1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
#include <odinpara/reco.h>
#include <odindata/image.h>
#include <odindata/data.h>
#include <odindata/gridding.h>
#include <odindata/fitting.h>
/**
* \page gencoil Generate a coil file
* \verbinclude cmdline-utils/gencoil.usage
*/
void usage() {
STD_cout << STD_endl;
STD_cout << "gencoil: Generates a virtual coil suitable for sequence simulation in ODIN" << STD_endl;
STD_cout << configInfo() << STD_endl;
STD_cout << STD_endl;
STD_cout << "Usage and options:" << STD_endl;
STD_cout << " Generate a radially inhomogenous coil:" << STD_endl;
STD_cout << " gencoil -rad -n <inplane-size> -fov <FOV> -R <radial-inhomogeneity[%]> -o <Coil-file>" << STD_endl;
STD_cout << " Generate an array coil by rotating pre-existing image file:" << STD_endl;
STD_cout << " gencoil -rot -n <inplane-size> -fov <FOV> -nc <numof-rotated-subcoils> -i <input-image> -sl <selected-slice> -o <Coil-file>" << STD_endl;
STD_cout << " Generate an array coil consisting of simple loops:" << STD_endl;
STD_cout << " gencoil -arr -n <inplane-size> -nc <numof-rotated-loops> -fov <FOV> -R <array-radius> -o <Coil-file>" << STD_endl;
STD_cout << " Generate coil with a B1 gradient:" << STD_endl;
STD_cout << " gencoil -grad -n <inplane-size> -fov <FOV> -g <B1-gradient-endpoint> -o <Coil-file>" << STD_endl;
STD_cout << "Other options:" << STD_endl;
STD_cout << "\t" << LogBase::get_usage() << STD_endl;
STD_cout << "\t" << helpUsage() << STD_endl;
}
int main(int argc, char* argv[]) {
LogBase::set_log_levels(argc,argv);
Log<Para> odinlog("gencoil","main");
if(hasHelpOption(argc,argv)) {usage(); return 0;}
Range all=Range::all();
char optval[ODIN_MAXCHAR];
STD_string coil_fname;
if(getCommandlineOption(argc,argv,"-o",optval,ODIN_MAXCHAR)) coil_fname=optval; else {usage();exit(0);}
CoilSensitivity sens("Coil Sensitivity");
bool valid_mode=false;
/////////////////////////////////////////////////////////////////////////////
if(isCommandlineOption(argc,argv,"-rad")) {
int n;
float R,fov;
if(getCommandlineOption(argc,argv,"-n",optval,ODIN_MAXCHAR)) n=atoi(optval); else {usage();exit(0);}
if(getCommandlineOption(argc,argv,"-R",optval,ODIN_MAXCHAR)) R=0.01*atof(optval); else {usage();exit(0);}
if(getCommandlineOption(argc,argv,"-fov",optval,ODIN_MAXCHAR)) fov=atof(optval); else {usage();exit(0);}
carray sens_map(1,1,n,n);
int nx_center=n/2;
int ny_center=n/2;
double a=-4.0*R;
double c=1.0+R;
STD_complex b1factor;
ndim nn=sens_map.get_extent();
ndim indexvec;
for(unsigned int i=0; i<nn.total(); i++) {
indexvec=nn.index2extent(i);
int ix=indexvec[3];
int iy=indexvec[2];
double rx=secureDivision(fabs(double(ix-nx_center)),nx_center);
double ry=secureDivision(fabs(double(iy-ny_center)),ny_center);
double radius=sqrt(rx*rx+ry*ry);
double re=a*radius*radius+c;
if(re<0.0) re=0.0;
