File: odinprop.cpp

package info (click to toggle)
odin 2.0.5-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,196 kB
  • sloc: cpp: 62,638; sh: 4,541; makefile: 779
file content (762 lines) | stat: -rw-r--r-- 25,037 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
#include <odinseq/seqall.h>

class METHOD_CLASS : public SeqMethod {

private:
  LDRint    Blades;
  LDRbool   ShortAxis;
  LDRfloat  BladeOversampling;
  LDRbool   TakeMinEchoTime;
  LDRenum   TemplateScan;
  LDRbool   RampSampling;
  LDRenum   RampMode;
  LDRfloat  RampSteepness;
  LDRbool   FatSaturation;
  LDRfloat  T1Ernst;
  LDRenum   EPIMode;
  LDRint    DummyCycles;
  LDRint    NumOfGradEchoes;
  LDRint    NumOfSamples;
  LDRdouble PulseDur;
  LDRbool   fMRITrigger;
  LDRbool   UpDownBlade;
  LDRbool   FieldMap;
  LDRbool   InvertPartialFourier;


  SeqPulsar  exc;
  SeqPulsar  refoc;
  SeqSat     fatsat;
  SeqAcqEPI  epiacq;
  SeqDelay   epiacq_dummy;
  SeqAcqEPI  epiacq_template;
  SeqAcqEPI  epiacq_grappa;
  SeqAcqDeph deph;
  SeqAcqDeph deph_template;
  SeqAcqDeph deph_grappa;
  SeqObjLoop sliceloop;
  SeqObjLoop reploop;
  SeqObjLoop bladeloop;
  SeqObjLoop grappaloop;
  SeqObjLoop dummyloop;
  SeqDelay   trdelay;
  SeqObjList scan;
  SeqObjList dummypart;
  SeqObjList templatepart;
  SeqObjList grappapart;
  SeqObjList imagingpart;
  SeqObjList slicepart;
  SeqObjList slicepart_dummy;
  SeqObjList slicepart_template;
  SeqObjList slicepart_grappa;
  SeqObjList preppart;
  SeqObjList bladepart;
  SeqDelay   exc2acq;
  SeqDelay   exc2refoc;
  SeqDelay   refoc2acq;
  SeqGradConstPulse spoiler;
  SeqTrigger trigger;
  SeqGradTrapezParallel crusher;
  SeqDelay   crusherdelay;
  SeqFieldMap fmapscan;
  SeqVecIter phaseiter;

  SeqGradTrapez deph3d;
  SeqGradTrapez blip3d_read;
  SeqGradTrapez blip3d_phase;
  SeqGradTrapez blip3d_template_read;
  SeqGradTrapez blip3d_template_phase;
  SeqGradTrapez blip3d_grappa_read;
  SeqGradTrapez blip3d_grappa_phase;
  SeqGradVectorPulse blip3d_slice;
  SeqGradChanParallel blip3d;
  SeqGradChanParallel blip3d_template;
  SeqGradChanParallel blip3d_grappa;


  SeqObjLoop loop3d;
  SeqVector index3d;
  SeqVector epiindex;


  SeqObjList epiacq_part;
  SeqObjList epiacq_dummy_part;
  SeqObjList epiacq_template_part;
  SeqObjList epiacq_grappa_part;


  SeqRotMatrixVector bladerot;

  SeqMagnReset reset;


  dvector bladeangels;

public:

// This constructor creates an empty EPI sequence
METHOD_CLASS(const STD_string& label) : SeqMethod(label) {
  set_description("EPI-based Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) sequence. See for example J. G. Pipe, Magn. Reson. Med. 42:963-969 (1999)");
}

unsigned int numof_testcases() const {return 2;}


void method_pars_init() {

  // In this function, parameters are initialized and default values are set

  commonPars->set_MatrixSize(readDirection,128);
  commonPars->set_MatrixSize(phaseDirection,128,noedit);
  commonPars->set_NumOfRepetitions(1);
  commonPars->set_RepetitionTime(1000.0);
  commonPars->set_AcqSweepWidth(100.0);


  Blades=8;
  Blades.set_description("Number of PROPELLER blades");

  ShortAxis=false;
  ShortAxis.set_description("Readout direction along short axis of blades");

  BladeOversampling=0.0;
  BladeOversampling.set_minmaxval(0.0,100.0);
  BladeOversampling.set_unit("%").set_description("Oversampling (overlap) in short direction of blade");

