1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
#include <odinseq/seqall.h>
class METHOD_CLASS : public SeqMethod {
private:
SeqPulsar exc;
SeqPulsarReph exc_reph;
SeqPulsarReph exc_reph_neg;
SeqAcqRead acqread;
SeqAcqRead negacqread; // need separate object since calling SeqAcqDeph on the same object with different polarity does not work
SeqAcqDeph readdeph;
SeqAcqDeph negreaddeph;
SeqGradPhaseEncFlowComp pe;
SeqGradPhaseEncFlowComp pe3d;
SeqGradConstPulse crusher;
SeqDelay exc2acq;
SeqDelay relaxdelay;
SeqObjList gradpart;
SeqObjList scan;
SeqObjList readout;
SeqObjLoop peloop;
SeqObjLoop peloop3d;
SeqObjLoop reploop;
SeqVecIter phaseiter;
LDRfloat T1Ernst;
public:
METHOD_CLASS(const STD_string& label) : SeqMethod(label) {
set_description("Fully flow-compensated FLASH sequence for Susceptibility Weighted Imaging. ");
}
void method_pars_init() {
geometryInfo->set_Mode(voxel_3d);
commonPars->set_MatrixSize(readDirection,256);
commonPars->set_MatrixSize(phaseDirection,256,noedit);
commonPars->set_RepetitionTime(50.0);
commonPars->set_EchoTime(28.0);
T1Ernst=1300.0;
T1Ernst.set_minmaxval(0.0,5000.0).set_description("For optimum SNR, the flip angle will be set to the Ernst angle using this T1");
append_parameter(T1Ernst,"T1Ernst");
// fmapscan.init("fmapscan");
// append_parameter(fmapscan.get_parblock(),"FieldMapPars");
}
void method_seq_init(){
Log<Seq> odinlog(this,"method_seq_init");
///////////////// Pulses: /////////////////////
// Excitation Pulse
float spatres=3.0;
float slicethick=geometryInfo->get_FOV(sliceDirection)-2.0*spatres;
if(slicethick<spatres) slicethick=spatres;
exc=SeqPulsarSinc("exc", slicethick, false, 4.0, commonPars->get_FlipAngle(), spatres, 512);
exc.set_filter("Gauss");
exc.set_freqoffset(systemInfo->get_gamma() * exc.get_strength() / (2.0*PII) * geometryInfo->get_offset(sliceDirection) );
exc.set_pulse_type(excitation);
// ODINLOG(odinlog,significantDebug) << "exc.rel_magnetic_center/get_pulsduration" << exc.get_rel_magnetic_center() << "/" << exc.get_pulsduration() << STD_endl;
// ODINLOG(odinlog,significantDebug) << "exc.get_Gz()" << exc.get_Gz() << STD_endl;
// rephasing lobe for excitation pulse
exc_reph=SeqPulsarReph("exc_reph",exc);
exc_reph_neg=SeqPulsarReph("exc_reph",exc);
exc_reph_neg.invert_strength();
////////////////// Geometry: /////////////////////////////////
// calculate the resolution in the read Channel and set the number of phase encoding
// steps so that we will obtain a uniform resolution in read and phase Channel:
float resolution=secureDivision(geometryInfo->get_FOV(readDirection),commonPars->get_MatrixSize(readDirection));
commonPars->set_MatrixSize(phaseDirection,int(secureDivision(geometryInfo->get_FOV(phaseDirection),resolution)+0.5),noedit);
commonPars->set_MatrixSize(sliceDirection,int(secureDivision(geometryInfo->get_FOV(sliceDirection),resolution)+0.5),noedit);
//////////////// Phase Encoding: //////////////////////////
float t0=exc.get_duration()-exc.get_magnetic_center()+
exc_reph.get_duration()+
exc_reph.get_duration()+
exc_reph_neg.get_duration();
pe=SeqGradPhaseEncFlowComp("pe", t0, commonPars->get_MatrixSize(phaseDirection), geometryInfo->get_FOV(phaseDirection),
phaseDirection, 0.25*systemInfo->get_max_grad(),
linearEncoding, noReorder, 1,
commonPars->get_ReductionFactor(), DEFAULT_ACL_BANDS, commonPars->get_PartialFourier());
