File: tj_messer.cpp

package info (click to toggle)
odin 2.0.5-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,196 kB
  • sloc: cpp: 62,638; sh: 4,541; makefile: 779
file content (691 lines) | stat: -rw-r--r-- 22,190 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

// include the headers of all sequence classes
#include <odinseq/seqall.h>


// The whole EPI sequence (including reco) is a C++ class
class METHOD_CLASS : public SeqMethod {

private:

  LDRint   NumOfEchoes;
  LDRbool  SEAcquisition;
  LDRint   Blades;
  LDRint   Shots;
  LDRfloat PulseDur;
  LDRbool  RampSampling;
  LDRbool  FatSaturation;
  LDRbool  fMRITrigger;
  LDRfloat FWbVal;
  LDRbool  FieldMap;

  LDRdoubleArr TEs;

  // sequence objects which are the elementary objects
  // to build the EPI sequence
  SeqPulsar  exc;
  SeqPulsar  refoc;
  SeqSat     fatsat;

  SeqAcqEPI  ge_epi;
  SeqAcqEPI  ge_epi_template;
  SeqAcqEPI  ge_epi_grappa;

  SeqAcqEPI  se_epi;
  SeqAcqEPI  se_epi_template;
  SeqAcqEPI  se_epi_grappa;

  SeqAcqDeph ge_deph;
  SeqAcqDeph se_deph;
  SeqAcqDeph deph_template; // one for both GE and SE
  SeqAcqDeph ge_deph_grappa;
  SeqAcqDeph se_deph_grappa;

  SeqAcqDeph ge_reph;
  SeqAcqDeph se_reph;
  SeqAcqDeph reph_template; // one for both GE and SE
  SeqAcqDeph ge_reph_grappa;
  SeqAcqDeph se_reph_grappa;

  SeqDelay   sedelay;

  SeqGradTrapezParallel rewind;
  SeqGradTrapezParallel rewind_template;
  SeqDelay rewind_paddelay;

  SeqVecIter phaseiter;

  SeqObjLoop sliceloop;
  SeqObjLoop reploop;
  SeqObjLoop segloop;
  SeqObjLoop grappaloop;
  SeqObjLoop echoloop;
  SeqObjLoop dummyloop;

  SeqDelay   trdelay;

  SeqObjVector gerewindvec;
  SeqObjVector gerewindvec_template;
  SeqObjVector gerewindvec_grappa;
  SeqObjList gepart;
  SeqObjList gepart_template;
  SeqObjList gepart_grappa;
  SeqDelay   gepart_dummy;

  SeqObjVector serewindvec;
  SeqObjVector serewindvec_template;
  SeqObjVector serewindvec_grappa;
  SeqObjList separt;
  SeqObjList separt_template;
  SeqObjList separt_grappa;
  SeqDelay   separt_dummy;

  SeqObjList scan;
  SeqObjList templatepart;
  SeqObjList grappapart;
  SeqObjList imagingpart;
  SeqObjList dummypart;
  SeqObjList slicepart;
  SeqObjList slicepart_dummy;
  SeqObjList slicepart_template;
  SeqObjList slicepart_grappa;
  SeqObjList preppart;



  SeqDelay   exc2acq;
  SeqDelay   exc2refoc;
  SeqDelay   refoc2acq;
  SeqGradConstPulse spoiler;
  SeqTrigger trigger;

  SeqGradTrapezParallel crusher;
  SeqDelay   crusherdelay;

  SeqDiffWeight fw;
  SeqGradTrapez fw1st;
  SeqGradTrapezParallel fw2nd_reph;
  SeqObjList    fwpart;
  SeqDelay      fwmid;


  SeqObjLoop bladeloop;
  SeqRotMatrixVector bladerot;
  dvector bladeangels;

  SeqFieldMap fmapscan;



public:

