1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
|
///////////////////////////////////////////////////////////////////
// What follows is that part of the GSL library which is used in the
// core libraries in ODIN. It is used a replacement if libgsl is not installed.
#define GSL_SUCCESS 0
#define GSL_FAILURE -1
#define GSL_EINVAL 4
/* evaluation accelerator */
typedef struct {
size_t cache; /* cache of index */
size_t miss_count; /* keep statistics */
size_t hit_count;
}
gsl_interp_accel;
////////////////////////////////////////////////
/* interpolation object type */
typedef struct {
const char * name;
unsigned int min_size;
void * (*alloc) (size_t size);
int (*init) (void *, const double xa[], const double ya[], size_t size);
int (*eval) (const void *, const double xa[], const double ya[], size_t size, double x, gsl_interp_accel *, double * y);
int (*eval_deriv) (const void *, const double xa[], const double ya[], size_t size, double x, gsl_interp_accel *, double * y_p);
int (*eval_deriv2) (const void *, const double xa[], const double ya[], size_t size, double x, gsl_interp_accel *, double * y_pp);
int (*eval_integ) (const void *, const double xa[], const double ya[], size_t size, gsl_interp_accel *, double a, double b, double * result);
void (*free) (void *);
} gsl_interp_type;
////////////////////////////////////////////////
/* general interpolation object */
typedef struct {
const gsl_interp_type * type;
double xmin;
double xmax;
size_t size;
void * state;
} gsl_interp;
////////////////////////////////////////////////
/* general interpolation object */
typedef struct {
gsl_interp * interp;
double * x;
double * y;
size_t size;
} gsl_spline;
////////////////////////////////////////////////
gsl_interp_accel* gsl_interp_accel_alloc (void) {
gsl_interp_accel *a = new gsl_interp_accel;
a->cache = 0;
a->hit_count = 0;
a->miss_count = 0;
return a;
}
gsl_interp* gsl_interp_alloc (const gsl_interp_type * T, size_t size) {
if (size < T->min_size) {
STD_cerr << "gsl_interp_alloc: insufficient number of points for interpolation type" << STD_endl;
return 0;
}
gsl_interp * interp=new gsl_interp;
interp->type = T;
interp->size = size;
if (interp->type->alloc == NULL) {
interp->state = NULL;
return interp;
}
interp->state = interp->type->alloc(size);
if (interp->state == NULL) {
delete interp;
STD_cerr << "gsl_interp_alloc: failed to allocate space for interp state" << STD_endl;
return 0;
}
return interp;
}
gsl_spline* gsl_spline_alloc (const gsl_interp_type * T, size_t size) {
gsl_spline * spline = new gsl_spline;
spline->interp = gsl_interp_alloc (T, size);
if (spline->interp == NULL) {
delete spline;
STD_cerr << "gsl_interp_alloc: failed to allocate space for interp" << STD_endl;
return 0;
}
spline->x = new double[size];
spline->y = new double[size];
spline->size = size;
return spline;
}
int gsl_interp_init (gsl_interp * interp, const double x_array[], const double y_array[], size_t size) {
if (size != interp->size) {
STD_cerr << "gsl_interp_init: data must match size of interpolation object" << STD_endl;
}
interp->xmin = x_array[0];
interp->xmax = x_array[size - 1];
int status = interp->type->init(interp->state, x_array, y_array, size);
return status;
}
int gsl_spline_init (gsl_spline * spline, const double x_array[], const double y_array[], size_t size) {
if (size != spline->size) {
STD_cerr << "gsl_spline_init: data must match size of spline object" << STD_endl;
}
memcpy (spline->x, x_array, size * sizeof(double));
memcpy (spline->y, y_array, size * sizeof(double));
