1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
#include "tjheap.h"
#include "tjstring.h" // for ftos
#ifdef CUSTOM_HEAP
#define MYHEAP_SIZE CUSTOM_HEAP_SIZE*0x100000
void custom_heap_error(const char* txt) {
if(Heap::tracefunc) Heap::tracefunc(txt);
else fprintf(stderr,"%s\n",txt);
abort();
}
//#define USE_TRIVIAL_ALGORITM
#ifdef USE_TRIVIAL_ALGORITM
//////////////////////////////////// START of Trivial Algoritm /////////////////////////////
#define TRIVIAL_HEAP_SIZE 100*MYHEAP_SIZE // Use large heap since it is never freed
static char myheap[TRIVIAL_HEAP_SIZE];
static unsigned int heapcount=0;
void* trivial_alloc(size_t size) {
if((heapcount+size)>=TRIVIAL_HEAP_SIZE) {
custom_heap_error("Out of memory");
}
void* result=myheap+heapcount;
heapcount+=size;
return result;
}
//#ifndef STL_REPLACEMENT
//void* operator new(size_t size) throw (std::bad_alloc) {return trivial_alloc(size);}
//#else
void* operator new(size_t size) {return trivial_alloc(size);}
//#endif
//void* operator new(size_t size) {return qf_malloc(size);}
void* operator new[](size_t size) {return trivial_alloc(size);}
void operator delete(void* mptr) {}
void operator delete[](void* mptr) {}
//////////////////////////////////// END of Trivial Algoritm /////////////////////////////
#else // USE_TRIVIAL_ALGORITM
/////////////////////////////////// START of List Allocator Algoritm /////////////////////
#define ALIGNMENT 8
static char la_heap[MYHEAP_SIZE];
static bool la_init_done=false;
inline size_t la_downalign(size_t ptr) {
return (ptr/ALIGNMENT)*ALIGNMENT;
}
inline size_t la_upalign(size_t ptr) {
if(ptr%ALIGNMENT) return (ptr/ALIGNMENT+1)*ALIGNMENT;
return (ptr/ALIGNMENT)*ALIGNMENT;
}
struct la_cell {
inline void set_used() {next=(la_cell*)((size_t)next | 1);} // Set least significant bit
inline void set_unused() {next=(la_cell*)((size_t)next & ~1);} // Clear least significant bit
inline bool is_used() const {
return (size_t)next & 1; // Read least significant bit
}
inline size_t size() const {
if(next<this) return 0; // last cell
return (size_t)next-(size_t)this-sizeof(la_cell);
}
inline void* memptr() const {
return (void*)((size_t)this+sizeof(la_cell));
}
inline la_cell* aligned_prev() {return prev;} // Already aligned
inline la_cell* aligned_next() {return (la_cell*)la_downalign((size_t)next);}
la_cell* prev;
la_cell* next;
};
la_cell* la_rovptr=0;
la_cell* la_begin=0;
la_cell* la_end=0;
/*
void check_integrity(const char* caller, la_cell* cell) {
la_cell* next=cell->aligned_next();
la_cell* prev=cell->aligned_prev();
// Exclude from check
if(next==la_begin || next==la_end) return;
if(prev==la_begin || prev==la_end) return;
if(cell==la_begin || cell==la_end) return;
if(prev>=cell) {fprintf(stderr,"%s: prev>=cell\n",caller); custom_heap_error("check_integrity failed");}
if(cell>=next) {fprintf(stderr,"%s: cell>=next\n",caller); custom_heap_error("check_integrity failed");}
}
void la_dump() {
la_cell* iter=la_begin;
while(1) {
fprintf(stdout,"size(%p)=%i\t\t prev=%p\t\t next=%p\t\t used=%i\n",iter,iter->size(),iter->aligned_prev(),iter->aligned_next(),iter->is_used());
iter=iter->aligned_next();
if(iter==la_begin) {
break;
}
}
}
*/
inline void la_init() {
// some checks for implicit assumptions
if(la_upalign(sizeof(la_cell))!=sizeof(la_cell)) custom_heap_error("la_cell does not align");
if(sizeof(la_cell)!=(2*sizeof(la_cell*))) custom_heap_error("sizeof(la_cell) exceeds");
// Place begin cell
la_begin=(la_cell*)la_upalign((size_t)la_heap);