// This constructor creates an empty EPI sequence
METHOD_CLASS(const STD_string& label) : SeqMethod(label) {
  set_description("Multi-gradient-Echo Single-shot Sampling of Echo Refocussing (MESSER), a combined gradient- and spin-echo sequence using parallel imaging.");
}


void method_pars_init() {

  // In this function, parameters are initialized and default values are set

  commonPars->set_MatrixSize(readDirection,64);
  commonPars->set_MatrixSize(phaseDirection,64,noedit);
  commonPars->set_NumOfRepetitions(1);
  commonPars->set_RepetitionTime(1000.0);
  commonPars->set_AcqSweepWidth(100.0);
  commonPars->set_ReductionFactor(3);

  NumOfEchoes=3;
  NumOfEchoes.set_description("Number of echoes per period");
  append_parameter(NumOfEchoes,"NumOfEchoes");

  SEAcquisition=true;
  SEAcquisition.set_description("Sample the spin echo directly with the last EPI");
  append_parameter(SEAcquisition,"SEAcquisition");

  Blades=1;
  Blades.set_description("Number of long-axis PROPELLER blades");
  append_parameter(Blades,"Blades");

  Shots=1;
  Shots.set_description("Number of shots, multi-shot (segmented) EPI if Shots>1");
  append_parameter(Shots,"Shots");

  PulseDur=4.0; // start with large duration so that sequence can be loaded
  PulseDur.set_unit(ODIN_TIME_UNIT);
  PulseDur.set_description("Pulse duration of excitation and refocusing pulse");
  append_parameter(PulseDur,"PulseDur");

  RampSampling=false;
  RampSampling.set_description("Perform sampling during gradient ramps");
  append_parameter(RampSampling,"RampSampling");

  FatSaturation=true;
  FatSaturation.set_description("Saturation of fat resonance prior to excitation");
  append_parameter(FatSaturation,"FatSaturation");

  fMRITrigger=true;
  fMRITrigger.set_description("External triggering");
  append_parameter(fMRITrigger,"fMRITrigger");

  FWbVal=0.0;
  FWbVal.set_unit("s/mm^2");
  FWbVal.set_description("b-Value of Weak flow weighting after excitation");
  append_parameter(FWbVal,"FWbVal");

  FieldMap=false;
  FieldMap.set_description("Fieldmap pre-scan for distortion correction");
  append_parameter(FieldMap,"FieldMap");

  fmapscan.init("fmapscan");
  append_parameter(fmapscan.get_parblock(),"FieldMapPars");



  TEs.resize(2*NumOfEchoes);
  TEs.set_description("Echo times");
  append_parameter(TEs,"TEs");

}



void method_seq_init() {
  Log<Seq> odinlog(this,"method_seq_init");

  if(NumOfEchoes<2) NumOfEchoes=2;

  ///////////////// Pulses: /////////////////////

  float slicethick=geometryInfo->get_sliceThickness();
  float slicegap=geometryInfo->get_sliceDistance()-slicethick;

  // excitation pulse
  exc=SeqPulsarSinc("exc",slicethick,false,PulseDur,commonPars->get_FlipAngle());
  exc.set_freqlist( systemInfo->get_gamma() * exc.get_strength() / (2.0*PII) * geometryInfo->get_sliceOffsetVector() );
  exc.set_pulse_type(excitation);

  // Slightly thicker refocusing slice for better SNR
  // Since the same spatial resolution is used for exc and refoc, the gradient strengths will be the same
  float extra_slicethick_refoc=STD_min(0.5*slicethick, 0.3*slicegap);

  // refocusing pulse
  refoc=SeqPulsarSinc("refoc",slicethick+extra_slicethick_refoc,false,PulseDur,180.0);
  refoc.set_freqlist( systemInfo->get_gamma() * refoc.get_strength() / (2.0*PII) * geometryInfo->get_sliceOffsetVector() );
  if(!commonPars->get_RFSpoiling()) refoc.set_phase(90.0);
  refoc.set_pulse_type(refocusing);

  // fat saturation pulse
  fatsat=SeqSat("fatsat",fat);