  EPIMode.add_item("FIDMode");
  EPIMode.add_item("SEMode");
  EPIMode.set_actual("FIDMode");
  EPIMode.set_description("Gradient-echo EPI (FIDMode) or spin-echo EPI (SEMode)");

  TemplateScan.add_item("NoCorrection");
  TemplateScan.add_item("PhaseCorrection");
  TemplateScan.set_actual("PhaseCorrection");
  TemplateScan.set_description("The type of template scan which is acquired beforehand");

  RampSampling=false;
  RampSampling.set_description("Perform sampling during gradient ramps");

  RampMode.add_item("linear",linear);
  RampMode.add_item("sinusoidal",sinusoidal);
  RampMode.add_item("half_sinusoidal",half_sinusoidal);
  RampMode.set_actual(linear);
  RampMode.set_description("The shape of the ramps of the read gradient");

  RampSteepness=1.0;
  RampSteepness.set_description("Relative steepness (slew rate) of the EPI readout ramps");


  FatSaturation=true;
  FatSaturation.set_description("Saturation of fat resonance prior to excitation");

  T1Ernst=0.0;
  T1Ernst.set_minmaxval(0.0,5000.0).set_description("If non-zero, the flip angle will be set to the Ernst angle using this T1 for optimum SNR");

  TakeMinEchoTime=true;
  TakeMinEchoTime.set_description("Use minimum possible TE");

  DummyCycles=3;
  DummyCycles.set_description("Number of dummy shots before actual acquisition");

  fMRITrigger=true;
  fMRITrigger.set_description("External triggering");

  InvertPartialFourier=false;
  InvertPartialFourier.set_description("Invert position in phase encoding direction at which partial Fourier cut off is performed (i.e. beginning or end of readout)");

  UpDownBlade=false;
  UpDownBlade.set_description("Sample each blade twice with opposite phase-encoding direction");

  FieldMap=false;
  FieldMap.set_description("Fieldmap pre-scan for distortion correction");

  PulseDur=4.0; // avoid initial high RF amplitude
  PulseDur.set_description("Pulse duration of excitation/refocusing pulse");


  // register method parameters for user interface, parameter files, etc.
  append_parameter(Blades,"Blades");
  append_parameter(ShortAxis,"ShortAxis");

  append_parameter(EPIMode,"EPIMode");
  append_parameter(TakeMinEchoTime,"TakeMinEchoTime");
  append_parameter(DummyCycles,"DummyCycles");
  append_parameter(TemplateScan,"TemplateScan");
  append_parameter(RampSampling,"RampSampling");
  append_parameter(FatSaturation,"FatSaturation");
  append_parameter(T1Ernst,"T1Ernst");
  append_parameter(FieldMap,"FieldMap");

  fmapscan.init("fmapscan");
  append_parameter(fmapscan.get_parblock(),"FieldMapPars");

  append_parameter(UpDownBlade,"UpDownBlade");

  append_parameter(PulseDur,"PulseDur");

  append_parameter(fMRITrigger,"fMRITrigger");

  append_parameter(InvertPartialFourier,"InvertPartialFourier");

  if(systemInfo->get_platform()!=numaris_4) {
    append_parameter(BladeOversampling,"BladeOversampling");
    append_parameter(RampMode,"RampMode");
    append_parameter(RampSteepness,"RampSteepness");
    append_parameter(NumOfGradEchoes,"NumOfGradEchoes",noedit);
    append_parameter(NumOfSamples,"NumOfSamples",noedit);
  }


  // alternative default settings for sequence test
  if(get_current_testcase()==1) {
    geometryInfo->set_Mode(voxel_3d);
    ShortAxis=false;
    BladeOversampling=0.0;
    TemplateScan.set_actual("NoCorrection");
  }


}



void method_seq_init() {
  Log<Seq> odinlog(this,"method_seq_init");

  float gamma=systemInfo->get_gamma();

  ///////////////// Pulses: /////////////////////


  float slicethick=geometryInfo->get_sliceThickness();
  float slicegap=geometryInfo->get_sliceDistance()-slicethick;