// Place end cell
char* offset=la_heap+MYHEAP_SIZE-2*(ALIGNMENT+sizeof(la_cell)); // leave enough space for un-aligned memory and both cells
la_end=(la_cell*)la_downalign((size_t)offset);
// Connect both cells cyclically
la_begin->prev=la_begin->next=la_end;
la_end->prev=la_end->next=la_begin;
la_begin->set_unused(); // This will hold all of the free memory upon startup
la_end->set_used(); // So last cell will never be modified
la_rovptr=la_begin; // set to begin of list
la_init_done=true;
}
inline void* list_alloc(size_t size) {
if(!la_init_done) la_init();
size=la_upalign(size);
// Iterate to next free cell
la_cell* iter=la_rovptr;
while(iter->is_used() || iter->size()<size) {
iter=iter->aligned_next();
if(iter==la_rovptr) {
// la_dump();
custom_heap_error("Out of memory");
}
}
// To split a cell is only useful if it can accomodate
// some data (i.e. ALIGNMENT) plus one extra cell header
bool split_cell = ( iter->size() >= (size+ALIGNMENT+sizeof(la_cell)) );
if(split_cell) {
la_cell* next=iter->aligned_next();
// Create new header to hold remainder of cell
la_cell* remainder= (la_cell*)( (size_t)iter + sizeof(la_cell) + size );
// Connect cells
remainder->next=next;
remainder->prev=iter;
next->prev=remainder;
iter->next=remainder;
remainder->set_unused();
iter->set_used();
la_rovptr=remainder; // Set to the (free) remainder
return iter->memptr();
} else { // Use entire cell
iter->set_used();
la_rovptr=iter->aligned_next(); // Set to the cell after the exact match
return iter->memptr();
}
}
inline void delete_cell(la_cell* cell) {
// check_integrity("delete_cell:cell",cell);
la_cell* next=cell->aligned_next();
la_cell* prev=cell->aligned_prev();
// Connect ends
prev->next=next;
next->prev=prev;
// Alternative: Just jump to freed space if sufficiently large
// However, this seems to have a somewhat arbitray maximum in
// performance depending on the threshold, so we will not use it
// if(prev->size()>16*ALIGNMENT) la_rovptr=prev;
// else la_rovptr=next;
la_rovptr=prev; // Set roving pointer to free space. (Found out empirically that this gives a great performance boost)
}
inline void list_free(void *ptr) {
// Convert pointer to header
la_cell* freecell = (la_cell*) ( (size_t)ptr - sizeof(la_cell) );
// Try to join with next
la_cell* nextcell=freecell->aligned_next();
if(!nextcell->is_used()) delete_cell(nextcell);
// Try to join with previous
if(!freecell->aligned_prev()->is_used()) delete_cell(freecell);
else freecell->set_unused(); // Otherwise, just reset used bit
}
//#ifndef STL_REPLACEMENT
//void* operator new(size_t size) throw (std::bad_alloc) {return list_alloc(size);}
//#else
void* operator new(size_t size) {return list_alloc(size);}
//#endif
//void* operator new(size_t size) {return qf_malloc(size);}
void* operator new[](size_t size) {return list_alloc(size);}
void operator delete(void* mptr) {list_free(mptr);}
void operator delete[](void* mptr) {list_free(mptr);}
/////////////////////////////////// END of List Allocator Algoritm /////////////////////
#endif // USE_TRIVIAL_ALGORITM
#endif // CUSTOM_HEAP
heaptracefunction Heap::tracefunc=0;
void Heap::malloc_stats() {
#ifdef CUSTOM_HEAP
#ifndef USE_TRIVIAL_ALGORITM
if(la_end) {
float used_mb=float(MYHEAP_SIZE-la_end->aligned_prev()->size())/float(0x100000); // Estimate by size of last cell
if(Heap::tracefunc) Heap::tracefunc(("Memory used: "+ftos(used_mb)+"/"+ftos(CUSTOM_HEAP_SIZE)+" MB").c_str());
}
#endif
#endif // CUSTOM_HEAP
}
|