1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* OPCODE - Optimized Collision Detection
* Copyright (C) 2001 Pierre Terdiman
* Homepage: http://www.codercorner.com/Opcode.htm
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains code for optimized trees. Implements 4 trees:
* - normal
* - no leaf
* - quantized
* - no leaf / quantized
*
* \file OPC_OptimizedTree.cpp
* \author Pierre Terdiman
* \date March, 20, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* A standard AABB tree.
*
* \class AABBCollisionTree
* \author Pierre Terdiman
* \version 1.3
* \date March, 20, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* A no-leaf AABB tree.
*
* \class AABBNoLeafTree
* \author Pierre Terdiman
* \version 1.3
* \date March, 20, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* A quantized AABB tree.
*
* \class AABBQuantizedTree
* \author Pierre Terdiman
* \version 1.3
* \date March, 20, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* A quantized no-leaf AABB tree.
*
* \class AABBQuantizedNoLeafTree
* \author Pierre Terdiman
* \version 1.3
* \date March, 20, 2001
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Precompiled Header
#include "Stdafx.h"
using namespace Opcode;
//! Compilation flag:
//! - true to fix quantized boxes (i.e. make sure they enclose the original ones)
//! - false to see the effects of quantization errors (faster, but wrong results in some cases)
static const bool gFixQuantized = true;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Builds an implicit tree from a standard one. An implicit tree is a complete tree (2*N-1 nodes) whose negative
* box pointers and primitive pointers have been made implicit, hence packing 3 pointers in one.
*
* Layout for implicit trees:
* Node:
* - box
* - data (32-bits value)
*
* if data's LSB = 1 => remaining bits are a primitive pointer
* else remaining bits are a P-node pointer, and N = P + 1
*
* \relates AABBCollisionNode
* \fn _BuildCollisionTree(AABBCollisionNode* linear, const udword box_id, udword& current_id, const AABBTreeNode* current_node)
* \param linear [in] base address of destination nodes
* \param box_id [in] index of destination node
* \param current_id [in] current running index
* \param current_node [in] current node from input tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
static void _BuildCollisionTree(AABBCollisionNode* linear, const udword box_id, udword& current_id, const AABBTreeNode* current_node)
{
// Current node from input tree is "current_node". Must be flattened into "linear[boxid]".
// Store the AABB
current_node->GetAABB()->GetCenter(linear[box_id].mAABB.mCenter);
current_node->GetAABB()->GetExtents(linear[box_id].mAABB.mExtents);
// Store remaining info
if(current_node->IsLeaf())
{
// The input tree must be complete => i.e. one primitive/leaf
ASSERT(current_node->GetNbPrimitives()==1);
// Get the primitive index from the input tree
udword PrimitiveIndex = current_node->GetPrimitives()[0];
// Setup box data as the primitive index, marked as leaf
linear[box_id].mData = (PrimitiveIndex<<1)|1;
}
else
{
// To make the negative one implicit, we must store P and N in successive order
udword PosID = current_id++; // Get a new id for positive child
udword NegID = current_id++; // Get a new id for negative child
// Setup box data as the forthcoming new P pointer
linear[box_id].mData = (size_t)&linear[PosID];
// Make sure it's not marked as leaf
ASSERT(!(linear[box_id].mData&1));
// Recurse with new IDs
_BuildCollisionTree(linear, PosID, current_id, current_node->GetPos());
_BuildCollisionTree(linear, NegID, current_id, current_node->GetNeg());
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Builds a "no-leaf" tree from a standard one. This is a tree whose leaf nodes have been removed.
*
* Layout for no-leaf trees:
*
* Node:
* - box
* - P pointer => a node (LSB=0) or a primitive (LSB=1)
* - N pointer => a node (LSB=0) or a primitive (LSB=1)
*
* \relates AABBNoLeafNode
* \fn _BuildNoLeafTree(AABBNoLeafNode* linear, const udword box_id, udword& current_id, const AABBTreeNode* current_node)
* \param linear [in] base address of destination nodes
* \param box_id [in] index of destination node
* \param current_id [in] current running index
* \param current_node [in] current node from input tree
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
static void _BuildNoLeafTree(AABBNoLeafNode* linear, const udword box_id, udword& current_id, const AABBTreeNode* current_node)
{
const AABBTreeNode* P = current_node->GetPos();
const AABBTreeNode* N = current_node->GetNeg();
// Leaf nodes here?!
