1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
|
#include <odindata/data.h>
#include <odindata/fileio.h>
#include <odindata/utils.h>
#include <odindata/statistics.h>
#include <odindata/correlation.h>
#include <odindata/filter.h>
/**
* \page micalc Basic calculations with medical image data
* \verbinclude cmdline-utils/micalc.usage
*
* \section micalc_examples Some examples how to use micalc:
*
* Calculate the difference between two DICOM files 'image1.dcm' 'and image2.dcm' and store it in
* float-type raw data file 'diff.float':
* \verbatim
micalc -if1 image1.dcm -op '-' -if2 image2.dcm -of diff.float
\endverbatim
*
*
* Multiply image magnitude of Nifti file 'image.nii' by a factor 10:
* \verbatim
micalc -if1 image.nii -op '*' -in2 10 -of image.nii
\endverbatim
*
*
* Accumulate all values in file 'image.float' and write result to console:
* \verbatim
micalc -if image.float -op '+'
\endverbatim
*
*
* Negate values (invert sign) of file image.hdr and write result to neg.hdr
* \verbatim
micalc -if image.hdr -op '-' neg.hdr
\endverbatim
*
*
* Print statistics about file 'data.asc' to console:
* \verbatim
micalc -if data.asc
\endverbatim
*
*
* Write time-course mean and fluctuation (relative standard deviation over time) of
* file 'tcourse.v' to file 'mean.v' and 'stdev.v', respectively:
* \verbatim
micalc -if tcourse.v -mean mean.v -fluct stdev.v
\endverbatim
*
*
* Calculate histogram in interval (0.0,100.0) with 64 steps of DICOMs in directory cbv:
* \verbatim
micalc -if cbv -hist histogram.asc -histmin 0.0 -histmax 100.0 -histslots 64
\endverbatim
*
*
* Please note that it might be necessary to quote the operation argument (as shown above)
* in order to prevent the shell from expanding it.
*/
void usage(const Protocol& prot) {
FileReadOpts ropts;
FileWriteOpts wopts;
FilterChain filter;
STD_cout << "micalc: Performs basic mathematics with data sets" << STD_endl;
STD_cout << " File formats are automatically identified by their file extension." << STD_endl;
STD_cout << " For binary operations with two input files, the protocol of the first input file will be used for the output file." << STD_endl;
STD_cout << configInfo() << STD_endl;
STD_cout << STD_endl;
STD_cout << "micalc can be used in one of the following modes:" << STD_endl;
STD_cout << " Binary operation with data sets and/or scalar numbers:" << STD_endl;
STD_cout << " micalc [-if1 <input-file1> | -in1 <input-number1>] -op <operation(+,-,*,/,min,max,lcorr,kcorr)> [-if2 <input-file2> | -in2 <input-number1>] -of <output-file>" << STD_endl;
STD_cout << " Accumulation/reduction of one data set:" << STD_endl;
STD_cout << " micalc -if <input-file> -op <operation(+,*,mean,median,stdev,min,max)>" << STD_endl;
STD_cout << " Transformation (magnitude, logarithm, ...) of one data set:" << STD_endl;
STD_cout << " micalc -if <input-file> -op <operation(abs,sqrt,log,exp,-,/,acos)> -of <output-file>" << STD_endl;
STD_cout << " Statistics of one data set:" << STD_endl;
STD_cout << " micalc -if <input-file>" << STD_endl;
STD_cout << " [-mean <time-mean-file>] [-stdev <time-stdev-file>] [-fluct <relative-time-stdev-file>] [-tcourse <average time course of all voxels>]" << STD_endl;
