop3 = 512 + 1
ParamVel3 = 512 + 2
ParamLoVel3 = 512 + 3
ParamHiVel3 = 512 + 4
ParamFMax3 = 512 + 5
ParamFudgeFactor3 = 512 + 6
ParamBounce3 = 512 + 7
ParamCFM3 = 512 + 8
ParamStopERP3 = 512 + 9
ParamStopCFM3 = 512 + 10
ParamSuspensionERP3 = 512 + 11
ParamSuspensionCFM3 = 512 + 12
ParamERP3 = 512 + 13
ParamGroup = 256
ContactMu2 = 0x001
ContactAxisDep = 0x001
ContactFDir1 = 0x002
ContactBounce = 0x004
ContactSoftERP = 0x008
ContactSoftCFM = 0x010
ContactMotion1 = 0x020
ContactMotion2 = 0x040
ContactMotionN = 0x080
ContactSlip1 = 0x100
ContactSlip2 = 0x200
ContactRolling = 0x400
ContactApprox0 = 0x0000
ContactApprox1_1 = 0x1000
ContactApprox1_2 = 0x2000
ContactApprox1_N = 0x4000
ContactApprox1 = 0x7000
AMotorUser = dAMotorUser
AMotorEuler = dAMotorEuler
Infinity = dInfinity
import weakref
_geom_c2py_lut = weakref.WeakValueDictionary()
cdef class Mass:
"""Mass parameters of a rigid body.
This class stores mass parameters of a rigid body which can be
accessed through the following attributes:
- mass: The total mass of the body (float)
- c: The center of gravity position in body frame (3-tuple of floats)
- I: The 3x3 inertia tensor in body frame (3-tuple of 3-tuples)
This class wraps the dMass structure from the C API.
@ivar mass: The total mass of the body
@ivar c: The center of gravity position in body frame (cx, cy, cz)
@ivar I: The 3x3 inertia tensor in body frame ((I11, I12, I13), (I12, I22, I23), (I13, I23, I33))
@type mass: float
@type c: 3-tuple of floats
@type I: 3-tuple of 3-tuples of floats
"""
cdef dMass _mass
def __cinit__(self):
dMassSetZero(&self._mass)
def setZero(self):
"""setZero()
Set all the mass parameters to zero."""
dMassSetZero(&self._mass)
def setParameters(self, mass, cgx, cgy, cgz, I11, I22, I33, I12, I13, I23):
"""setParameters(mass, cgx, cgy, cgz, I11, I22, I33, I12, I13, I23)
Set the mass parameters to the given values.
@param mass: Total mass of the body.
@param cgx: Center of gravity position in the body frame (x component).
@param cgy: Center of gravity position in the body frame (y component).
@param cgz: Center of gravity position in the body frame (z component).
@param I11: Inertia tensor
@param I22: Inertia tensor
@param I33: Inertia tensor
@param I12: Inertia tensor
@param I13: Inertia tensor
@param I23: Inertia tensor
@type mass: float
@type cgx: float
@type cgy: float
@type cgz: float
@type I11: float
@type I22: float
@type I33: float
@type I12: float
@type I13: float
@type I23: float
"""
dMassSetParameters(&self._mass, mass, cgx, cgy, cgz,
I11, I22, I33, I12, I13, I23)
def setSphere(self, density, radius):
"""setSphere(density, radius)
Set the mass parameters to represent a sphere of the given radius
and density, with the center of mass at (0,0,0) relative to the body.
@param density: The density of the sphere
@param radius: The radius of the sphere
@type density: float
@type radius: float
"""
dMassSetSphere(&self._mass, density, radius)
def setSphereTotal(self, total_mass, radius):
"""setSphereTotal(total_mass, radius)
Set the mass parameters to represent a sphere of the given radius
and mass, with the center of mass at (0,0,0) relative to the body.
@param total_mass: The total mass of the sphere
@param radius: The radius of the sphere
@type total_mass: float
@type radius: float
"""
dMassSetSphereTotal(&self._mass, total_mass, radius)
def setCapsule(self, density, direction, radius, length):
"""setCapsule(density, direction, radius, length)
Set the mass parameters to represent a capsule of the given parameters
and density, with the center of mass at (0,0,0) relative to the body.
The radius of the cylinder (and the spherical cap) is radius. The length
of the cylinder (not counting the spherical cap) is length. The
cylinder's long axis is oriented along the body's x, y or z axis
according to the value of direction (1=x, 2=y, 3=z). The first function
accepts the density of the object, the second accepts its total mass.
@param density: The density of the capsule
@param direction: The direction of the capsule's cylinder (1=x axis, 2=y axis, 3=z axis)
@param radius: The radius of the capsule's cylinder
@param length: The length of the capsule's cylinder (without the caps)
@type density: float
@type direction: int
@type radius: float
@type length: float
"""
dMassSetCapsule(&self._mass, density, direction, radius, length)
def setCapsuleTotal(self, total_mass, direction, radius, length):
"""setCapsuleTotal(total_mass, direction, radius, length)
Set the mass parameters to represent a capsule of the given parameters
and mass, with the center of mass at (0,0,0) relative to the body. The
radius of the cylinder (and the spherical cap) is radius. The length of
the cylinder (not counting the spherical cap) is length. The cylinder's
long axis is oriented along the body's x, y or z axis according to the
value of direction (1=x, 2=y, 3=z). The first function accepts the
density of the object, the second accepts its total mass.
@param total_mass: The total mass of the capsule
@param direction: The direction of the capsule's cylinder (1=x axis, 2=y axis, 3=z axis)
@param radius: The radius of the capsule's cylinder
@param length: The length of the capsule's cylinder (without the caps)
@type total_mass: float
@type direction: int
@type radius: float
@type length: float
"""
dMassSetCapsuleTotal(&self._mass, total_mass, direction,
radius, length)
def setCylinder(self, density, direction, r, h):
"""setCylinder(density, direction, r, h)
Set the mass parameters to represent a flat-ended cylinder of
the given parameters and density, with the center of mass at
(0,0,0) relative to the body. The radius of the cylinder is r.
The length of the cylinder is h. The cylinder's long axis is
oriented along the body's x, y or z axis according to the value
of direction (1=x, 2=y, 3=z).
@param density: The density of the cylinder
@param direction: The direction of the cylinder (1=x axis, 2=y axis, 3=z axis)
@param r: The radius of the cylinder
@param h: The length of the cylinder
@type density: float
@type direction: int
@type r: float
@type h: float
"""
dMassSetCylinder(&self._mass, density, direction, r, h)
def setCylinderTotal(self, total_mass, direction, r, h):
"""setCylinderTotal(total_mass, direction, r, h)
Set the mass parameters to represent a flat-ended cylinder of
the given parameters and mass, with the center of mass at
(0,0,0) relative to the body. The radius of the cylinder is r.
The length of the cylinder is h. The cylinder's long axis is
oriented along the body's x, y or z axis according to the value
of direction (1=x, 2=y, 3=z).
@param total_mass: The total mass of the cylinder
@param direction: The direction of the cylinder (1=x axis, 2=y axis, 3=z axis)
@param r: The radius of the cylinder
@param h: The length of the cylinder
@type total_mass: float
@type direction: int
@type r: float
@type h: float
"""
dMassSetCylinderTotal(&self._mass, total_mass, direction, r, h)
def setBox(self, density, lx, ly, lz):
"""setBox(density, lx, ly, lz)
Set the mass parameters to represent a box of the given
dimensions and density, with the center of mass at (0,0,0)
relative to the body. The side lengths of the box along the x,
y and z axes are lx, ly and lz.
@param density: The density of the box
@param lx: The length along the x axis
@param ly: The length along the y axis
@param lz: The length along the z axis
@type density: float
@type lx: float
@type ly: float
@type lz: float
"""
dMassSetBox(&self._mass, density, lx, ly, lz)
def setBoxTotal(self, total_mass, lx, ly, lz):
"""setBoxTotal(total_mass, lx, ly, lz)
Set the mass parameters to represent a box of the given
dimensions and mass, with the center of mass at (0,0,0)
relative to the body. The side lengths of the box along the x,
y and z axes are lx, ly and lz.
@param total_mass: The total mass of the box
@param lx: The length along the x axis
@param ly: The length along the y axis
@param lz: The length along the z axis
@type total_mass: float
@type lx: float
@type ly: float
@type lz: float
"""
dMassSetBoxTotal(&self._mass, total_mass, lx, ly, lz)
def adjust(self, newmass):
"""adjust(newmass)
Adjust the total mass. Given mass parameters for some object,
adjust them so the total mass is now newmass. This is useful
when using the setXyz() methods to set the mass parameters for
certain objects - they take the object density, not the total
mass.
@param newmass: The new total mass
@type newmass: float
"""
dMassAdjust(&self._mass, newmass)
def translate(self, t):
"""translate(t)
Adjust mass parameters. Given mass parameters for some object,
adjust them to represent the object displaced by (x,y,z)
relative to the body frame.
@param t: Translation vector (x, y, z)
@type t: 3-tuple of floats
"""
dMassTranslate(&self._mass, t[0], t[1], t[2])
# def rotate(self, R):
# """
# Given mass parameters for some object, adjust them to
# represent the object rotated by R relative to the body frame.
# """
# pass
def add(self, Mass b):
"""add(b)
Add the mass b to the mass object. Masses can also be added using
the + operator.
@param b: The mass to add to this mass
@type b: Mass
"""
dMassAdd(&self._mass, &b._mass)
def __getattr__(self, name):
if name == "mass":
return self._mass.mass
elif name == "c":
return self._mass.c[0], self._mass.c[1], self._mass.c[2]
elif name == "I":
return ((self._mass.I[0], self._mass.I[1], self._mass.I[2]),
(self._mass.I[4], self._mass.I[5], self._mass.I[6]),
(self._mass.I[8], self._mass.I[9], self._mass.I[10]))
else:
raise AttributeError("Mass object has no attribute '%s'" % name)
def __setattr__(self, name, value):
if name == "mass":
self.adjust(value)
elif name == "c":
raise AttributeError("Use the setParameter() method to change c")
elif name == "I":
raise AttributeError("Use the setParameter() method to change I")
else:
raise AttributeError("Mass object has no attribute '%s" % name)
def __add__(self, Mass b):
self.add(b)
return self
def __str__(self):
m = str(self._mass.mass)
sc0 = str(self._mass.c[0])
sc1 = str(self._mass.c[1])
sc2 = str(self._mass.c[2])
I11 = str(self._mass.I[0])
I22 = str(self._mass.I[5])
I33 = str(self._mass.I[10])
I12 = str(self._mass.I[1])
I13 = str(self._mass.I[2])
I23 = str(self._mass.I[6])
return ("Mass=%s\n"
"Cg=(%s, %s, %s)\n"
"I11=%s I22=%s I33=%s\n"
"I12=%s I13=%s I23=%s" %
(m, sc0, sc1, sc2, I11, I22, I33, I12, I13, I23))
# return ("Mass=%s / "
# "Cg=(%s, %s, %s) / "
# "I11=%s I22=%s I33=%s "
# "I12=%s I13=%s I23=%s" %
# (m, sc0, sc1, sc2, I11, I22, I33, I12, I13, I23))
cdef class Contact:
"""This class represents a contact between two bodies in one point.
A Contact object stores all the input parameters for a ContactJoint.
This class wraps the ODE dContact structure which has 3 components::
struct dContact {
dSurfaceParameters surface;
dContactGeom geom;
dVector3 fdir1;
};
This wrapper class provides methods to get and set the items of those
structures.
"""
cdef dContact _contact
def __cinit__(self):
self._contact.surface.mode = ContactBounce
self._contact.surface.mu = dInfinity
self._contact.surface.bounce = 0.1
# getMode
def getMode(self):
"""getMode() -> flags
Return the contact flags.
"""
return self._contact.surface.mode
# setMode
def setMode(self, flags):
"""setMode(flags)
Set the contact flags. The argument m is a combination of the
ContactXyz flags (ContactMu2, ContactBounce, ...).
@param flags: Contact flags
@type flags: int
"""
self._contact.surface.mode = flags
# getMu
def getMu(self):
"""getMu() -> float
Return the Coulomb friction coefficient.
"""
return self._contact.surface.mu
# setMu
def setMu(self, mu):
"""setMu(mu)
Set the Coulomb friction coefficient.
@param mu: Coulomb friction coefficient (0..Infinity)
@type mu: float
"""
self._contact.surface.mu = mu
# getMu2
def getMu2(self):
"""getMu2() -> float
Return the optional Coulomb friction coefficient for direction 2.
"""
return self._contact.surface.mu2
# setMu2
def setMu2(self, mu):
"""setMu2(mu)
Set the optional Coulomb friction coefficient for direction 2.
@param mu: Coulomb friction coefficient (0..Infinity)
@type mu: float
"""
self._contact.surface.mu2 = mu
# getBounce
def getBounce(self):
"""getBounce() -> float
Return the restitution parameter.
"""
return self._contact.surface.bounce
# setBounce
def setBounce(self, b):
"""setBounce(b)
@param b: Restitution parameter (0..1)
@type b: float
"""
self._contact.surface.bounce = b
# getBounceVel
def getBounceVel(self):
"""getBounceVel() -> float
Return the minimum incoming velocity necessary for bounce.
"""
return self._contact.surface.bounce_vel
# setBounceVel
def setBounceVel(self, bv):
"""setBounceVel(bv)
Set the minimum incoming velocity necessary for bounce. Incoming
velocities below this will effectively have a bounce parameter of 0.
@param bv: Velocity
@type bv: float
"""
self._contact.surface.bounce_vel = bv
# getSoftERP
def getSoftERP(self):
"""getSoftERP() -> float
Return the contact normal "softness" parameter.
"""
return self._contact.surface.soft_erp
# setSoftERP
def setSoftERP(self, erp):
"""setSoftERP(erp)
Set the contact normal "softness" parameter.