  //////////////// EPI-Readout: //////////////////////////////

  // set equivalent resolution in read and phase direction
  float resolution=secureDivision(geometryInfo->get_FOV(readDirection),commonPars->get_MatrixSize(readDirection));

  int pelines=int(secureDivision(geometryInfo->get_FOV(phaseDirection),resolution)+0.5);
  commonPars->set_MatrixSize(phaseDirection, pelines, noedit);
  float pefov=geometryInfo->get_FOV(phaseDirection);

  if(Blades>1) {
    pelines=int(0.5*PII*commonPars->get_MatrixSize(readDirection)/Blades+0.5);
    pefov=geometryInfo->get_FOV(readDirection); // quadratic FOV
    commonPars->set_MatrixSize(phaseDirection,commonPars->get_MatrixSize(readDirection),noedit); // quadratic size
  }

  float os_read=1.25; // slight oversampling to allow off-center FOV
  if(Blades>1) os_read=2.0;

  ge_epi=SeqAcqEPI("ge_epi",commonPars->get_AcqSweepWidth(),
                   commonPars->get_MatrixSize(readDirection),  geometryInfo->get_FOV(readDirection),
                   pelines, pefov,
                   Shots, commonPars->get_ReductionFactor(), os_read, "",0,0,linear,RampSampling,1.0,commonPars->get_PartialFourier());



  // Phase-correction template
  ge_epi_template=ge_epi;
  ge_epi_template.set_label("ge_epi_template");
  ge_epi_template.set_template_type(phasecorr_template);


  // Full multi-shot EPI readout as GRAPPA training data
  ge_epi_grappa=ge_epi;
  ge_epi_grappa.set_label("ge_epi_grappa");
  ge_epi_grappa.set_template_type(grappa_template);

  se_epi=ge_epi;
  se_epi_template=ge_epi_template;
  se_epi_grappa=ge_epi_grappa;



  // EPI pre-dephase gradient
  ge_deph=SeqAcqDeph("ge_deph",ge_epi,FID);
  se_deph=SeqAcqDeph("se_deph",se_epi,FID);
  deph_template=SeqAcqDeph("deph_template",ge_epi_template,FID);
  ge_deph_grappa=SeqAcqDeph("ge_deph_grappa",ge_epi_grappa,FID);
  se_deph_grappa=SeqAcqDeph("se_deph_grappa",se_epi_grappa,FID);

  // EPI post-rephase gradients
  ge_reph=SeqAcqDeph("ge_reph",ge_epi,rephase);
  se_reph=SeqAcqDeph("se_reph",se_epi,rephase);
  reph_template=SeqAcqDeph("reph_template",ge_epi_template,rephase);
  ge_reph_grappa=SeqAcqDeph("ge_reph_grappa",ge_epi_grappa,rephase);
  se_reph_grappa=SeqAcqDeph("se_reph_grappa",se_epi_grappa,rephase);


  // EPI rewinder after each echo
  fvector gradint(3);

  float rewind_strength=0.4*systemInfo->get_max_grad(); // OK for stimulation monitor 

  gradint=ge_reph.get_gradintegral()+ge_deph.get_gradintegral(); // collapse rephase and dephase into one gradient pulse
  rewind=SeqGradTrapezParallel("rewind",gradint[0],gradint[1],gradint[2],rewind_strength);

  gradint=reph_template.get_gradintegral()+deph_template.get_gradintegral();
  rewind_template=SeqGradTrapezParallel("rewind_template",gradint[0],gradint[1],gradint[2],rewind_strength);

  ODINLOG(odinlog,significantDebug) << "rewind/rewind_template.get_duration()=" << rewind.get_duration() << "/" << rewind_template.get_duration() << STD_endl;

  rewind_paddelay=SeqDelay("rewind_paddelay",rewind.get_duration()-rewind_template.get_duration());