int status = gsl_interp_init (spline->interp, x_array, y_array, size);
return status;
}
void gsl_interp_accel_free(gsl_interp_accel * a) {delete a;}
void gsl_interp_free (gsl_interp * interp) {
if (interp->type->free) interp->type->free (interp->state);
delete interp;
}
void gsl_spline_free (gsl_spline * spline) {
gsl_interp_free (spline->interp);
delete[] spline->x;
delete[] spline->y;
delete spline;
}
///////////////////////////////////////////////////////////////////////
double gsl_interp_eval (const gsl_interp * interp, const double xa[], const double ya[], double x, gsl_interp_accel * a) {
double y;
int status = interp->type->eval (interp->state, xa, ya, interp->size, x, a, &y);
// DISCARD_STATUS(status);
return y;
}
double gsl_spline_eval (const gsl_spline * spline, double x, gsl_interp_accel * a) {
return gsl_interp_eval (spline->interp,
spline->x, spline->y,
x, a);
}
///////////////////////////////////////////////////////////////////////
size_t gsl_interp_bsearch (
const double x_array[], double x,
size_t index_lo,
size_t index_hi
)
{
size_t ilo = index_lo;
size_t ihi = index_hi;
while (ihi > ilo + 1)
{
size_t i = (ihi + ilo) / 2;
if (x_array[i] > x)
ihi = i;
else
ilo = i;
}
return ilo;
}
///////////////////////////////////////////////////////////////////////
size_t
gsl_interp_accel_find (gsl_interp_accel * a, const double xa[], size_t len, double x)
{
size_t x_index = a->cache;
if (x < xa[x_index])
{
a->miss_count++;
a->cache = gsl_interp_bsearch (xa, x, 0, x_index);
}
else if (x > xa[x_index + 1])
{
a->miss_count++;
a->cache = gsl_interp_bsearch (xa, x, x_index, len - 1);
}
else
{
a->hit_count++;
}
return a->cache;
}
///////////////////////////////////////////////////////////////////////
static inline double
integ_eval (double ai, double bi, double ci, double di, double xi, double a,
double b)
{
const double t0 = b + a;
const double t1 = a * a + a * b + b * b;
const double t2 = a * a * a + a * a * b + b * b * a + b * b * b;
const double bterm = 0.5 * bi * (t0 - 2.0 * xi);
const double cterm = ci / 3.0 * (t1 - 3.0 * xi * (t0 - xi));
const double dterm =
di / 4.0 * (t2 - 2.0 * xi * (2.0 * t1 - xi * (3.0 * t0 - 2.0 * xi)));
return (b - a) * (ai + bterm + cterm + dterm);
}
///////////////////////////////////////////////////////////////////////
typedef struct
{
double * b;
double * c;
double * d;
double * _m;
} akima_state_t;
/* common creation */
static void *
akima_alloc (size_t size)
{
akima_state_t *state = new akima_state_t;
state->b = new double[size];
state->c = new double[size];
state->d = new double[size];
state->_m = new double[size + 4];
return state;
}
/* common calculation */
static void
akima_calc (const double x_array[], double b[], double c[], double d[], size_t size, double m[])
{
size_t i;
for (i = 0; i < (size - 1); i++)
{
const double NE = fabs (m[i + 1] - m[i]) + fabs (m[i - 1] - m[i - 2]);
if (NE == 0.0)
{
b[i] = m[i];
c[i] = 0.0;
d[i] = 0.0;
}
else
{
const double h_i = x_array[i + 1] - x_array[i];
const double NE_next = fabs (m[i + 2] - m[i + 1]) + fabs (m[i] - m[i - 1]);
const double alpha_i = fabs (m[i - 1] - m[i - 2]) / NE;
double alpha_ip1;
double tL_ip1;
if (NE_next == 0.0)
{
tL_ip1 = m[i];
}
else
{
alpha_ip1 = fabs (m[i] - m[i - 1]) / NE_next;
tL_ip1 = (1.0 - alpha_ip1) * m[i] + alpha_ip1 * m[i + 1];
}
b[i] = (1.0 - alpha_i) * m[i - 1] + alpha_i * m[i];
c[i] = (3.0 * m[i] - 2.0 * b[i] - tL_ip1) / h_i;
d[i] = (b[i] + tL_ip1 - 2.0 * m[i]) / (h_i * h_i);
}
}
}
static int