@param erp: Softness parameter
@type erp: float
"""
self._contact.surface.soft_erp = erp
# getSoftCFM
def getSoftCFM(self):
"""getSoftCFM() -> float
Return the contact normal "softness" parameter.
"""
return self._contact.surface.soft_cfm
# setSoftCFM
def setSoftCFM(self, cfm):
"""setSoftCFM(cfm)
Set the contact normal "softness" parameter.
@param cfm: Softness parameter
@type cfm: float
"""
self._contact.surface.soft_cfm = cfm
# getMotion1
def getMotion1(self):
"""getMotion1() -> float
Get the surface velocity in friction direction 1.
"""
return self._contact.surface.motion1
# setMotion1
def setMotion1(self, m):
"""setMotion1(m)
Set the surface velocity in friction direction 1.
@param m: Surface velocity
@type m: float
"""
self._contact.surface.motion1 = m
# getMotion2
def getMotion2(self):
"""getMotion2() -> float
Get the surface velocity in friction direction 2.
"""
return self._contact.surface.motion2
# setMotion2
def setMotion2(self, m):
"""setMotion2(m)
Set the surface velocity in friction direction 2.
@param m: Surface velocity
@type m: float
"""
self._contact.surface.motion2 = m
# getSlip1
def getSlip1(self):
"""getSlip1() -> float
Get the coefficient of force-dependent-slip (FDS) for friction
direction 1.
"""
return self._contact.surface.slip1
# setSlip1
def setSlip1(self, s):
"""setSlip1(s)
Set the coefficient of force-dependent-slip (FDS) for friction
direction 1.
@param s: FDS coefficient
@type s: float
"""
self._contact.surface.slip1 = s
# getSlip2
def getSlip2(self):
"""getSlip2() -> float
Get the coefficient of force-dependent-slip (FDS) for friction
direction 2.
"""
return self._contact.surface.slip2
# setSlip2
def setSlip2(self, s):
"""setSlip2(s)
Set the coefficient of force-dependent-slip (FDS) for friction
direction 1.
@param s: FDS coefficient
@type s: float
"""
self._contact.surface.slip2 = s
# getFDir1
def getFDir1(self):
"""getFDir1() -> (x, y, z)
Get the "first friction direction" vector that defines a direction
along which frictional force is applied.
"""
return (self._contact.fdir1[0],
self._contact.fdir1[1],
self._contact.fdir1[2])
# setFDir1
def setFDir1(self, fdir):
"""setFDir1(fdir)
Set the "first friction direction" vector that defines a direction
along which frictional force is applied. It must be of unit length
and perpendicular to the contact normal (so it is typically
tangential to the contact surface).
@param fdir: Friction direction
@type fdir: 3-sequence of floats
"""
self._contact.fdir1[0] = fdir[0]
self._contact.fdir1[1] = fdir[1]
self._contact.fdir1[2] = fdir[2]
# getContactGeomParams
def getContactGeomParams(self):
"""getContactGeomParams() -> (pos, normal, depth, geom1, geom2)
Get the ContactGeom structure of the contact.
The return value is a tuple (pos, normal, depth, geom1, geom2)
where pos and normal are 3-tuples of floats and depth is a single
float. geom1 and geom2 are the Geom objects of the geoms in contact.
"""
cdef long id1, id2
pos = (self._contact.geom.pos[0],
self._contact.geom.pos[1],
self._contact.geom.pos[2])
normal = (self._contact.geom.normal[0],
self._contact.geom.normal[1],
self._contact.geom.normal[2])
depth = self._contact.geom.depth
id1 = <long>self._contact.geom.g1
id2 = <long>self._contact.geom.g2
g1 = _geom_c2py_lut[id1]
g2 = _geom_c2py_lut[id2]
return pos, normal, depth, g1, g2
# setContactGeomParams
def setContactGeomParams(self, pos, normal, depth, g1=None, g2=None):
"""setContactGeomParams(pos, normal, depth, geom1=None, geom2=None)
Set the ContactGeom structure of the contact.
@param pos: Contact position, in global coordinates
@type pos: 3-sequence of floats
@param normal: Unit length normal vector
@type normal: 3-sequence of floats
@param depth: Depth to which the two bodies inter-penetrate
@type depth: float
@param geom1: Geometry object 1 that collided
@type geom1: Geom
@param geom2: Geometry object 2 that collided
@type geom2: Geom
"""
cdef long id
self._contact.geom.pos[0] = pos[0]
self._contact.geom.pos[1] = pos[1]
self._contact.geom.pos[2] = pos[2]
self._contact.geom.normal[0] = normal[0]
self._contact.geom.normal[1] = normal[1]
self._contact.geom.normal[2] = normal[2]
self._contact.geom.depth = depth
if g1 != None:
id = g1._id()
self._contact.geom.g1 = <dGeomID>id
else:
self._contact.geom.g1 = <dGeomID>0
if g2 != None:
id = g2._id()
self._contact.geom.g2 = <dGeomID>id
else:
self._contact.geom.g2 = <dGeomID>0
# World
cdef class World:
"""Dynamics world.
The world object is a container for rigid bodies and joints.
Constructor::
World()
"""
cdef dWorldID wid
def __cinit__(self):
self.wid = dWorldCreate()
def __dealloc__(self):
if self.wid != NULL:
dWorldDestroy(self.wid)
# setGravity
def setGravity(self, gravity):
"""setGravity(gravity)
Set the world's global gravity vector.
@param gravity: Gravity vector
@type gravity: 3-sequence of floats
"""
dWorldSetGravity(self.wid, gravity[0], gravity[1], gravity[2])
# getGravity
def getGravity(self):
"""getGravity() -> 3-tuple
Return the world's global gravity vector as a 3-tuple of floats.
"""
cdef dVector3 g
dWorldGetGravity(self.wid, g)
return g[0], g[1], g[2]
# setERP
def setERP(self, erp):
"""setERP(erp)
Set the global ERP value, that controls how much error
correction is performed in each time step. Typical values are
in the range 0.1-0.8. The default is 0.2.
@param erp: Global ERP value
@type erp: float
"""
dWorldSetERP(self.wid, erp)
# getERP
def getERP(self):
"""getERP() -> float
Get the global ERP value, that controls how much error
correction is performed in each time step. Typical values are
in the range 0.1-0.8. The default is 0.2.
"""
return dWorldGetERP(self.wid)
# setCFM
def setCFM(self, cfm):
"""setCFM(cfm)
Set the global CFM (constraint force mixing) value. Typical
values are in the range 10E-9 - 1. The default is 10E-5 if
single precision is being used, or 10E-10 if double precision
is being used.
@param cfm: Constraint force mixing value
@type cfm: float
"""
dWorldSetCFM(self.wid, cfm)
# getCFM
def getCFM(self):
"""getCFM() -> float
Get the global CFM (constraint force mixing) value. Typical
values are in the range 10E-9 - 1. The default is 10E-5 if
single precision is being used, or 10E-10 if double precision
is being used.
"""
return dWorldGetCFM(self.wid)
# step
def step(self, stepsize):
"""step(stepsize)
Step the world. This uses a "big matrix" method that takes
time on the order of O(m3) and memory on the order of O(m2), where m
is the total number of constraint rows.
For large systems this will use a lot of memory and can be
very slow, but this is currently the most accurate method.
@param stepsize: Time step
@type stepsize: float
"""
dWorldStep(self.wid, stepsize)
# quickStep
def quickStep(self, stepsize):
"""quickStep(stepsize)
Step the world. This uses an iterative method that takes time
on the order of O(m*N) and memory on the order of O(m), where m is
the total number of constraint rows and N is the number of
iterations.
For large systems this is a lot faster than dWorldStep, but it
is less accurate.
@param stepsize: Time step
@type stepsize: float
"""
dWorldQuickStep(self.wid, stepsize)
# setQuickStepNumIterations
def setQuickStepNumIterations(self, num):
"""setQuickStepNumIterations(num)
Set the number of iterations that the QuickStep method
performs per step. More iterations will give a more accurate
solution, but will take longer to compute. The default is 20
iterations.
@param num: Number of iterations
@type num: int
"""
dWorldSetQuickStepNumIterations(self.wid, num)
# getQuickStepNumIterations
def getQuickStepNumIterations(self):
"""getQuickStepNumIterations() -> int
Get the number of iterations that the QuickStep method
performs per step. More iterations will give a more accurate
solution, but will take longer to compute. The default is 20
iterations.
"""
return dWorldGetQuickStepNumIterations(self.wid)
# setQuickStepNumIterations
def setContactMaxCorrectingVel(self, vel):
"""setContactMaxCorrectingVel(vel)
Set the maximum correcting velocity that contacts are allowed
to generate. The default value is infinity (i.e. no
limit). Reducing this value can help prevent "popping" of
deeply embedded objects.
@param vel: Maximum correcting velocity
@type vel: float
"""
dWorldSetContactMaxCorrectingVel(self.wid, vel)
# getQuickStepNumIterations
def getContactMaxCorrectingVel(self):
"""getContactMaxCorrectingVel() -> float
Get the maximum correcting velocity that contacts are allowed
to generate. The default value is infinity (i.e. no
limit). Reducing this value can help prevent "popping" of
deeply embedded objects.
"""
return dWorldGetContactMaxCorrectingVel(self.wid)
# setContactSurfaceLayer
def setContactSurfaceLayer(self, depth):
"""setContactSurfaceLayer(depth)
Set the depth of the surface layer around all geometry
objects. Contacts are allowed to sink into the surface layer
up to the given depth before coming to rest. The default value
is zero. Increasing this to some small value (e.g. 0.001) can
help prevent jittering problems due to contacts being
repeatedly made and broken.
@param depth: Surface layer depth
@type depth: float
"""
dWorldSetContactSurfaceLayer(self.wid, depth)
# getContactSurfaceLayer
def getContactSurfaceLayer(self):
"""getContactSurfaceLayer()
Get the depth of the surface layer around all geometry
objects. Contacts are allowed to sink into the surface layer
up to the given depth before coming to rest. The default value
is zero. Increasing this to some small value (e.g. 0.001) can
help prevent jittering problems due to contacts being
repeatedly made and broken.
"""
return dWorldGetContactSurfaceLayer(self.wid)
# setAutoDisableFlag
def setAutoDisableFlag(self, flag):
"""setAutoDisableFlag(flag)
Set the default auto-disable flag for newly created bodies.
@param flag: True = Do auto disable
@type flag: bool
"""
dWorldSetAutoDisableFlag(self.wid, flag)
# getAutoDisableFlag
def getAutoDisableFlag(self):
"""getAutoDisableFlag() -> bool
Get the default auto-disable flag for newly created bodies.
"""
return dWorldGetAutoDisableFlag(self.wid)
# setAutoDisableLinearThreshold
def setAutoDisableLinearThreshold(self, threshold):
"""setAutoDisableLinearThreshold(threshold)
Set the default auto-disable linear threshold for newly created
bodies.
@param threshold: Linear threshold
@type threshold: float
"""
dWorldSetAutoDisableLinearThreshold(self.wid, threshold)
# getAutoDisableLinearThreshold
def getAutoDisableLinearThreshold(self):
"""getAutoDisableLinearThreshold() -> float
Get the default auto-disable linear threshold for newly created
bodies.
"""
return dWorldGetAutoDisableLinearThreshold(self.wid)
# setAutoDisableAngularThreshold
def setAutoDisableAngularThreshold(self, threshold):
"""setAutoDisableAngularThreshold(threshold)
Set the default auto-disable angular threshold for newly created
bodies.
@param threshold: Angular threshold
@type threshold: float
"""
dWorldSetAutoDisableAngularThreshold(self.wid, threshold)
# getAutoDisableAngularThreshold
def getAutoDisableAngularThreshold(self):
"""getAutoDisableAngularThreshold() -> float
Get the default auto-disable angular threshold for newly created
bodies.
"""
return dWorldGetAutoDisableAngularThreshold(self.wid)
# setAutoDisableSteps
def setAutoDisableSteps(self, steps):
"""setAutoDisableSteps(steps)
Set the default auto-disable steps for newly created bodies.
@param steps: Auto disable steps
@type steps: int
"""
dWorldSetAutoDisableSteps(self.wid, steps)
# getAutoDisableSteps
def getAutoDisableSteps(self):
"""getAutoDisableSteps() -> int
Get the default auto-disable steps for newly created bodies.
"""
return dWorldGetAutoDisableSteps(self.wid)
# setAutoDisableTime
def setAutoDisableTime(self, time):
"""setAutoDisableTime(time)
Set the default auto-disable time for newly created bodies.
@param time: Auto disable time
@type time: float
"""
dWorldSetAutoDisableTime(self.wid, time)
# getAutoDisableTime
def getAutoDisableTime(self):
"""getAutoDisableTime() -> float
Get the default auto-disable time for newly created bodies.
"""
return dWorldGetAutoDisableTime(self.wid)
# setLinearDamping
def setLinearDamping(self, scale):
"""setLinearDamping(scale)
Set the world's linear damping scale.
@param scale The linear damping scale that is to be applied to bodies.
Default is 0 (no damping). Should be in the interval [0, 1].
@type scale: float
"""
dWorldSetLinearDamping(self.wid, scale)
# getLinearDamping
def getLinearDamping(self):
"""getLinearDamping() -> float
Get the world's linear damping scale.
"""
return dWorldGetLinearDamping(self.wid)
# setAngularDamping
def setAngularDamping(self, scale):
"""setAngularDamping(scale)
Set the world's angular damping scale.
@param scale The angular damping scale that is to be applied to bodies.
Default is 0 (no damping). Should be in the interval [0, 1].
@type scale: float
"""
dWorldSetAngularDamping(self.wid, scale)
# getAngularDamping
def getAngularDamping(self):
"""getAngularDamping() -> float
Get the world's angular damping scale.
