File: base_import.py

package info (click to toggle)
odoo 18.0.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 878,716 kB
  • sloc: javascript: 927,937; python: 685,670; xml: 388,524; sh: 1,033; sql: 415; makefile: 26
file content (1748 lines) | stat: -rw-r--r-- 79,898 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
# -*- coding: utf-8 -*-
# Part of Odoo. See LICENSE file for full copyright and licensing details.

import base64
import codecs
import collections
import csv
import difflib
import unicodedata

import chardet
import datetime
import io
import itertools
import logging
import psycopg2
import operator
import os
import re
import requests

from PIL import Image

from collections import defaultdict
from odoo import api, fields, models
from odoo.exceptions import UserError
from odoo.tools.translate import _
from odoo.tools.mimetypes import guess_mimetype
from odoo.tools import config, DEFAULT_SERVER_DATE_FORMAT, DEFAULT_SERVER_DATETIME_FORMAT, parse_version

FIELDS_RECURSION_LIMIT = 3
ERROR_PREVIEW_BYTES = 200
DEFAULT_IMAGE_TIMEOUT = 3
DEFAULT_IMAGE_MAXBYTES = 10 * 1024 * 1024
DEFAULT_IMAGE_REGEX = r"^(?:http|https)://"
DEFAULT_IMAGE_CHUNK_SIZE = 32768
IMAGE_FIELDS = ["icon", "image", "logo", "picture"]
_logger = logging.getLogger(__name__)
BOM_MAP = {
    'utf-16le': codecs.BOM_UTF16_LE,
    'utf-16be': codecs.BOM_UTF16_BE,
    'utf-32le': codecs.BOM_UTF32_LE,
    'utf-32be': codecs.BOM_UTF32_BE,
}

try:
    import xlrd
    try:
        from xlrd import xlsx
    except ImportError:
        xlsx = None
except ImportError:
    xlrd = xlsx = None

if xlsx:
    from lxml import etree
    # xlrd.xlsx supports defusedxml, defusedxml's etree interface is broken
    # (missing ElementTree and thus ElementTree.iter) which causes a fallback to
    # Element.getiterator(), triggering a warning before 3.9 and an error from 3.9.
    #
    # We have defusedxml installed because zeep has a hard dep on defused and
    # doesn't want to drop it (mvantellingen/python-zeep#1014).
    #
    # Ignore the check and set the relevant flags directly using lxml as we have a
    # hard dependency on it.
    xlsx.ET = etree
    xlsx.ET_has_iterparse = True
    xlsx.Element_has_iter = True

try:
    from . import odf_ods_reader
except ImportError:
    odf_ods_reader = None

try:
    from openpyxl import load_workbook
except ImportError:
    load_workbook = None


FILE_TYPE_DICT = {
    'text/csv': ('csv', True, None),
    'application/vnd.ms-excel': ('xls', xlrd, 'xlrd'),
    'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet': (
        'xlsx',
        load_workbook or xlsx,
        # if xlrd 2.x then xlsx is not available, so don't suggest it
        'openpyxl' if xlrd and parse_version(xlrd.__VERSION__) >= parse_version("2.0") else 'openpyxl or xlrd >= 1.0.0 < 2.0',
    ),
    'application/vnd.oasis.opendocument.spreadsheet': ('ods', odf_ods_reader, 'odfpy')
}
EXTENSIONS = {
    '.' + ext: handler
    for mime, (ext, handler, req) in FILE_TYPE_DICT.items()
}


class ImportValidationError(Exception):
    """
    This class is made to correctly format all the different error types that
    can occur during the pre-validation of the import that is made before
    calling the data loading itself. The Error data structure is meant to copy
    the one of the errors raised during the data loading. It simplifies the
    error management at client side as all errors can be treated the same way.

    This exception is typically raised when there is an error during data
    parsing (image, int, dates, etc..) or if the user did not select at least
    one field to map with a column.
    """
    def __init__(self, message, **kwargs):
        super().__init__(message)
        self.type = kwargs.get('error_type', 'error')
        self.message = message
        self.record = False
        self.not_matching_error = True
        self.field_path = [kwargs['field']] if kwargs.get('field') else False
        self.field_type = kwargs.get('field_type')


class Base(models.AbstractModel):
    _inherit = 'base'

    @api.model
    def get_import_templates(self):
        """
        Get the import templates label and path.

        :return: a list(dict) containing label and template path
                 like ``[{'label': 'foo', 'template': 'path'}]``
        """
        return []

class ImportMapping(models.Model):
    """ mapping of previous column:field selections

    This is useful when repeatedly importing from a third-party
    system: column names generated by the external system may
    not match Odoo's field names or labels. This model is used
    to save the mapping between column names and fields so that
    next time a user imports from the same third-party systems
    we can automatically match the columns to the correct field
    without them having to re-enter the mapping every single
    time.
    """
    _name = 'base_import.mapping'
    _description = 'Base Import Mapping'

    res_model = fields.Char(index=True)
    column_name = fields.Char()
    field_name = fields.Char()


class ResUsers(models.Model):
    _inherit = 'res.users'

    def _can_import_remote_urls(self):
        """ Hook to decide whether the current user is allowed to import
        images via URL (as such an import can DOS a worker). By default,
        allows the administrator group.

        :rtype: bool
        """
        self.ensure_one()
        return self._is_admin()

class Import(models.TransientModel):
    """
    This model is used to prepare the loading of data coming from a user file.

    Here is the process that is followed:

    #. The user selects a file to import.
    #. File parsing and mapping suggestion (see "parse_preview" method)

       #. Extract the current model's importable fields tree (see :meth:`get_fields_tree`).
       #. Read the file (see :meth:`_read_file`) and extract header names and file
          length (used for batch import).
       #. Extract headers types from the data preview (10 first line of the file)
          (see :meth:`_extract_headers_types`).
       #. Try to find for each header a field to map with (see :meth:`_get_mapping_suggestions`)

          - First check the previously saved mappings between the header name
            and one of the model's fields.
          - If no mapping found, try an exact match comparison using fields
            technical names, labels and user language translated labels.
          - If nothing found, try a fuzzy match using word distance between
            header name and fields tachnical names, labels and user language
            translated labels. Keep only the closest match.

       #. Prepare examples for each columns using the first non null value from each column.
       #. Send the info back to the UI where the user can modify the suggested mapping.
    #. Execute the import: There are two import mode with uses the same process. (see :meth:`execute_import`)

       #. Test import: Try to import but rollback the transaction. This allows
          the check errors during the import process and allow the user to
          choose import options for the different encountered errors.
       #. Real import: Try to import the file using the configured mapping and
          the eventual "error mapping options". If import encounters blocking
          errors, the transaction is rollbacked and the user is allowed to
          choose import options for the different errors.

          - Get file data and fields to import into (see :meth:`_convert_import_data`).
          - Parse date, float and binary data (see :meth:`_parse_import_data`).
          - Handle multiple mapping -> concatenate char/text/many2many columns
            mapped on the same field (see :meth:`_handle_multi_mapping`).
          - Handle fallback values for boolean and selection fields, in case
            input data does not match any allowed values (see :meth:`_handle_fallback_values`).
          - Load data (see ir.model "load" method).
          - Rollback transaction if test mode or if encountered error.
          - Save mapping if any import is successful to ease later mapping suggestions.
          - Return import result to the UI (success or errors if any).
    """

    _name = 'base_import.import'
    _description = 'Base Import'

    # allow imports to survive for 12h in case user is slow
    _transient_max_hours = 12.0
    # we consider that if the difference is more than 0.2, then the two compared strings are "too different" to propose
    # any match between them. (see '_get_mapping_suggestion' for more details)
    FUZZY_MATCH_DISTANCE = 0.2

    res_model = fields.Char('Model')
    file = fields.Binary('File', help="File to check and/or import, raw binary (not base64)", attachment=False)
    file_name = fields.Char('File Name')
    file_type = fields.Char('File Type')

    @api.model
    def get_fields_tree(self, model, depth=FIELDS_RECURSION_LIMIT):
        """ Recursively get fields for the provided model (through
        fields_get) and filter them according to importability

        The output format is a list of :class:`Field`:

        .. class:: Field

            .. attribute:: id: str

                A non-unique identifier for the field, used to compute
                the span of the ``required`` attribute: if multiple
                ``required`` fields have the same id, only one of them
                is necessary.