STD_cout << " [-hist <histogram> -histslots <numofslots> [-histmin <minval>] [-histmax <maxval>] [-rightstairs] [-histfract] [-loghist] [-histslotmap <file>]]" << STD_endl;
STD_cout << " [-cog <center-of-gravity-file>]" << STD_endl;
STD_cout << "Extra options:" << STD_endl;
STD_cout << "\t-mask <Binary mask file: voxels with zeroes are discarded>" << STD_endl;
STD_cout << "Protocol options (overrides parameters in input data):" << STD_endl;
STD_cout << prot.get_cmdline_usage("\t");
STD_cout << "File read options (will be applied to input data before processing):" << STD_endl;
STD_cout << ropts.get_cmdline_usage("\t");
STD_cout << "File write options (will be applied to output data after processing):" << STD_endl;
STD_cout << wopts.get_cmdline_usage("\t");
STD_cout << "Filters/processing applied to input file(s) and mask, applied in the order they appear on the command line:" << STD_endl;
STD_cout << filter.get_cmdline_usage("\t");
STD_cout << "Other options:" << STD_endl;
STD_cout << "\t" << LogBase::get_usage() << STD_endl;
STD_cout << "\t" << helpUsage() << STD_endl;
STD_cout << "Supported file extensions(formats):" << STD_endl;
STD_cout << FileIO::autoformats_str("\t") << STD_endl;
}
////////////////////////////////////////////////////////////////////////////
bool read_infile(const STD_string& filename, Data<float,4>& data, const FileReadOpts& ropts, Protocol& prot, const FilterChain& filterchain, ProgressMeter* progmeter) {
Log<OdinData> odinlog("micalc","read_infile");
Data<float,4> datain;
if(datain.autoread(filename,ropts,&prot, progmeter)<0) return false;
if(!filterchain.apply(prot,datain)) return false;
data.resize(datain.shape());
data=datain; // In case storage order is non-default
return true;
}
////////////////////////////////////////////////////////////////////////////
int main(int argc, char* argv[]) {
LogBase::set_log_levels(argc,argv);
Log<OdinData> odinlog("micalc","main");
Range all=Range::all();
FileReadOpts ropts;
FileWriteOpts wopts;
Protocol prot;
if(hasHelpOption(argc,argv)) {usage(prot); return 0;}
// set defaults
prot.seqpars.set_MatrixSize(readDirection,1);
prot.seqpars.set_MatrixSize(phaseDirection,1);
prot.seqpars.set_MatrixSize(sliceDirection,1);
char optval[ODIN_MAXCHAR];
STD_string operation;
STD_string infile1;
STD_string infile2;
STD_string outfile;
STD_string maskfile;
float innumber1=0.0;
float innumber2=0.0;
bool i1flag=false;
bool i2flag=false;
bool offlag=false;
bool ifflag=false;
bool opflag=false;
bool binaryop=false;
bool accumulate=false;
bool transform=false;
bool stateval=false;
// command line parsing, parse before filters to remove options
if(getCommandlineOption(argc,argv,"-op",optval,ODIN_MAXCHAR)) {operation=optval; opflag=true;}
if(getCommandlineOption(argc,argv,"-if1",optval,ODIN_MAXCHAR)) {infile1=optval; i1flag=true;}
if(getCommandlineOption(argc,argv,"-if2",optval,ODIN_MAXCHAR)) {infile2=optval; i2flag=true;}
if(getCommandlineOption(argc,argv,"-if",optval,ODIN_MAXCHAR)) {infile1=optval; ifflag=true;}
if(getCommandlineOption(argc,argv,"-in1",optval,ODIN_MAXCHAR)) {innumber1=atof(optval); i1flag=true;}
if(getCommandlineOption(argc,argv,"-in2",optval,ODIN_MAXCHAR)) {innumber2=atof(optval); i2flag=true;}