"""
return dWorldGetAngularDamping(self.wid)
# impulseToForce
def impulseToForce(self, stepsize, impulse):
"""impulseToForce(stepsize, impulse) -> 3-tuple
If you want to apply a linear or angular impulse to a rigid
body, instead of a force or a torque, then you can use this
function to convert the desired impulse into a force/torque
vector before calling the dBodyAdd... function.
@param stepsize: Time step
@param impulse: Impulse vector
@type stepsize: float
@type impulse: 3-tuple of floats
"""
cdef dVector3 force
dWorldImpulseToForce(self.wid, stepsize,
impulse[0], impulse[1], impulse[2], force)
return force[0], force[1], force[2]
# createBody
# def createBody(self):
# return Body(self)
# createBallJoint
# def createBallJoint(self, jointgroup=None):
# return BallJoint(self, jointgroup)
# createHingeJoint
# def createHingeJoint(self, jointgroup=None):
# return HingeJoint(self, jointgroup)
# createHinge2Joint
# def createHinge2Joint(self, jointgroup=None):
# return Hinge2Joint(self, jointgroup)
# createSliderJoint
# def createSliderJoint(self, jointgroup=None):
# return SliderJoint(self, jointgroup)
# createFixedJoint
# def createFixedJoint(self, jointgroup=None):
# return FixedJoint(self, jointgroup)
# createContactJoint
# def createContactJoint(self, jointgroup, contact):
# return ContactJoint(self, jointgroup, contact)
# Body
cdef class Body:
"""The rigid body class encapsulating the ODE body.
This class represents a rigid body that has a location and orientation
in space and that stores the mass properties of an object.
When creating a Body object you have to pass the world it belongs to
as argument to the constructor::
>>> import ode
>>> w = ode.World()
>>> b = ode.Body(w)
"""
cdef dBodyID bid
# A reference to the world so that the world won't be destroyed while
# there are still joints using it.
cdef object world
# A dictionary with user attributes
# (set via __getattr__ and __setattr__)
cdef object userattribs
def __cinit__(self, World world not None):
self.bid = dBodyCreate(world.wid)
def __init__(self, World world not None):
"""Constructor.
@param world: The world in which the body should be created.
@type world: World
"""
self.world = world
self.userattribs = {}
def __dealloc__(self):
if self.bid != NULL:
dBodyDestroy(self.bid)
def __getattr__(self, name):
try:
return self.userattribs[name]
except:
raise AttributeError("Body object has no attribute '%s'" % name)
def __setattr__(self, name, value):
self.userattribs[name] = value
def __delattr__(self, name):
try:
del self.userattribs[name]
except:
raise AttributeError("Body object has no attribute '%s'" % name)
# setPosition
def setPosition(self, pos):
"""setPosition(pos)
Set the position of the body.
@param pos: The new position
@type pos: 3-sequence of floats
"""
dBodySetPosition(self.bid, pos[0], pos[1], pos[2])
# getPosition
def getPosition(self):
"""getPosition() -> 3-tuple
Return the current position of the body.
"""
cdef dReal* p
# The "const" in the original return value is cast away
p = <dReal*>dBodyGetPosition(self.bid)
return p[0], p[1], p[2]
# setRotation
def setRotation(self, R):
"""setRotation(R)
Set the orientation of the body. The rotation matrix must be
given as a sequence of 9 floats which are the elements of the
matrix in row-major order.
@param R: Rotation matrix
@type R: 9-sequence of floats
"""
cdef dMatrix3 m
m[0] = R[0]
m[1] = R[1]
m[2] = R[2]
m[3] = 0
m[4] = R[3]
m[5] = R[4]
m[6] = R[5]
m[7] = 0
m[8] = R[6]
m[9] = R[7]
m[10] = R[8]
m[11] = 0
dBodySetRotation(self.bid, m)
# getRotation
def getRotation(self):
"""getRotation() -> 9-tuple
Return the current rotation matrix as a tuple of 9 floats (row-major
order).
"""
cdef dReal* m
# The "const" in the original return value is cast away
m = <dReal*>dBodyGetRotation(self.bid)
return m[0], m[1], m[2], m[4], m[5], m[6], m[8], m[9], m[10]
# getQuaternion
def getQuaternion(self):
"""getQuaternion() -> 4-tuple
Return the current rotation as a quaternion. The return value
is a list of 4 floats.
"""
cdef dReal* q
q = <dReal*>dBodyGetQuaternion(self.bid)
return q[0], q[1], q[2], q[3]
# setQuaternion
def setQuaternion(self, q):
"""setQuaternion(q)
Set the orientation of the body. The quaternion must be given as a
sequence of 4 floats.
@param q: Quaternion
@type q: 4-sequence of floats
"""
cdef dQuaternion w
w[0] = q[0]
w[1] = q[1]
w[2] = q[2]
w[3] = q[3]
dBodySetQuaternion(self.bid, w)
# setLinearVel
def setLinearVel(self, vel):
"""setLinearVel(vel)
Set the linear velocity of the body.
@param vel: New velocity
@type vel: 3-sequence of floats
"""
dBodySetLinearVel(self.bid, vel[0], vel[1], vel[2])
# getLinearVel
def getLinearVel(self):
"""getLinearVel() -> 3-tuple
Get the current linear velocity of the body.
"""
cdef dReal* p
# The "const" in the original return value is cast away
p = <dReal*>dBodyGetLinearVel(self.bid)
return p[0], p[1], p[2]
# setAngularVel
def setAngularVel(self, vel):
"""setAngularVel(vel)
Set the angular velocity of the body.
@param vel: New angular velocity
@type vel: 3-sequence of floats
"""
dBodySetAngularVel(self.bid, vel[0], vel[1], vel[2])
# getAngularVel
def getAngularVel(self):
"""getAngularVel() -> 3-tuple
Get the current angular velocity of the body.
"""
cdef dReal* p
# The "const" in the original return value is cast away
p = <dReal*>dBodyGetAngularVel(self.bid)
return p[0], p[1], p[2]
# setMass
def setMass(self, Mass mass):
"""setMass(mass)
Set the mass properties of the body. The argument mass must be
an instance of a Mass object.
@param mass: Mass properties
@type mass: Mass
"""
dBodySetMass(self.bid, &mass._mass)
# getMass
def getMass(self):
"""getMass() -> mass
Return the mass properties as a Mass object.
"""
cdef Mass m
m = Mass()
dBodyGetMass(self.bid, &m._mass)
return m
# addForce
def addForce(self, f):
"""addForce(f)
Add an external force f given in absolute coordinates. The force
is applied at the center of mass.
@param f: Force
@type f: 3-sequence of floats
"""
dBodyAddForce(self.bid, f[0], f[1], f[2])
# addTorque
def addTorque(self, t):
"""addTorque(t)
Add an external torque t given in absolute coordinates.
@param t: Torque
@type t: 3-sequence of floats
"""
dBodyAddTorque(self.bid, t[0], t[1], t[2])
# addRelForce
def addRelForce(self, f):
"""addRelForce(f)
Add an external force f given in relative coordinates
(relative to the body's own frame of reference). The force
is applied at the center of mass.
@param f: Force
@type f: 3-sequence of floats
"""
dBodyAddRelForce(self.bid, f[0], f[1], f[2])
# addRelTorque
def addRelTorque(self, t):
"""addRelTorque(t)
Add an external torque t given in relative coordinates
(relative to the body's own frame of reference).
@param t: Torque
@type t: 3-sequence of floats
"""
dBodyAddRelTorque(self.bid, t[0], t[1], t[2])
# addForceAtPos
def addForceAtPos(self, f, p):
"""addForceAtPos(f, p)
Add an external force f at position p. Both arguments must be
given in absolute coordinates.
@param f: Force
@param p: Position
@type f: 3-sequence of floats
@type p: 3-sequence of floats
"""
dBodyAddForceAtPos(self.bid, f[0], f[1], f[2], p[0], p[1], p[2])
# addForceAtRelPos
def addForceAtRelPos(self, f, p):
"""addForceAtRelPos(f, p)
Add an external force f at position p. f is given in absolute
coordinates and p in absolute coordinates.
@param f: Force
@param p: Position
@type f: 3-sequence of floats
@type p: 3-sequence of floats
"""
dBodyAddForceAtRelPos(self.bid, f[0], f[1], f[2], p[0], p[1], p[2])
# addRelForceAtPos
def addRelForceAtPos(self, f, p):
"""addRelForceAtPos(f, p)
Add an external force f at position p. f is given in relative
coordinates and p in relative coordinates.
@param f: Force
@param p: Position
@type f: 3-sequence of floats
@type p: 3-sequence of floats
"""
dBodyAddRelForceAtPos(self.bid, f[0], f[1], f[2], p[0], p[1], p[2])
# addRelForceAtRelPos
def addRelForceAtRelPos(self, f, p):
"""addRelForceAtRelPos(f, p)
Add an external force f at position p. Both arguments must be
given in relative coordinates.
@param f: Force
@param p: Position
@type f: 3-sequence of floats
@type p: 3-sequence of floats
"""
dBodyAddRelForceAtRelPos(self.bid, f[0], f[1], f[2], p[0], p[1], p[2])
# getForce
def getForce(self):
"""getForce() -> 3-tuple
Return the current accumulated force.
"""
cdef dReal* f
# The "const" in the original return value is cast away
f = <dReal*>dBodyGetForce(self.bid)
return f[0], f[1], f[2]
# getTorque
def getTorque(self):
"""getTorque() -> 3-tuple
Return the current accumulated torque.
"""
cdef dReal* f
# The "const" in the original return value is cast away
f = <dReal*>dBodyGetTorque(self.bid)
return f[0], f[1], f[2]
# setForce
def setForce(self, f):
"""setForce(f)
Set the body force accumulation vector.
@param f: Force
@type f: 3-tuple of floats
"""
dBodySetForce(self.bid, f[0], f[1], f[2])
# setTorque
def setTorque(self, t):
"""setTorque(t)
Set the body torque accumulation vector.
@param t: Torque
@type t: 3-tuple of floats
"""
dBodySetTorque(self.bid, t[0], t[1], t[2])
# getRelPointPos
def getRelPointPos(self, p):
"""getRelPointPos(p) -> 3-tuple
Utility function that takes a point p on a body and returns
that point's position in global coordinates. The point p
must be given in body relative coordinates.
@param p: Body point (local coordinates)
@type p: 3-sequence of floats
"""
cdef dVector3 res
dBodyGetRelPointPos(self.bid, p[0], p[1], p[2], res)
return res[0], res[1], res[2]
# getRelPointVel
def getRelPointVel(self, p):
"""getRelPointVel(p) -> 3-tuple
Utility function that takes a point p on a body and returns
that point's velocity in global coordinates. The point p
must be given in body relative coordinates.
@param p: Body point (local coordinates)
@type p: 3-sequence of floats
"""
cdef dVector3 res
dBodyGetRelPointVel(self.bid, p[0], p[1], p[2], res)
return res[0], res[1], res[2]
# getPointVel
def getPointVel(self, p):
"""getPointVel(p) -> 3-tuple
Utility function that takes a point p on a body and returns
that point's velocity in global coordinates. The point p
must be given in global coordinates.
@param p: Body point (global coordinates)
@type p: 3-sequence of floats
"""
cdef dVector3 res
dBodyGetPointVel(self.bid, p[0], p[1], p[2], res)
return res[0], res[1], res[2]
# getPosRelPoint
def getPosRelPoint(self, p):
"""getPosRelPoint(p) -> 3-tuple
This is the inverse of getRelPointPos(). It takes a point p in
global coordinates and returns the point's position in
body-relative coordinates.
@param p: Body point (global coordinates)
@type p: 3-sequence of floats
"""
cdef dVector3 res
dBodyGetPosRelPoint(self.bid, p[0], p[1], p[2], res)
return res[0], res[1], res[2]
# vectorToWorld
def vectorToWorld(self, v):
"""vectorToWorld(v) -> 3-tuple
Given a vector v expressed in the body coordinate system, rotate
it to the world coordinate system.
@param v: Vector in body coordinate system
@type v: 3-sequence of floats
"""
cdef dVector3 res
dBodyVectorToWorld(self.bid, v[0], v[1], v[2], res)
return res[0], res[1], res[2]
# vectorFromWorld
def vectorFromWorld(self, v):
"""vectorFromWorld(v) -> 3-tuple
Given a vector v expressed in the world coordinate system, rotate
it to the body coordinate system.
@param v: Vector in world coordinate system
@type v: 3-sequence of floats
"""
cdef dVector3 res
dBodyVectorFromWorld(self.bid, v[0], v[1], v[2], res)
return res[0], res[1], res[2]
# Enable
def enable(self):
"""enable()
Manually enable a body.
"""
dBodyEnable(self.bid)
# Disable
def disable(self):
"""disable()
Manually disable a body. Note that a disabled body that is connected
through a joint to an enabled body will be automatically re-enabled
at the next simulation step.
"""
dBodyDisable(self.bid)
# isEnabled
def isEnabled(self):
"""isEnabled() -> bool
Check if a body is currently enabled.
"""
return dBodyIsEnabled(self.bid)
# setFiniteRotationMode
def setFiniteRotationMode(self, mode):
"""setFiniteRotationMode(mode)
This function controls the way a body's orientation is updated at
each time step. The mode argument can be:
- 0: An "infinitesimal" orientation update is used. This is
fast to compute, but it can occasionally cause inaccuracies
for bodies that are rotating at high speed, especially when
those bodies are joined to other bodies. This is the default
for every new body that is created.
- 1: A "finite" orientation update is used. This is more
costly to compute, but will be more accurate for high speed
rotations. Note however that high speed rotations can result
in many types of error in a simulation, and this mode will
only fix one of those sources of error.