            .. attribute:: name: str

                The field's logical (Odoo) name within the scope of
                its parent.

            .. attribute:: string: str

                The field's human-readable name (``@string``)

            .. attribute:: required: bool

                Whether the field is marked as required in the
                model. Clients must provide non-empty import values
                for all required fields or the import will error out.

            .. attribute:: fields: list[Field]

                The current field's subfields. The database and
                external identifiers for m2o and m2m fields; a
                filtered and transformed fields_get for o2m fields (to
                a variable depth defined by ``depth``).

                Fields with no sub-fields will have an empty list of
                sub-fields.

            .. attribute:: model_name: str

                Used in the Odoo Field Tooltip on the import view
                and to get the model of the field of the related field(s).
                Name of the current field's model.

            .. attribute:: comodel_name: str

                Used in the Odoo Field Tooltip on the import view
                and to get the model of the field of the related field(s).
                Name of the current field's comodel, i.e. if the field is a relation field.

        Structure example for 'crm.team' model for returned importable_fields::

            [
                {'name': 'message_ids', 'string': 'Messages', 'model_name': 'crm.team', 'comodel_name': 'mail.message', 'fields': [
                    {'name': 'moderation_status', 'string': 'Moderation Status', 'model_name': 'mail.message', 'fields': []},
                    {'name': 'body', 'string': 'Contents', 'model_name': 'mail.message', 'fields' : []}
                ]},
                {{'name': 'name', 'string': 'Sales Team', 'model_name': 'crm.team', 'fields' : []}
            ]

        :param str model: name of the model to get fields form
        :param int depth: depth of recursion into o2m fields
        """
        Model = self.env[model]
        importable_fields = [{
            'id': 'id',
            'name': 'id',
            'string': _("External ID"),
            'required': False,
            'fields': [],
            'type': 'id',
            'model_name': model,
        }]
        if not depth:
            return importable_fields

        model_fields = Model.fields_get(attributes=[
            'string', 'required', 'type', 'readonly', 'relation',
            'definition_record', 'definition_record_field',
        ])
        blacklist = models.MAGIC_COLUMNS

        for name, field in dict(model_fields).items():
            if field['type'] not in 'properties':
                continue
            definition_record = field['definition_record']
            definition_record_field = field['definition_record_field']

            target_model = Model.env[Model._fields[definition_record].comodel_name]
            # Do not take into account the definition of archived parents,
            # we do not import archived records most of the time.
            definition_records = target_model.search_fetch(
                [(definition_record_field, '!=', False)],
                [definition_record_field, 'display_name'],
                order='id',  # Avoid complex order
            )

            for record in definition_records:
                for definition in record[definition_record_field]:
                    definition_type = definition['type']
                    if (
                        definition_type == 'separator' or
                        (
                            definition_type in ('many2one', 'many2many')
                            and definition.get('comodel') not in Model.env
                        )
                    ):
                        continue
                    id_field = f"{name}.{definition['name']}"
                    model_fields[id_field] = {
                        'type': definition_type,
                        'string': _(
                            "%(property_string)s (%(parent_name)s)",
                            property_string=definition['string'], parent_name=record.display_name,
                        ),
                    }
                    if definition_type in ('many2one', 'many2many'):
                        model_fields[id_field]['relation'] = definition['comodel']

        for name, field in model_fields.items():
            if name in blacklist:
                continue
            if field.get('readonly'):
                continue
            field_value = {
                'id': name,
                'name': name,
                'string': field['string'],
                # Y U NO ALWAYS HAS REQUIRED
                'required': bool(field.get('required')),
                'fields': [],
                'type': field['type'],
                'model_name': model,
            }

            if field['type'] in ('many2many', 'many2one'):
                field_value['fields'] = [
                    dict(field_value, name='id', string=_("External ID"), type='id'),
                    dict(field_value, name='.id', string=_("Database ID"), type='id'),
                ]
                field_value['comodel_name'] = field['relation']
            elif field['type'] == 'one2many':
                field_value['fields'] = self.get_fields_tree(field['relation'], depth=depth-1)
                if self.env.user.has_group('base.group_no_one'):
                    field_value['fields'].append({'id': '.id', 'name': '.id', 'string': _("Database ID"), 'required': False, 'fields': [], 'type': 'id'})
                field_value['comodel_name'] = field['relation']

            importable_fields.append(field_value)

        return importable_fields

    def _filter_fields_by_types(self, model_fields_tree, header_types):
        """ Remove from model_fields_tree param all the fields and subfields
        that do not match the types in header_types

        :param: list[dict] model_fields_tree: Contains recursively all the importable fields of the target model.
                                              Generated in "get_fields_tree" method.
        :param: list header_types: Contains the extracted fields types of the current header.
                                   Generated in :meth:`_extract_header_types`.
        """
        most_likely_fields_tree = []
        for field in model_fields_tree:
            subfields = field.get('fields')
            if subfields:
                filtered_field = dict(field)  # Avoid modifying fields.
                filtered_field['fields'] = self._filter_fields_by_types(subfields, header_types)
                most_likely_fields_tree.append(filtered_field)
            elif field.get('type') in header_types:
                most_likely_fields_tree.append(field)
        return most_likely_fields_tree

    def _read_file(self, options):
        """ Dispatch to specific method to read file content, according to its mimetype or file type

        :param dict options: reading options (quoting, separator, ...)
        """
        self.ensure_one()
        e = None
        # guess mimetype from file content
        mimetype = guess_mimetype(self.file or b'')
        (file_extension, handler, req) = FILE_TYPE_DICT.get(mimetype, (None, None, None))
        if handler:
            try:
                return getattr(self, '_read_' + file_extension)(options)
            except (ImportValidationError, ValueError):
                raise
            except Exception as exc:  # noqa: BLE001
                e = read_file_failed(exc, f"Unable to read file {self.file_name or '<unknown>'!r} as {file_extension!r} (guessed using mimetype {mimetype!r}).")

        # try reading with user-provided mimetype
        (file_extension, handler2, req2) = FILE_TYPE_DICT.get(self.file_type, (None, None, None))
        if handler2 and handler2 != handler:
            try:
                return getattr(self, '_read_' + file_extension)(options)
            except (ImportValidationError, ValueError):
                raise
            except Exception as exc:  # noqa: BLE001
                e = read_file_failed(exc, f"Unable to read file {self.file_name or '<unknown>'!r} as {file_extension!r} (decided from user-provided mimetype {self.file_type!r}).")