ASSERT(P);
ASSERT(N);
// Internal node => keep the box
current_node->GetAABB()->GetCenter(linear[box_id].mAABB.mCenter);
current_node->GetAABB()->GetExtents(linear[box_id].mAABB.mExtents);
if(P->IsLeaf())
{
// The input tree must be complete => i.e. one primitive/leaf
ASSERT(P->GetNbPrimitives()==1);
// Get the primitive index from the input tree
udword PrimitiveIndex = P->GetPrimitives()[0];
// Setup prev box data as the primitive index, marked as leaf
linear[box_id].mPosData = (PrimitiveIndex<<1)|1;
}
else
{
// Get a new id for positive child
udword PosID = current_id++;
// Setup box data
linear[box_id].mPosData = (size_t)&linear[PosID];
// Make sure it's not marked as leaf
ASSERT(!(linear[box_id].mPosData&1));
// Recurse
_BuildNoLeafTree(linear, PosID, current_id, P);
}
if(N->IsLeaf())
{
// The input tree must be complete => i.e. one primitive/leaf
ASSERT(N->GetNbPrimitives()==1);
// Get the primitive index from the input tree
udword PrimitiveIndex = N->GetPrimitives()[0];
// Setup prev box data as the primitive index, marked as leaf
linear[box_id].mNegData = (PrimitiveIndex<<1)|1;
}
else
{
// Get a new id for negative child
udword NegID = current_id++;
// Setup box data
linear[box_id].mNegData = (size_t)&linear[NegID];
// Make sure it's not marked as leaf
ASSERT(!(linear[box_id].mNegData&1));
// Recurse
_BuildNoLeafTree(linear, NegID, current_id, N);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Constructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
AABBCollisionTree::AABBCollisionTree() : mNodes(null)
{
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Destructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
AABBCollisionTree::~AABBCollisionTree()
{
DELETEARRAY(mNodes);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Builds the collision tree from a generic AABB tree.
* \param tree [in] generic AABB tree
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBCollisionTree::Build(AABBTree* tree)
{
// Checkings
if(!tree) return false;
// Check the input tree is complete
udword NbTriangles = tree->GetNbPrimitives();
udword NbNodes = tree->GetNbNodes();
if(NbNodes!=NbTriangles*2-1) return false;
// Get nodes
if(mNbNodes!=NbNodes) // Same number of nodes => keep moving
{
mNbNodes = NbNodes;
DELETEARRAY(mNodes);
mNodes = new AABBCollisionNode[NbNodes];
CHECKALLOC(mNodes);
}
// Build the tree
udword CurID = 1;
_BuildCollisionTree(mNodes, 0, CurID, tree);
ASSERT(CurID==NbNodes);
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Refits the collision tree after vertices have been modified.
* \param mesh_interface [in] mesh interface for current model
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBCollisionTree::Refit(const MeshInterface* /*mesh_interface*/)
{
ASSERT(!"Not implemented since AABBCollisionTrees have twice as more nodes to refit as AABBNoLeafTrees!");
return false;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Walks the tree and call the user back for each node.
* \param callback [in] walking callback
* \param user_data [in] callback's user data
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBCollisionTree::Walk(GenericWalkingCallback callback, void* user_data) const
{
if(!callback) return false;
struct Local
{
static void _Walk(const AABBCollisionNode* current_node, GenericWalkingCallback callback, void* user_data)
{
if(!current_node || !(callback)(current_node, user_data)) return;
if(!current_node->IsLeaf())
{
_Walk(current_node->GetPos(), callback, user_data);
_Walk(current_node->GetNeg(), callback, user_data);
}
}
};
Local::_Walk(mNodes, callback, user_data);
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Constructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
AABBNoLeafTree::AABBNoLeafTree() : mNodes(null)
{
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Destructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
AABBNoLeafTree::~AABBNoLeafTree()
{
DELETEARRAY(mNodes);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Builds the collision tree from a generic AABB tree.