@param mode: Rotation mode (0/1)
@type mode: int
"""
dBodySetFiniteRotationMode(self.bid, mode)
# getFiniteRotationMode
def getFiniteRotationMode(self):
"""getFiniteRotationMode() -> mode (0/1)
Return the current finite rotation mode of a body (0 or 1).
See setFiniteRotationMode().
"""
return dBodyGetFiniteRotationMode(self.bid)
# setFiniteRotationAxis
def setFiniteRotationAxis(self, a):
"""setFiniteRotationAxis(a)
Set the finite rotation axis of the body. This axis only has a
meaning when the finite rotation mode is set
(see setFiniteRotationMode()).
@param a: Axis
@type a: 3-sequence of floats
"""
dBodySetFiniteRotationAxis(self.bid, a[0], a[1], a[2])
# getFiniteRotationAxis
def getFiniteRotationAxis(self):
"""getFiniteRotationAxis() -> 3-tuple
Return the current finite rotation axis of the body.
"""
cdef dVector3 p
# The "const" in the original return value is cast away
dBodyGetFiniteRotationAxis(self.bid, p)
return p[0], p[1], p[2]
# getNumJoints
def getNumJoints(self):
"""getNumJoints() -> int
Return the number of joints that are attached to this body.
"""
return dBodyGetNumJoints(self.bid)
# setGravityMode
def setGravityMode(self, mode):
"""setGravityMode(mode)
Set whether the body is influenced by the world's gravity
or not. If mode is True it is, otherwise it isn't.
Newly created bodies are always influenced by the world's gravity.
@param mode: Gravity mode
@type mode: bool
"""
dBodySetGravityMode(self.bid, mode)
# getGravityMode
def getGravityMode(self):
"""getGravityMode() -> bool
Return True if the body is influenced by the world's gravity.
"""
return dBodyGetGravityMode(self.bid)
def setDynamic(self):
"""setDynamic()
Set a body to the (default) "dynamic" state, instead of "kinematic".
See setKinematic() for more information.
"""
dBodySetDynamic(self.bid)
def setKinematic(self):
"""setKinematic()
Set the kinematic state of the body (change it into a kinematic body)
Kinematic bodies behave as if they had infinite mass. This means they don't react
to any force (gravity, constraints or user-supplied); they simply follow
velocity to reach the next position. [from ODE wiki]
"""
dBodySetKinematic(self.bid)
def isKinematic(self):
"""isKinematic() -> bool
Return True if the body is kinematic (not influenced by other forces).
Kinematic bodies behave as if they had infinite mass. This means they don't react
to any force (gravity, constraints or user-supplied); they simply follow
velocity to reach the next position. [from ODE wiki]
"""
return dBodyIsKinematic(self.bid)
def setMaxAngularSpeed(self, max_speed):
"""setMaxAngularSpeed(max_speed)
You can also limit the maximum angular speed. In contrast to the damping
functions, the angular velocity is affected before the body is moved.
This means that it will introduce errors in joints that are forcing the
body to rotate too fast. Some bodies have naturally high angular
velocities (like cars' wheels), so you may want to give them a very high
(like the default, dInfinity) limit.
"""
dBodySetMaxAngularSpeed(self.bid, max_speed)
# JointGroup
cdef class JointGroup:
"""Joint group.
Constructor::
JointGroup()
"""
# JointGroup ID
cdef dJointGroupID gid
# A list of Python joints that were added to the group
cdef object jointlist
def __cinit__(self):
self.gid = dJointGroupCreate(0)
def __init__(self):
self.jointlist = []
def __dealloc__(self):
if self.gid != NULL:
for j in self.jointlist:
j._destroyed()
dJointGroupDestroy(self.gid)
# empty
def empty(self):
"""empty()
Destroy all joints in the group.
"""
dJointGroupEmpty(self.gid)
for j in self.jointlist:
j._destroyed()
self.jointlist = []
def _addjoint(self, j):
"""_addjoint(j)
Add a joint to the group. This is an internal method that is
called by the joints. The group has to know the Python
wrappers because it has to notify them when the group is
emptied (so that the ODE joints won't get destroyed
twice). The notification is done by calling _destroyed() on
the Python joints.
@param j: The joint to add
@type j: Joint
"""
self.jointlist.append(j)
######################################################################
# Joint
cdef class Joint:
"""Base class for all joint classes."""
# Joint id as returned by dJointCreateXxx()
cdef dJointID jid
# A reference to the world so that the world won't be destroyed while
# there are still joints using it.
cdef object world
# The feedback buffer
cdef dJointFeedback* feedback
cdef object body1
cdef object body2
# A dictionary with user attributes
# (set via __getattr__ and __setattr__)
cdef object userattribs
def __cinit__(self, *a, **kw):
self.jid = NULL
self.world = None
self.feedback = NULL
self.body1 = None
self.body2 = None
self.userattribs = {}
def __init__(self, *a, **kw):
raise NotImplementedError("Joint base class can't be used directly")
def __dealloc__(self):
self.setFeedback(False)
if self.jid != NULL:
dJointDestroy(self.jid)
def __getattr__(self, name):
try:
return self.userattribs[name]
except:
raise AttributeError("Joint object has no attribute '%s'" % name)
def __setattr__(self, name, value):
self.userattribs[name] = value
def __delattr__(self, name):
try:
del self.userattribs[name]
except:
raise AttributeError("Joint object has no attribute '%s'" % name)
# _destroyed
def _destroyed(self):
"""Notify the joint object about an external destruction of the ODE joint.
This method has to be called when the underlying ODE object
was destroyed by someone else (e.g. by a joint group). The Python
wrapper will then refrain from destroying it again.
"""
self.jid = NULL
# enable
def enable(self):
"""enable()
Enable the joint. Disabled joints are completely ignored during the
simulation. Disabled joints don't lose the already computed information
like anchors and axes.
"""
dJointEnable(self.jid)
# disable
def disable(self):
"""disable()
Disable the joint. Disabled joints are completely ignored during the
simulation. Disabled joints don't lose the already computed information
like anchors and axes.
"""
dJointDisable(self.jid)
# isEnabled
def isEnabled(self):
"""isEnabled() -> bool
Determine whether the joint is enabled. Disabled joints are completely
ignored during the simulation. Disabled joints don't lose the already
computed information like anchors and axes.
"""
return dJointIsEnabled(self.jid)
# attach
def attach(self, Body body1, Body body2):
"""attach(body1, body2)
Attach the joint to some new bodies. A body can be attached
to the environment by passing None as second body.
@param body1: First body
@param body2: Second body
@type body1: Body
@type body2: Body
"""
cdef dBodyID id1, id2
if body1 == None:
id1 = NULL
else:
id1 = body1.bid
if body2 == None:
id2 = NULL
else:
id2 = body2.bid
self.body1 = body1
self.body2 = body2
dJointAttach(self.jid, id1, id2)
# getBody
def getBody(self, index):
"""getBody(index) -> Body
Return the bodies that this joint connects. If index is 0 the
"first" body will be returned, corresponding to the body1
argument of the attach() method. If index is 1 the "second" body
will be returned, corresponding to the body2 argument of the
attach() method.
@param index: Bodx index (0 or 1).
@type index: int
"""
if index == 0:
return self.body1
elif index == 1:
return self.body2
else:
raise IndexError()
# setFeedback
def setFeedback(self, flag=1):
"""setFeedback(flag=True)
Create a feedback buffer. If flag is True then a buffer is
allocated and the forces/torques applied by the joint can
be read using the getFeedback() method. If flag is False the
buffer is released.
@param flag: Specifies whether a buffer should be created or released
@type flag: bool
"""
if flag:
# Was there already a buffer allocated? then we're finished
if self.feedback != NULL:
return
# Allocate a buffer and pass it to ODE
self.feedback = <dJointFeedback*>malloc(sizeof(dJointFeedback))
if self.feedback == NULL:
raise MemoryError("can't allocate feedback buffer")
dJointSetFeedback(self.jid, self.feedback)
else:
if self.feedback != NULL:
# Free a previously allocated buffer
dJointSetFeedback(self.jid, NULL)
free(self.feedback)
self.feedback = NULL
# getFeedback
def getFeedback(self):
"""getFeedback() -> (force1, torque1, force2, torque2)
Get the forces/torques applied by the joint. If feedback is
activated (i.e. setFeedback(True) was called) then this method
returns a tuple (force1, torque1, force2, torque2) with the
forces and torques applied to body 1 and body 2. The
forces/torques are given as 3-tuples.
If feedback is deactivated then the method always returns None.
"""
cdef dJointFeedback* fb
fb = dJointGetFeedback(self.jid)
if fb == NULL:
return None
f1 = (fb.f1[0], fb.f1[1], fb.f1[2])
t1 = (fb.t1[0], fb.t1[1], fb.t1[2])
f2 = (fb.f2[0], fb.f2[1], fb.f2[2])
t2 = (fb.t2[0], fb.t2[1], fb.t2[2])
return f1, t1, f2, t2
######################################################################
# BallJoint
cdef class BallJoint(Joint):
"""Ball joint.
Constructor::
BallJoint(world, jointgroup=None)
"""
def __cinit__(self, World world not None, jointgroup=None):
cdef JointGroup jg
cdef dJointGroupID jgid
jgid = NULL
if jointgroup != None:
jg = jointgroup
jgid = jg.gid
self.jid = dJointCreateBall(world.wid, jgid)
def __init__(self, World world not None, jointgroup=None):
self.world = world
if jointgroup != None:
jointgroup._addjoint(self)
# setAnchor
def setAnchor(self, pos):
"""setAnchor(pos)
Set the joint anchor point which must be specified in world
coordinates.
@param pos: Anchor position
@type pos: 3-sequence of floats
"""
dJointSetBallAnchor(self.jid, pos[0], pos[1], pos[2])
# getAnchor
def getAnchor(self):
"""getAnchor() -> 3-tuple of floats
Get the joint anchor point, in world coordinates. This
returns the point on body 1. If the joint is perfectly
satisfied, this will be the same as the point on body 2.
"""
cdef dVector3 p
dJointGetBallAnchor(self.jid, p)
return p[0], p[1], p[2]
# getAnchor2
def getAnchor2(self):
"""getAnchor2() -> 3-tuple of floats
Get the joint anchor point, in world coordinates. This
returns the point on body 2. If the joint is perfectly
satisfied, this will be the same as the point on body 1.
"""
cdef dVector3 p
dJointGetBallAnchor2(self.jid, p)
return p[0], p[1], p[2]
# setParam
def setParam(self, param, value):
pass
# getParam
def getParam(self, param):
return 0.0
# HingeJoint
cdef class HingeJoint(Joint):
"""Hinge joint.
Constructor::
HingeJoint(world, jointgroup=None)
"""
def __cinit__(self, World world not None, jointgroup=None):
cdef JointGroup jg
cdef dJointGroupID jgid
jgid = NULL
if jointgroup != None:
jg = jointgroup
jgid = jg.gid
self.jid = dJointCreateHinge(world.wid, jgid)
def __init__(self, World world not None, jointgroup=None):
self.world = world
if jointgroup != None:
jointgroup._addjoint(self)
# setAnchor
def setAnchor(self, pos):
"""setAnchor(pos)
Set the hinge anchor which must be given in world coordinates.
@param pos: Anchor position
@type pos: 3-sequence of floats
"""
dJointSetHingeAnchor(self.jid, pos[0], pos[1], pos[2])
# getAnchor
def getAnchor(self):
"""getAnchor() -> 3-tuple of floats
Get the joint anchor point, in world coordinates. This returns
the point on body 1. If the joint is perfectly satisfied, this
will be the same as the point on body 2.
"""
cdef dVector3 p
dJointGetHingeAnchor(self.jid, p)
return p[0], p[1], p[2]
# getAnchor2
def getAnchor2(self):
"""getAnchor2() -> 3-tuple of floats
Get the joint anchor point, in world coordinates. This returns
the point on body 2. If the joint is perfectly satisfied, this
will be the same as the point on body 1.
"""
cdef dVector3 p
dJointGetHingeAnchor2(self.jid, p)
return p[0], p[1], p[2]
# setAxis
def setAxis(self, axis):
"""setAxis(axis)
Set the hinge axis.
@param axis: Hinge axis
@type axis: 3-sequence of floats
"""
dJointSetHingeAxis(self.jid, axis[0], axis[1], axis[2])
# getAxis
def getAxis(self):
"""getAxis() -> 3-tuple of floats
Get the hinge axis.
"""
cdef dVector3 a
dJointGetHingeAxis(self.jid, a)
return a[0], a[1], a[2]
# getAngle
def getAngle(self):
"""getAngle() -> float
Get the hinge angle. The angle is measured between the two
bodies, or between the body and the static environment. The
angle will be between -pi..pi.
When the hinge anchor or axis is set, the current position of
the attached bodies is examined and that position will be the
zero angle.
"""
return dJointGetHingeAngle(self.jid)
# getAngleRate
def getAngleRate(self):
"""getAngleRate() -> float
Get the time derivative of the angle.
"""
return dJointGetHingeAngleRate(self.jid)
# addTorque
def addTorque(self, torque):
"""addTorque(torque)
Applies the torque about the hinge axis.
@param torque: Torque magnitude
@type torque: float
"""
dJointAddHingeTorque(self.jid, torque)
# setParam
def setParam(self, param, value):
"""setParam(param, value)
Set limit/motor parameters for the joint.
param is one of ParamLoStop, ParamHiStop, ParamVel, ParamFMax,
ParamFudgeFactor, ParamBounce, ParamCFM, ParamStopERP, ParamStopCFM,
ParamSuspensionERP, ParamSuspensionCFM.
These parameter names can be optionally followed by a digit (2
or 3) to indicate the second or third set of parameters.
@param param: Selects the parameter to set
@param value: Parameter value
@type param: int
@type value: float
"""
dJointSetHingeParam(self.jid, param, value)
# getParam
def getParam(self, param):
"""getParam(param) -> float
Get limit/motor parameters for the joint.
param is one of ParamLoStop, ParamHiStop, ParamVel, ParamFMax,
ParamFudgeFactor, ParamBounce, ParamCFM, ParamStopERP, ParamStopCFM,
ParamSuspensionERP, ParamSuspensionCFM.