  // Slightly thicker refocusing slice for better SNR
  // Since the same spatial resolution is used for exc and refoc, the gradient strengths will be the same
  float extra_slicethick_refoc=STD_min(0.5*slicethick, 0.3*slicegap);

  if(geometryInfo->get_Mode()==voxel_3d) {
    slicethick=0.8*geometryInfo->get_FOV(sliceDirection);
    extra_slicethick_refoc=0.2*slicethick;
  }

  float spatres=slicethick/4.0;


  // calculate Ernst angle accordng to TR
  float flipangle=commonPars->get_FlipAngle();
  if(T1Ernst>0.0) {
    flipangle=180.0/PII * acos( exp ( -secureDivision ( commonPars->get_RepetitionTime(), T1Ernst) ) );
    commonPars->set_FlipAngle( flipangle );
  }

  // excitation pulse
  exc=SeqPulsarSinc("exc", slicethick, true,PulseDur,flipangle,spatres);
  exc.set_rephased(true, 0.8*systemInfo->get_max_grad()); // short rephaser
  exc.set_freqlist( gamma * exc.get_strength() / (2.0*PII) * geometryInfo->get_sliceOffsetVector() );
  exc.set_pulse_type(excitation);


  // refocusing pulse
  refoc=SeqPulsarSinc("refoc",slicethick+extra_slicethick_refoc,false,PulseDur,180.0,spatres);
  refoc.set_freqlist( gamma * refoc.get_strength() / (2.0*PII) * geometryInfo->get_sliceOffsetVector() );
  if(!commonPars->get_RFSpoiling()) refoc.set_phase(90.0);
  refoc.set_pulse_type(refocusing);

  // fat saturation module
  fatsat=SeqSat("fatsat",fat);


  //////////////// EPI-Readout: //////////////////////////////

  // square FOV
  int sizeRadial=commonPars->get_MatrixSize(readDirection);
  commonPars->set_MatrixSize(phaseDirection,sizeRadial,noedit);

  int size3d=1;
  if(geometryInfo->get_Mode()==voxel_3d) {
    float resolution=secureDivision(geometryInfo->get_FOV(readDirection),commonPars->get_MatrixSize(readDirection));
    size3d=int(secureDivision(geometryInfo->get_FOV(sliceDirection),resolution)+0.5); // isotropic resolution
  }
  commonPars->set_MatrixSize(sliceDirection,size3d,noedit);


  int readpts_blade=sizeRadial;
  int pelines_blade=sizeRadial;

  int bladewidth=sizeRadial;

  if(Blades>1) {
    float min_bladewidth=sizeRadial*tan(0.5*PII/Blades);  // exact solution
    bladewidth=int( ( (1.0-0.01*BladeOversampling) * min_bladewidth + 0.01*BladeOversampling*sizeRadial ) +0.5 );
  }

  if(ShortAxis) readpts_blade=bladewidth;
  else          pelines_blade=bladewidth;


  float os_read=2.0; // For reduced undersampling artifacts

  float fov=geometryInfo->get_FOV(readDirection); // uniform FOV

  int epi_reduction=commonPars->get_ReductionFactor();
  float epi_partfour=commonPars->get_PartialFourier();

  if(geometryInfo->get_Mode()==voxel_3d) {
    epi_reduction=1;  // 3D phase encoding gets the reduction
    epi_partfour=0.0; // 3D phase encoding gets the partial fourier
  }


  epiacq=SeqAcqEPI("epiacq",commonPars->get_AcqSweepWidth(),
                   readpts_blade, fov,
                   pelines_blade, fov,
                   1, epi_reduction, os_read, "", 0, 0, rampType(int(RampMode)),
                   RampSampling, RampSteepness, epi_partfour, 0, InvertPartialFourier);

  // display sampling extents in read/phase direction
  NumOfGradEchoes=epiacq.get_numof_gradechoes();
  NumOfSamples=epiacq.get_npts_read();

  // Template scan fo EPI, begin with copy of actual EPI
  epiacq_template=epiacq;
  epiacq_template.set_label("epiacq_template");

  // 1D phase correction
  if(TemplateScan=="PhaseCorrection") {
    epiacq_template.set_template_type(phasecorr_template);
  }


  // Full multi-shot EPI readout as GRAPPA training data
  epiacq_grappa=epiacq;
  epiacq_grappa.set_label("epiacq_grappa");
  epiacq_grappa.set_template_type(grappa_template);