  /////////////////// Rotation of Blades ////////////////////////////////////////////////

  bladerot=SeqRotMatrixVector("bladerot");

  if(Blades>1) {

    bladeangels.resize(Blades);
    for(int iblade=0; iblade<Blades; iblade++) {
      RotMatrix rm("rotmatrix"+itos(iblade));
      float ang=float(iblade)/float(Blades)*PII; // 0...180 deg
      rm.set_inplane_rotation(ang);
      bladeangels[iblade]=ang;
      bladerot.append(rm);
    }

  } else {
    bladerot.append(RotMatrix("identity"));
  }



  /////////////////// RF Spoiling ///////////////////////////////////////////////////////

  if(commonPars->get_RFSpoiling()) {

     // recommended by Goerke et al., NMR Biomed. 18, 534-542 (2005)
    int plistsize=16;
    double plistincr=45.0;

    exc.set_phasespoiling(plistsize, plistincr);
    refoc.set_phasespoiling(plistsize, plistincr, 90.0);

    ge_epi.set_phasespoiling(plistsize, plistincr);
    ge_epi_template.set_phasespoiling(plistsize, plistincr);
    ge_epi_grappa.set_phasespoiling(plistsize, plistincr);

    se_epi.set_phasespoiling(plistsize, plistincr);
    se_epi_template.set_phasespoiling(plistsize, plistincr);
    se_epi_grappa.set_phasespoiling(plistsize, plistincr);


    phaseiter=SeqVecIter("phaseiter");
    phaseiter.add_vector(exc.get_phaselist_vector());
    phaseiter.add_vector(refoc.get_phaselist_vector());
    phaseiter.add_vector(ge_epi.get_phaselist_vector());
    phaseiter.add_vector(ge_epi_template.get_phaselist_vector());
    phaseiter.add_vector(ge_epi_grappa.get_phaselist_vector());
    phaseiter.add_vector(se_epi.get_phaselist_vector());
    phaseiter.add_vector(se_epi_template.get_phaselist_vector());
    phaseiter.add_vector(se_epi_grappa.get_phaselist_vector());

  }


  //////////////// Loops: //////////////////////////////

  // loop to iterate over slices  
  sliceloop=SeqObjLoop("sliceloop");

  // loop to iterate over repetitions
  reploop=SeqObjLoop("reploop");

  // loop to iterate over segments
  segloop=SeqObjLoop("segloop");

  // loop to iterate over GRAPPA interleaves
  grappaloop=SeqObjLoop("grappaloop");

  // loop to iterate over EPI modules
  echoloop=SeqObjLoop("echoloop");

  // loop to iterate over dummy cycles
  dummyloop=SeqObjLoop("dummyloop");

  // loop over zoom sats
//  zoomloop=SeqObjLoop("zoomloop");

  // loop to iterate over PROPELLER blades
  bladeloop=SeqObjLoop("bladeloop");


  //////////////// Timing Delays: //////////////////////////////

  // TR delay
  trdelay=SeqDelay("trdelay");


  //////////////// Spoiler Gradient: //////////////////////////////

  float spoiler_strength=0.5*systemInfo->get_max_grad();
  float spoiler_integral=4.0*fabs(ge_deph.get_gradintegral().sum());
  float spoiler_dur=secureDivision(spoiler_integral,spoiler_strength);

  spoiler=SeqGradConstPulse("spoiler",sliceDirection,spoiler_strength,spoiler_dur);


  //////////////// Crusher Gradient: //////////////////////////////

  float crusher_strength=0.3*systemInfo->get_max_grad(); // Moderate strength to avoid problems with stimulation
  float crusher_integral=2.0*spoiler_integral;
  crusher=SeqGradTrapezParallel("crusher",crusher_integral,crusher_integral,crusher_integral, crusher_strength);

  crusherdelay=SeqDelay("crusherdelay",1.0); // Small delay to avoid gradient-induced stimulation


  //////////////// Flow Weighting: //////////////////////////////

  // reset
  fwpart.clear();

  if(FWbVal>0.0) {

    fwmid=SeqDelay("fwmid",1.0); // Small delay to avoid nerve stimulation

    fvector bVals(1);
    bVals[0]=1000.0*FWbVal;
    fw=SeqDiffWeight("fw", bVals, 0.8*systemInfo->get_max_grad(), fwmid, sliceDirection);

