1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
#include <odinseq/seqall.h>
class METHOD_CLASS : public SeqMethod {
public:
METHOD_CLASS(const STD_string& label);
~METHOD_CLASS() {delete_objs();}
void method_pars_init();
void method_seq_init();
void method_rels();
void method_pars_set();
unsigned int numof_testcases() const {return 2;}
private:
void delete_objs();
LDRint NumOfRefgPulses;
LDRdouble RefgainStartingValue;
LDRdouble MaxFlipangle;
LDRdoubleArr AttenuationVals;
LDRdouble PulseGain;
LDRdouble TemplPulseDuration;
LDRdouble PulseDuration;
LDRint NumOfDummyScans;
LDRint NumOfReadPoints;
LDRbool TestMode;
SeqPulsar* exc_pulsar;
SeqPulsNdim** exc;
unsigned int numof_pulses;
SeqPulsarReph reph;
SeqAcqEPI* acqepi;
SeqAcqEPI* acqtemplate;
SeqAcq* acq;
SeqAcqDeph deph;
SeqAcqDeph dephtmpl;
SeqObjLoop dummyloop;
SeqDelay dummyacqdelay;
SeqDelay relaxdelay;
SeqObjVector exc_vector;
SeqObjList slicepart;
SeqObjLoop excloop;
SeqObjLoop acculoop;
};
//////////////////////////////////////////////////////////////////////////////////////////
void METHOD_CLASS::delete_objs() {
if(exc_pulsar) delete exc_pulsar; exc_pulsar=0;
// Use pointer-to-pointer because delete[] for objects does not work correctly on GCC2.9
if(exc) {
for(unsigned int i=0; i<numof_pulses; i++) delete exc[i];
delete[] exc;
exc=0;
}
if(acqepi) delete acqepi; acqepi=0;
if(acqtemplate) delete acqtemplate; acqtemplate=0;
if(acq) delete acq; acq=0;
}
METHOD_CLASS::METHOD_CLASS (const STD_string& label)
: SeqMethod(label) {
set_description("This method can be used to measure the spatial reference "
"gain for the pulse power, i.e. the spatial distribution of B1 "
"for a given setup. This is done by applying RF pulses with "
"different field strength followed by an EPI readout. "
"The oscilation of the image intensity due to the different "
"flip angles is then used to calculate the reference gain. ");
exc_pulsar=0;
exc=0;
numof_pulses=0;
acqepi=0;
acqtemplate=0;
acq=0;
}
void METHOD_CLASS::method_pars_init() {
RefgainStartingValue=22.0;
MaxFlipangle=500.0;
NumOfRefgPulses=16;
NumOfDummyScans=3;
commonPars->set_MatrixSize(readDirection,48);
commonPars->set_AcqSweepWidth(100.0);
TestMode=false;
TemplPulseDuration=4.0;
// alternative default settings for sequence test
if(get_current_testcase()==1) {
TestMode=true;
}
if(systemInfo->get_platform()!=numaris_4) {
append_parameter(RefgainStartingValue,"RefgainStartingValue");
append_parameter(MaxFlipangle,"MaxFlipangle");
append_parameter(NumOfRefgPulses,"NumOfRefgPulses");
append_parameter(AttenuationVals,"AttenuationVals",noedit);
append_parameter(PulseGain,"PulseGain",noedit);
append_parameter(TemplPulseDuration,"TemplPulseDuration");
append_parameter(PulseDuration,"PulseDuration",noedit);
append_parameter(NumOfDummyScans,"NumOfDummyScans");
append_parameter(NumOfReadPoints,"NumOfReadPoints",noedit);
}
append_parameter(TestMode,"TestMode");
}
void METHOD_CLASS::method_seq_init() {
delete_objs();
relaxdelay=SeqDelay("relaxdelay",commonPars->get_RepetitionTime());
float resolution=secureDivision(geometryInfo->get_FOV(readDirection),commonPars->get_MatrixSize(readDirection));
commonPars->set_MatrixSize(phaseDirection,int(secureDivision(geometryInfo->get_FOV(phaseDirection),resolution)));
commonPars->set_MatrixSize(phaseDirection,(commonPars->get_MatrixSize(phaseDirection)/2)*2);
acqepi=new SeqAcqEPI("acqepi",commonPars->get_AcqSweepWidth(),
commonPars->get_MatrixSize(readDirection),geometryInfo->get_FOV(readDirection),