//////////////// Phase Encoding (3D): //////////////////////////
pe3d=SeqGradPhaseEncFlowComp("pe3d", t0, commonPars->get_MatrixSize(sliceDirection),geometryInfo->get_FOV(sliceDirection),
sliceDirection, pe.get_strength(),
linearEncoding, noReorder, 1,
commonPars->get_ReductionFactor());
//////////////// Readout: //////////////////////////////
acqread=SeqAcqRead("acqread",commonPars->get_AcqSweepWidth(),commonPars->get_MatrixSize(readDirection),
geometryInfo->get_FOV(readDirection),readDirection);
negacqread=acqread;
readdeph=SeqAcqDeph("readdeph", acqread);
negreaddeph=SeqAcqDeph("negreaddeph", negacqread, spinEcho);
//////////////// RF Spoiling: //////////////////////////////
if(commonPars->get_RFSpoiling()) {
exc.set_phasespoiling();
acqread.set_phasespoiling();
phaseiter=SeqVecIter("phaseiter");
phaseiter.add_vector(exc.get_phaselist_vector());
phaseiter.add_vector(acqread.get_phaselist_vector());
}
//////////////// Crusher: //////////////////////////////
double crusher_strength=0.5*systemInfo->get_max_grad();
double crusher_integral=4.0*fabs(readdeph.get_gradintegral().sum());
double crusher_dur=secureDivision(crusher_integral, crusher_strength);
crusher=SeqGradConstPulse("crusher",readDirection,crusher_strength,crusher_dur);
//////////////// Field-map template: //////////////////////////////
// fmapscan.build_seq(100.0, SeqObjList(), commonPars->get_RepetitionTime());
//////////////// several padding delays ////////////////////
exc2acq=SeqDelay("exc2acq");
relaxdelay=SeqDelay("relaxdelay");
//////////////// total sequence: //////////////////////////////
gradpart=SeqObjList("gradpart");
scan=SeqObjList("scan");
readout=SeqObjList("readout");
peloop=SeqObjLoop("peloop");
peloop3d=SeqObjLoop("peloop3d");
reploop=SeqObjLoop("reploop");
gradpart = (negreaddeph+readdeph)/pe/pe3d;
readout = exc + exc_reph + exc_reph + exc_reph_neg + gradpart + exc2acq + readdeph + acqread + crusher;
if(commonPars->get_RFSpoiling()) readout += phaseiter;
// scan += fmapscan + relaxdelay;
scan+= reploop(
peloop3d(
peloop(
readout + relaxdelay
)[pe]
)[pe3d]
)[commonPars->get_NumOfRepetitions()];
set_sequence( scan );
}
void method_rels(){
// TE
double minTE=exc.get_duration()-exc.get_magnetic_center()+
exc_reph.get_duration()+
exc_reph.get_duration()+
exc_reph_neg.get_duration()+
gradpart.get_duration()+
readdeph.get_duration()+
acqread.get_acquisition_center();
if(commonPars->get_EchoTime()<minTE) commonPars->set_EchoTime(minTE);
exc2acq=commonPars->get_EchoTime()-minTE;
// TR
// calculate relaxdelay to get the desired repetition time
float readoutdur=readout.get_duration();
if(readoutdur > commonPars->get_RepetitionTime()) commonPars->set_RepetitionTime(readoutdur);
relaxdelay.set_duration( commonPars->get_RepetitionTime()-readoutdur );
// calculate Ernst angle accordng to TR
float flipangle=180.0/PII * acos( exp ( -secureDivision ( commonPars->get_RepetitionTime(), T1Ernst) ) );
commonPars->set_FlipAngle( flipangle, noedit );
exc.set_flipangle( flipangle );
}
void method_pars_set(){
// inform the readout about the used phase encoding and slice vector (for automatic reconstruction)
acqread.set_reco_vector(line,pe);
acqread.set_reco_vector(line3d,pe3d);
recoInfo->set_PreProc3D("swi");
recoInfo->set_PostProc3D("mip");
// recoInfo->set_CmdLineOpts("-ff CosSq -fp 0.5");
}
};
// entry point for the sequence module
ODINMETHOD_ENTRY_POINT
|