These parameter names can be optionally followed by a digit (2
or 3) to indicate the second or third set of parameters.
@param param: Selects the parameter to read
@type param: int
"""
return dJointGetHingeParam(self.jid, param)
# SliderJoint
cdef class SliderJoint(Joint):
"""Slider joint.
Constructor::
SlideJoint(world, jointgroup=None)
"""
def __cinit__(self, World world not None, jointgroup=None):
cdef JointGroup jg
cdef dJointGroupID jgid
jgid = NULL
if jointgroup != None:
jg = jointgroup
jgid = jg.gid
self.jid = dJointCreateSlider(world.wid, jgid)
def __init__(self, World world not None, jointgroup=None):
self.world = world
if jointgroup != None:
jointgroup._addjoint(self)
# setAxis
def setAxis(self, axis):
"""setAxis(axis)
Set the slider axis parameter.
@param axis: Slider axis
@type axis: 3-sequence of floats
"""
dJointSetSliderAxis(self.jid, axis[0], axis[1], axis[2])
# getAxis
def getAxis(self):
"""getAxis() -> 3-tuple of floats
Get the slider axis parameter.
"""
cdef dVector3 a
dJointGetSliderAxis(self.jid, a)
return a[0], a[1], a[2]
# getPosition
def getPosition(self):
"""getPosition() -> float
Get the slider linear position (i.e. the slider's "extension").
When the axis is set, the current position of the attached
bodies is examined and that position will be the zero
position.
"""
return dJointGetSliderPosition(self.jid)
# getPositionRate
def getPositionRate(self):
"""getPositionRate() -> float
Get the time derivative of the position.
"""
return dJointGetSliderPositionRate(self.jid)
# addForce
def addForce(self, force):
"""addForce(force)
Applies the given force in the slider's direction.
@param force: Force magnitude
@type force: float
"""
dJointAddSliderForce(self.jid, force)
# setParam
def setParam(self, param, value):
dJointSetSliderParam(self.jid, param, value)
# getParam
def getParam(self, param):
return dJointGetSliderParam(self.jid, param)
# UniversalJoint
cdef class UniversalJoint(Joint):
"""Universal joint.
Constructor::
UniversalJoint(world, jointgroup=None)
"""
def __cinit__(self, World world not None, jointgroup=None):
cdef JointGroup jg
cdef dJointGroupID jgid
jgid = NULL
if jointgroup != None:
jg = jointgroup
jgid = jg.gid
self.jid = dJointCreateUniversal(world.wid, jgid)
def __init__(self, World world not None, jointgroup=None):
self.world = world
if jointgroup != None:
jointgroup._addjoint(self)
# setAnchor
def setAnchor(self, pos):
"""setAnchor(pos)
Set the universal anchor.
@param pos: Anchor position
@type pos: 3-sequence of floats
"""
dJointSetUniversalAnchor(self.jid, pos[0], pos[1], pos[2])
# getAnchor
def getAnchor(self):
"""getAnchor() -> 3-tuple of floats
Get the joint anchor point, in world coordinates. This returns
the point on body 1. If the joint is perfectly satisfied, this
will be the same as the point on body 2.
"""
cdef dVector3 p
dJointGetUniversalAnchor(self.jid, p)
return p[0], p[1], p[2]
# getAnchor2
def getAnchor2(self):
"""getAnchor2() -> 3-tuple of floats
Get the joint anchor point, in world coordinates. This returns
the point on body 2. If the joint is perfectly satisfied, this
will be the same as the point on body 1.
"""
cdef dVector3 p
dJointGetUniversalAnchor2(self.jid, p)
return p[0], p[1], p[2]
# setAxis1
def setAxis1(self, axis):
"""setAxis1(axis)
Set the first universal axis. Axis 1 and axis 2 should be
perpendicular to each other.
@param axis: Joint axis
@type axis: 3-sequence of floats
"""
dJointSetUniversalAxis1(self.jid, axis[0], axis[1], axis[2])
# getAxis1
def getAxis1(self):
"""getAxis1() -> 3-tuple of floats
Get the first univeral axis.
"""
cdef dVector3 a
dJointGetUniversalAxis1(self.jid, a)
return a[0], a[1], a[2]
# setAxis2
def setAxis2(self, axis):
"""setAxis2(axis)
Set the second universal axis. Axis 1 and axis 2 should be
perpendicular to each other.
@param axis: Joint axis
@type axis: 3-sequence of floats
"""
dJointSetUniversalAxis2(self.jid, axis[0], axis[1], axis[2])
# getAxis2
def getAxis2(self):
"""getAxis2() -> 3-tuple of floats
Get the second univeral axis.
"""
cdef dVector3 a
dJointGetUniversalAxis2(self.jid, a)
return a[0], a[1], a[2]
# addTorques
def addTorques(self, torque1, torque2):
"""addTorques(torque1, torque2)
Applies torque1 about axis 1, and torque2 about axis 2.
@param torque1: Torque 1 magnitude
@param torque2: Torque 2 magnitude
@type torque1: float
@type torque2: float
"""
dJointAddUniversalTorques(self.jid, torque1, torque2)
def getAngle1(self):
return dJointGetUniversalAngle1(self.jid)
def getAngle2(self):
return dJointGetUniversalAngle2(self.jid)
def getAngle1Rate(self):
return dJointGetUniversalAngle1Rate(self.jid)
def getAngle2Rate(self):
return dJointGetUniversalAngle2Rate(self.jid)
# setParam
def setParam(self, param, value):
dJointSetUniversalParam(self.jid, param, value)
# getParam
def getParam(self, param):
return dJointGetUniversalParam(self.jid, param)
# Hinge2Joint
cdef class Hinge2Joint(Joint):
"""Hinge2 joint.
Constructor::
Hinge2Joint(world, jointgroup=None)
"""
def __cinit__(self, World world not None, jointgroup=None):
cdef JointGroup jg
cdef dJointGroupID jgid
jgid = NULL
if jointgroup != None:
jg = jointgroup
jgid = jg.gid
self.jid = dJointCreateHinge2(world.wid, jgid)
def __init__(self, World world, jointgroup=None):
self.world = world
if jointgroup != None:
jointgroup._addjoint(self)
# setAnchor
def setAnchor(self, pos):
"""setAnchor(pos)
Set the hinge-2 anchor.
@param pos: Anchor position
@type pos: 3-sequence of floats
"""
dJointSetHinge2Anchor(self.jid, pos[0], pos[1], pos[2])
# getAnchor
def getAnchor(self):
"""getAnchor() -> 3-tuple of floats
Get the joint anchor point, in world coordinates. This returns
the point on body 1. If the joint is perfectly satisfied, this
will be the same as the point on body 2.
"""
cdef dVector3 p
dJointGetHinge2Anchor(self.jid, p)
return p[0], p[1], p[2]
# getAnchor2
def getAnchor2(self):
"""getAnchor2() -> 3-tuple of floats
Get the joint anchor point, in world coordinates. This returns
the point on body 2. If the joint is perfectly satisfied, this
will be the same as the point on body 1.
"""
cdef dVector3 p
dJointGetHinge2Anchor2(self.jid, p)
return p[0], p[1], p[2]
# setAxis1
def setAxis1(self, axis):
"""setAxis1(axis)
Set the first hinge-2 axis. Axis 1 and axis 2 must not lie
along the same line.
@param axis: Joint axis
@type axis: 3-sequence of floats
"""
dJointSetHinge2Axis1(self.jid, axis[0], axis[1], axis[2])
# getAxis1
def getAxis1(self):
"""getAxis1() -> 3-tuple of floats
Get the first hinge-2 axis.
"""
cdef dVector3 a
dJointGetHinge2Axis1(self.jid, a)
return a[0], a[1], a[2]
# setAxis2
def setAxis2(self, axis):
"""setAxis2(axis)
Set the second hinge-2 axis. Axis 1 and axis 2 must not lie
along the same line.
@param axis: Joint axis
@type axis: 3-sequence of floats
"""
dJointSetHinge2Axis2(self.jid, axis[0], axis[1], axis[2])
# getAxis2
def getAxis2(self):
"""getAxis2() -> 3-tuple of floats
Get the second hinge-2 axis.
"""
cdef dVector3 a
dJointGetHinge2Axis2(self.jid, a)
return a[0], a[1], a[2]
# getAngle
def getAngle1(self):
"""getAngle1() -> float
Get the first hinge-2 angle (around axis 1).
When the anchor or axis is set, the current position of the
attached bodies is examined and that position will be the zero
angle.
"""
return dJointGetHinge2Angle1(self.jid)
# getAngle1Rate
def getAngle1Rate(self):
"""getAngle1Rate() -> float
Get the time derivative of the first hinge-2 angle.
"""
return dJointGetHinge2Angle1Rate(self.jid)
# getAngle2Rate
def getAngle2Rate(self):
"""getAngle2Rate() -> float
Get the time derivative of the second hinge-2 angle.
"""
return dJointGetHinge2Angle2Rate(self.jid)
# addTorques
def addTorques(self, torque1, torque2):
"""addTorques(torque1, torque2)
Applies torque1 about axis 1, and torque2 about axis 2.
@param torque1: Torque 1 magnitude
@param torque2: Torque 2 magnitude
@type torque1: float
@type torque2: float
"""
dJointAddHinge2Torques(self.jid, torque1, torque2)
# setParam
def setParam(self, param, value):
dJointSetHinge2Param(self.jid, param, value)
# getParam
def getParam(self, param):
return dJointGetHinge2Param(self.jid, param)
# FixedJoint
cdef class FixedJoint(Joint):
"""Fixed joint.
Constructor::
FixedJoint(world, jointgroup=None)
"""
def __cinit__(self, World world not None, jointgroup=None):
cdef JointGroup jg
cdef dJointGroupID jgid
jgid = NULL
if jointgroup != None:
jg = jointgroup
jgid = jg.gid
self.jid = dJointCreateFixed(world.wid, jgid)
def __init__(self, World world not None, jointgroup=None):
self.world = world
if jointgroup != None:
jointgroup._addjoint(self)
# setFixed
def setFixed(self):
"""setFixed()
Call this on the fixed joint after it has been attached to
remember the current desired relative offset and desired
relative rotation between the bodies.
"""
dJointSetFixed(self.jid)
# ContactJoint
cdef class ContactJoint(Joint):
"""Contact joint.
Constructor::
ContactJoint(world, jointgroup, contact)
"""
def __cinit__(self, World world not None, jointgroup, Contact contact):
cdef JointGroup jg
cdef dJointGroupID jgid
jgid = NULL
if jointgroup != None:
jg = jointgroup
jgid = jg.gid
self.jid = dJointCreateContact(world.wid, jgid, &contact._contact)
def __init__(self, World world not None, jointgroup, Contact contact):
self.world = world
if jointgroup != None:
jointgroup._addjoint(self)
# AMotor
cdef class AMotor(Joint):
"""AMotor joint.
Constructor::
AMotor(world, jointgroup=None)
"""
def __cinit__(self, World world not None, jointgroup=None):
cdef JointGroup jg
cdef dJointGroupID jgid
jgid = NULL
if jointgroup != None:
jg = jointgroup
jgid = jg.gid
self.jid = dJointCreateAMotor(world.wid, jgid)
def __init__(self, World world not None, jointgroup=None):
self.world = world
if jointgroup != None:
jointgroup._addjoint(self)
# setMode
def setMode(self, mode):
"""setMode(mode)
Set the angular motor mode. mode must be either AMotorUser or
AMotorEuler.
@param mode: Angular motor mode
@type mode: int
"""
dJointSetAMotorMode(self.jid, mode)
# getMode
def getMode(self):
"""getMode()
Return the angular motor mode (AMotorUser or AMotorEuler).
"""
return dJointGetAMotorMode(self.jid)
# setNumAxes
def setNumAxes(self, int num):
"""setNumAxes(num)
Set the number of angular axes that will be controlled by the AMotor.
num may be in the range from 0 to 3.
@param num: Number of axes (0-3)
@type num: int
"""
dJointSetAMotorNumAxes(self.jid, num)
# getNumAxes
def getNumAxes(self):
"""getNumAxes() -> int
Get the number of angular axes that are controlled by the AMotor.
"""
return dJointGetAMotorNumAxes(self.jid)
# setAxis
def setAxis(self, int anum, int rel, axis):
"""setAxis(anum, rel, axis)
Set an AMotor axis.
The anum argument selects the axis to change (0,1 or 2).
Each axis can have one of three "relative orientation" modes,
selected by rel:
0: The axis is anchored to the global frame.
1: The axis is anchored to the first body.
2: The axis is anchored to the second body.
The axis vector is always specified in global coordinates
regardless of the setting of rel.
@param anum: Axis number
@param rel: Relative orientation mode
@param axis: Axis
@type anum: int
@type rel: int
@type axis: 3-sequence of floats
"""
dJointSetAMotorAxis(self.jid, anum, rel, axis[0], axis[1], axis[2])
# getAxis
def getAxis(self, int anum):
"""getAxis(anum)
Get an AMotor axis.
@param anum: Axis index (0-2)
@type anum: int
"""
cdef dVector3 a
dJointGetAMotorAxis(self.jid, anum, a)
return a[0], a[1], a[2]
# getAxisRel
def getAxisRel(self, int anum):
"""getAxisRel(anum) -> int
Get the relative mode of an axis.
@param anum: Axis index (0-2)
@type anum: int
"""
return dJointGetAMotorAxisRel(self.jid, anum)
# setAngle
def setAngle(self, int anum, angle):
"""setAngle(anum, angle)
Tell the AMotor what the current angle is along axis anum.