* \param tree [in] generic AABB tree
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBNoLeafTree::Build(AABBTree* tree)
{
// Checkings
if(!tree) return false;
// Check the input tree is complete
udword NbTriangles = tree->GetNbPrimitives();
udword NbExistingNodes = tree->GetNbNodes();
if(NbExistingNodes!=NbTriangles*2-1) return false;
udword NbNodes = NbTriangles-1;
// Get nodes
if(mNbNodes!=NbNodes) // Same number of nodes => keep moving
{
mNbNodes = NbNodes;
DELETEARRAY(mNodes);
mNodes = new AABBNoLeafNode[NbNodes];
CHECKALLOC(mNodes);
}
// Build the tree
udword CurID = 1;
_BuildNoLeafTree(mNodes, 0, CurID, tree);
ASSERT(CurID==NbNodes);
return true;
}
inline_ void ComputeMinMax(Point& min, Point& max, const VertexPointers& vp)
{
// Compute triangle's AABB = a leaf box
#ifdef OPC_USE_FCOMI // a 15% speedup on my machine, not much
min.x = FCMin3(vp.Vertex[0]->x, vp.Vertex[1]->x, vp.Vertex[2]->x);
max.x = FCMax3(vp.Vertex[0]->x, vp.Vertex[1]->x, vp.Vertex[2]->x);
min.y = FCMin3(vp.Vertex[0]->y, vp.Vertex[1]->y, vp.Vertex[2]->y);
max.y = FCMax3(vp.Vertex[0]->y, vp.Vertex[1]->y, vp.Vertex[2]->y);
min.z = FCMin3(vp.Vertex[0]->z, vp.Vertex[1]->z, vp.Vertex[2]->z);
max.z = FCMax3(vp.Vertex[0]->z, vp.Vertex[1]->z, vp.Vertex[2]->z);
#else
min = *vp.Vertex[0];
max = *vp.Vertex[0];
min.Min(*vp.Vertex[1]);
max.Max(*vp.Vertex[1]);
min.Min(*vp.Vertex[2]);
max.Max(*vp.Vertex[2]);
#endif
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Refits the collision tree after vertices have been modified.
* \param mesh_interface [in] mesh interface for current model
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBNoLeafTree::Refit(const MeshInterface* mesh_interface)
{
// Checkings
if(!mesh_interface) return false;
// Bottom-up update
VertexPointers VP;
ConversionArea VC;
Point Min,Max;
Point Min_,Max_;
udword Index = mNbNodes;
while(Index--)
{
AABBNoLeafNode& Current = mNodes[Index];
if(Current.HasPosLeaf())
{
mesh_interface->GetTriangle(VP, Current.GetPosPrimitive(), VC);
ComputeMinMax(Min, Max, VP);
}
else
{
const CollisionAABB& CurrentBox = Current.GetPos()->mAABB;
CurrentBox.GetMin(Min);
CurrentBox.GetMax(Max);
}
if(Current.HasNegLeaf())
{
mesh_interface->GetTriangle(VP, Current.GetNegPrimitive(), VC);
ComputeMinMax(Min_, Max_, VP);
}
else
{
const CollisionAABB& CurrentBox = Current.GetNeg()->mAABB;
CurrentBox.GetMin(Min_);
CurrentBox.GetMax(Max_);
}
#ifdef OPC_USE_FCOMI
Min.x = FCMin2(Min.x, Min_.x);
Max.x = FCMax2(Max.x, Max_.x);
Min.y = FCMin2(Min.y, Min_.y);
Max.y = FCMax2(Max.y, Max_.y);
Min.z = FCMin2(Min.z, Min_.z);
Max.z = FCMax2(Max.z, Max_.z);
#else
Min.Min(Min_);
Max.Max(Max_);
#endif
Current.mAABB.SetMinMax(Min, Max);
}
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Walks the tree and call the user back for each node.