        # fallback on file extensions as mime types can be unreliable (e.g.
        # software setting incorrect mime types, or non-installed software
        # leading to browser not sending mime types)
        if self.file_name:
            _stem, ext = os.path.splitext(self.file_name)
            if (h := EXTENSIONS.get(ext)) and h != handler and h != handler2:
                try:
                    return getattr(self, '_read_' + ext[1:])(options)
                except (ImportValidationError, ValueError):
                    raise
                except Exception as exc:  # noqa: BLE001
                    e = read_file_failed(exc, f"Unable to read file {self.file_name!r} as {file_extension!r} (decided from file extension {ext!r}).")

        if e is not None:
            raise e

        if req2 or req:
            raise UserError(_("Unable to load \"{extension}\" file: requires Python module \"{modname}\"").format(extension=file_extension, modname=req2 or req))
        raise UserError(_("Unsupported file format \"{}\", import only supports CSV, ODS, XLS and XLSX").format(self.file_type))

    def _read_xls(self, options):
        book = xlrd.open_workbook(file_contents=self.file or b'')
        sheets = options['sheets'] = book.sheet_names()
        sheet = options['sheet'] = options.get('sheet') or sheets[0]
        return self._read_xls_book(book, sheet)

    def _read_xls_book(self, book, sheet_name):
        sheet = book.sheet_by_name(sheet_name)
        rows = []
        # emulate Sheet.get_rows for pre-0.9.4
        for rowx, row in enumerate(map(sheet.row, range(sheet.nrows)), 1):
            values = []
            for colx, cell in enumerate(row, 1):
                if cell.ctype is xlrd.XL_CELL_NUMBER:
                    is_float = cell.value % 1 != 0.0
                    values.append(
                        str(cell.value)
                        if is_float
                        else str(int(cell.value))
                    )
                elif cell.ctype is xlrd.XL_CELL_DATE:
                    is_datetime = cell.value % 1 != 0.0
                    # emulate xldate_as_datetime for pre-0.9.3
                    dt = datetime.datetime(*xlrd.xldate.xldate_as_tuple(cell.value, book.datemode))
                    values.append(
                        dt.strftime(DEFAULT_SERVER_DATETIME_FORMAT)
                        if is_datetime
                        else dt.strftime(DEFAULT_SERVER_DATE_FORMAT)
                    )
                elif cell.ctype is xlrd.XL_CELL_BOOLEAN:
                    values.append(u'True' if cell.value else u'False')
                elif cell.ctype is xlrd.XL_CELL_ERROR:
                    raise ValueError(
                        _("Invalid cell value at row %(row)s, column %(col)s: %(cell_value)s") % {
                            'row': rowx,
                            'col': colx,
                            'cell_value': xlrd.error_text_from_code.get(cell.value, _("unknown error code %s", cell.value))
                        }
                    )
                else:
                    values.append(cell.value)
            if any(x for x in values if x.strip()):
                rows.append(values)

        # return the file length as first value
        return sheet.nrows, rows

    # use the same method for xlsx and xls files
    def _read_xlsx(self, options):
        if xlsx:
            return self._read_xls(options)

        import openpyxl.cell.cell as types
        import openpyxl.styles.numbers as styles  # noqa: PLC0415
        book = load_workbook(io.BytesIO(self.file or b''), data_only=True)
        sheets = options['sheets'] = book.sheetnames
        sheet_name = options['sheet'] = options.get('sheet') or sheets[0]
        sheet = book[sheet_name]
        rows = []
        for rowx, row in enumerate(sheet.rows, 1):
            values = []
            for colx, cell in enumerate(row, 1):
                if cell.data_type is types.TYPE_ERROR:
                    raise ValueError(
                        _("Invalid cell value at row %(row)s, column %(col)s: %(cell_value)s", row=rowx, col=colx, cell_value=cell.value)
                    )

                if cell.value is None:
                    values.append('')
                elif isinstance(cell.value, float):
                    if cell.value % 1 == 0:
                        values.append(str(int(cell.value)))
                    else:
                        values.append(str(cell.value))
                elif cell.is_date:
                    d_fmt = styles.is_datetime(cell.number_format)
                    if d_fmt == "datetime":
                        values.append(cell.value.strftime(DEFAULT_SERVER_DATETIME_FORMAT))
                    elif d_fmt == "date":
                        values.append(cell.value.strftime(DEFAULT_SERVER_DATE_FORMAT))
                    else:
                        raise ValueError(
                        _("Invalid cell format at row %(row)s, column %(col)s: %(cell_value)s, with format: %(cell_format)s, as (%(format_type)s) formats are not supported.", row=rowx, col=colx, cell_value=cell.value, cell_format=cell.number_format, format_type=d_fmt)
                        )
                else:
                    values.append(str(cell.value))

            if any(x.strip() for x in values):
                rows.append(values)
        return sheet.max_row, rows

    def _read_ods(self, options):
        doc = odf_ods_reader.ODSReader(file=io.BytesIO(self.file or b''))
        sheets = options['sheets'] = list(doc.SHEETS.keys())
        sheet = options['sheet'] = options.get('sheet') or sheets[0]

        content = [
            row
            for row in doc.getSheet(sheet)
            if any(x for x in row if x.strip())
        ]

        # return the file length as first value
        return len(content), content

    def _read_csv(self, options):
        """ Returns file length and a CSV-parsed list of all non-empty lines in the file.

        :raises csv.Error: if an error is detected during CSV parsing
        """
        csv_data = self.file or b''
        if not csv_data:
            return ()

        encoding = options.get('encoding')
        if not encoding:
            encoding = options['encoding'] = chardet.detect(csv_data)['encoding'].lower()
            # some versions of chardet (e.g. 2.3.0 but not 3.x) will return
            # utf-(16|32)(le|be), which for python means "ignore / don't strip
            # BOM". We don't want that, so rectify the encoding to non-marked
            # IFF the guessed encoding is LE/BE and csv_data starts with a BOM
            bom = BOM_MAP.get(encoding)
            if bom and csv_data.startswith(bom):
                encoding = options['encoding'] = encoding[:-2]

        csv_text = csv_data.decode(encoding)

        separator = options.get('separator')
        if not separator:
            # default for unspecified separator so user gets a message about
            # having to specify it
            separator = ','
            for candidate in (',', ';', '\t', ' ', '|', unicodedata.lookup('unit separator')):
                # pass through the CSV and check if all rows are the same
                # length & at least 2-wide assume it's the correct one
                it = csv.reader(io.StringIO(csv_text), quotechar=options['quoting'], delimiter=candidate)
                w = None
                for row in it:
                    width = len(row)
                    if w is None:
                        w = width
                    if width == 1 or width != w:
                        break # next candidate
                else: # nobreak
                    separator = options['separator'] = candidate
                    break

        if not len(options['quoting']) == 1:
            raise ImportValidationError(_("Error while importing records: Text Delimiter should be a single character."))

        csv_iterator = csv.reader(
            io.StringIO(csv_text),
            quotechar=options['quoting'],
            delimiter=separator)

        content = [
            row for row in csv_iterator
            if any(x for x in row if x.strip())
        ]

        # return the file length as first value
        return len(content), content

    @api.model
    def _extract_header_types(self, preview_values, options):
        """ Returns the potential field types, based on the preview values, using heuristics.

        This methods is only used for suggested mapping at 2 levels:

        1. for fuzzy mapping at file load -> Execute the fuzzy mapping only
           on "most likely field types"
        2. For "Suggested fields" section in the fields mapping dropdown list at UI side.

        The following heuristic is used: If all preview values

        - Start with ``__export__``: return id + relational field types
        - Can be cast into integer: return id + relational field types, integer, float and monetary
        - Can be cast into Boolean: return boolean
        - Can be cast into float: return float, monetary
        - Can be cast into date/datetime: return date / datetime
        - Cannot be cast into any of the previous types: return only text based fields

        :param preview_values: list of value for the column to determine
                               see :meth:`parse_preview` for more details.
        :param options: parsing options
        """
        values = set(preview_values)
        # If all values are empty in preview than can be any field
        if values == {''}:
            return ['all']

        # If all values starts with __export__ this is probably an id
        if all(v.startswith('__export__') for v in values):
            return ['id', 'many2many', 'many2one', 'one2many']

        # If all values can be cast to int type is either id, float or monetary
        # Exception: if we only have 1 and 0, it can also be a boolean
        if all(v.isdigit() for v in values if v):
            field_type = ['integer', 'float', 'monetary']
            if {'0', '1', ''}.issuperset(values):
                field_type.append('boolean')
            return field_type

        # If all values are either True or False, type is boolean
        if all(val.lower() in ('true', 'false', 't', 'f', '') for val in preview_values):
            return ['boolean']