b1factor=STD_complex(re,0.0);
sens_map(indexvec)=b1factor;
}
sens.set_sensitivity_map(sens_map,fov,fov,fov);
valid_mode=true;
}
/////////////////////////////////////////////////////////////////////////////
if(isCommandlineOption(argc,argv,"-rot")) {
int n,nc,sl;
float fov;
STD_string input_fname;
if(getCommandlineOption(argc,argv,"-n",optval,ODIN_MAXCHAR)) n=atoi(optval); else {usage();exit(0);}
if(getCommandlineOption(argc,argv,"-nc",optval,ODIN_MAXCHAR)) nc=atoi(optval); else {usage();exit(0);}
if(getCommandlineOption(argc,argv,"-fov",optval,ODIN_MAXCHAR)) fov=atof(optval); else {usage();exit(0);}
if(getCommandlineOption(argc,argv,"-i",optval,ODIN_MAXCHAR)) input_fname=optval; else {usage();exit(0);}
if(getCommandlineOption(argc,argv,"-sl",optval,ODIN_MAXCHAR)) sl=atoi(optval); else {usage();exit(0);}
Image img;
ODINLOG(odinlog,infoLog) << "Loading image file ... " << STD_endl;
if(img.load(input_fname)<0) {
ODINLOG(odinlog,errorLog) << "unable to load ODIN image file " << input_fname << STD_endl;
return -1;
}
TinyMatrix<float,2,2> rotation;
TinyVector<float,2> offset;
offset=0.0;
carray sens_map(nc,1,n,n);
Data<float,4> imgdata(img.get_magnitude());
TinyVector<int,2> newshape(n,n);
ODINLOG(odinlog,infoLog) << "Congridding map ... " << STD_endl;
Data<float,2> onecoil=imgdata(0,sl,all,all);
onecoil.congrid(newshape);
float maxmap=max(onecoil);
float sum=0.0;
float nvals=0.0;
for(unsigned int i=0; i<onecoil.numElements(); i++) {
float val=onecoil(onecoil.create_index(i));
if(val>0.1*maxmap) {
sum+=val;
nvals+=1.0;
}
}
float mean=sum/nvals;
onecoil/=(2.0*mean); // factor to account for overlapping adjacent coils
ODINLOG(odinlog,infoLog) << "Polynomial fit ... " << STD_endl;
onecoil=polyniomial_fit(onecoil,onecoil,2,6.0);
Data<float,2> onecoil_transform(newshape);
for(int ic=0; ic<nc; ic++) {
ODINLOG(odinlog,infoLog) << "Rotating coil " << ic << " ... " << STD_endl;
float phi=2.0*PII*float(ic)/float(nc);
rotation(0,0)=cos(phi); rotation(0,1)=sin(phi);
rotation(1,0)=-sin(phi); rotation(1,1)=cos(phi);
CoordTransformation<float,2> rotate(onecoil_transform.shape(), rotation, offset, 2.0);
onecoil_transform=rotate(onecoil);
for(int iy=0; iy<n; iy++) {
for(int ix=0; ix<n; ix++) {
sens_map(ic,0,iy,ix)=STD_complex(onecoil_transform(iy,ix));
}
}
}
sens.set_sensitivity_map(sens_map,fov,fov,fov);
valid_mode=true;
}
/////////////////////////////////////////////////////////////////////////////
if(isCommandlineOption(argc,argv,"-arr")) {
int n,nc;
float fov,R;
if(getCommandlineOption(argc,argv,"-n",optval,ODIN_MAXCHAR)) n=atoi(optval); else {usage();exit(0);}
if(getCommandlineOption(argc,argv,"-nc",optval,ODIN_MAXCHAR)) nc=atoi(optval); else {usage();exit(0);}
if(getCommandlineOption(argc,argv,"-fov",optval,ODIN_MAXCHAR)) fov=atof(optval); else {usage();exit(0);}