if(getCommandlineOption(argc,argv,"-of",optval,ODIN_MAXCHAR)) {outfile=optval; offlag=true;}
if(getCommandlineOption(argc,argv,"-mask",optval,ODIN_MAXCHAR)) {maskfile=optval;}
STD_string histfile;
if(getCommandlineOption(argc,argv,"-hist",optval,ODIN_MAXCHAR)) histfile=optval;
STD_string cogfile;
if(getCommandlineOption(argc,argv,"-cog",optval,ODIN_MAXCHAR)) cogfile=optval;
STD_string meanfile;
STD_string fluctfile;
STD_string stdevfile;
STD_string tcoursefile;
STD_string histslots;
STD_string histmin;
STD_string histmax;
STD_string histslotmapfile;
if(getCommandlineOption(argc,argv,"-mean",optval,ODIN_MAXCHAR)) meanfile=optval;
if(getCommandlineOption(argc,argv,"-fluct",optval,ODIN_MAXCHAR)) fluctfile=optval;
if(getCommandlineOption(argc,argv,"-stdev",optval,ODIN_MAXCHAR)) stdevfile=optval;
if(getCommandlineOption(argc,argv,"-tcourse",optval,ODIN_MAXCHAR)) tcoursefile=optval;
if(getCommandlineOption(argc,argv,"-histslots",optval,ODIN_MAXCHAR)) histslots=optval;
if(getCommandlineOption(argc,argv,"-histmin",optval,ODIN_MAXCHAR)) histmin=optval;
if(getCommandlineOption(argc,argv,"-histmax",optval,ODIN_MAXCHAR)) histmax=optval;
bool rightstairs=isCommandlineOption(argc,argv,"-rightstairs");
bool histfract=isCommandlineOption(argc,argv,"-histfract");
bool loghist=isCommandlineOption(argc,argv,"-loghist");
if(getCommandlineOption(argc,argv,"-histslotmap",optval,ODIN_MAXCHAR)) histslotmapfile=optval;
// Parse before filters to remove options
ropts.parse_cmdline_options(argc,argv);
wopts.parse_cmdline_options(argc,argv);
prot.parse_cmdline_options(argc,argv);
ProgressDisplayConsole display;
ProgressMeter progmeter(display);
FilterChain filterchain(argc,argv);
if(i1flag && i2flag && opflag) binaryop=true;
if(ifflag && opflag) {
if(offlag) transform=true;
else accumulate=true;
}
if(ifflag && (!opflag)) stateval=true;
if( !( binaryop || accumulate || transform || stateval ) ) {usage(prot); return 0;}
if(accumulate || stateval) FileIO::set_trace_status(false);
if(binaryop && infile1=="" && infile2=="") {
ODINLOG(odinlog,errorLog) << "Specify at least one file" << STD_endl;
return -1;
}
Data<float,4> data1;
Data<float,4> data2;
if(infile1!="") {
if(!read_infile(infile1, data1, ropts, prot, filterchain,&progmeter)) return -1;
}
if(binaryop && infile2!="") {
Protocol protcopy(prot); // dispensable protocol
Protocol* prot2p=&protcopy;
if(infile1=="") prot2p=&prot; // use only if 1st operand is number
if(!read_infile(infile2, data2, ropts, *prot2p, filterchain,&progmeter)) return -1;
}
TinyVector<int,4> outshape;
if(binaryop || transform) {
bool has_shape1=sum(data1.shape());
bool has_shape2=sum(data2.shape());
if( has_shape1 && has_shape2 && !same_shape(data1,data2) ) {
ODINLOG(odinlog,errorLog) << "Shape mismatch: data1shape/data2shape=" << data1.shape() << "/" << data2.shape() << STD_endl;
return -1;
} else outshape=data1.shape();
if(has_shape1 && !has_shape2) {
outshape=data1.shape();
data2.resize(outshape);
data2=innumber2;
}
if(!has_shape1 && has_shape2) {
outshape=data2.shape();
data1.resize(outshape);
data1=innumber1;
}
if(!has_shape1 && !has_shape2) {