* \param callback [in] walking callback
* \param user_data [in] callback's user data
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBNoLeafTree::Walk(GenericWalkingCallback callback, void* user_data) const
{
if(!callback) return false;
struct Local
{
static void _Walk(const AABBNoLeafNode* current_node, GenericWalkingCallback callback, void* user_data)
{
if(!current_node || !(callback)(current_node, user_data)) return;
if(!current_node->HasPosLeaf()) _Walk(current_node->GetPos(), callback, user_data);
if(!current_node->HasNegLeaf()) _Walk(current_node->GetNeg(), callback, user_data);
}
};
Local::_Walk(mNodes, callback, user_data);
return true;
}
// Quantization notes:
// - We could use the highest bits of mData to store some more quantized bits. Dequantization code
// would be slightly more complex, but number of overlap tests would be reduced (and anyhow those
// bits are currently wasted). Of course it's not possible if we move to 16 bits mData.
// - Something like "16 bits floats" could be tested, to bypass the int-to-float conversion.
// - A dedicated BV-BV test could be used, dequantizing while testing for overlap. (i.e. it's some
// lazy-dequantization which may save some work in case of early exits). At the very least some
// muls could be saved by precomputing several more matrices. But maybe not worth the pain.
// - Do we need to dequantize anyway? Not doing the extents-related muls only implies the box has
// been scaled, for example.
// - The deeper we move into the hierarchy, the smaller the extents should be. May not need a fixed
// number of quantization bits. Even better, could probably be best delta-encoded.
// Find max values. Some people asked why I wasn't simply using the first node. Well, I can't.
// I'm not looking for (min, max) values like in a standard AABB, I'm looking for the extremal
// centers/extents in order to quantize them. The first node would only give a single center and
// a single extents. While extents would be the biggest, the center wouldn't.
#define FIND_MAX_VALUES \
/* Get max values */ \
Point CMax(MIN_FLOAT, MIN_FLOAT, MIN_FLOAT); \
Point EMax(MIN_FLOAT, MIN_FLOAT, MIN_FLOAT); \
const udword NbNodes = mNbNodes; \
for(udword i=0;i<NbNodes;i++) \
{ \
float cx = fabsf(Nodes[i].mAABB.mCenter.x); if(cx>CMax.x) CMax.x = cx; \
float cy = fabsf(Nodes[i].mAABB.mCenter.y); if(cy>CMax.y) CMax.y = cy; \
float cz = fabsf(Nodes[i].mAABB.mCenter.z); if(cz>CMax.z) CMax.z = cz; \
float ex = fabsf(Nodes[i].mAABB.mExtents.x); if(ex>EMax.x) EMax.x = ex; \
float ey = fabsf(Nodes[i].mAABB.mExtents.y); if(ey>EMax.y) EMax.y = ey; \
float ez = fabsf(Nodes[i].mAABB.mExtents.z); if(ez>EMax.z) EMax.z = ez; \
}
#define INIT_QUANTIZATION \
udword nbc=15; /* Keep one bit for sign */ \
udword nbe=15; /* Keep one bit for fix */ \
if(!gFixQuantized) nbe++; \
\
/* Compute quantization coeffs */ \
Point CQuantCoeff, EQuantCoeff; \
CQuantCoeff.x = CMax.x!=0.0f ? float((1<<nbc)-1)/CMax.x : 0.0f; \
CQuantCoeff.y = CMax.y!=0.0f ? float((1<<nbc)-1)/CMax.y : 0.0f; \
CQuantCoeff.z = CMax.z!=0.0f ? float((1<<nbc)-1)/CMax.z : 0.0f; \
EQuantCoeff.x = EMax.x!=0.0f ? float((1<<nbe)-1)/EMax.x : 0.0f; \
EQuantCoeff.y = EMax.y!=0.0f ? float((1<<nbe)-1)/EMax.y : 0.0f; \
EQuantCoeff.z = EMax.z!=0.0f ? float((1<<nbe)-1)/EMax.z : 0.0f; \
/* Compute and save dequantization coeffs */ \
mCenterCoeff.x = CQuantCoeff.x!=0.0f ? 1.0f / CQuantCoeff.x : 0.0f; \