    // Combine slice rephaser and flow weighting
    float fwint=fw.get_grad1().get_gradintegral()[sliceDirection]+exc.get_reph_gradintegral()[sliceDirection];

    fw1st=SeqGradTrapez("fw1st", fwint, sliceDirection, fw.get_grad1().get_gradduration());

//    fw2nd=SeqGradTrapez("fw2nd", fw.get_grad2().get_gradintegral()[sliceDirection], sliceDirection, fw.get_grad2().get_gradduration());
    fw2nd_reph=SeqGradTrapezParallel("fw2nd_reph",0.0,0.0,fw.get_grad2().get_gradintegral()[sliceDirection],fw1st.get_strength());

    fwpart=fw1st+fwmid+fw2nd_reph;

  } else {

    fw2nd_reph=SeqGradTrapezParallel("fw2nd_reph",0.0,0.0,exc.get_reph_gradintegral()[sliceDirection],0.8*systemInfo->get_max_grad());

    fwpart=fw2nd_reph;
  }



  //////////////// fMRI trigger: //////////////////////////////

  trigger=SeqTrigger("fmri_trigger",1.0);

  //////////////// Field-map template: //////////////////////////////

  if(FieldMap) {
    if(FatSaturation) fmapscan.build_seq(commonPars->get_AcqSweepWidth(),1.0,fatsat); // pass fat saturation on to field-map scan
    else              fmapscan.build_seq(commonPars->get_AcqSweepWidth(),1.0);
  }


  //////////////// Build the sequence: //////////////////////////////


  // add fat saturation to template and repetitions
  if(FatSaturation) preppart += fatsat;


  if(fMRITrigger) slicepart += trigger;



  // GE part
  ivector ge_iv(NumOfEchoes);
  int i;
  for(i=0; i<NumOfEchoes; i++) {
    if(i<(NumOfEchoes-1)) {
      gerewindvec          += rewind;
      gerewindvec_template += rewind_template+rewind_paddelay;
      gerewindvec_grappa   += rewind; // Rewind is the same for actual scan and GRAPPA
    } else {
      gerewindvec          += ge_reph        / spoiler;
      gerewindvec_template += reph_template  / spoiler;
      gerewindvec_grappa   += ge_reph_grappa / spoiler;
    }
    ge_iv[i]=i; // Assign index 0-(NumOfEchoes-1) to GE part
  }
  gerewindvec.set_indexvec(ge_iv);
  gerewindvec_template.set_indexvec(ge_iv);
  gerewindvec_grappa.set_indexvec(ge_iv);


  // SE part
  int nechoes_se=NumOfEchoes;
  ivector se_iv(nechoes_se);
  for(i=0; i<(nechoes_se); i++) {
    if(i<(nechoes_se-1)) {
      serewindvec          += rewind;
      serewindvec_template += rewind_template+rewind_paddelay;
      serewindvec_grappa   += rewind; // Rewind is the same for actual scan and GRAPPA
    } else {
      serewindvec          += se_reph;
      serewindvec_template += reph_template;
      serewindvec_grappa   += se_reph_grappa;
    }
    se_iv[i]=NumOfEchoes+i; // Assign index NumOfEchoes-(3*NumOfEchoes-1) to SE part
  }
  serewindvec.set_indexvec(se_iv);
  serewindvec_template.set_indexvec(se_iv);
  serewindvec_grappa.set_indexvec(se_iv);