ODINLOG(odinlog,errorLog) << "Specify at least one valid file" << STD_endl;
return -1;
}
}
Data<float,4>* maskptr=0;
Data<float,4> maskdata;
if(maskfile!="") {
Data<float,4> inmaskdata;
Protocol maskprot;
if(!read_infile(maskfile, inmaskdata, ropts, maskprot, filterchain,&progmeter)) return -1;
// if(inmaskdata.autoread(maskfile,ropts)<0) return -1;
if( inmaskdata.extent(0) && same_shape(data1, inmaskdata, TinyVector<int,4>(0,1,1,1) ) ) {
maskdata.resize(data1.shape());
maskdata=0.0;
for(unsigned int i=0; i<data1.numElements(); i++) {
TinyVector<int,4> index=data1.create_index(i);
TinyVector<int,4> maskindex=index; maskindex(0)=0;
if(inmaskdata(maskindex)!=0.0) maskdata(index)=1.0;
}
maskptr=&maskdata;
} else {
ODINLOG(odinlog,errorLog) << "Shape mismatch: datashape/maskshape=" << data1.shape() << "/" << inmaskdata.shape() << STD_endl;
return -1;
}
}
prot.system.set_data_type(TypeTraits::type2label(float(0))); // Store results in float
if(binaryop) {
if(maskptr) {
ODINLOG(odinlog,normalDebug) << "data1/data2/maskdata" << data1.shape() << "/" << data2.shape() << "/" << maskdata.shape() << STD_endl;
data1=data1*maskdata;
data2=data2*maskdata;
}
if(operation=="lcorr" || operation=="kcorr") {
int npts=data1.size();
if(maskptr) npts=int(sum(maskdata)+0.5);
Array<float,1> vec1(npts);
Array<float,1> vec2(npts);
int vecindex=0;
for(unsigned int i=0; i<data1.numElements(); i++) {
TinyVector<int,4> index=data1.create_index(i);
bool include=true;
if( maskptr && maskdata(index)==0.0 ) include=false;
if(include) {
vec1(vecindex)=data1(index);
vec2(vecindex)=data2(index);
vecindex++;
}
}
correlationResult coresult;
if(operation=="lcorr") coresult=correlation(vec1, vec2);
if(operation=="kcorr") coresult=kendall(vec1, vec2);
STD_cout << "r/p/z(" << npts << ")=" << coresult.r << "/" << coresult.p << "/" << coresult.z << STD_endl;
} else {
Data<float,4> result(outshape);
ODINLOG(odinlog,infoLog) << "calculating " << data1.shape() << " " << operation << " " << data2.shape() << " ..." << STD_endl;
bool validop=false;
if(operation=="+") {validop=true; result=data1+data2;}
if(operation=="-") {validop=true; result=data1-data2;}
if(operation=="*") {validop=true; result=data1*data2;}
if(operation=="/") {validop=true; result=secureDivision(data1,data2);}
if(operation=="min" || operation=="max") {
Data<float,4> minval(outshape);
Data<float,4> maxval(outshape);
for(unsigned int i=0; i<data1.numElements(); i++) {
TinyVector<int,4> index=data1.create_index(i);
minval(index)=STD_min(data1(index), data2(index));
maxval(index)=STD_max(data1(index), data2(index));
}
if(operation=="min") result=minval;
else result=maxval;
validop=true;
}
if(!validop) {
ODINLOG(odinlog,errorLog) << "invalid binary operation: " << operation << STD_endl;
return -1;
}
if(result.autowrite(outfile,wopts,&prot)<0) return -1;
}
return 0;
}
if(accumulate) {
if(maskptr) {
data1=data1*maskdata;
}
double accuresult=0.0;
bool validop=false;
if(operation=="+") {validop=true; accuresult=sum(data1);}
if(operation=="*") {validop=true; accuresult=product(data1);}
if(operation=="mean") {validop=true; accuresult=statistics(data1).mean;}
if(operation=="median") {validop=true; accuresult=median(data1);}