  // Delay instead of actual EPI readout for dummy scans
  epiacq_dummy=SeqDelay("epiacq_dummy",epiacq.get_duration());


  // EPI pre-dephase gradient
  dephaseMode dephmode=FID;
  if (EPIMode=="SEMode") dephmode=spinEcho;
  deph=SeqAcqDeph("deph",epiacq,dephmode);
  deph_template=SeqAcqDeph("deph_template",epiacq_template,dephmode);
  deph_grappa=SeqAcqDeph("deph_grappa",epiacq_grappa,dephmode);


  //////////////// 3D encoding: //////////////////////////

  if(geometryInfo->get_Mode()==voxel_3d) {


    // use SeqGradPhaseEnc as a template to calculate phase encoding
    SeqGradPhaseEnc pe3d("pe3d", commonPars->get_MatrixSize(sliceDirection), geometryInfo->get_FOV(sliceDirection), deph.get_gradduration(), sliceDirection,
                                 linearEncoding, noReorder, 1, commonPars->get_ReductionFactor(), DEFAULT_ACL_BANDS, commonPars->get_PartialFourier());


    fvector gradints3d=pe3d.get_trims()*pe3d.get_constduration()*pe3d.get_strength();
    ODINLOG(odinlog,normalDebug) << "gradints3d=" << gradints3d << STD_endl;

    const SeqVector& pe3dvec=pe3d; // access to vectorgrad
    ivector indexvec3d=pe3dvec.get_indexvec();
    ODINLOG(odinlog,normalDebug) << "indexvec3d=" << indexvec3d << STD_endl;


    float strength3d=0.7*systemInfo->get_max_grad();

    // dephaser before readout
    float dephintegral=0.0;
    if(gradints3d.size()) dephintegral=gradints3d[0];
    deph3d=SeqGradTrapez("deph3d", dephintegral, strength3d, sliceDirection);
    deph/=deph3d;
    deph_template/=deph3d;
    deph_grappa/=deph3d;

    // rephasers inbetween readouts
    fvector rewind_integral=-epiacq.get_gradintegral();
    fvector rewind_template_integral=-epiacq_template.get_gradintegral();
    fvector rewind_grappa_integral=-epiacq_grappa.get_gradintegral();
    blip3d_read= SeqGradTrapez("blip3d_read",  rewind_integral[readDirection],  strength3d, readDirection);
    blip3d_phase=SeqGradTrapez("blip3d_phase", rewind_integral[phaseDirection], strength3d, phaseDirection);
    blip3d_template_read= SeqGradTrapez("blip3d_template_read",  rewind_template_integral[readDirection],  strength3d, readDirection);
    blip3d_template_phase=SeqGradTrapez("blip3d_template_phase", rewind_template_integral[phaseDirection], strength3d, phaseDirection);
    blip3d_grappa_read= SeqGradTrapez("blip3d_grappa_read",  rewind_grappa_integral[readDirection],  strength3d, readDirection);
    blip3d_grappa_phase=SeqGradTrapez("blip3d_grappa_phase", rewind_grappa_integral[phaseDirection],  strength3d, phaseDirection);

    // blip in slice direction
    fvector blipintegrals(gradints3d.size()); blipintegrals=0.0;
    for(unsigned int i=0; i<(gradints3d.size()-1); i++) blipintegrals[i]=gradints3d[i+1]-gradints3d[i]; // differences for blips
    ODINLOG(odinlog,normalDebug) << "blipintegrals=" << blipintegrals << STD_endl;
    float maxabsintegral=blipintegrals.maxabs();
    float blipstrength_slice=sqrt(0.5*systemInfo->get_max_slew_rate()*maxabsintegral); // At least one half of the gradient as flat top
    float gradduration_slice=secureDivision(maxabsintegral, blipstrength_slice);
    blip3d_slice=SeqGradVectorPulse("blip3d_slice", sliceDirection, blipstrength_slice, blipintegrals/maxabsintegral, gradduration_slice);

/*
    if(UpDownBlade) {
      deph3d.invert_strength();
      blip3d_slice.invert_strength();
    }
*/

    blip3d=SeqGradChanParallel("blip3d");
    blip3d_template=SeqGradChanParallel("blip3d_template");
    blip3d_grappa=SeqGradChanParallel("blip3d_grappa");

    blip3d +=          blip3d_read          / blip3d_phase          / blip3d_slice;
    blip3d_template += blip3d_template_read / blip3d_template_phase / blip3d_slice;
    blip3d_grappa +=   blip3d_grappa_read   / blip3d_grappa_phase   / blip3d_slice;

    index3d=SeqVector("index3d");
    index3d.set_indexvec(indexvec3d);

    epiindex=SeqVector("epiindex",indexvec3d.size()); // to enumerate EPI readouts
  }