@param anum: Axis index
@param angle: Angle
@type anum: int
@type angle: float
"""
dJointSetAMotorAngle(self.jid, anum, angle)
# getAngle
def getAngle(self, int anum):
"""getAngle(anum) -> float
Return the current angle for axis anum.
@param anum: Axis index
@type anum: int
"""
return dJointGetAMotorAngle(self.jid, anum)
# getAngleRate
def getAngleRate(self, int anum):
"""getAngleRate(anum) -> float
Return the current angle rate for axis anum.
@param anum: Axis index
@type anum: int
"""
return dJointGetAMotorAngleRate(self.jid, anum)
# addTorques
def addTorques(self, torque0, torque1, torque2):
"""addTorques(torque0, torque1, torque2)
Applies torques about the AMotor's axes.
@param torque0: Torque 0 magnitude
@param torque1: Torque 1 magnitude
@param torque2: Torque 2 magnitude
@type torque0: float
@type torque1: float
@type torque2: float
"""
dJointAddAMotorTorques(self.jid, torque0, torque1, torque2)
# setParam
def setParam(self, param, value):
dJointSetAMotorParam(self.jid, param, value)
# getParam
def getParam(self, param):
return dJointGetAMotorParam(self.jid, param)
# LMotor
cdef class LMotor(Joint):
"""LMotor joint.
Constructor::
LMotor(world, jointgroup=None)
"""
def __cinit__(self, World world not None, jointgroup=None):
cdef JointGroup jg
cdef dJointGroupID jgid
jgid = NULL
if jointgroup != None:
jg = jointgroup
jgid = jg.gid
self.jid = dJointCreateLMotor(world.wid, jgid)
def __init__(self, World world not None, jointgroup=None):
self.world = world
if jointgroup != None:
jointgroup._addjoint(self)
# setNumAxes
def setNumAxes(self, int num):
"""setNumAxes(num)
Set the number of angular axes that will be controlled by the LMotor.
num may be in the range from 0 to 3.
@param num: Number of axes (0-3)
@type num: int
"""
dJointSetLMotorNumAxes(self.jid, num)
# getNumAxes
def getNumAxes(self):
"""getNumAxes() -> int
Get the number of angular axes that are controlled by the LMotor.
"""
return dJointGetLMotorNumAxes(self.jid)
# setAxis
def setAxis(self, int anum, int rel, axis):
"""setAxis(anum, rel, axis)
Set an LMotor axis.
The anum argument selects the axis to change (0,1 or 2).
Each axis can have one of three "relative orientation" modes,
selected by rel:
0: The axis is anchored to the global frame.
1: The axis is anchored to the first body.
2: The axis is anchored to the second body.
@param anum: Axis number
@param rel: Relative orientation mode
@param axis: Axis
@type anum: int
@type rel: int
@type axis: 3-sequence of floats
"""
dJointSetLMotorAxis(self.jid, anum, rel, axis[0], axis[1], axis[2])
# getAxis
def getAxis(self, int anum):
"""getAxis(anum)
Get an LMotor axis.
@param anum: Axis index (0-2)
@type anum: int
"""
cdef dVector3 a
dJointGetLMotorAxis(self.jid, anum, a)
return a[0], a[1], a[2]
# setParam
def setParam(self, param, value):
dJointSetLMotorParam(self.jid, param, value)
# getParam
def getParam(self, param):
return dJointGetLMotorParam(self.jid, param)
# Plane2DJoint
cdef class Plane2DJoint(Joint):
"""Plane-2D Joint.
Constructor::
Plane2DJoint(world, jointgroup=None)
"""
def __cinit__(self, World world not None, jointgroup=None):
cdef JointGroup jg
cdef dJointGroupID jgid
jgid = NULL
if jointgroup != None:
jg = jointgroup
jgid = jg.gid
self.jid = dJointCreatePlane2D(world.wid, jgid)
def __init__(self, World world not None, jointgroup=None):
self.world = world
if jointgroup != None:
jointgroup._addjoint(self)
def setXParam(self, param, value):
dJointSetPlane2DXParam(self.jid, param, value)
def setYParam(self, param, value):
dJointSetPlane2DYParam(self.jid, param, value)
def setAngleParam(self, param, value):
dJointSetPlane2DAngleParam(self.jid, param, value)
# PRJoint
cdef class PRJoint(Joint):
"""Prismatic and Rotoide Joint.
Constructor::
PRJoint(world, jointgroup=None)
"""
def __cinit__(self, World world not None, jointgroup=None):
cdef JointGroup jg
cdef dJointGroupID jgid
jgid = NULL
if jointgroup != None:
jg = jointgroup
jgid = jg.gid
self.jid = dJointCreatePR(world.wid, jgid)
def __init__(self, World world not None, jointgroup=None):
self.world = world
if jointgroup != None:
jointgroup._addjoint(self)
def getPosition(self):
"""getPosition()
Get a PRJoint's linear extension. (i.e. the prismatic's extension)
"""
return dJointGetPRPosition(self.jid)
def setAnchor(self, pos):
"""setAnchor(pos)
Set a PRJoint anchor.
@param pos: Anchor position
@type pos: 3-sequence of floats
"""
dJointSetPRAnchor(self.jid, pos[0], pos[1], pos[2])
def getAnchor(self):
"""getAnchor()
Get a PRJoint anchor.
"""
cdef dVector3 a
dJointGetPRAnchor(self.jid, a)
return a[0], a[1], a[2]
def setAxis1(self, axis):
"""setAxis1(axis)
Set a PRJoint's prismatic axis.
@param axis: Axis
@type axis: 3-sequence of floats
"""
dJointSetPRAxis1(self.jid, axis[0], axis[1], axis[2])
def getAxis1(self):
"""getAxis1()
Get a PRJoint's prismatic axis.
"""
cdef dVector3 a
dJointGetPRAxis1(self.jid, a)
return a[0], a[1], a[2]
def setAxis2(self, axis):
"""setAxis2(axis)
Set a PRJoint's rotoide axis.
@param axis: Axis
@type axis: 3-sequence of floats
"""
dJointSetPRAxis2(self.jid, axis[0], axis[1], axis[2])
def getAxis2(self):
"""getAxis2()
Get a PRJoint's rotoide axis.
"""
cdef dVector3 a
dJointGetPRAxis2(self.jid, a)
return a[0], a[1], a[2]
# Geom base class
cdef class GeomObject:
"""This is the abstract base class for all geom objects.
"""
# The id of the geom object as returned by dCreateXxxx()
cdef dGeomID gid
# The space in which the geom was placed (or None). This reference
# is kept so that the space won't be destroyed while there are still
# geoms around that might use it.
cdef object space
# The body that the geom was attached to (or None).
cdef object body
# A dictionary with user defined attributes
cdef object attribs
cdef object __weakref__
def __cinit__(self, *a, **kw):
self.gid = NULL
self.space = None
self.body = None
self.attribs = {}
def __init__(self, *a, **kw):
raise NotImplementedError(
"GeomObject base class can't be used directly")
def __dealloc__(self):
if self.gid != NULL:
dGeomDestroy(self.gid)
self.gid = NULL
def __getattr__(self, name):
if name in self.attribs:
return self.attribs[name]
else:
raise AttributeError("geom has no attribute '%s'" % name)
def __setattr__(self, name, val):
self.attribs[name] = val
def __delattr__(self, name):
if name in self.attribs:
del self.attribs[name]
else:
raise AttributeError("geom has no attribute '%s'" % name)
def _id(self):
"""_id() -> int
Return the internal id of the geom (dGeomID) as returned by
the dCreateXyz() functions.
This method has to be overwritten in derived methods.
"""
raise NotImplementedError("Bug: The _id() method is not implemented")
def placeable(self):
"""placeable() -> bool
Returns True if the geom object is a placeable geom.
This method has to be overwritten in derived methods.
"""
return False
def setBody(self, Body body):
"""setBody(body)
Set the body associated with a placeable geom.
@param body: The Body object or None.
@type body: Body
"""
if not self.placeable():
raise ValueError(
"Non-placeable geoms cannot have a body associated to them")
if body == None:
dGeomSetBody(self.gid, NULL)
else:
dGeomSetBody(self.gid, body.bid)
self.body = body
def getBody(self):
"""getBody() -> Body
Get the body associated with this geom.
"""
if not self.placeable():
return environment
return self.body
def setPosition(self, pos):
"""setPosition(pos)
Set the position of the geom. If the geom is attached to a body,
the body's position will also be changed.
@param pos: Position
@type pos: 3-sequence of floats
"""
if not self.placeable():
raise ValueError("Cannot set a position on non-placeable geoms")
dGeomSetPosition(self.gid, pos[0], pos[1], pos[2])
def getPosition(self):
"""getPosition() -> 3-tuple
Get the current position of the geom. If the geom is attached to
a body the returned value is the body's position.
"""
if not self.placeable():
raise ValueError("Non-placeable geoms do not have a position")
cdef dReal* p
p = <dReal*>dGeomGetPosition(self.gid)
return p[0], p[1], p[2]
def setRotation(self, R):
"""setRotation(R)
Set the orientation of the geom. If the geom is attached to a body,
the body's orientation will also be changed.
@param R: Rotation matrix
@type R: 9-sequence of floats
"""
if not self.placeable():
raise ValueError("Cannot set a rotation on non-placeable geoms")
cdef dMatrix3 m
m[0] = R[0]
m[1] = R[1]
m[2] = R[2]
m[3] = 0
m[4] = R[3]
m[5] = R[4]
m[6] = R[5]
m[7] = 0
m[8] = R[6]
m[9] = R[7]
m[10] = R[8]
m[11] = 0
dGeomSetRotation(self.gid, m)
def getRotation(self):
"""getRotation() -> 9-tuple
Get the current orientation of the geom. If the geom is attached to
a body the returned value is the body's orientation.
"""
if not self.placeable():
raise ValueError("Non-placeable geoms do not have a rotation")
cdef dReal* m
m = <dReal*>dGeomGetRotation(self.gid)
return [m[0], m[1], m[2], m[4], m[5], m[6], m[8], m[9], m[10]]
def getQuaternion(self):
"""getQuaternion() -> (w,x,y,z)
Get the current orientation of the geom. If the geom is attached to
a body the returned value is the body's orientation.
"""
if not self.placeable():
raise ValueError("Non-placeable geoms do not have an orientation")
cdef dQuaternion q
dGeomGetQuaternion(self.gid, q)
return q[0], q[1], q[2], q[3]
def setQuaternion(self, q):
"""setQuaternion(q)
Set the orientation of the geom. If the geom is attached to a body,
the body's orientation will also be changed.
@param q: Quaternion (w,x,y,z)
@type q: 4-sequence of floats
"""
if not self.placeable():
raise ValueError("Cannot set a quaternion on non-placeable geoms")
cdef dQuaternion cq
cq[0] = q[0]
cq[1] = q[1]
cq[2] = q[2]
cq[3] = q[3]
dGeomSetQuaternion(self.gid, cq)
def setOffsetPosition(self, pos):
"""setOffsetPosition(pos)
Set the offset position of the geom. The geom must be attached to a
body. If the geom did not have an offset, it is automatically created.
This sets up an additional (local) transformation for the geom, since
geoms attached to a body share their global position and rotation.
@param pos: Position
@type pos: 3-sequence of floats
"""
if self.body == None:
raise ValueError("Cannot set an offset position on a geom before "
"calling setBody")
dGeomSetOffsetPosition(self.gid, pos[0], pos[1], pos[2])
def getOffsetPosition(self):
"""getOffsetPosition() -> 3-tuple
Get the offset position of the geom.
"""
cdef dReal* p
p = <dReal*>dGeomGetOffsetPosition(self.gid)
return (p[0],p[1],p[2])
def setOffsetRotation(self, R):
"""setOffsetRotation(R)
Set the offset rotation of the geom. The geom must be attached to a
body. If the geom did not have an offset, it is automatically created.
This sets up an additional (local) transformation for the geom, since
geoms attached to a body share their global position and rotation.
@param R: Rotation matrix
@type R: 9-sequence of floats
"""
if self.body == None:
raise ValueError("Cannot set an offset rotation on a geom before "
"calling setBody")
cdef dMatrix3 m
m[0] = R[0]
m[1] = R[1]
m[2] = R[2]
m[3] = 0
m[4] = R[3]
m[5] = R[4]
m[6] = R[5]
m[7] = 0
m[8] = R[6]
m[9] = R[7]
m[10] = R[8]
m[11] = 0
dGeomSetOffsetRotation(self.gid, m)
def getOffsetRotation(self):
"""getOffsetRotation() -> 9-tuple
Get the offset rotation of the geom.
"""
cdef dReal* m
m = <dReal*>dGeomGetOffsetRotation(self.gid)
return [m[0], m[1], m[2], m[4], m[5], m[6], m[8], m[9], m[10]]
def clearOffset(self):
"""clearOffset()
Disable the offset transform of the geom.
"""
dGeomClearOffset(self.gid)
def getAABB(self):
"""getAABB() -> 6-tuple
Return an axis aligned bounding box that surrounds the geom.
The return value is a 6-tuple (minx, maxx, miny, maxy, minz, maxz).
"""
cdef dReal aabb[6]
dGeomGetAABB(self.gid, aabb)
return aabb[0], aabb[1], aabb[2], aabb[3], aabb[4], aabb[5]
def isSpace(self):
"""isSpace() -> bool
Return 1 if the given geom is a space, or 0 if not."""
return dGeomIsSpace(self.gid)
def getSpace(self):
"""getSpace() -> Space
Return the space that the given geometry is contained in,
or return None if it is not contained in any space."""
return self.space
def setCollideBits(self, bits):
"""setCollideBits(bits)
Set the "collide" bitfields for this geom.
@param bits: Collide bit field
@type bits: int/long
"""
dGeomSetCollideBits(self.gid, long(bits))
def setCategoryBits(self, bits):
"""setCategoryBits(bits)
Set the "category" bitfields for this geom.