if(operation=="stdev") {validop=true; accuresult=statistics(data1).stdev;}
if(operation=="min") {validop=true; accuresult=min(data1);}
if(operation=="max") {validop=true; accuresult=max(data1);}
if(!validop) {
ODINLOG(odinlog,errorLog) << "invalid accumulation operator: " << operation << STD_endl;
return -1;
}
STD_cout << accuresult << STD_endl;
}
if(transform) {
if(maskptr) {
data1=data1*maskdata;
}
Data<float,4> result(outshape);
ODINLOG(odinlog,infoLog) << "Calculating " << operation << " " << data1.shape() << " ..." << STD_endl;
bool validop=false;
if(operation=="abs") {validop=true; result=fabs(data1);}
if(operation=="sqrt") {validop=true; result=sqrt(data1);}
if(operation=="log") {validop=true; result=where(Array<float,4>(data1)>0.0, Array<float,4>(log(data1)), float(0.0));}
if(operation=="exp") {validop=true; result=exp(data1);}
if(operation=="-") {validop=true; result=-data1;}
if(operation=="/") {validop=true; result=where(Array<float,4>(data1)!=0.0, Array<float,4>(1.0/data1), float(0.0));}
if(operation=="acos") {validop=true; result=where(Array<float,4>(data1)>=-1.0 && Array<float,4>(data1)<=1.0, Array<float,4>(acos(data1)), float(0.0));}
if(!validop) {
ODINLOG(odinlog,errorLog) << "invalid unary operation: " << operation << STD_endl;
return -1;
}
if(result.autowrite(outfile,wopts,&prot)<0) return -1;
return 0;
}
if(stateval) {
if(histfile!="") {
int nvals=data1.numElements();
if(maskptr) {
nvals=0;
for(unsigned int i=0; i<maskdata.numElements(); i++) {
TinyVector<int,4> index=maskdata.create_index(i);
if( maskdata(index)>0.0 ) {
nvals++;
}
}
}
if(histslots=="") {usage(prot); return -1;}
int nslots=atoi(histslots.c_str());
statisticResult stats=statistics(data1,maskptr);
float minval=stats.min;
if(histmin!="") minval=atof(histmin.c_str());
float maxval=stats.max;
if(histmax!="") maxval=atof(histmax.c_str());
ODINLOG(odinlog,infoLog) << "calculating histogram with nslots/minval/maxval=" << nslots << "/" << minval << "/" << maxval << STD_endl;
if(minval>=maxval) {
ODINLOG(odinlog,errorLog) << "histmax must be larger than histmin" << STD_endl;
return -1;
}
float stairoffset=0.5; // centered stairs
if(rightstairs) stairoffset=0.0; // assume rightstairs when plotting (xmgrace)
Data<float,1> xvals(nslots);
Data<float,1> yvals(nslots); yvals=0.0;
Data<float,4> histslotmap(data1.shape()); histslotmap=0.0;
// if(minval>0.0 && maxval>0.0) { // Use log histogram
if(loghist) { // Use log histogram
if( minval<=0.0 || maxval<=0.0 ) {
ODINLOG(odinlog,errorLog) << "positive minval/maxval required for log histogram, current minval/maxval=" << minval << "/" << maxval << STD_endl;
return -1;
}
float minpow=log10(minval);
float maxpow=log10(maxval);
float powrange=maxpow-minpow;
float step=secureDivision(powrange,nslots);
ODINLOG(odinlog,normalDebug) << "minpow/maxpow/powrange/step=" << minpow << "/" << maxpow << "/" << powrange << "/" << step << STD_endl;
for(int i=0; i<nslots; i++) xvals(i)=pow(float(10.0),float(minpow+(float(i)+stairoffset)*step));
for(unsigned int i=0; i<data1.numElements(); i++) {
TinyVector<int,4> index=data1.create_index(i);
if( !(maskptr && maskdata(index)==0.0) ) {
float pow=log10(data1(index));