  /////////////////// Rotation of Blades ////////////////////////////////////////////////

  bladerot=SeqRotMatrixVector("bladerot");

  bool full_cycle=UpDownBlade; //(geometryInfo->get_Mode()!=voxel_3d && UpDownBlade);

  int nangles=Blades;
  if(full_cycle) nangles=2*Blades;

  bladeangels.resize(nangles);
  for(int iangle=0; iangle<nangles; iangle++) {
    RotMatrix rm("rotmatrix"+itos(iangle));
    int iblade=iangle;
    if(full_cycle) iblade=iangle/2;
    float ang=float(iblade)/float(Blades)*PII; // 0...180 deg
    if(full_cycle && iangle%2) ang+=PII; // adjacent blades have opposite direction
    rm.set_inplane_rotation(ang);
    bladeangels[iangle]=ang;
    bladerot.append(rm);
  }


  /////////////////// RF Spoiling ///////////////////////////////////////////////////////

  if(commonPars->get_RFSpoiling()) {

     // recommended by Goerke et al., NMR Biomed. 18, 534-542 (2005)
    int plistsize=16;
    double plistincr=45.0;

    exc.set_phasespoiling(plistsize, plistincr);
    refoc.set_phasespoiling(plistsize, plistincr, 90.0);

    epiacq.set_phasespoiling(plistsize, plistincr);
    epiacq_template.set_phasespoiling(plistsize, plistincr);
    epiacq_grappa.set_phasespoiling(plistsize, plistincr);

    phaseiter=SeqVecIter("phaseiter");
    phaseiter.add_vector(exc.get_phaselist_vector());
    phaseiter.add_vector(refoc.get_phaselist_vector());
    phaseiter.add_vector(epiacq.get_phaselist_vector());
    phaseiter.add_vector(epiacq_template.get_phaselist_vector());
    phaseiter.add_vector(epiacq_grappa.get_phaselist_vector());
  }

  //////////////// Loops: //////////////////////////////

  // loop to iterate over slices
  sliceloop=SeqObjLoop("sliceloop");

  // loop to iterate over repetitions
  reploop=SeqObjLoop("reploop");

  // loop to iterate over blades
  bladeloop=SeqObjLoop("bladeloop");

  // loop to iterate over GRAPPA interleaves to obtain training data
  grappaloop=SeqObjLoop("grappaloop");

  // loop to iterate over dummy scans
  dummyloop=SeqObjLoop("dummyloop");

  // loop to iterate over 3rd dimension phase encoding
  loop3d=SeqObjLoop("loop3d");

  //////////////// Timing Delays: //////////////////////////////

  trdelay=SeqDelay("trdelay");


  //////////////// Spoiler Gradient: //////////////////////////////

  double spoiler_strength=0.5*systemInfo->get_max_grad();
  double spoiler_integral=4.0*fabs(deph.get_gradintegral().sum());
  double spoiler_dur=secureDivision(spoiler_integral,spoiler_strength);

  spoiler=SeqGradConstPulse("spoiler",sliceDirection,spoiler_strength,spoiler_dur);


  //////////////// Crusher Gradient: //////////////////////////////

  float crusher_integral=2.0*spoiler_integral;
  crusher=SeqGradTrapezParallel("crusher",crusher_integral,crusher_integral,crusher_integral, spoiler_strength);

  crusherdelay=SeqDelay("crusherdelay",0.1); // Small delay to avoid gradient-induced stimulation


  //////////////// trigger: //////////////////////////////

  trigger=SeqTrigger("fmri_trigger",1.0);

  reset=SeqMagnReset("reset");

  //////////////// Field-map template: //////////////////////////////

  if(FieldMap) {
    if(FatSaturation) fmapscan.build_seq(commonPars->get_AcqSweepWidth(),1.0,fatsat); // pass fat saturation on to field-map scan
    else              fmapscan.build_seq(commonPars->get_AcqSweepWidth(),1.0);
  }


