1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* OPCODE - Optimized Collision Detection
* Copyright (C) 2001 Pierre Terdiman
* Homepage: http://www.codercorner.com/Opcode.htm
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains code for hybrid models.
* \file OPC_HybridModel.cpp
* \author Pierre Terdiman
* \date May, 18, 2003
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* An hybrid collision model.
*
* The problem :
*
* Opcode really shines for mesh-mesh collision, especially when meshes are deeply overlapping
* (it typically outperforms RAPID in those cases).
*
* Unfortunately this is not the typical scenario in games.
*
* For close-proximity cases, especially for volume-mesh queries, it's relatively easy to run faster
* than Opcode, that suffers from a relatively high setup time.
*
* In particular, Opcode's "vanilla" trees in those cases -can- run faster. They can also use -less-
* memory than the optimized ones, when you let the system stop at ~10 triangles / leaf for example
* (i.e. when you don't use "complete" trees). However, those trees tend to fragment memory quite a
* lot, increasing cache misses : since they're not "complete", we can't predict the final number of
* nodes and we have to allocate nodes on-the-fly. For the same reasons we can't use Opcode's "optimized"
* trees here, since they rely on a known layout to perform the "optimization".
*
* Hybrid trees :
*
* Hybrid trees try to combine best of both worlds :
*
* - they use a maximum limit of 16 triangles/leaf. "16" is used so that we'll be able to save the
* number of triangles using 4 bits only.
*
* - they're still "complete" trees thanks to a two-passes building phase. First we create a "vanilla"
* AABB-tree with Opcode, limited to 16 triangles/leaf. Then we create a *second* vanilla tree, this
* time using the leaves of the first one. The trick is : this second tree is now "complete"... so we
* can further transform it into an Opcode's optimized tree.
*
* - then we run the collision queries on that standard Opcode tree. The only difference is that leaf
* nodes contain indices to leaf nodes of another tree. Also, we have to skip all primitive tests in
* Opcode optimized trees, since our leaves don't contain triangles anymore.
*
* - finally, for each collided leaf, we simply loop through 16 triangles max, and collide them with
* the bounding volume used in the query (we only support volume-vs-mesh queries here, not mesh-vs-mesh)
*
* All of that is wrapped in this "hybrid model" that contains the minimal data required for this to work.
* It's a mix between old "vanilla" trees, and old "optimized" trees.
*
* Extra advantages:
*
* - If we use them for dynamic models, we're left with a very small number of leaf nodes to refit. It
* might be a bit faster since we have less nodes to write back.
*
* - In rigid body simulation, using temporal coherence and sleeping objects greatly reduce the actual
* influence of one tree over another (i.e. the speed difference is often invisible). So memory is really
* the key element to consider, and in this regard hybrid trees are just better.
*
* Information to take home:
* - they use less ram
* - they're not slower (they're faster or slower depending on cases, overall there's no significant
* difference *as long as objects don't interpenetrate too much* - in which case Opcode's optimized trees
* are still notably faster)
*
* \class HybridModel
* \author Pierre Terdiman
* \version 1.3
* \date May, 18, 2003
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Precompiled Header
#include "Stdafx.h"
using namespace Opcode;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Constructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
HybridModel::HybridModel() :
mNbLeaves (0),
mTriangles (null),
mNbPrimitives (0),
mIndices (null)
{
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Destructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
HybridModel::~HybridModel()
{
Release();
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Releases everything.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void HybridModel::Release()
{
ReleaseBase();
DELETEARRAY(mIndices);
DELETEARRAY(mTriangles);
mNbLeaves = 0;
mNbPrimitives = 0;
}
struct Internal
{
Internal()
{
mNbLeaves = 0;
mLeaves = null;
mTriangles = null;
mBase = null;
}
~Internal()
{
DELETEARRAY(mLeaves);
}
udword mNbLeaves;
AABB* mLeaves;
LeafTriangles* mTriangles;
const dTriIndex* mBase;
};
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Builds a collision model.
* \param create [in] model creation structure
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool HybridModel::Build(const OPCODECREATE& create)
{
// 1) Checkings
if(!create.mIMesh || !create.mIMesh->IsValid()) return false;
// Look for degenerate faces.
//udword NbDegenerate = create.mIMesh->CheckTopology();
//if(NbDegenerate) Log("OPCODE WARNING: found %d degenerate faces in model! Collision might report wrong results!\n", NbDegenerate);
// We continue nonetheless....
Release(); // Make sure previous tree has been discarded
// 1-1) Setup mesh interface automatically
SetMeshInterface(create.mIMesh);
bool Status = false;
AABBTree* LeafTree = null;
Internal Data;
// 2) Build a generic AABB Tree.
mSource = new AABBTree;
CHECKALLOC(mSource);
// 2-1) Setup a builder. Our primitives here are triangles from input mesh,
// so we use an AABBTreeOfTrianglesBuilder.....