if(getCommandlineOption(argc,argv,"-R",optval,ODIN_MAXCHAR)) R=atof(optval); else {usage();exit(0);}
carray sens_map(nc,1,n,n);
int nx_center=n/2;
int ny_center=n/2;
ndim nn=sens_map.get_extent();
ndim indexvec;
float overlap=2.0;
float loopR=overlap*PII*R/float(nc); //estimate sub-loop size from overall radius and num of sub-loops
Array<float,2> rotmat[nc];
Array<float,1> offset[nc];
ODINLOG(odinlog,infoLog) << "Preparing rotmat/offset ... " << STD_endl;
for(int icoil=0; icoil<nc; icoil++) {
float ang=2.0*PII*float(icoil)/float(nc);
rotmat[icoil].resize(3,3);
rotmat[icoil]=0.0;
rotmat[icoil](0,0)=cos(ang); rotmat[icoil](0,1)=-sin(ang);
rotmat[icoil](1,0)=sin(ang); rotmat[icoil](1,1)=cos(ang);
rotmat[icoil](2,2)=1.0;
offset[icoil].resize(3);
offset[icoil](0)=R*cos(ang);
offset[icoil](1)=R*sin(ang);
offset[icoil](2)=0.0;
}
ODINLOG(odinlog,infoLog) << "Calculating sens_map ..." << STD_endl;
for(unsigned int i=0; i<nn.total(); i++) {
indexvec=nn.index2extent(i);
int icoil=indexvec[0];
int iy=indexvec[2];
int ix=indexvec[3];
Array<float,1> x(3);
x(0)=fov*secureDivision(double(ix-nx_center),nx_center);
x(1)=fov*secureDivision(double(iy-ny_center),ny_center);
x(2)=0.0;
int nloopsegments=100;
float dphi=2.0*PII/nloopsegments;
Array<float,1> dl(3);
Array<float,1> r(3);
Array<float,1> r0(3);
Array<float,1> dB(3);
STD_complex B1(0.0);
for(int iseg=0; iseg<nloopsegments; iseg++) {
float phi=2.0*PII*float(iseg)/float(nloopsegments);
dl(0)=0.0;
dl(1)= loopR*cos(phi)*dphi;
dl(2)=-loopR*sin(phi)*dphi;
dl=matrix_product(rotmat[icoil], dl);
r0(0)=0.0;
r0(1)=loopR*sin(phi);
r0(2)=loopR*cos(phi);
r0=matrix_product(rotmat[icoil], r0) + offset[icoil];
r=x-r0;
dB=vector_product(dl,r);
float r2=sum(r*r);
if(r2>0.0) {
B1+=STD_complex(dB(0),dB(1))/r2;
}
}
sens_map(indexvec)=B1/float(2.0*PII); // will be normalized to ~ 1 at center of loop
}
sens.set_sensitivity_map(sens_map,fov,fov,fov);
valid_mode=true;
}
/////////////////////////////////////////////////////////////////////////////
if(isCommandlineOption(argc,argv,"-grad")) {
int n;
float fov,grad;
if(getCommandlineOption(argc,argv,"-n",optval,ODIN_MAXCHAR)) n=atoi(optval); else {usage();exit(0);}
if(getCommandlineOption(argc,argv,"-g",optval,ODIN_MAXCHAR)) grad=atof(optval); else {usage();exit(0);}
if(getCommandlineOption(argc,argv,"-fov",optval,ODIN_MAXCHAR)) fov=atof(optval); else {usage();exit(0);}
carray sens_map(1,1,n,n);
int nx_center=n/2;
ndim nn=sens_map.get_extent();
ndim indexvec;
for(unsigned int i=0; i<nn.total(); i++) {
indexvec=nn.index2extent(i);
int ix=indexvec[3];
sens_map(indexvec)=STD_complex(1.0+grad*float(ix-nx_center)/float(nx_center),0.0);
}
sens.set_sensitivity_map(sens_map,fov,fov,fov);
valid_mode=true;
}
if(!valid_mode) {usage();exit(0);}
ODINLOG(odinlog,infoLog) << "Writing coil file ... " << STD_endl;
sens.write(coil_fname);
return 0;
}
|