        # If all values can be cast to float, type is either float or monetary
        try:
            thousand_separator = decimal_separator = False
            for val in preview_values:
                val = val.strip()
                if not val:
                    continue
                # value might have the currency symbol left or right from the value
                val = self._remove_currency_symbol(val)
                if val:
                    if options.get('float_thousand_separator') and options.get('float_decimal_separator'):
                        if options['float_decimal_separator'] == '.' and val.count('.') > 1:
                            # This is not a float so exit this try
                            float('a')
                        val = val.replace(options['float_thousand_separator'], '').replace(options['float_decimal_separator'], '.')
                    # We are now sure that this is a float, but we still need to find the
                    # thousand and decimal separator
                    else:
                        if val.count('.') > 1:
                            options['float_thousand_separator'] = '.'
                            options['float_decimal_separator'] = ','
                        elif val.count(',') > 1:
                            options['float_thousand_separator'] = ','
                            options['float_decimal_separator'] = '.'
                        elif val.find('.') > val.find(','):
                            thousand_separator = ','
                            decimal_separator = '.'
                        elif val.find(',') > val.find('.'):
                            thousand_separator = '.'
                            decimal_separator = ','
                else:
                    # This is not a float so exit this try
                    float('a')
            if thousand_separator and not options.get('float_decimal_separator'):
                options['float_thousand_separator'] = thousand_separator
                options['float_decimal_separator'] = decimal_separator
            return ['float', 'monetary']  # Allow float to be mapped on a text field.
        except ValueError:
            pass

        results = self._try_match_date_time(preview_values, options)
        if results:
            return results

        # If not boolean, date/datetime, float or integer, only suggest text based fields.
        return ['text', 'char', 'binary', 'selection', 'html', 'tags']

    def _try_match_date_time(self, preview_values, options):
        # Or a date/datetime if it matches the pattern
        date_patterns = [options['date_format']] if options.get(
            'date_format') else []
        user_date_format = self.env['res.lang']._get_data(code=self.env.user.lang).date_format
        if user_date_format:
            try:
                to_re(user_date_format)
                date_patterns.append(user_date_format)
            except KeyError:
                pass
        date_patterns.extend(DATE_PATTERNS)
        match = check_patterns(date_patterns, preview_values)
        if match:
            options['date_format'] = match
            return ['date', 'datetime']

        datetime_patterns = [options['datetime_format']] if options.get(
            'datetime_format') else []
        datetime_patterns.extend(
            "%s %s" % (d, t)
            for d in date_patterns
            for t in TIME_PATTERNS
        )
        match = check_patterns(datetime_patterns, preview_values)
        if match:
            options['datetime_format'] = match
            return ['datetime']

        return []

    @api.model
    def _extract_headers_types(self, headers, preview, options):
        """
        For each column, this method will extract the potential data types based on the preview values

        :param list headers: list of headers names. Used as part of key for
                             returned headers_types to ease understanding of its usage
        :param list preview: list of the first file records (see "parse_preview" for more detail) e.g.::

            [ ["lead_name1", "1", "partner_id1"], ["lead_name2", "2", "partner_id2"], ... ]

        :param options: parsing options
        :returns: dict headers_types:

            contains all the extracted header types for each header e.g.::

                {
                    (header_index, header_name): ["char", "text", ...],
                    ...
                }
        """
        headers_types = {}
        for column_index, header_name in enumerate(headers):
            preview_values = [record[column_index].strip() for record in preview]
            type_field = self._extract_header_types(preview_values, options)
            headers_types[(column_index, header_name)] = type_field
        return headers_types

    def _get_mapping_suggestion(self, header, fields_tree, header_types, mapping_fields):
        """ Attempts to match a given header to a field of the imported model.

            We can distinguish 2 types of header format:

            - simple header string that aim to directly match a field of the target model
              e.g.: "lead_id" or "Opportunities" or "description".
            - composed '/' joined header string that aim to match a field of a
              relation field of the target model (= subfield) e.g.:
              'lead_id/description' aim to match the field ``description`` of the field lead_id.

            When returning result, to ease further treatments, the result is
            returned as a list, where each element of the list is a field or
            a sub-field of the preceding field.

            - ``["lead_id"]`` for simple case = simple matching
            - ``["lead_id", "description"]`` for composed case = hierarchy matching

            Mapping suggestion is found using the following heuristic:

            - first we check if there was a saved mapping by the user
            - then try to make an exact match on the field technical name /
              english label / translated label
            - finally, try the "fuzzy match": word distance between the header
              title and the field technical name / english label / translated
              label, using the lowest result. The field used for the fuzzy match
              are based on the field types we extracted from the header data
              (see :meth:`_extract_header_types`).

            For subfields, use the same logic.

            Word distance is a score between 0 and 1 to express the distance
            between two char strings where ``0`` denotes an exact match and
            ``1`` indicates completely different strings

            In order to keep only one column matched per field, we return the
            distance. That distance will be used during the deduplicate process
            (see :meth:`_deduplicate_mapping_suggestions`) and only the
            mapping with the smallest distance will be kept in case of multiple
            mapping on the same field. Note that we don't need to return the
            distance in case of hierachy mapping as we consider that as an
            advanced behaviour. The deduplicate process will ignore hierarchy
            mapping. The user will have to manually select on which field he
            wants to map what in case of mapping duplicates for sub-fields.

            :param str header: header name from the file
            :param list fields_tree: list of all the field of the target model
                Coming from :meth:`get_fields_tree`
                e.g: ``[ { 'name': 'fieldName', 'string': 'fieldLabel', fields: [ { 'name': 'subfieldName', ...} ]} , ... ]``
            :param list header_types: Extracted field types for each column in the parsed file, based on its data content.
                Coming from :meth:`_extract_header_types`
                e.g.: ``['int', 'float', 'char', 'many2one', ...]``
            :param dict mapping_fields: contains the previously saved mapping between header and field for the current model.
                E.g.: ``{ header_name: field_name }``
            :returns: if the header couldn't be matched: an empty dict
                      else: a dict with the field path and the distance between header and the matched field.
            :rtype: ``dict(field_path + Word distance)``

                    In case of simple matching: ``{'field_path': [field_name], distance: word_distance}``
                                           e.g.: ``{'field_path': ['lead_id'], distance: 0.23254}``
                    In case of hierarchy matching: ``{'field_path': [parent_field_name, child_field_name, subchild_field_name]}``
                                              e.g.: ``{'field_path': ['lead_id', 'description']}``
        """
        if not fields_tree:
            return {}

        # First, check in saved mapped fields
        mapping_field_name = mapping_fields.get(header.lower())
        if mapping_field_name and mapping_field_name:
            return {
                'field_path': [name for name in mapping_field_name.split('/')],
                'distance': -1  # Trick to force to keep that match during mapping deduplication.
            }

        if '/' not in header:
            IrModelFieldsUs = self.with_context(lang='en_US').env['ir.model.fields']
            for field in fields_tree:
                fname = field['name']
                # exact match found based on the field technical name
                if header.casefold() == fname.casefold():
                    break
                # match found using either user translation, either model defined field label
                if header.casefold() == field['string'].casefold():
                    break
                field_strings_en = IrModelFieldsUs.get_field_string(field['model_name'])
                if fname in field_strings_en and header.casefold() == field_strings_en[fname].casefold():
                    break
            else:
                field = None

            if field:  # found an exact match, no need to go further
                return {
                    'field_path': [field['name']],
                    'distance': 0
                }

            # If no match found, try fuzzy match on fields filtered based on extracted header types
            # Filter out fields with types that does not match corresponding header types.
            filtered_fields = self._filter_fields_by_types(fields_tree, header_types)
            if not filtered_fields:
                return {}

            min_dist = 1
            min_dist_field = False
            for field in filtered_fields:
                fname = field['name']
                # use string distance for fuzzy match only on most likely field types
                distances = [
                    self._get_distance(header.casefold(), fname.casefold()),
                    self._get_distance(header.casefold(), field['string'].casefold()),
                ]

                if field_string_en := IrModelFieldsUs.get_field_string(field['model_name']).get(fname):
                    distances.append(
                        self._get_distance(header.casefold(), field_string_en.casefold()),
                    )