{
AABBTreeOfTrianglesBuilder TB;
TB.mIMesh = create.mIMesh;
TB.mNbPrimitives = create.mIMesh->GetNbTriangles();
TB.mSettings = create.mSettings;
TB.mSettings.mLimit = 16; // ### Hardcoded, but maybe we could let the user choose 8 / 16 / 32 ...
if(!mSource->Build(&TB)) goto FreeAndExit;
}
// 2-2) Here's the trick : create *another* AABB tree using the leaves of the first one (which are boxes, this time)
struct Local
{
// A callback to count leaf nodes
static bool CountLeaves(const AABBTreeNode* current, udword /*depth*/, void* user_data)
{
if(current->IsLeaf())
{
Internal* Data = (Internal*)user_data;
Data->mNbLeaves++;
}
return true;
}
// A callback to setup leaf nodes in our internal structures
static bool SetupLeafData(const AABBTreeNode* current, udword /*depth*/, void* user_data)
{
if(current->IsLeaf())
{
Internal* Data = (Internal*)user_data;
// Get current leaf's box
Data->mLeaves[Data->mNbLeaves] = *current->GetAABB();
// Setup leaf data
udword Index = udword((size_t(current->GetPrimitives()) - size_t(Data->mBase)) / sizeof(udword));
Data->mTriangles[Data->mNbLeaves].SetData(current->GetNbPrimitives(), Index);
Data->mNbLeaves++;
}
return true;
}
};
// Walk the tree & count number of leaves
Data.mNbLeaves = 0;
mSource->Walk(Local::CountLeaves, &Data);
mNbLeaves = Data.mNbLeaves; // Keep track of it
// Special case for 1-leaf meshes
if(mNbLeaves==1)
{
mModelCode |= OPC_SINGLE_NODE;
Status = true;
goto FreeAndExit;
}
// Allocate our structures
Data.mLeaves = new AABB[Data.mNbLeaves]; CHECKALLOC(Data.mLeaves);
mTriangles = new LeafTriangles[Data.mNbLeaves]; CHECKALLOC(mTriangles);
// Walk the tree again & setup leaf data
Data.mTriangles = mTriangles;
Data.mBase = mSource->GetIndices();
Data.mNbLeaves = 0; // Reset for incoming walk
mSource->Walk(Local::SetupLeafData, &Data);
// Handle source indices
{
bool MustKeepIndices = true;
if(create.mCanRemap)
{
// We try to get rid of source indices (saving more ram!) by reorganizing triangle arrays...
// Remap can fail when we use callbacks => keep track of indices in that case (it still
// works, only using more memory)
if(create.mIMesh->RemapClient(mSource->GetNbPrimitives(), mSource->GetIndices()))
{
MustKeepIndices = false;
}
}
if(MustKeepIndices)
{
// Keep track of source indices (from vanilla tree)
mNbPrimitives = mSource->GetNbPrimitives();
mIndices = new udword[mNbPrimitives];
CopyMemory(mIndices, mSource->GetIndices(), mNbPrimitives*sizeof(udword));
}
}
// Now, create our optimized tree using previous leaf nodes
LeafTree = new AABBTree;
CHECKALLOC(LeafTree);
{
AABBTreeOfAABBsBuilder TB; // Now using boxes !
TB.mSettings = create.mSettings;
TB.mSettings.mLimit = 1; // We now want a complete tree so that we can "optimize" it
TB.mNbPrimitives = Data.mNbLeaves;
TB.mAABBArray = Data.mLeaves;
if(!LeafTree->Build(&TB)) goto FreeAndExit;
}
// 3) Create an optimized tree according to user-settings
if(!CreateTree(create.mNoLeaf, create.mQuantized)) goto FreeAndExit;
// 3-2) Create optimized tree
if(!mTree->Build(LeafTree)) goto FreeAndExit;
// Finally ok...
Status = true;
FreeAndExit: // Allow me this one...
DELETESINGLE(LeafTree);
// 3-3) Delete generic tree if needed
if(!create.mKeepOriginal) DELETESINGLE(mSource);
return Status;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Gets the number of bytes used by the tree.