commonPars->get_MatrixSize(phaseDirection),geometryInfo->get_FOV(phaseDirection),
1,1,1.0,systemInfo->get_main_nucleus());
// use sagittal slice for reference gain
Geometry sag; // dummy to calculate correct rotation matrix
sag.set_orientation(sagittal);
acqepi->set_gradrotmatrix(sag.get_gradrotmatrix());
acqtemplate=new SeqAcqEPI(*acqepi);
acqtemplate->set_label("acqtemplate");
acqtemplate->set_template_type(phasecorr_template);
acqtemplate->set_gradrotmatrix(sag.get_gradrotmatrix());
deph=SeqAcqDeph("deph",*acqepi);
deph.set_gradrotmatrix(sag.get_gradrotmatrix());
dephtmpl=SeqAcqDeph("dephtmpl",*acqtemplate);
dephtmpl.set_gradrotmatrix(sag.get_gradrotmatrix());
NumOfReadPoints=acqepi->get_npts_read();
numof_pulses=NumOfRefgPulses;
if(!TestMode) exc=new SeqPulsNdim*[numof_pulses];
if(!TestMode) systemInfo->set_reference_gain(RefgainStartingValue);
AttenuationVals.resize(NumOfRefgPulses);
// allocate template pulse
exc_pulsar=new SeqPulsarSinc("exc",5.0,true,TemplPulseDuration);
exc_pulsar->set_nucleus(systemInfo->get_main_nucleus());
exc_pulsar->set_gradrotmatrix(sag.get_gradrotmatrix());
PulseGain=exc_pulsar->get_pulse_gain();
PulseDuration=exc_pulsar->get_pulsduration();
reph=SeqPulsarReph("reph",*exc_pulsar);
float angle;
int i,index;
if(TestMode) {
fvector flips(NumOfRefgPulses);
for (i=0;i<NumOfRefgPulses;i++) {
angle=(float)(i+1)/(float)(NumOfRefgPulses)*180.0;
flips[i]=angle;
AttenuationVals(i)=angle;
}
exc_pulsar->set_flipangles(flips);
} else {
// linear flipangle
for (i=0;i<NumOfRefgPulses;i++) {
index=i;
angle=float(i+1)/float(NumOfRefgPulses)*MaxFlipangle;
exc_pulsar->set_flipangle(angle);
exc[index]=new SeqPulsNdim(*exc_pulsar);
exc[index]->set_gradrotmatrix(sag.get_gradrotmatrix());
AttenuationVals(index)=exc[index]->get_power();
}
}
slicepart=SeqObjList("slicepart");
dummyloop=SeqObjLoop("dummyloop");
dummyacqdelay=SeqDelay("dummyacqdelay",acqepi->get_duration());
if(NumOfDummyScans>0) {
if(TestMode) {
slicepart += dummyloop( *exc_pulsar + dephtmpl + dummyacqdelay + relaxdelay + *exc_pulsar + deph + dummyacqdelay + relaxdelay) [NumOfDummyScans];
} else {
slicepart += dummyloop( *(exc[NumOfRefgPulses-1]) + reph + dephtmpl + dummyacqdelay + relaxdelay + *(exc[NumOfRefgPulses-1]) + reph + deph + dummyacqdelay + relaxdelay) [NumOfDummyScans];
}
}
exc_vector=SeqObjVector("exc_vector");
excloop=SeqObjLoop("excloop");
acculoop=SeqObjLoop("acculoop");
if(!TestMode) {
for (i=0;i<NumOfRefgPulses;i++) {
exc_vector += *(exc[i]);
}
delete exc_pulsar; exc_pulsar=0;
}
if(TestMode) {
slicepart += excloop ( *exc_pulsar + dephtmpl + (*acqtemplate) + relaxdelay ) [exc_pulsar->get_flipangle_vector()]
+ excloop ( *exc_pulsar + deph + (*acqepi) + relaxdelay ) [exc_pulsar->get_flipangle_vector()];
} else {
slicepart += excloop ( exc_vector + reph + dephtmpl + (*acqtemplate) + relaxdelay ) [exc_vector]
+ excloop ( exc_vector + reph + deph + (*acqepi) + relaxdelay ) [exc_vector];
}
set_sequence( acculoop(slicepart)[commonPars->get_NumOfRepetitions()] );
}
void METHOD_CLASS::method_rels() {
}
void METHOD_CLASS::method_pars_set() {
if(TestMode) {
acqepi->set_reco_vector(userdef,exc_pulsar->get_flipangle_vector());
acqtemplate->set_reco_vector(userdef,exc_pulsar->get_flipangle_vector());
} else {
acqepi->set_reco_vector(userdef,exc_vector,AttenuationVals);
acqtemplate->set_reco_vector(userdef,exc_vector,AttenuationVals);
recoInfo->set_PostProc3D("usercoll | refgain("+ftos(PulseDuration)+","+ftos(PulseGain)+")");
}
}
// entry point for the sequence module
ODINMETHOD_ENTRY_POINT
|