mCenterCoeff.y = CQuantCoeff.y!=0.0f ? 1.0f / CQuantCoeff.y : 0.0f; \
mCenterCoeff.z = CQuantCoeff.z!=0.0f ? 1.0f / CQuantCoeff.z : 0.0f; \
mExtentsCoeff.x = EQuantCoeff.x!=0.0f ? 1.0f / EQuantCoeff.x : 0.0f; \
mExtentsCoeff.y = EQuantCoeff.y!=0.0f ? 1.0f / EQuantCoeff.y : 0.0f; \
mExtentsCoeff.z = EQuantCoeff.z!=0.0f ? 1.0f / EQuantCoeff.z : 0.0f; \
#define PERFORM_QUANTIZATION \
/* Quantize */ \
mNodes[i].mAABB.mCenter[0] = sword(Nodes[i].mAABB.mCenter.x * CQuantCoeff.x); \
mNodes[i].mAABB.mCenter[1] = sword(Nodes[i].mAABB.mCenter.y * CQuantCoeff.y); \
mNodes[i].mAABB.mCenter[2] = sword(Nodes[i].mAABB.mCenter.z * CQuantCoeff.z); \
mNodes[i].mAABB.mExtents[0] = uword(Nodes[i].mAABB.mExtents.x * EQuantCoeff.x); \
mNodes[i].mAABB.mExtents[1] = uword(Nodes[i].mAABB.mExtents.y * EQuantCoeff.y); \
mNodes[i].mAABB.mExtents[2] = uword(Nodes[i].mAABB.mExtents.z * EQuantCoeff.z); \
/* Fix quantized boxes */ \
if(gFixQuantized) \
{ \
/* Make sure the quantized box is still valid */ \
Point Max = Nodes[i].mAABB.mCenter + Nodes[i].mAABB.mExtents; \
Point Min = Nodes[i].mAABB.mCenter - Nodes[i].mAABB.mExtents; \
/* For each axis */ \
for(udword j=0;j<3;j++) \
{ /* Dequantize the box center */ \
float qc = float(mNodes[i].mAABB.mCenter[j]) * mCenterCoeff[j]; \
bool FixMe=true; \
do \
{ /* Dequantize the box extent */ \
float qe = float(mNodes[i].mAABB.mExtents[j]) * mExtentsCoeff[j]; \
/* Compare real & dequantized values */ \
if(qc+qe<Max[j] || qc-qe>Min[j]) \
{ \
mNodes[i].mAABB.mExtents[j]++; \
/* Prevent wrapping */ \
if(!mNodes[i].mAABB.mExtents[j]) \
{ \
mNodes[i].mAABB.mExtents[j]=0xffff; \
FixMe=false; \
} \
} \
else FixMe=false; \
}while(FixMe); \
} \
}
#define REMAP_DATA(member, NodeType) \
/* Fix data */ \
Data = Nodes[i].member; \
if(!(Data&1)) \
{ \
/* Compute box number */ \
size_t Nb = ((NodeType *)(Data) - (Nodes)); \
Data = (size_t) &mNodes[Nb]; \
} \
/* ...remapped */ \
mNodes[i].member = Data;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Constructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
AABBQuantizedTree::AABBQuantizedTree() : mNodes(null)
{
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Destructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
AABBQuantizedTree::~AABBQuantizedTree()
{
DELETEARRAY(mNodes);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Builds the collision tree from a generic AABB tree.
* \param tree [in] generic AABB tree
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBQuantizedTree::Build(AABBTree* tree)
{
// Checkings
if(!tree) return false;
// Check the input tree is complete
udword NbTriangles = tree->GetNbPrimitives();
udword NbNodes = tree->GetNbNodes();
if(NbNodes!=NbTriangles*2-1) return false;
// Get nodes
mNbNodes = NbNodes;
DELETEARRAY(mNodes);
AABBCollisionNode* Nodes = new AABBCollisionNode[NbNodes];
CHECKALLOC(Nodes);
// Build the tree
udword CurID = 1;
_BuildCollisionTree(Nodes, 0, CurID, tree);
// Quantize
{
mNodes = new AABBQuantizedNode[NbNodes];
if (mNodes != null)
{
// Get max values
FIND_MAX_VALUES
// Quantization
INIT_QUANTIZATION
// Quantize
size_t Data;
for(udword i=0;i<NbNodes;i++)
{
PERFORM_QUANTIZATION
REMAP_DATA(mData, AABBCollisionNode)
}
}
DELETEARRAY(Nodes);
CHECKALLOC(mNodes);
}
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Refits the collision tree after vertices have been modified.