  // Balanced multi-echo EPI trains
  gepart          = ge_deph +       echoloop(ge_epi          + gerewindvec          )[gerewindvec];
  gepart_template = deph_template + echoloop(ge_epi_template + gerewindvec_template )[gerewindvec_template];
  gepart_grappa   = ge_deph_grappa +echoloop(ge_epi_grappa   + gerewindvec_grappa   )[gerewindvec_grappa];
  gepart_dummy = SeqDelay("gepart_dummy", gepart.get_duration());

  separt          = se_deph +       echoloop(se_epi          + serewindvec          )[serewindvec];
  separt_template = deph_template + echoloop(se_epi_template + serewindvec_template )[serewindvec_template];
  separt_grappa   = se_deph_grappa +echoloop(se_epi_grappa   + serewindvec_grappa   )[serewindvec_grappa];
  separt_dummy = SeqDelay("separt_dummy", separt.get_duration());


  if(Blades>1) {
    gepart.         set_gradrotmatrixvector(bladerot);
    gepart_template.set_gradrotmatrixvector(bladerot);
    gepart_grappa.  set_gradrotmatrixvector(bladerot);
    separt.         set_gradrotmatrixvector(bladerot);
    separt_template.set_gradrotmatrixvector(bladerot);
    separt_grappa.  set_gradrotmatrixvector(bladerot);
  }


  sedelay=SeqDelay("sedelay",0.0);

  imagingpart=  preppart + exc + fwpart + gepart          + refoc + spoiler + sedelay + separt          + crusherdelay + crusher + crusherdelay;

  dummypart=    preppart + exc + fwpart + gepart_dummy    + refoc + spoiler + sedelay + separt_dummy    + crusherdelay + crusher + crusherdelay;

  templatepart= preppart + exc + fwpart + gepart_template + refoc + spoiler + sedelay + separt_template + crusherdelay + crusher + crusherdelay;

  grappapart=   preppart + exc + fwpart + gepart_grappa   + refoc + spoiler + sedelay + separt_grappa   + crusherdelay + crusher + crusherdelay;


  slicepart +=         sliceloop( imagingpart + trdelay  )[exc][refoc];

  slicepart_dummy =    sliceloop( dummypart   + trdelay  )[exc][refoc];

  slicepart_template = sliceloop( templatepart + trdelay )[exc][refoc];

  slicepart_grappa  =  sliceloop( grappapart + trdelay   )[exc][refoc];

  if(commonPars->get_RFSpoiling()) {
    slicepart += phaseiter;
    slicepart_dummy += phaseiter;
    slicepart_template += phaseiter;
    slicepart_grappa += phaseiter;
  }


  if(FieldMap) scan += fmapscan + trdelay;

  scan += dummyloop( slicepart_dummy )[3];


  // template scan for phase correction
  scan+= bladeloop(
           slicepart_template
         )[bladerot];


  if(commonPars->get_ReductionFactor()>1) {
    // Fully sampled k-space
    scan+= grappaloop(
             bladeloop(
               segloop(
                 slicepart_grappa
               )[ge_deph_grappa.get_epi_segment_vector()][ge_reph_grappa.get_epi_segment_vector()][se_deph_grappa.get_epi_segment_vector()][se_reph_grappa.get_epi_segment_vector()]
             )[bladerot]
           )[ge_deph_grappa.get_epi_reduction_vector()][ge_reph_grappa.get_epi_reduction_vector()][se_deph_grappa.get_epi_reduction_vector()][se_reph_grappa.get_epi_reduction_vector()];
  }


  // actual scan loop
  scan+= reploop(
           bladeloop(
             segloop(
               slicepart
             )[ge_deph.get_epi_segment_vector()][se_deph.get_epi_segment_vector()][ge_reph.get_epi_segment_vector()][se_reph.get_epi_segment_vector()]
           )[bladerot]
         )[commonPars->get_NumOfRepetitions()];


  set_sequence( scan );
}




void method_rels() {
  Log<Seq> odinlog(this,"method_rels");


  double TEexc= exc.get_duration() - exc.get_magnetic_center() + fwpart.get_duration();
  ODINLOG(odinlog,significantDebug) << "TEexc=" << TEexc << STD_endl;