akima_init (void * vstate, const double x_array[], const double y_array[],
size_t size)
{
akima_state_t *state = (akima_state_t *) vstate;
double * m = state->_m + 2; /* offset so we can address the -1,-2
components */
size_t i;
for (i = 0; i <= size - 2; i++)
{
m[i] = (y_array[i + 1] - y_array[i]) / (x_array[i + 1] - x_array[i]);
}
/* non-periodic boundary conditions */
m[-2] = 3.0 * m[0] - 2.0 * m[1];
m[-1] = 2.0 * m[0] - m[1];
m[size - 1] = 2.0 * m[size - 2] - m[size - 3];
m[size] = 3.0 * m[size - 2] - 2.0 * m[size - 3];
akima_calc (x_array, state->b, state->c, state->d, size, m);
return GSL_SUCCESS;
}
static void
akima_free (void * vstate)
{
akima_state_t *state = (akima_state_t *) vstate;
delete[] (state->b);
delete[] (state->c);
delete[] (state->d);
delete[] (state->_m);
delete (state);
}
static
int
akima_eval (const void * vstate,
const double x_array[], const double y_array[], size_t size,
double x,
gsl_interp_accel * a,
double *y)
{
const akima_state_t *state = (const akima_state_t *) vstate;
size_t index;
if (a != 0)
{
index = gsl_interp_accel_find (a, x_array, size, x);
}
else
{
index = gsl_interp_bsearch (x_array, x, 0, size - 1);
}
/* evaluate */
{
const double x_lo = x_array[index];
const double delx = x - x_lo;
const double b = state->b[index];
const double c = state->c[index];
const double d = state->d[index];
*y = y_array[index] + delx * (b + delx * (c + d * delx));
return GSL_SUCCESS;
}
}
static int
akima_eval_deriv (const void * vstate,
const double x_array[], const double y_array[], size_t size,
double x,
gsl_interp_accel * a,
double *dydx)
{
const akima_state_t *state = (const akima_state_t *) vstate;
size_t index;
// DISCARD_POINTER(y_array); /* prevent warning about unused parameter */
if (a != 0)
{
index = gsl_interp_accel_find (a, x_array, size, x);
}
else
{
index = gsl_interp_bsearch (x_array, x, 0, size - 1);
}
/* evaluate */
{
double x_lo = x_array[index];
double delx = x - x_lo;
double b = state->b[index];
double c = state->c[index];
double d = state->d[index];
*dydx = b + delx * (2.0 * c + 3.0 * d * delx);
return GSL_SUCCESS;
}
}
static
int
akima_eval_deriv2 (const void * vstate,
const double x_array[], const double y_array[], size_t size,
double x,
gsl_interp_accel * a,
double *y_pp)
{
const akima_state_t *state = (const akima_state_t *) vstate;
size_t index;
// DISCARD_POINTER(y_array); /* prevent warning about unused parameter */
if (a != 0)
{
index = gsl_interp_accel_find (a, x_array, size, x);
}
else
{
index = gsl_interp_bsearch (x_array, x, 0, size - 1);
}
/* evaluate */
{
const double x_lo = x_array[index];
const double delx = x - x_lo;
const double c = state->c[index];
const double d = state->d[index];
*y_pp = 2.0 * c + 6.0 * d * delx;
return GSL_SUCCESS;
}
}
static
int
akima_eval_integ (const void * vstate,
const double x_array[], const double y_array[], size_t size,
gsl_interp_accel * acc,
double a, double b,
double * result)
{
const akima_state_t *state = (const akima_state_t *) vstate;
size_t i, index_a, index_b;
if (acc != 0)
{
index_a = gsl_interp_accel_find (acc, x_array, size, a);
index_b = gsl_interp_accel_find (acc, x_array, size, b);
}
else
{
index_a = gsl_interp_bsearch (x_array, a, 0, size - 1);
index_b = gsl_interp_bsearch (x_array, b, 0, size - 1);
}
*result = 0.0;
/* interior intervals */
for(i=index_a; i<=index_b; i++) {
const double x_hi = x_array[i + 1];
const double x_lo = x_array[i];
const double y_lo = y_array[i];
const double dx = x_hi - x_lo;
if(dx != 0.0) {
if (i == index_a || i == index_b)
{
double x1 = (i == index_a) ? a : x_lo;