                # Keep only the closest mapping suggestion. Note that in case of multiple mapping on the same field,
                # a mapping suggestion could be canceled by another one that has a smaller distance on the same field.
                # See 'deduplicate_mapping_suggestions' method for more info.
                current_field_dist = min(distances)
                if current_field_dist < min_dist:
                    min_dist_field = fname
                    min_dist = current_field_dist

            if min_dist < self.FUZZY_MATCH_DISTANCE:
                return {
                    'field_path': [min_dist_field],
                    'distance': min_dist
                }

            return {}

        # relational field path
        field_path = []
        subfields_tree = fields_tree
        # Iteratively dive into fields tree
        for sub_header in header.split('/'):
            # Strip sub_header in case spaces are added around '/' for
            # readability of paths
            # Skip Saved mapping (mapping_field = {})
            match = self._get_mapping_suggestion(sub_header.strip(), subfields_tree, header_types, {})
            # Any match failure, exit
            if not match:
                return {}
            # prep subfields for next iteration within match['name'][0]
            field_name = match['field_path'][0]
            subfields_tree = next(item['fields'] for item in subfields_tree if item['name'] == field_name)
            field_path.append(field_name)
        # No need to return distance for hierarchy mapping
        return {'field_path': field_path}

    def _get_distance(self, a, b):
        """ This method return an index that reflects the distance between the
        two given string a and b.

        This index is a score between 0 and 1 where ``0`` indicates an exact
        match and ``1`` indicates completely different strings.
        """
        return 1 - difflib.SequenceMatcher(None, a, b).ratio()

    def _get_mapping_suggestions(self, headers, header_types, fields_tree):
        """ Attempts to match the imported model's fields to the
            titles of the parsed CSV file, if the file is supposed to have
            headers.

            Returns a dict mapping cell indices to key paths in the ``fields`` tree.

            :param list headers: titles of the parsed file
            :param dict header_types:

                extracted types for each column in the parsed file e.g.::

                    {
                        (header_index, header_name): ['int', 'float', 'char', 'many2one',...],
                         ...
                    }

            :param list fields_tree:

                list of the target model's fields e.g.::

                    [
                        {
                            'name': 'fieldName',
                            'string': 'fieldLabel',
                            'fields': [{ 'name': 'subfieldName', ...}]
                        },
                        ...
                    ]

            :rtype: dict[(int, str), {'field_path': list[str], 'distance': int}]
            :returns: mapping_suggestions e.g.:

                .. code-block:: python

                    {
                        (header_index, header_name): {
                            'field_path': ['child_id','name'],
                            'distance': 0
                        },
                        ...
                    }
        """
        mapping_suggestions = {}
        mapping_records = self.env['base_import.mapping'].search_read([('res_model', '=', self.res_model)], ['column_name', 'field_name'])
        mapping_fields = {rec['column_name']: rec['field_name'] for rec in mapping_records}
        for index, header in enumerate(headers):
            match_field = self._get_mapping_suggestion(header, fields_tree, header_types[(index, header)], mapping_fields)
            mapping_suggestions[(index, header)] = match_field or None

        self._deduplicate_mapping_suggestions(mapping_suggestions)
        return mapping_suggestions

    def _deduplicate_mapping_suggestions(self, mapping_suggestions):
        """ This method is meant to avoid multiple columns to be matched on the same field.

        Taking ``mapping_suggestions`` as input, it will check if multiple
        columns are mapped to the same field and will only keep the mapping
        that has the smallest distance. The other columns that were matched
        to the same field are removed from the mapping suggestions.

        Hierarchy mapping is considered as advanced and is skipped during this
        deduplication process. We consider that multiple mapping on hierarchy
        mapping will not occur often and due to the fact that this won't lead
        to any particular issues when a non 'char/text' field is selected more
        than once in the UI, we keep only the last selected mapping. The
        objective is to lighten the mapping suggestion process as much as we can.

        :param dict mapping_suggestions: ``{ (column_index, header_name) : { 'field_path': [header_name], 'distance': word_distance }}``
        """
        min_dist_per_field = {}
        headers_to_keep = []
        for header, suggestion in mapping_suggestions.items():
            if suggestion is None or len(suggestion['field_path']) > 1:
                headers_to_keep.append(header)
                continue

            field_name = suggestion['field_path'][0]
            field_distance = suggestion['distance']

            best_distance, _best_header = min_dist_per_field.get(field_name, (1, None))
            if field_distance < best_distance:
                min_dist_per_field[field_name] = (field_distance, header)

        headers_to_keep = headers_to_keep + [value[1] for value in min_dist_per_field.values()]
        for header in mapping_suggestions.keys() - headers_to_keep:
            del mapping_suggestions[header]

    def parse_preview(self, options, count=10):
        """ Generates a preview of the uploaded files, and performs
            fields-matching between the import's file data and the model's
            columns.

            If the headers are not requested (not options.has_headers),
            returned ``matches`` and ``headers`` are both ``False``.

            :param int count: number of preview lines to generate
            :param options: format-specific options.
                            CSV: {quoting, separator, headers}
            :type options: {str, str, str, bool}
            :returns: ``{fields, matches, headers, preview} | {error, preview}``
            :rtype: {dict(str: dict(...)), dict(int, list(str)), list(str), list(list(str))} | {str, str}
        """
        self.ensure_one()
        fields_tree = self.get_fields_tree(self.res_model)
        try:
            file_length, rows = self._read_file(options)
            if file_length <= 0:
                raise ImportValidationError(_("Import file has no content or is corrupt"))

            preview = rows[:count]

            # Get file headers
            if options.get('has_headers') and preview:
                # We need the header types before matching columns to fields
                headers = preview.pop(0)
                header_types = self._extract_headers_types(headers, preview, options)
            else:
                header_types, headers = {}, []

            # Get matches: the ones already selected by the user or propose a new matching.
            matches = {}
            # If user checked to the advanced mode, we re-parse the file but we keep the mapping "as is".
            # No need to make another mapping proposal
            if options.get('keep_matches') and options.get('fields'):
                for index, match in enumerate(options.get('fields', [])):
                    if match:
                        matches[index] = match.split('/')
            elif options.get('has_headers'):
                matches = self._get_mapping_suggestions(headers, header_types, fields_tree)
                # remove header_name for matches keys as tuples are no supported in json.
                # and remove distance from suggestion (keep only the field path) as not used at client side.
                matches = {
                    header_key[0]: suggestion['field_path']
                    for header_key, suggestion in matches.items()
                    if suggestion
                }

            # compute if we should activate advanced mode or not:
            # if was already activated of if file contains "relational fields".
            if options.get('keep_matches'):
                advanced_mode = options.get('advanced')
            else:
                # Check is label contain relational field
                has_relational_header = any(len(models.fix_import_export_id_paths(col)) > 1 for col in headers)
                # Check is matches fields have relational field
                has_relational_match = any(len(match) > 1 for field, match in matches.items() if match)
                advanced_mode = has_relational_header or has_relational_match

            # Take first non null values for each column to show preview to users.
            # Initially first non null value is displayed to the user.
            # On hover preview consists in 5 values.
            column_example = []
            for column_index, _unused in enumerate(preview[0]):
                vals = []
                for record in preview:
                    if record[column_index]:
                        vals.append("%s%s" % (record[column_index][:50], "..." if len(record[column_index]) > 50 else ""))
                    if len(vals) == 5:
                        break
                column_example.append(
                    vals or
                    [""]  # blank value if no example have been found at all for the current column
                )