  // Fixed TE according to GE part
  double TEhalf = TEexc
             + gepart.get_duration()
//             + spoiler.get_duration()
             + refoc.get_magnetic_center();

  commonPars->set_EchoTime(2.0*TEhalf);


  int nechoes_se=NumOfEchoes;
  TEs.resize(NumOfEchoes+nechoes_se);

  double TEdeph=ge_deph.get_duration();
  double TEepi=ge_epi.get_duration()+rewind.get_duration();
  double TEacq=ge_epi.get_acquisition_center();
  ODINLOG(odinlog,significantDebug) << "TEdeph/TEepi/TEacq=" << TEdeph << "/" << TEepi << "/" << TEacq << STD_endl;

  // GE echo times
  int i;
  for(i=0; i<NumOfEchoes; i++) {
    TEs[i]=TEexc+TEdeph+float(i)*TEepi+TEacq;
    ODINLOG(odinlog,significantDebug) << "TEs[" << i << "]=" << TEs[i] << STD_endl;
  }

  double TErefoc=refoc.get_duration() - refoc.get_magnetic_center() + spoiler.get_duration();

  // SE echo times  
  for(i=0; i<nechoes_se; i++) {
    TEs[NumOfEchoes+i]=TEhalf+TErefoc+TEdeph+float(i)*TEepi+TEacq;
  }

  // Check placement of SE echo times
  for(i=0; i<NumOfEchoes; i++) {
    if(TEs[NumOfEchoes+i]>commonPars->get_EchoTime()) {
      ODINLOG(odinlog,errorLog) << "TE[" << (NumOfEchoes+i) << "] too late by " << fabs(TEs[NumOfEchoes+i]-commonPars->get_EchoTime()) << STD_endl;
    }
  }

  if(SEAcquisition) {
    double tediff=commonPars->get_EchoTime()-TEs[2*NumOfEchoes-1];
    sedelay=tediff;
    for(i=0; i<nechoes_se; i++) TEs[NumOfEchoes+i]+=tediff;
  }


  ////////////////// TR Timings: ////////////////////////////////

  float slicedur=slicepart.get_duration();
  if(commonPars->get_RepetitionTime()<slicedur) commonPars->set_RepetitionTime(slicedur);
  trdelay=(commonPars->get_RepetitionTime()-slicedur)/double(geometryInfo->get_nSlices());

}


void method_pars_set() {

  // extra information for the automatic reconstruction
  ge_epi.         set_reco_vector(slice,exc);
  ge_epi_template.set_reco_vector(slice,exc);
  ge_epi_grappa.  set_reco_vector(slice,exc);
  se_epi.         set_reco_vector(slice,exc);
  se_epi_template.set_reco_vector(slice,exc);
  se_epi_grappa.  set_reco_vector(slice,exc);

  // Index for TEs
  ge_epi.         set_reco_vector(userdef,gerewindvec);
  ge_epi_template.set_reco_vector(userdef,gerewindvec_template);
  ge_epi_grappa.  set_reco_vector(userdef,gerewindvec_grappa);
  se_epi.         set_reco_vector(userdef,serewindvec);
  se_epi_template.set_reco_vector(userdef,serewindvec_template);
  se_epi_grappa.  set_reco_vector(userdef,serewindvec_grappa);
  recoInfo->set_DimValues(userdef,TEs);

  if(Blades>1) {
    ge_epi.         set_reco_vector(cycle,bladerot);
    ge_epi_template.set_reco_vector(cycle,bladerot);
    ge_epi_grappa.  set_reco_vector(cycle,bladerot);
    se_epi.         set_reco_vector(cycle,bladerot);
    se_epi_template.set_reco_vector(cycle,bladerot);
    se_epi_grappa.  set_reco_vector(cycle,bladerot);
    recoInfo->set_DimValues(cycle,bladeangels);
  }


  recoInfo->set_PostProc3D("usercoll | messer");

  int driftcorrte=NumOfEchoes-1;
  recoInfo->set_CmdLineOpts("-ff Hamming -fp 0.8 -dcs userdef="+itos(driftcorrte)+" -dce "+ftos(TEs[driftcorrte]));

}

};

/////////////////////////////////////////////////////


// entry point for the sequence module
ODINMETHOD_ENTRY_POINT