* \param mesh_interface [in] mesh interface for current model
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBQuantizedTree::Refit(const MeshInterface* /*mesh_interface*/)
{
ASSERT(!"Not implemented since requantizing is painful !");
return false;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Walks the tree and call the user back for each node.
* \param callback [in] walking callback
* \param user_data [in] callback's user data
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBQuantizedTree::Walk(GenericWalkingCallback callback, void* user_data) const
{
if(!callback) return false;
struct Local
{
static void _Walk(const AABBQuantizedNode* current_node, GenericWalkingCallback callback, void* user_data)
{
if(!current_node || !(callback)(current_node, user_data)) return;
if(!current_node->IsLeaf())
{
_Walk(current_node->GetPos(), callback, user_data);
_Walk(current_node->GetNeg(), callback, user_data);
}
}
};
Local::_Walk(mNodes, callback, user_data);
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Constructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
AABBQuantizedNoLeafTree::AABBQuantizedNoLeafTree() : mNodes(null)
{
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Destructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
AABBQuantizedNoLeafTree::~AABBQuantizedNoLeafTree()
{
DELETEARRAY(mNodes);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Builds the collision tree from a generic AABB tree.
* \param tree [in] generic AABB tree
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBQuantizedNoLeafTree::Build(AABBTree* tree)
{
// Checkings
if(!tree) return false;
// Check the input tree is complete
udword NbTriangles = tree->GetNbPrimitives();
udword NbExistingNodes = tree->GetNbNodes();
if(NbExistingNodes!=NbTriangles*2-1) return false;
// Get nodes
udword NbNodes = NbTriangles-1;
mNbNodes = NbNodes;
DELETEARRAY(mNodes);
AABBNoLeafNode* Nodes = new AABBNoLeafNode[NbNodes];
CHECKALLOC(Nodes);
// Build the tree
udword CurID = 1;
_BuildNoLeafTree(Nodes, 0, CurID, tree);
ASSERT(CurID==NbNodes);
// Quantize
{
mNodes = new AABBQuantizedNoLeafNode[NbNodes];
if (mNodes != null)
{
// Get max values
FIND_MAX_VALUES
// Quantization
INIT_QUANTIZATION
// Quantize
size_t Data;
for(udword i=0;i<NbNodes;i++)
{
PERFORM_QUANTIZATION
REMAP_DATA(mPosData, AABBNoLeafNode)
REMAP_DATA(mNegData, AABBNoLeafNode)
}
}
DELETEARRAY(Nodes);
CHECKALLOC(mNodes);
}
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Refits the collision tree after vertices have been modified.
* \param mesh_interface [in] mesh interface for current model
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBQuantizedNoLeafTree::Refit(const MeshInterface* /*mesh_interface*/)
{
ASSERT(!"Not implemented since requantizing is painful !");
return false;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Walks the tree and call the user back for each node.
* \param callback [in] walking callback
* \param user_data [in] callback's user data
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool AABBQuantizedNoLeafTree::Walk(GenericWalkingCallback callback, void* user_data) const
{
if(!callback) return false;
struct Local
{
static void _Walk(const AABBQuantizedNoLeafNode* current_node, GenericWalkingCallback callback, void* user_data)
{
if(!current_node || !(callback)(current_node, user_data)) return;
if(!current_node->HasPosLeaf()) _Walk(current_node->GetPos(), callback, user_data);
if(!current_node->HasNegLeaf()) _Walk(current_node->GetNeg(), callback, user_data);
}
};
Local::_Walk(mNodes, callback, user_data);
return true;
}
|