            # Batch management
            batch = False
            batch_cutoff = options.get('limit')
            if batch_cutoff:
                if count > batch_cutoff:
                    batch = len(preview) > batch_cutoff
                else:
                    batch = bool(next(
                        itertools.islice(rows, batch_cutoff - count, None),
                        None
                    ))

            return {
                'fields': fields_tree,
                'matches': matches or False,
                'headers': headers or False,
                'header_types': list(header_types.values()) or False,
                'preview': column_example,
                'options': options,
                'advanced_mode': advanced_mode,
                'debug': self.env.user.has_group('base.group_no_one'),
                'batch': batch,
                'file_length': len(rows),
            }
        except Exception as error:
            # Due to lazy generators, UnicodeDecodeError (for
            # instance) may only be raised when serializing the
            # preview to a list in the return.
            _logger.debug("Error during parsing preview", exc_info=True)
            preview = None
            if self.file_type == 'text/csv' and self.file:
                preview = self.file[:ERROR_PREVIEW_BYTES].decode('iso-8859-1')
            return {
                'error': str(error),
                # iso-8859-1 ensures decoding will always succeed,
                # even if it yields non-printable characters. This is
                # in case of UnicodeDecodeError (or csv.Error
                # compounded with UnicodeDecodeError)
                'preview': preview,
            }

    @api.model
    def _convert_import_data(self, fields, options):
        """ Extracts the input BaseModel and fields list (with
            ``False``-y placeholders for fields to *not* import) into a
            format Model.import_data can use: a fields list without holes
            and the precisely matching data matrix

            :param list(str|bool): fields
            :returns: (data, fields)
            :rtype: (list(list(str)), list(str))
            :raises ValueError: in case the import data could not be converted
        """
        # Get indices for non-empty fields
        indices = [index for index, field in enumerate(fields) if field]
        if not indices:
            raise ImportValidationError(_("You must configure at least one field to import"))
        # If only one index, itemgetter will return an atom rather
        # than a 1-tuple
        if len(indices) == 1:
            mapper = lambda row: [row[indices[0]]]
        else:
            mapper = operator.itemgetter(*indices)
        # Get only list of actually imported fields
        import_fields = [f for f in fields if f]

        _file_length, rows_to_import = self._read_file(options)
        if len(rows_to_import[0]) != len(fields):
            raise ImportValidationError(
                _(
                    "Error while importing records: all rows should be of the same size, but the title row has %(title_row_entries)d entries while the first row has %(first_row_entries)d. You may need to change the separator character.",
                    title_row_entries=len(fields),
                    first_row_entries=len(rows_to_import[0]),
                ),
            )

        if options.get('has_headers'):
            rows_to_import = rows_to_import[1:]
        data = [
            list(row) for row in map(mapper, rows_to_import)
            # don't try inserting completely empty rows (e.g. from
            # filtering out o2m fields)
            if any(row)
        ]

        # slicing needs to happen after filtering out empty rows as the
        # data offsets from load are post-filtering
        return data[options.get('skip'):], import_fields

    @api.model
    def _remove_currency_symbol(self, value):
        value = value.strip()
        negative = False
        # Careful that some countries use () for negative so replace it by - sign
        if value.startswith('(') and value.endswith(')'):
            value = value[1:-1]
            negative = True
        float_regex = re.compile(r'([+-]?[0-9.,]+)')
        split_value = [g for g in float_regex.split(value) if g]
        if len(split_value) > 2:
            # This is probably not a float
            return False
        if len(split_value) == 1:
            if float_regex.search(split_value[0]) is not None:
                return split_value[0] if not negative else '-' + split_value[0]
            return False
        else:
            # String has been split in 2, locate which index contains the float and which does not
            currency_index = 0
            if float_regex.search(split_value[0]) is not None:
                currency_index = 1
            # Check that currency exists
            currency = self.env['res.currency'].search([('symbol', '=', split_value[currency_index].strip())])
            if len(currency):
                return split_value[(currency_index + 1) % 2] if not negative else '-' + split_value[(currency_index + 1) % 2]
            # Otherwise it is not a float with a currency symbol
            return False

    @api.model
    def _parse_float_from_data(self, data, index, name, options):
        for line in data:
            line[index] = line[index].strip()
            if not line[index]:
                continue
            thousand_separator, decimal_separator = self._infer_separators(line[index], options)

            if 'E' in line[index] or 'e' in line[index]:
                tmp_value = line[index].replace(thousand_separator, '.')
                try:
                    tmp_value = '{:f}'.format(float(tmp_value))
                    line[index] = tmp_value
                    thousand_separator = ' '
                except Exception:
                    pass

            line[index] = line[index].replace(thousand_separator, '').replace(decimal_separator, '.')
            old_value = line[index]
            line[index] = self._remove_currency_symbol(line[index])
            if line[index] is False:
                raise ImportValidationError(_("Column %(column)s contains incorrect values (value: %(value)s)", column=name, value=old_value), field=name)

    def _infer_separators(self, value, options):
        """ Try to infer the shape of the separators: if there are two
        different "non-numberic" characters in the number, the
        former/duplicated one would be grouping ("thousands" separator) and
        the latter would be the decimal separator. The decimal separator
        should furthermore be unique.
        """
        # can't use \p{Sc} using re so handroll it
        non_number = [
            # any character
            c for c in value
            # which is not a numeric decoration (() is used for negative
            # by accountants)
            if c not in '()-+'
            # which is not a digit or a currency symbol
            if unicodedata.category(c) not in ('Nd', 'Sc')
        ]

        counts = collections.Counter(non_number)
        # if we have two non-numbers *and* the last one has a count of 1,
        # we probably have grouping & decimal separators
        if len(counts) == 2 and counts[non_number[-1]] == 1:
            return [character for character, _count in counts.most_common()]

        # otherwise get whatever's in the options, or fallback to a default
        thousand_separator = options.get('float_thousand_separator', ' ')
        decimal_separator = options.get('float_decimal_separator', '.')
        return thousand_separator, decimal_separator

    def _parse_import_data(self, data, import_fields, options):
        """ Lauch first call to :meth:`_parse_import_data_recursive` with an
        empty prefix. :meth:`_parse_import_data_recursive` will be run
        recursively for each relational field.
        """
        return self._parse_import_data_recursive(self.res_model, '', data, import_fields, options)

    def _parse_import_data_recursive(self, model, prefix, data, import_fields, options):
        # Get fields of type date/datetime
        all_fields = self.env[model].fields_get()
        for name, field in all_fields.items():
            name = prefix + name
            if field['type'] in ('date', 'datetime') and name in import_fields:
                index = import_fields.index(name)
                self._parse_date_from_data(data, index, name, field['type'], options)
            # Check if the field is in import_field and is a relational (followed by /)
            # Also verify that the field name exactly match the import_field at the correct level.
            elif any(name + '/' in import_field and name == import_field.split('/')[prefix.count('/')] for import_field in import_fields):
                # Recursive call with the relational as new model and add the field name to the prefix
                self._parse_import_data_recursive(field['relation'], name + '/', data, import_fields, options)
            elif field['type'] in ('float', 'monetary') and name in import_fields:
                # Parse float, sometimes float values from file have currency symbol or () to denote a negative value
                # We should be able to manage both case
                index = import_fields.index(name)
                self._parse_float_from_data(data, index, name, options)
            elif field['type'] == 'binary' and field.get('attachment') and any(f in name for f in IMAGE_FIELDS) and name in import_fields:
                index = import_fields.index(name)

                with requests.Session() as session:
                    session.stream = True

                    for num, line in enumerate(data):
                        if re.match(config.get("import_image_regex", DEFAULT_IMAGE_REGEX), line[index]):
                            if not self.env.user._can_import_remote_urls():
                                raise ImportValidationError(
                                    _("You can not import images via URL, check with your administrator or support for the reason."),
                                    field=name, field_type=field['type']
                                )