  //////////////// Build the sequence: //////////////////////////////

  preppart+=reset;

  epiacq_part=SeqObjList("epiacq_part");
  epiacq_dummy_part=SeqObjList("epiacq_dummy_part");
  epiacq_template_part=SeqObjList("epiacq_template_part");
  epiacq_grappa_part=SeqObjList("epiacq_grappa_part");

  if(geometryInfo->get_Mode()==voxel_3d) {

    epiacq_part += loop3d( epiacq + blip3d )[index3d][epiindex][blip3d_slice];
    epiacq_dummy_part += loop3d( epiacq_dummy + blip3d )[index3d][epiindex][blip3d_slice];
    epiacq_template_part += loop3d( epiacq_template + blip3d_template )[index3d][epiindex][blip3d_slice];
    epiacq_grappa_part += loop3d( epiacq_grappa + blip3d_grappa )[index3d][epiindex][blip3d_slice];

  } else {

    epiacq_part += epiacq;
    epiacq_dummy_part += epiacq_dummy;
    epiacq_template_part += epiacq_template;
    epiacq_grappa_part += epiacq_grappa;

  }






  // add fat saturation to template and repetitions
  if(FatSaturation) preppart += fatsat;

  if(fMRITrigger && (geometryInfo->get_Mode()!=voxel_3d) ) slicepart+= trigger; // trigger for each single blade

  if (EPIMode=="FIDMode") {

    dummypart=    preppart + exc + deph          + exc2acq + epiacq_dummy_part     + crusherdelay + crusher;

    templatepart= preppart + exc + deph_template + exc2acq + epiacq_template_part  + crusherdelay + crusher;

    grappapart=   preppart + exc + deph_grappa   + exc2acq + epiacq_grappa_part    + crusherdelay + crusher;

    imagingpart=  preppart + exc + deph          + exc2acq + epiacq_part           + crusherdelay + crusher;

  }

  if (EPIMode=="SEMode") {

    dummypart=    preppart + exc + exc2refoc + deph          + spoiler + refoc + spoiler + refoc2acq + epiacq_dummy_part    + crusherdelay + crusher;

    templatepart= preppart + exc + exc2refoc + deph_template + spoiler + refoc + spoiler + refoc2acq + epiacq_template_part + crusherdelay + crusher;

    grappapart=   preppart + exc + exc2refoc + deph_grappa   + spoiler + refoc + spoiler + refoc2acq + epiacq_grappa_part   + crusherdelay + crusher;

    imagingpart=  preppart + exc + exc2refoc + deph          + spoiler + refoc + spoiler + refoc2acq + epiacq_part          + crusherdelay + crusher;
  }

  templatepart.set_gradrotmatrixvector(bladerot);
  grappapart.  set_gradrotmatrixvector(bladerot);
  imagingpart. set_gradrotmatrixvector(bladerot);


  if (EPIMode=="FIDMode") {
    slicepart_dummy =    sliceloop( dummypart    + trdelay )[exc];
    slicepart_template = sliceloop( templatepart + trdelay )[exc];
    slicepart_grappa =   sliceloop( grappapart   + trdelay )[exc];
    slicepart +=         sliceloop( imagingpart  + trdelay )[exc];
  }
  if (EPIMode=="SEMode") {
    slicepart_dummy =    sliceloop( dummypart + trdelay    )[exc][refoc];
    slicepart_template = sliceloop( templatepart + trdelay )[exc][refoc];
    slicepart_grappa  =  sliceloop( grappapart + trdelay   )[exc][refoc];
    slicepart +=         sliceloop( imagingpart + trdelay  )[exc][refoc];
  }


  if(commonPars->get_RFSpoiling()) {
    slicepart          += phaseiter;
    slicepart_dummy    += phaseiter;
    slicepart_template += phaseiter;
    slicepart_grappa   += phaseiter;
  }

  if(FieldMap) scan += fmapscan + trdelay;


  if(DummyCycles>0) {
    scan+= dummyloop(
             slicepart_dummy
           )[DummyCycles];
  }


  if(TemplateScan=="PhaseCorrection") {
    scan += bladeloop(
              slicepart_template
            )[bladerot];
  }


  if(commonPars->get_ReductionFactor()>1) {
    // Fully sampled k-space
    scan+= grappaloop(
             bladeloop(
               slicepart_grappa
             )[bladerot]
           )[deph_grappa.get_epi_reduction_vector()];
  }