@param bits: Category bit field
@type bits: int/long
"""
dGeomSetCategoryBits(self.gid, long(bits))
def getCollideBits(self):
"""getCollideBits() -> long
Return the "collide" bitfields for this geom.
"""
return dGeomGetCollideBits(self.gid)
def getCategoryBits(self):
"""getCategoryBits() -> long
Return the "category" bitfields for this geom.
"""
return dGeomGetCategoryBits(self.gid)
def enable(self):
"""enable()
Enable the geom."""
dGeomEnable(self.gid)
def disable(self):
"""disable()
Disable the geom."""
dGeomDisable(self.gid)
def isEnabled(self):
"""isEnabled() -> bool
Return True if the geom is enabled."""
return dGeomIsEnabled(self.gid)
# _SpaceIterator
class _SpaceIterator:
"""Iterates over the geoms inside a Space.
"""
def __init__(self, space):
self.space = space
self.idx = 0
def __iter__(self):
return self
def next(self):
if self.idx >= self.space.getNumGeoms():
raise StopIteration
else:
res = self.space.getGeom(self.idx)
self.idx = self.idx + 1
return res
# SpaceBase
cdef class SpaceBase(GeomObject):
"""Space class (container for geometry objects).
A Space object is a container for geometry objects which are used
to do collision detection.
The space does high level collision culling, which means that it
can identify which pairs of geometry objects are potentially
touching.
This Space class can be used for both, a SimpleSpace and a HashSpace
(see ODE documentation).
>>> space = Space(type=0) # Create a SimpleSpace
>>> space = Space(type=1) # Create a HashSpace
"""
# The id of the space. Actually this is a copy of the value in self.gid
# (as the Space is derived from GeomObject) which can be used without
# casting whenever a *space* id is required.
cdef dSpaceID sid
# Dictionary with Geomobjects. Key is the ID (geom._id()) and the value
# is the geom object (Python wrapper). This is used in collide_callback()
# cdef object geom_dict
def __cinit__(self, *a, **kw):
pass
def __init__(self, *a, **kw):
raise NotImplementedError("The SpaceBase class can't be used directly")
def __dealloc__(self):
if self.gid != NULL:
dSpaceDestroy(self.sid)
self.sid = NULL
self.gid = NULL
# def _addgeom(self, geom):
# """Insert the geom object into the dictionary (internal method).
#
# This method has to called in the constructor of a geom object.
# """
# self.geom_dict[geom._id()]=geom
# def _id2geom(self, id):
# """Get the Python wrapper that corresponds to an ID.
#
# The ID is the integer value, as returned by geom._id().
# If the ID is unknown then None is returned.
# """
# if id in self.geom_dict:
# return self.geom_dict[id]
# else:
# return None
def _id(self):
cdef long id
id = <long>self.sid
return id
def __len__(self):
return self.getNumGeoms()
def __iter__(self):
return _SpaceIterator(self)
def add(self, GeomObject geom):
"""add(geom)
Add a geom to a space. This does nothing if the geom is
already in the space.
@param geom: Geom object to add
@type geom: GeomObject
"""
dSpaceAdd(self.sid, geom.gid)
def remove(self, GeomObject geom):
"""remove(geom)
Remove a geom from a space.
@param geom: Geom object to remove
@type geom: GeomObject
"""
dSpaceRemove(self.sid, geom.gid)
def query(self, GeomObject geom):
"""query(geom) -> bool
Return True if the given geom is in the space.
@param geom: Geom object to check
@type geom: GeomObject
"""
return dSpaceQuery(self.sid, geom.gid)
def getNumGeoms(self):
"""getNumGeoms() -> int
Return the number of geoms contained within the space.
"""
return dSpaceGetNumGeoms(self.sid)
def getGeom(self, int idx):
"""getGeom(idx) -> GeomObject
Return the geom with the given index contained within the space.
@param idx: Geom index (0,1,...,getNumGeoms()-1)
@type idx: int
"""
cdef dGeomID gid
# Check the index
if idx < 0 or idx >= dSpaceGetNumGeoms(self.sid):
raise IndexError("geom index out of range")
gid = dSpaceGetGeom(self.sid, idx)
if <long>gid not in _geom_c2py_lut:
raise RuntimeError(
"geom id cannot be translated to a Python object")
return _geom_c2py_lut[<long>gid]
def collide(self, arg, callback):
"""collide(arg, callback)
Call a callback function one or more times, for all
potentially intersecting objects in the space. The callback
function takes 3 arguments:
def NearCallback(arg, geom1, geom2):
The arg parameter is just passed on to the callback function.
Its meaning is user defined. The geom1 and geom2 arguments are
the geometry objects that may be near each other. The callback
function can call the function collide() (not the Space
method) on geom1 and geom2, perhaps first determining
whether to collide them at all based on other information.
@param arg: A user argument that is passed to the callback function
@param callback: Callback function
@type callback: callable
"""
cdef void* data
cdef object tup
tup = (callback, arg)
data = <void*>tup
dSpaceCollide(self.sid, data, collide_callback)
# Callback function for the dSpaceCollide() call in the Space.collide() method
# The data parameter is a tuple (Python-Callback, Arguments).
# The function calls a Python callback function with 3 arguments:
# def callback(UserArg, Geom1, Geom2)
# Geom1 and Geom2 are instances of GeomXyz classes.
cdef void collide_callback(void* data, dGeomID o1, dGeomID o2):
cdef object tup
# cdef Space space
cdef long id1, id2
# if (dGeomGetBody(o1)==dGeomGetBody(o2)):
# return
tup = <object>data
callback, arg = tup
id1 = <long>o1
id2 = <long>o2
g1 = _geom_c2py_lut[id1]
g2 = _geom_c2py_lut[id2]
callback(arg, g1, g2)
# SimpleSpace
cdef class SimpleSpace(SpaceBase):
"""Simple space.
This does not do any collision culling - it simply checks every
possible pair of geoms for intersection, and reports the pairs
whose AABBs overlap. The time required to do intersection testing
for n objects is O(n**2). This should not be used for large numbers
of objects, but it can be the preferred algorithm for a small
number of objects. This is also useful for debugging potential
problems with the collision system.
"""
def __cinit__(self, space=None):
cdef SpaceBase sp
cdef dSpaceID parentid
parentid = NULL
if space != None:
sp = space
parentid = sp.sid
self.sid = dSimpleSpaceCreate(parentid)
# Copy the ID
self.gid = <dGeomID>self.sid
dSpaceSetCleanup(self.sid, 0)
_geom_c2py_lut[<long>self.sid] = self
def __init__(self, space=None):
pass
# HashSpace
cdef class HashSpace(SpaceBase):
"""Multi-resolution hash table space.
This uses an internal data structure that records how each geom
overlaps cells in one of several three dimensional grids. Each
grid has cubical cells of side lengths 2**i, where i is an integer
that ranges from a minimum to a maximum value. The time required
to do intersection testing for n objects is O(n) (as long as those
objects are not clustered together too closely), as each object
can be quickly paired with the objects around it.
"""
def __cinit__(self, space=None):
cdef SpaceBase sp
cdef dSpaceID parentid
parentid = NULL
if space != None:
sp = space
parentid = sp.sid
self.sid = dHashSpaceCreate(parentid)
# Copy the ID
self.gid = <dGeomID>self.sid
dSpaceSetCleanup(self.sid, 0)
_geom_c2py_lut[<long>self.sid] = self
def __init__(self, space=None):
pass
def setLevels(self, int minlevel, int maxlevel):
"""setLevels(minlevel, maxlevel)
Sets the size of the smallest and largest cell used in the
hash table. The actual size will be 2^minlevel and 2^maxlevel
respectively.
"""
if minlevel > maxlevel:
raise ValueError(
"minlevel (%d) must be less than or equal to maxlevel (%d)" %
(minlevel, maxlevel))
dHashSpaceSetLevels(self.sid, minlevel, maxlevel)
def getLevels(self):
"""getLevels() -> (minlevel, maxlevel)
Gets the size of the smallest and largest cell used in the
hash table. The actual size is 2^minlevel and 2^maxlevel
respectively.
"""
cdef int minlevel
cdef int maxlevel
dHashSpaceGetLevels(self.sid, &minlevel, &maxlevel)
return minlevel, maxlevel
# QuadTreeSpace
cdef class QuadTreeSpace(SpaceBase):
"""Quadtree space.
This uses a pre-allocated hierarchical grid-based AABB tree to
quickly cull collision checks. It's exceptionally quick for large
amounts of objects in landscape-shaped worlds. The amount of
memory used is 4**depth * 32 bytes.
Currently getGeom() is not implemented for the quadtree space.
"""
def __cinit__(self, center, extents, depth, space=None):
cdef SpaceBase sp
cdef dSpaceID parentid
cdef dVector3 c
cdef dVector3 e
parentid = NULL
if space != None:
sp = space
parentid = sp.sid
c[0] = center[0]
c[1] = center[1]
c[2] = center[2]
e[0] = extents[0]
e[1] = extents[1]
e[2] = extents[2]
self.sid = dQuadTreeSpaceCreate(parentid, c, e, depth)
# Copy the ID
self.gid = <dGeomID>self.sid
dSpaceSetCleanup(self.sid, 0)
_geom_c2py_lut[<long>self.sid] = self
def __init__(self, center, extents, depth, space=None):
pass
def Space(space_type=0):
"""Space factory function.
Depending on the type argument this function either returns a
SimpleSpace (space_type=0) or a HashSpace (space_type=1).
This function is provided to remain compatible with previous
versions of PyODE where there was only one Space class.
>>> space = Space(space_type=0) # Create a SimpleSpace
>>> space = Space(space_type=1) # Create a HashSpace
"""
if space_type == 0:
return SimpleSpace()
elif space_type == 1:
return HashSpace()
else:
raise ValueError("Unknown space type (%d)" % space_type)
# GeomSphere
cdef class GeomSphere(GeomObject):
"""Sphere geometry.
This class represents a sphere centered at the origin.
Constructor::
GeomSphere(space=None, radius=1.0)
"""
def __cinit__(self, space=None, radius=1.0):
cdef SpaceBase sp
cdef dSpaceID sid
sid = NULL
if space != None:
sp = space
sid = sp.sid
self.gid = dCreateSphere(sid, radius)
# if space != None:
# space._addgeom(self)
_geom_c2py_lut[<long>self.gid] = self
def __init__(self, space=None, radius=1.0):
self.space = space
self.body = None
def placeable(self):
return True
def _id(self):
cdef long id
id = <long>self.gid
return id
def setRadius(self, radius):
"""setRadius(radius)
Set the radius of the sphere.
@param radius: New radius
@type radius: float
"""
dGeomSphereSetRadius(self.gid, radius)
def getRadius(self):
"""getRadius() -> float
Return the radius of the sphere.
"""
return dGeomSphereGetRadius(self.gid)
def pointDepth(self, p):
"""pointDepth(p) -> float
Return the depth of the point p in the sphere. Points inside
the geom will have positive depth, points outside it will have
negative depth, and points on the surface will have zero
depth.
@param p: Point
@type p: 3-sequence of floats
"""
return dGeomSpherePointDepth(self.gid, p[0], p[1], p[2])
# GeomBox
cdef class GeomBox(GeomObject):
"""Box geometry.
This class represents a box centered at the origin.
Constructor::
GeomBox(space=None, lengths=(1.0, 1.0, 1.0))
"""
def __cinit__(self, space=None, lengths=(1.0, 1.0, 1.0)):
cdef SpaceBase sp
cdef dSpaceID sid
sid = NULL
if space != None:
sp = space
sid = sp.sid
self.gid = dCreateBox(sid, lengths[0], lengths[1], lengths[2])
# if space != None:
# space._addgeom(self)
_geom_c2py_lut[<long>self.gid] = self
def __init__(self, space=None, lengths=(1.0, 1.0, 1.0)):
self.space = space
self.body = None
def placeable(self):
return True
def _id(self):
cdef long id
id = <long>self.gid
return id
def setLengths(self, lengths):
dGeomBoxSetLengths(self.gid, lengths[0], lengths[1], lengths[2])
def getLengths(self):
cdef dVector3 res
dGeomBoxGetLengths(self.gid, res)
return res[0], res[1], res[2]
def pointDepth(self, p):
"""pointDepth(p) -> float
Return the depth of the point p in the box. Points inside the
geom will have positive depth, points outside it will have
negative depth, and points on the surface will have zero
depth.
@param p: Point
@type p: 3-sequence of floats
"""
return dGeomBoxPointDepth(self.gid, p[0], p[1], p[2])
# GeomPlane
cdef class GeomPlane(GeomObject):
"""Plane geometry.
This class represents an infinite plane. The plane equation is:
n.x*x + n.y*y + n.z*z = dist
This object can't be attached to a body.
If you call getBody() on this object it always returns ode.environment.
Constructor::
GeomPlane(space=None, normal=(0,0,1), dist=0)
"""
def __cinit__(self, space=None, normal=(0, 0, 1), dist=0):
cdef SpaceBase sp
cdef dSpaceID sid
sid = NULL
if space != None:
sp = space
sid = sp.sid
self.gid = dCreatePlane(sid, normal[0], normal[1], normal[2], dist)
# if space != None:
# space._addgeom(self)
_geom_c2py_lut[<long>self.gid] = self
def __init__(self, space=None, normal=(0, 0, 1), dist=0):
self.space = space
def _id(self):
cdef long id
id = <long>self.gid
return id
def setParams(self, normal, dist):
dGeomPlaneSetParams(self.gid, normal[0], normal[1], normal[2], dist)
def getParams(self):
cdef dVector4 res
dGeomPlaneGetParams(self.gid, res)
return ((res[0], res[1], res[2]), res[3])
def pointDepth(self, p):
"""pointDepth(p) -> float
Return the depth of the point p in the plane. Points inside the
geom will have positive depth, points outside it will have
negative depth, and points on the surface will have zero
depth.