                            line[index] = self._import_image_by_url(line[index], session, name, num)
                        elif '.' in line[index]:
                            # Detect if it's a filename
                            pass
                        else:
                            try:
                                base64.b64decode(line[index], validate=True)
                            except ValueError:
                                raise ImportValidationError(
                                    _("Found invalid image data, images should be imported as either URLs or base64-encoded data."),
                                    field=name, field_type=field['type']
                                )

        return data

    def _parse_date_from_data(self, data, index, name, field_type, options):
        dt = datetime.datetime
        fmt = fields.Date.to_string if field_type == 'date' else fields.Datetime.to_string
        d_fmt = options.get('date_format') or DEFAULT_SERVER_DATE_FORMAT
        dt_fmt = options.get('datetime_format') or DEFAULT_SERVER_DATETIME_FORMAT
        for num, line in enumerate(data):
            if not line[index]:
                continue

            v = line[index].strip()
            try:
                # first try parsing as a datetime if it's one
                if dt_fmt and field_type == 'datetime':
                    try:
                        line[index] = fmt(dt.strptime(v, dt_fmt))
                        continue
                    except ValueError:
                        pass
                # otherwise try parsing as a date whether it's a date
                # or datetime
                line[index] = fmt(dt.strptime(v, d_fmt))
            except ValueError as e:
                raise ImportValidationError(
                    _("Column %(column)s contains incorrect values. Error in line %(line)d: %(error)s", column=name, line=num + 1, error=e),
                    field=name, field_type=field_type
                )
            except Exception as e:
                raise ImportValidationError(
                    _("Error Parsing Date [%(field)s:L%(line)d]: %(error)s", field=name, line=num + 1, error=e),
                    field=name, field_type=field_type
                )

    def _import_image_by_url(self, url, session, field, line_number):
        """ Imports an image by URL

        :param str url: the original field value
        :param requests.Session session:
        :param str field: name of the field (for logging/debugging)
        :param int line_number: 0-indexed line number within the imported file (for logging/debugging)
        :return: the replacement value
        :rtype: bytes
        """
        maxsize = int(config.get("import_image_maxbytes", DEFAULT_IMAGE_MAXBYTES))
        _logger.debug("Trying to import image from URL: %s into field %s, at line %s" % (url, field, line_number))
        try:
            response = session.get(url, timeout=int(config.get("import_image_timeout", DEFAULT_IMAGE_TIMEOUT)))
            response.raise_for_status()

            if response.headers.get('Content-Length') and int(response.headers['Content-Length']) > maxsize:
                raise ImportValidationError(
                    _("File size exceeds configured maximum (%s bytes)", maxsize),
                    field=field
                )

            content = bytearray()
            for chunk in response.iter_content(DEFAULT_IMAGE_CHUNK_SIZE):
                content += chunk
                if len(content) > maxsize:
                    raise ImportValidationError(
                        _("File size exceeds configured maximum (%s bytes)", maxsize),
                        field=field
                    )

            image = Image.open(io.BytesIO(content))
            w, h = image.size
            if w * h > 42e6:  # Nokia Lumia 1020 photo resolution
                raise ImportValidationError(
                    _("Image size excessive, imported images must be smaller than 42 million pixel"),
                    field=field
                )

            return base64.b64encode(content)
        except Exception as e:
            _logger.warning(e, exc_info=True)
            raise ImportValidationError(_("Could not retrieve URL: %(url)s [%(field_name)s: L%(line_number)d]: %(error)s") % {
                'url': url,
                'field_name': field,
                'line_number': line_number + 1,
                'error': e
            })

    def execute_import(self, fields, columns, options, dryrun=False):
        """ Actual execution of the import

        :param fields: import mapping: maps each column to a field,
                       ``False`` for the columns to ignore
        :type fields: list(str|bool)
        :param columns: columns label
        :type columns: list(str|bool)
        :param dict options:
        :param bool dryrun: performs all import operations (and
                            validations) but rollbacks writes, allows
                            getting as much errors as possible without
                            the risk of clobbering the database.
        :returns: A list of errors. If the list is empty the import
                  executed fully and correctly. If the list is
                  non-empty it contains dicts with 3 keys:

                  ``type``
                    the type of error (``error|warning``)
                  ``message``
                    the error message associated with the error (a string)
                  ``record``
                    the data which failed to import (or ``false`` if that data
                    isn't available or provided)
        :rtype: dict(ids: list(int), messages: list({type, message, record}))
        """
        self.ensure_one()
        self._cr.execute('SAVEPOINT import')

        try:
            input_file_data, import_fields = self._convert_import_data(fields, options)
            # Parse date and float field
            input_file_data = self._parse_import_data(input_file_data, import_fields, options)
        except ImportValidationError as error:
            return {'messages': [error.__dict__]}

        _logger.info('importing %d rows...', len(input_file_data))

        binary_filenames = self._extract_binary_filenames(import_fields, input_file_data)

        import_fields, merged_data = self._handle_multi_mapping(import_fields, input_file_data)

        if options.get('fallback_values'):
            merged_data = self._handle_fallback_values(import_fields, merged_data, options['fallback_values'])

        name_create_enabled_fields = options.pop('name_create_enabled_fields', {})
        import_limit = options.pop('limit', None)
        model = self.env[self.res_model].with_context(
            import_file=True,
            name_create_enabled_fields=name_create_enabled_fields,
            import_set_empty_fields=options.get('import_set_empty_fields', []),
            import_skip_records=options.get('import_skip_records', []),
            _import_limit=import_limit)
        import_result = model.load(import_fields, merged_data)
        _logger.info('done')

        # If transaction aborted, RELEASE SAVEPOINT is going to raise
        # an InternalError (ROLLBACK should work, maybe). Ignore that.
        # TODO: to handle multiple errors, create savepoint around
        #       write and release it in case of write error (after
        #       adding error to errors array) => can keep on trying to
        #       import stuff, and rollback at the end if there is any
        #       error in the results.
        try:
            if dryrun:
                self._cr.execute('ROLLBACK TO SAVEPOINT import')
                # cancel all changes done to the registry/ormcache
                # we need to clear the cache in case any created id was added to an ormcache and would be missing afterward
                self.pool.clear_all_caches()
                # don't propagate to other workers since it was rollbacked
                self.pool.reset_changes()
            else:
                self._cr.execute('RELEASE SAVEPOINT import')
        except psycopg2.InternalError:
            pass

        # Insert/Update mapping columns when import complete successfully
        if import_result['ids'] and options.get('has_headers'):
            BaseImportMapping = self.env['base_import.mapping']
            for index, column_name in enumerate(columns):
                if column_name:
                    # Update to latest selected field
                    mapping_domain = [('res_model', '=', self.res_model), ('column_name', '=', column_name)]
                    column_mapping = BaseImportMapping.search(mapping_domain, limit=1)
                    if column_mapping:
                        if column_mapping.field_name != fields[index]:
                            column_mapping.field_name = fields[index]
                    else:
                        BaseImportMapping.create({
                            'res_model': self.res_model,
                            'column_name': column_name,
                            'field_name': fields[index]
                        })
        if 'name' in import_fields:
            index_of_name = import_fields.index('name')
            skipped = options.get('skip', 0)
            # pad front as data doesn't contain anythig for skipped lines
            r = import_result['name'] = [''] * skipped
            # only add names for the window being imported
            r.extend(x[index_of_name] for x in input_file_data[:import_limit])
            # pad back (though that's probably not useful)
            r.extend([''] * (len(input_file_data) - (import_limit or 0)))
        else:
            import_result['name'] = []

        skip = options.get('skip', 0)
        # convert load's internal nextrow to the imported file's
        if import_result['nextrow']: # don't update if nextrow = 0 (= no nextrow)
            import_result['nextrow'] += skip
        if binary_filenames:
            import_result['binary_filenames'] = binary_filenames

        return import_result

    def _extract_binary_filenames(self, import_fields, data, model=False, prefix='', binary_filenames=False):
        model = model or self.res_model
        binary_filenames = binary_filenames or defaultdict(list)
        for name, field in self.env[model]._fields.items():
            name = prefix + name
            if any(name + '/' in import_field and name == import_field.split('/')[prefix.count('/')] for import_field in import_fields):
                # Recursive call with the relational as new model and add the field name to the prefix
                binary_filenames = self._extract_binary_filenames(import_fields, data, field.comodel_name, name + '/', binary_filenames)
            elif field.type == 'binary' and field.attachment and any(f in name for f in IMAGE_FIELDS) and name in import_fields:
                index = import_fields.index(name)
                for line in data:
                    filename = None
                    value = line[index]
                    if isinstance(value, str):
                        if re.match(config.get("import_image_regex", DEFAULT_IMAGE_REGEX), value):
                            pass
                        elif '.' in value:
                            # Detect if it's a filename
                            filename = value
                            line[index] = ''
                        # else base64 nothing to do
                    binary_filenames[name].append(filename)
        return binary_filenames

    def _handle_multi_mapping(self, import_fields, input_file_data):
        """ This method handles multiple mapping on the same field.