int slot=int(secureDivision(pow-minpow,powrange)*nslots);
ODINLOG(odinlog,normalDebug) << "pow/slot=" << pow << "/" << slot << STD_endl;
if(slot>=0 && slot<nslots) {
yvals(slot)++;
histslotmap(index)=slot+stairoffset;
}
}
}
} else { // no log histogram
float range=maxval-minval;
float step=secureDivision(range,nslots);
ODINLOG(odinlog,normalDebug) << "range/step=" << range << "/" << step << STD_endl;
for(int i=0; i<nslots; i++) xvals(i)=minval+(float(i)+stairoffset)*step;
for(unsigned int i=0; i<data1.numElements(); i++) {
TinyVector<int,4> index=data1.create_index(i);
if( !(maskptr && maskdata(index)==0.0) ) {
float val=data1(index);
int slot=int(secureDivision(val-minval,range)*nslots);
ODINLOG(odinlog,normalDebug) << "val/slot=" << val << "/" << slot << STD_endl;
if(slot>=0 && slot<nslots) {
yvals(slot)++;
histslotmap(index)=slot+stairoffset;
}
}
}
}
if(histfract) yvals/=sum(yvals); // Each slot reflects the fraction of total points
yvals.write_asc_file(histfile, xvals);
if(histslotmapfile!="") if(histslotmap.autowrite(histslotmapfile,wopts,&prot)<0) return -1;
}
if(meanfile!="" || fluctfile!="" || stdevfile!="" || tcoursefile!="" || cogfile!="") {
TinyVector<int,4> inshape=data1.shape();
outshape=inshape;
ODINLOG(odinlog,infoLog) << "calculating general statistics for shape " << outshape << " ..." << STD_endl;
outshape(0)=1;
Data<float,4> meanresult(outshape); meanresult=0.0;
Data<float,4> fluctresult(outshape); fluctresult=0.0;
Data<float,4> stdevresult(outshape); stdevresult=0.0;
Data<float,1> tcourseresult(data1.extent(0)); tcourseresult=0.0;
farray cogsum(inshape(0), 3);
fvector masssum(inshape(0));
int maskpoints=0;
for(unsigned int i=0; i<meanresult.numElements(); i++) {
TinyVector<int,4> index=meanresult.create_index(i);
if( !(maskptr && maskdata(index)==0.0) ) {
statisticResult stats=statistics(data1(all,index(1),index(2),index(3)));
meanresult(index)= stats.mean;
fluctresult(index)=secureDivision(stats.stdev,stats.mean);
stdevresult(index)=stats.stdev;
tcourseresult(all)+=data1(all,index(1),index(2),index(3));
ODINLOG(odinlog,normalDebug) << "mean/stdev(" << index << ")=" << stats.mean << "/" << stats.stdev << STD_endl;
for(int irep=0; irep<inshape(0); irep++) {
float mass=data1(irep,index(1),index(2),index(3));
masssum[irep]+=mass;
for(int idim=0; idim<3; idim++) {
cogsum(irep,idim)+=mass*index(1+idim);
}
}
maskpoints++;
}
}
ODINLOG(odinlog,infoLog) << "maskpoints=" << maskpoints << STD_endl;
tcourseresult/=float(maskpoints);
if(meanfile!="") if(meanresult.autowrite(meanfile,wopts,&prot)<0) return -1;
if(fluctfile!="") if(fluctresult.autowrite(fluctfile,wopts,&prot)<0) return -1;
if(stdevfile!="") if(stdevresult.autowrite(stdevfile,wopts,&prot)<0) return -1;
if(tcoursefile!="") if(tcourseresult.autowrite(tcoursefile,wopts,&prot)<0) return -1;
if(cogfile!="") {
STD_string cogstr;
for(int irep=0; irep<inshape(timeDim); irep++) {
cogstr+=ftos(cogsum(irep, 0)/masssum[irep])+" "+ftos(cogsum(irep, 1)/masssum[irep])+" "+ftos(cogsum(irep, 2)/masssum[irep])+"\n";
}
write(cogstr, cogfile);
}
} else {
STD_cout << statistics(data1,maskptr) << STD_endl;
}
// STD_cout << "median = " << median(data1) << STD_endl;
}
return 0;
}
|