double x2 = (i == index_b) ? b : x_hi;
*result += integ_eval (y_lo, state->b[i], state->c[i], state->d[i],
x_lo, x1, x2);
}
else
{
*result += dx * (y_lo
+ dx*(0.5*state->b[i]
+ dx*(state->c[i]/3.0
+ 0.25*state->d[i]*dx)));
}
}
else {
*result = 0.0;
return GSL_FAILURE;
}
}
return GSL_SUCCESS;
}
static const gsl_interp_type akima_type =
{
"akima",
5,
&akima_alloc,
&akima_init,
&akima_eval,
&akima_eval_deriv,
&akima_eval_deriv2,
&akima_eval_integ,
&akima_free
};
const gsl_interp_type * gsl_interp_akima = &akima_type;
///////////////////////////////////////////////////////////////////
static int
linear_init (void * vstate,
const double x_array[],
const double y_array[],
size_t size)
{
return GSL_SUCCESS;
}
static
int
linear_eval (const void * vstate,
const double x_array[], const double y_array[], size_t size,
double x,
gsl_interp_accel * a,
double *y)
{
double x_lo, x_hi;
double y_lo, y_hi;
double dx;
size_t index;
if (a != 0)
{
index = gsl_interp_accel_find (a, x_array, size, x);
}
else
{
index = gsl_interp_bsearch (x_array, x, 0, size - 1);
}
/* evaluate */
x_lo = x_array[index];
x_hi = x_array[index + 1];
y_lo = y_array[index];
y_hi = y_array[index + 1];
dx = x_hi - x_lo;
if (dx > 0.0)
{
*y = y_lo + (x - x_lo) / dx * (y_hi - y_lo);
return GSL_SUCCESS;
}
else
{
*y = 0.0;
return GSL_EINVAL;
}
}
static
int
linear_eval_deriv (const void * vstate,
const double x_array[], const double y_array[], size_t size,
double x,
gsl_interp_accel * a,
double *dydx)
{
double x_lo, x_hi;
double y_lo, y_hi;
double dx;
double dy;
size_t index;
if (a != 0)
{
index = gsl_interp_accel_find (a, x_array, size, x);
}
else
{
index = gsl_interp_bsearch (x_array, x, 0, size - 1);
}
/* evaluate */
x_lo = x_array[index];
x_hi = x_array[index + 1];
y_lo = y_array[index];
y_hi = y_array[index + 1];
dx = x_hi - x_lo;
dy = y_hi - y_lo;
if (dx > 0.0)
{
*dydx = dy / dx;;
return GSL_SUCCESS;
}
else
{
*dydx = 0.0;
return GSL_EINVAL;
}
}
static
int
linear_eval_deriv2 (const void * vstate,
const double x_array[], const double y_array[], size_t size,
double x,
gsl_interp_accel * a,
double *y_pp)
{
*y_pp = 0.0;
return GSL_SUCCESS;
}
static
int
linear_eval_integ (const void * vstate,
const double x_array[], const double y_array[], size_t size,
gsl_interp_accel * acc,
double a, double b,
double * result)
{
size_t i, index_a, index_b;
if (acc != 0)
{
index_a = gsl_interp_accel_find (acc, x_array, size, a);
index_b = gsl_interp_accel_find (acc, x_array, size, b);
}
else
{
index_a = gsl_interp_bsearch (x_array, a, 0, size - 1);
index_b = gsl_interp_bsearch (x_array, b, 0, size - 1);
}
/* endpoints span more than one interval */
*result = 0.0;
/* interior intervals */
for(i=index_a; i<=index_b; i++) {
const double x_hi = x_array[i + 1];
const double x_lo = x_array[i];
const double y_lo = y_array[i];
const double y_hi = y_array[i + 1];
const double dx = x_hi - x_lo;
if(dx != 0.0) {
if (i == index_a || i == index_b)
{
double x1 = (i == index_a) ? a : x_lo;
double x2 = (i == index_b) ? b : x_hi;
const double D = (y_hi-y_lo)/dx;
*result += (x2-x1) * (y_lo + 0.5*D*((x2-x_lo)+(x1-x_lo)));
}
else
{
*result += 0.5 * dx * (y_lo + y_hi);
}
}
}
return GSL_SUCCESS;
}
static const gsl_interp_type linear_type =
{
"linear",
2,
NULL, /* alloc, not applicable */
&linear_init,
&linear_eval,
&linear_eval_deriv,
&linear_eval_deriv2,
&linear_eval_integ,
NULL, /* free, not applicable */
};
const gsl_interp_type * gsl_interp_linear = &linear_type;
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
|