* \return amount of bytes used
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
udword HybridModel::GetUsedBytes() const
{
udword UsedBytes = 0;
if(mTree) UsedBytes += mTree->GetUsedBytes();
if(mIndices) UsedBytes += mNbPrimitives * sizeof(udword); // mIndices
if(mTriangles) UsedBytes += mNbLeaves * sizeof(LeafTriangles); // mTriangles
return UsedBytes;
}
inline_ void ComputeMinMax(Point& min, Point& max, const VertexPointers& vp)
{
// Compute triangle's AABB = a leaf box
#ifdef OPC_USE_FCOMI // a 15% speedup on my machine, not much
min.x = FCMin3(vp.Vertex[0]->x, vp.Vertex[1]->x, vp.Vertex[2]->x);
max.x = FCMax3(vp.Vertex[0]->x, vp.Vertex[1]->x, vp.Vertex[2]->x);
min.y = FCMin3(vp.Vertex[0]->y, vp.Vertex[1]->y, vp.Vertex[2]->y);
max.y = FCMax3(vp.Vertex[0]->y, vp.Vertex[1]->y, vp.Vertex[2]->y);
min.z = FCMin3(vp.Vertex[0]->z, vp.Vertex[1]->z, vp.Vertex[2]->z);
max.z = FCMax3(vp.Vertex[0]->z, vp.Vertex[1]->z, vp.Vertex[2]->z);
#else
min = *vp.Vertex[0];
max = *vp.Vertex[0];
min.Min(*vp.Vertex[1]);
max.Max(*vp.Vertex[1]);
min.Min(*vp.Vertex[2]);
max.Max(*vp.Vertex[2]);
#endif
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Refits the collision model. This can be used to handle dynamic meshes. Usage is:
* 1. modify your mesh vertices (keep the topology constant!)
* 2. refit the tree (call this method)
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool HybridModel::Refit()
{
if(!mIMesh) return false;
if(!mTree) return false;
if(IsQuantized()) return false;
if(HasLeafNodes()) return false;
const LeafTriangles* LT = GetLeafTriangles();
const udword* Indices = GetIndices();
// Bottom-up update
VertexPointers VP;
ConversionArea VC;
Point Min,Max;
Point Min_,Max_;
udword Index = mTree->GetNbNodes();
AABBNoLeafNode* Nodes = const_cast<AABBNoLeafNode *>(static_cast<const AABBNoLeafNode *>(static_cast<AABBNoLeafTree *>(mTree)->GetNodes()));
while(Index--)
{
AABBNoLeafNode& Current = Nodes[Index];
if(Current.HasPosLeaf())
{
const LeafTriangles& CurrentLeaf = LT[Current.GetPosPrimitive()];
Min.SetPlusInfinity();
Max.SetMinusInfinity();
Point TmpMin, TmpMax;
// Each leaf box has a set of triangles
udword NbTris = CurrentLeaf.GetNbTriangles();
if(Indices)
{
const udword* T = &Indices[CurrentLeaf.GetTriangleIndex()];
// Loop through triangles and test each of them
while(NbTris--)
{
mIMesh->GetTriangle(VP, *T++, VC);
ComputeMinMax(TmpMin, TmpMax, VP);
Min.Min(TmpMin);
Max.Max(TmpMax);
}
}
else
{
udword BaseIndex = CurrentLeaf.GetTriangleIndex();
// Loop through triangles and test each of them
while(NbTris--)
{
mIMesh->GetTriangle(VP, BaseIndex++, VC);
ComputeMinMax(TmpMin, TmpMax, VP);
Min.Min(TmpMin);
Max.Max(TmpMax);
}
}
}
else
{
const CollisionAABB& CurrentBox = Current.GetPos()->mAABB;
CurrentBox.GetMin(Min);
CurrentBox.GetMax(Max);
}
if(Current.HasNegLeaf())
{
const LeafTriangles& CurrentLeaf = LT[Current.GetNegPrimitive()];
Min_.SetPlusInfinity();
Max_.SetMinusInfinity();
Point TmpMin, TmpMax;
// Each leaf box has a set of triangles
udword NbTris = CurrentLeaf.GetNbTriangles();
if(Indices)
{
const udword* T = &Indices[CurrentLeaf.GetTriangleIndex()];
// Loop through triangles and test each of them
while(NbTris--)
{
mIMesh->GetTriangle(VP, *T++, VC);
ComputeMinMax(TmpMin, TmpMax, VP);
Min_.Min(TmpMin);
Max_.Max(TmpMax);
}
}
else
{
udword BaseIndex = CurrentLeaf.GetTriangleIndex();
// Loop through triangles and test each of them
while(NbTris--)
{
mIMesh->GetTriangle(VP, BaseIndex++, VC);
ComputeMinMax(TmpMin, TmpMax, VP);
Min_.Min(TmpMin);
Max_.Max(TmpMax);
}
}
}
else
{
const CollisionAABB& CurrentBox = Current.GetNeg()->mAABB;
CurrentBox.GetMin(Min_);
CurrentBox.GetMax(Max_);
}
#ifdef OPC_USE_FCOMI
Min.x = FCMin2(Min.x, Min_.x);
Max.x = FCMax2(Max.x, Max_.x);
Min.y = FCMin2(Min.y, Min_.y);
Max.y = FCMax2(Max.y, Max_.y);
Min.z = FCMin2(Min.z, Min_.z);
Max.z = FCMax2(Max.z, Max_.z);
#else
Min.Min(Min_);
Max.Max(Max_);
#endif
Current.mAABB.SetMinMax(Min, Max);
}
return true;
}
|