  if(fMRITrigger && (geometryInfo->get_Mode()==voxel_3d) ) bladepart+= trigger; // trigger only for each full blade cycle

  bladepart+= bladeloop(
                slicepart
              )[bladerot];

  scan+= reploop( 
           bladepart
         )[commonPars->get_NumOfRepetitions()];


  set_sequence( scan );
}




void method_rels() {


   ////////////////// TE Timings: ////////////////////////////////


   double acq_center=epiacq.get_acquisition_center();
   if(geometryInfo->get_Mode()==voxel_3d) acq_center= (1.0-commonPars->get_PartialFourier())*0.5*epiacq_part.get_duration();


   double min_echo_time=0.0;


   if (EPIMode=="FIDMode") {

     min_echo_time=(exc.get_duration()-exc.get_magnetic_center())+deph.get_duration()+acq_center;

     if(commonPars->get_EchoTime()<min_echo_time) commonPars->set_EchoTime(min_echo_time);

     if(TakeMinEchoTime) commonPars->set_EchoTime(min_echo_time);

     exc2acq=commonPars->get_EchoTime()-min_echo_time;
   }



   if (EPIMode=="SEMode") {

     //////////////// Duration from the middle of the excitation pulse ///////////////////
     //////////////// to the middle of the refocusing pulse: /////////////////////////////

     double TE1=( exc.get_duration() - exc.get_magnetic_center() )
                + deph.get_duration()
                + spoiler.get_duration()
                + refoc.get_magnetic_center();

     if(min_echo_time<(2.0*TE1)) min_echo_time=2.0*TE1;

     //////////////// Duration from the middle of the refocusing pulse ///////////////////
     //////////////// to the middle of the acquisition window: ///////////////////////////

     double TE2=(refoc.get_duration() - refoc.get_magnetic_center())
                + spoiler.get_duration()
                + acq_center;

     if(min_echo_time<(2.0*TE2)) min_echo_time=2.0*TE2;



     if (commonPars->get_EchoTime()<min_echo_time) commonPars->set_EchoTime(min_echo_time);

     if(TakeMinEchoTime) commonPars->set_EchoTime(min_echo_time);

     exc2refoc=commonPars->get_EchoTime()/2.0-TE1;
     refoc2acq=commonPars->get_EchoTime()/2.0-TE2;

   }



   ////////////////// TR Timings: ////////////////////////////////

   // reset before recalculating timings
   trdelay=0.0;

   float slicedur=slicepart.get_duration();
   if(commonPars->get_RepetitionTime()<slicedur) commonPars->set_RepetitionTime(slicedur);

   trdelay=(commonPars->get_RepetitionTime()-slicedur)/double(geometryInfo->get_nSlices());

}


void method_pars_set() {

  // extra information for the automatic reconstruction
  epiacq.set_reco_vector(slice,exc);
  epiacq_template.set_reco_vector(slice,exc);
  epiacq_grappa.set_reco_vector(slice,exc);


  if(geometryInfo->get_Mode()==voxel_3d) {
    epiacq.set_reco_vector(line3d,index3d);
    epiacq_template.set_reco_vector(line3d,index3d);
    epiacq_grappa.set_reco_vector(line3d,index3d);

    epiacq.set_reco_vector(epi, epiindex);
    epiacq_template.set_reco_vector(epi, epiindex);
    epiacq_grappa.set_reco_vector(epi, epiindex);

    // For multi-frequency distortion correction
    int nepi=epiindex.get_vectorsize();
    dvector offsettime(nepi);
    double epidur=epiacq.get_duration() + blip3d.get_duration();
    for(int i=0; i<nepi; i++) offsettime[i]=i*epidur;
    recoInfo->set_DimValues(epi,offsettime);
  }


  epiacq.set_reco_vector(cycle,bladerot);
  epiacq_template.set_reco_vector(cycle,bladerot);
  epiacq_grappa.set_reco_vector(cycle,bladerot);
  recoInfo->set_DimValues(cycle,bladeangels);

//  if(geometryInfo->get_Mode()==voxel_3d && UpDownBlade) recoInfo->set_CmdLineOpts("-ip -sflip");

}

};


/////////////////////////////////////////////////////


// entry point for the sequence module
ODINMETHOD_ENTRY_POINT