@param p: Point
@type p: 3-sequence of floats
"""
return dGeomPlanePointDepth(self.gid, p[0], p[1], p[2])
# GeomCapsule
cdef class GeomCapsule(GeomObject):
"""Capped cylinder geometry.
This class represents a capped cylinder aligned along the local Z axis
and centered at the origin.
Constructor::
GeomCapsule(space=None, radius=0.5, length=1.0)
The length parameter does not include the caps.
"""
def __cinit__(self, space=None, radius=0.5, length=1.0):
cdef SpaceBase sp
cdef dSpaceID sid
sid = NULL
if space != None:
sp = space
sid = sp.sid
self.gid = dCreateCapsule(sid, radius, length)
# if space != None:
# space._addgeom(self)
_geom_c2py_lut[<long>self.gid] = self
def __init__(self, space=None, radius=0.5, length=1.0):
self.space = space
self.body = None
def placeable(self):
return True
def _id(self):
cdef long id
id = <long>self.gid
return id
def setParams(self, radius, length):
dGeomCapsuleSetParams(self.gid, radius, length)
def getParams(self):
cdef dReal radius, length
dGeomCapsuleGetParams(self.gid, &radius, &length)
return radius, length
def pointDepth(self, p):
"""pointDepth(p) -> float
Return the depth of the point p in the cylinder. Points inside the
geom will have positive depth, points outside it will have
negative depth, and points on the surface will have zero
depth.
@param p: Point
@type p: 3-sequence of floats
"""
return dGeomCapsulePointDepth(self.gid, p[0], p[1], p[2])
GeomCCylinder = GeomCapsule # backwards compatibility
# GeomCylinder
cdef class GeomCylinder(GeomObject):
"""Plain cylinder geometry.
This class represents an uncapped cylinder aligned along the local Z axis
and centered at the origin.
Constructor::
GeomCylinder(space=None, radius=0.5, length=1.0)
"""
def __cinit__(self, space=None, radius=0.5, length=1.0):
cdef SpaceBase sp
cdef dSpaceID sid
sid = NULL
if space != None:
sp = space
sid = sp.sid
self.gid = dCreateCylinder(sid, radius, length)
# if space != None:
# space._addgeom(self)
_geom_c2py_lut[<long>self.gid] = self
def __init__(self, space=None, radius=0.5, length=1.0):
self.space = space
self.body = None
def placeable(self):
return True
def _id(self):
cdef long id
id = <long>self.gid
return id
def setParams(self, radius, length):
dGeomCylinderSetParams(self.gid, radius, length)
def getParams(self):
cdef dReal radius, length
dGeomCylinderGetParams(self.gid, &radius, &length)
return radius, length
## dGeomCylinderPointDepth not implemented upstream in ODE 0.7
# GeomRay
cdef class GeomRay(GeomObject):
"""Ray object.
A ray is different from all the other geom classes in that it does
not represent a solid object. It is an infinitely thin line that
starts from the geom's position and extends in the direction of
the geom's local Z-axis.
Constructor::
GeomRay(space=None, rlen=1.0)
"""
def __cinit__(self, space=None, rlen=1.0):
cdef SpaceBase sp
cdef dSpaceID sid
sid = NULL
if space != None:
sp = space
sid = sp.sid
self.gid = dCreateRay(sid, rlen)
# if space != None:
# space._addgeom(self)
_geom_c2py_lut[<long>self.gid] = self
def __init__(self, space=None, rlen=1.0):
self.space = space
self.body = None
def _id(self):
cdef long id
id = <long>self.gid
return id
def placeable(self):
return True
def setLength(self, rlen):
'''setLength(rlen)
Set length of the ray.
@param rlen: length of the ray
@type rlen: float'''
dGeomRaySetLength(self.gid, rlen)
def getLength(self):
'''getLength() -> length
Get the length of the ray.
@returns: length of the ray (float)'''
return dGeomRayGetLength(self.gid)
def set(self, p, u):
'''set(p, u)
Set the position and rotation of a ray.
@param p: position
@type p: 3-sequence of floats
@param u: rotation
@type u: 3-sequence of floats'''
dGeomRaySet(self.gid, p[0], p[1], p[2], u[0], u[1], u[2])
def get(self):
'''get() -> ((p[0], p[1], p[2]), (u[0], u[1], u[2]))
Return the position and rotation as a pair of
tuples.
@returns: position and rotation'''
cdef dVector3 start
cdef dVector3 dir
dGeomRayGet(self.gid, start, dir)
return (start[0], start[1], start[2]), (dir[0], dir[1], dir[2])
# GeomTransform
cdef class GeomTransform(GeomObject):
"""GeomTransform.
A geometry transform "T" is a geom that encapsulates another geom
"E", allowing E to be positioned and rotated arbitrarily with
respect to its point of reference.
Constructor::
GeomTransform(space=None)
"""
cdef object geom
def __cinit__(self, space=None):
cdef SpaceBase sp
cdef dSpaceID sid
sid = NULL
if space != None:
sp = space
sid = sp.sid
self.gid = dCreateGeomTransform(sid)
# Set cleanup mode to 0 as a contained geom will be deleted
# by its Python wrapper class
dGeomTransformSetCleanup(self.gid, 0)
# if space != None:
# space._addgeom(self)
_geom_c2py_lut[<long>self.gid] = self
def __init__(self, space=None):
self.space = space
self.body = None
self.geom = None
self.attribs = {}
def placeable(self):
return True
def _id(self):
cdef long id
id = <long>self.gid
return id
def setGeom(self, GeomObject geom not None):
"""setGeom(geom)
Set the geom that the geometry transform encapsulates.
A ValueError exception is thrown if a) the geom is not placeable,
b) the geom was already inserted into a space or c) the geom is
already associated with a body.
@param geom: Geom object to encapsulate
@type geom: GeomObject
"""
cdef long id
if not geom.placeable():
raise ValueError(
"Only placeable geoms can be encapsulated by a GeomTransform")
if dGeomGetSpace(geom.gid) != <dSpaceID>0:
raise ValueError(
"The encapsulated geom was already inserted into a space")
if dGeomGetBody(geom.gid) != <dBodyID>0:
raise ValueError(
"The encapsulated geom is already associated with a body")
id = geom._id()
dGeomTransformSetGeom(self.gid, <dGeomID>id)
self.geom = geom
def getGeom(self):
"""getGeom() -> GeomObject
Get the geom that the geometry transform encapsulates.
"""
return self.geom
def setInfo(self, int mode):
"""setInfo(mode)
Set the "information" mode of the geometry transform.
With mode 0, when a transform object is collided with another
object, the geom field of the ContactGeom structure is set to the
geom that is encapsulated by the transform object.
With mode 1, the geom field of the ContactGeom structure is set
to the transform object itself.
@param mode: Information mode (0 or 1)
@type mode: int
"""
if mode < 0 or mode > 1:
raise ValueError(
"Invalid information mode (%d). Must be either 0 or 1." % mode)
dGeomTransformSetInfo(self.gid, mode)
def getInfo(self):
"""getInfo() -> int
Get the "information" mode of the geometry transform (0 or 1).
With mode 0, when a transform object is collided with another
object, the geom field of the ContactGeom structure is set to the
geom that is encapsulated by the transform object.
With mode 1, the geom field of the ContactGeom structure is set
to the transform object itself.
"""
return dGeomTransformGetInfo(self.gid)
######################################################################
cdef class TriMeshData:
"""This class stores the mesh data.
"""
cdef dTriMeshDataID tmdid
cdef dReal* vertex_buffer
cdef int* face_buffer
def __cinit__(self):
self.tmdid = dGeomTriMeshDataCreate()
self.vertex_buffer = NULL
self.face_buffer = NULL
def __dealloc__(self):
if self.tmdid != NULL:
dGeomTriMeshDataDestroy(self.tmdid)
if self.vertex_buffer != NULL:
free(self.vertex_buffer)
if self.face_buffer != NULL:
free(self.face_buffer)
def build(self, verts, faces):
"""build(verts, faces)
@param verts: Vertices
@type verts: Sequence of 3-sequences of floats
@param faces: Face definitions (three indices per face)
@type faces: Sequence of 3-sequences of ints
"""
cdef int numverts
cdef int numfaces
cdef dReal* vp
cdef int* fp
cdef int a, b, c
numverts = len(verts)
numfaces = len(faces)
# Allocate the vertex and face buffer
self.vertex_buffer = <dReal*>malloc(numverts * 4 * sizeof(dReal))
self.face_buffer = <int*>malloc(numfaces * 3 * sizeof(int))
# Fill the vertex buffer
vp = self.vertex_buffer
for v in verts:
vp[0] = v[0]
vp[1] = v[1]
vp[2] = v[2]
vp[3] = 0
vp = vp + 4
# Fill the face buffer
fp = self.face_buffer
for f in faces:
a = f[0]
b = f[1]
c = f[2]
if (a < 0 or b < 0 or c < 0 or a >= numverts or b >= numverts or c >= numverts):
raise ValueError("Vertex index out of range")
fp[0] = a
fp[1] = b
fp[2] = c
fp = fp + 3
# Pass the data to ODE
dGeomTriMeshDataBuildSimple(self.tmdid, self.vertex_buffer, numverts,
self.face_buffer, numfaces * 3)
######################################################################
# GeomTriMesh
cdef class GeomTriMesh(GeomObject):
"""TriMesh object.
To construct the trimesh geom you need a TriMeshData object that
stores the actual mesh. This object has to be passed as first
argument to the constructor.
Constructor::
GeomTriMesh(data, space=None)
"""
# Keep a reference to the data
cdef TriMeshData data
def __cinit__(self, TriMeshData data not None, space=None):
cdef SpaceBase sp
cdef dSpaceID sid
self.data = data
sid = NULL
if space != None:
sp = space
sid = sp.sid
self.gid = dCreateTriMesh(sid, data.tmdid, NULL, NULL, NULL)
_geom_c2py_lut[<long>self.gid] = self
def __init__(self, TriMeshData data not None, space=None):
self.space = space
self.body = None
def placeable(self):
return True
def _id(self):
cdef long id
id = <long>self.gid
return id
def clearTCCache(self):
"""clearTCCache()
Clears the internal temporal coherence caches.
"""
dGeomTriMeshClearTCCache(self.gid)
def getTriangle(self, int idx):
"""getTriangle(idx) -> (v0, v1, v2)
@param idx: Triangle index
@type idx: int
"""
cdef dVector3 v0, v1, v2
cdef dVector3* vp0
cdef dVector3* vp1
cdef dVector3* vp2
vp0 = <dVector3*>v0
vp1 = <dVector3*>v1
vp2 = <dVector3*>v2
dGeomTriMeshGetTriangle(self.gid, idx, vp0, vp1, vp2)
return ((v0[0], v0[1], v0[2]),
(v1[0], v1[1], v1[2]),
(v2[0], v2[1], v2[2]))
def getTriangleCount(self):
"""getTriangleCount() -> n
Returns the number of triangles in the TriMesh."""
return dGeomTriMeshGetTriangleCount(self.gid)
######################################################################
def collide(geom1, geom2):
"""collide(geom1, geom2) -> contacts
Generate contact information for two objects.
Given two geometry objects that potentially touch (geom1 and geom2),
generate contact information for them. Internally, this just calls
the correct class-specific collision functions for geom1 and geom2.
[flags specifies how contacts should be generated if the objects
touch. Currently the lower 16 bits of flags specifies the maximum
number of contact points to generate. If this number is zero, this
function just pretends that it is one - in other words you can not
ask for zero contacts. All other bits in flags must be zero. In
the future the other bits may be used to select other contact
generation strategies.]
If the objects touch, this returns a list of Contact objects,
otherwise it returns an empty list.
@param geom1: First Geom
@type geom1: GeomObject
@param geom2: Second Geom
@type geom2: GeomObject
@returns: Returns a list of Contact objects.
"""
cdef dContactGeom c[150]
cdef long id1
cdef long id2
cdef int i, n
cdef Contact cont
id1 = geom1._id()
id2 = geom2._id()
n = dCollide(<dGeomID>id1, <dGeomID>id2, 150, c, sizeof(dContactGeom))
res = []
i = 0
while i < n:
cont = Contact()
cont._contact.geom = c[i]
res.append(cont)
i = i + 1
return res
def collide2(geom1, geom2, arg, callback):
"""collide2(geom1, geom2, arg, callback)
Calls the callback for all potentially intersecting pairs that contain
one geom from geom1 and one geom from geom2.
@param geom1: First Geom
@type geom1: GeomObject
@param geom2: Second Geom
@type geom2: GeomObject
@param arg: A user argument that is passed to the callback function
@param callback: Callback function
@type callback: callable
"""
cdef void* data
cdef object tup
cdef long id1
cdef long id2
id1 = geom1._id()
id2 = geom2._id()
tup = (callback, arg)
data = <void*>tup
# collide_callback is defined in space.pyx
dSpaceCollide2(<dGeomID>id1, <dGeomID>id2, data, collide_callback)
def areConnected(Body body1, Body body2):
"""areConnected(body1, body2) -> bool
Return True if the two bodies are connected together by a joint,
otherwise return False.
@param body1: First body
@type body1: Body
@param body2: Second body
@type body2: Body
@returns: True if the bodies are connected
"""
if body1 is environment:
return False
if body2 is environment:
return False
return bool(dAreConnected(<dBodyID> body1.bid, <dBodyID> body2.bid))
def CloseODE():
"""CloseODE()
Deallocate some extra memory used by ODE that can not be deallocated
using the normal destroy functions.
"""
dCloseODE()
def InitODE():
'''InitODE()
Initialize some ODE internals. This will be called for you when you
"import ode", but you should call this again if you CloseODE().'''
dInitODE()
#environment = Body(None)
environment = None
InitODE()
|