        It will return the list of the mapped fields and the concatenated data for each field:

        - If two column are mapped on the same text or char field, they will end up
          in only one column, concatenated via space (char) or new line (text).
        - The same logic is used for many2many fields. Multiple values can be
          imported if they are separated by ``,``.

        Input/output Example:

        input data
            .. code-block:: python

                [
                    ["Value part 1", "1", "res.partner_id1", "Value part 2"],
                    ["I am", "1", "res.partner_id1", "Batman"],
                ]

        import_fields
            ``[desc, some_number, partner, desc]``

        output merged_data
            .. code-block:: python

                [
                    ["Value part 1 Value part 2", "1", "res.partner_id1"],
                    ["I am Batman", "1", "res.partner_id1"],
                ]
        fields
            ``[desc, some_number, partner]``
        """
        # Get fields and their occurrences indexes
        # Among the fields that have been mapped, we get their corresponding mapped column indexes
        # as multiple fields could have been mapped to multiple columns.
        mapped_field_indexes = {}
        for idx, field in enumerate(field for field in import_fields if field):
            mapped_field_indexes.setdefault(field, list()).append(idx)
        import_fields = list(mapped_field_indexes.keys())

        # recreate data and merge duplicates (applies only on text or char fields)
        # Also handles multi-mapping on "field of relation fields".
        merged_data = []
        for record in input_file_data:
            new_record = []
            for fields, indexes in mapped_field_indexes.items():
                split_fields = fields.split('/')
                target_field = split_fields[-1]

                # get target_field type (on target model)
                target_model = self.res_model
                for field in split_fields:
                    # if not on the last hierarchy level, retarget the model.
                    # Also check if the field exists to silently ignore properties field and
                    # since we don't have the definition here anyway.
                    if field != target_field and field in self.env[target_model]:
                        target_model = self.env[target_model][field]._name

                field = self.env[target_model]._fields.get(target_field)
                field_type = field.type if field else ''

                # merge data if necessary
                if field_type == 'char':
                    new_record.append(' '.join(record[idx] for idx in indexes if record[idx]))
                elif field_type == 'text':
                    new_record.append('\n'.join(record[idx] for idx in indexes if record[idx]))
                elif field_type == 'many2many':
                    new_record.append(','.join(record[idx] for idx in indexes if record[idx]))
                else:
                    new_record.append(record[indexes[0]])

            merged_data.append(new_record)

        return import_fields, merged_data

    def _handle_fallback_values(self, import_field, input_file_data, fallback_values):
        """
        If there are fallback values, this method will replace the input file
        data value if it does not match the possible values for the given field.
        This is only valid for boolean and selection fields.

        .. note::

            We can consider that we need to retrieve the selection values for
            all the fields in fallback_values, as if they are present, it's because
            there was already a conflict during first import run and user had to
            select a fallback value for the field.

        :param: list import_field: ordered list of field that have been matched to import data
        :param: list input_file_data: ordered list of values (list) that need to be imported in the given import_fields
        :param: dict fallback_values:

            contains all the fields that have been tagged by the user to use a
            specific fallback value in case the value to import does not match
            values accepted by the field (selection or boolean) e.g.::

                {
                    'fieldName': {
                        'fallback_value': fallback_value,
                        'field_model': field_model,
                        'field_type': field_type
                    },
                    'state': {
                        'fallback_value': 'draft',
                        'field_model': field_model,
                        'field_type': 'selection'
                    },
                    'active': {
                        'fallback_value': 'true',
                        'field_model': field_model,
                        'field_type': 'boolean'
                    }
                }
        """
        # add possible selection values into our fallback dictionary for fields of type "selection"
        for field_string in fallback_values:
            if fallback_values[field_string]['field_type'] != "selection":
                continue
            field_path = field_string.split('/')
            target_field = field_path[-1]
            target_model = self.env[fallback_values[field_string]['field_model']]

            selection_values = [value.lower() for (key, value) in target_model.fields_get([target_field])[target_field]['selection']]
            fallback_values[field_string]['selection_values'] = selection_values

        # check fallback values
        for record_index, records in enumerate(input_file_data):
            for column_index, value in enumerate(records):
                field = import_field[column_index]

                if field in fallback_values:
                    fallback_value = fallback_values[field]['fallback_value']
                    # Boolean
                    if fallback_values[field]['field_type'] == "boolean":
                        value = value if value.lower() in ('0', '1', 'true', 'false') else fallback_value
                    # Selection
                    elif fallback_values[field]['field_type'] == "selection" and value.lower() not in fallback_values[field]["selection_values"]:
                        value = fallback_value if fallback_value != 'skip' else None  # don't set any value if we skip

                    input_file_data[record_index][column_index] = value

        return input_file_data

_SEPARATORS = [' ', '/', '-', '.', '']
_PATTERN_BASELINE = [
    ('%m', '%d', '%Y'),
    ('%d', '%m', '%Y'),
    ('%Y', '%m', '%d'),
    ('%Y', '%d', '%m'),
]
DATE_FORMATS = []
# take the baseline format and duplicate performing the following
# substitution: long year -> short year, numerical month -> short
# month, numerical month -> long month. Each substitution builds on
# the previous two
for ps in _PATTERN_BASELINE:
    patterns = {ps}
    for s, t in [('%Y', '%y')]:
        patterns.update([ # need listcomp: with genexpr "set changed size during iteration"
            tuple(t if it == s else it for it in f)
            for f in patterns
        ])
    DATE_FORMATS.extend(patterns)
DATE_PATTERNS = [
    sep.join(fmt)
    for sep in _SEPARATORS
    for fmt in DATE_FORMATS
]
TIME_PATTERNS = [
    '%H:%M:%S', '%H:%M', '%H', # 24h
    '%I:%M:%S %p', '%I:%M %p', '%I %p', # 12h
]

def check_patterns(patterns, values):
    for pattern in patterns:
        p = to_re(pattern)
        for val in values:
            if val and not p.match(val):
                break

        else:  # no break, all match
            return pattern

    return None

def to_re(pattern):
    """ cut down version of TimeRE converting strptime patterns to regex
    """
    pattern = re.sub(r'\s+', r'\\s+', pattern)
    pattern = re.sub('%([a-z])', _replacer, pattern, flags=re.IGNORECASE)
    pattern = '^' + pattern + '$'
    return re.compile(pattern, re.IGNORECASE)
def _replacer(m):
    return _P_TO_RE[m.group(1)]

_P_TO_RE = {
    'd': r"(3[0-1]|[1-2]\d|0[1-9]|[1-9]| [1-9])",
    'H': r"(2[0-3]|[0-1]\d|\d)",
    'I': r"(1[0-2]|0[1-9]|[1-9])",
    'm': r"(1[0-2]|0[1-9]|[1-9])",
    'M': r"([0-5]\d|\d)",
    'S': r"(6[0-1]|[0-5]\d|\d)",
    'y': r"(\d\d)",
    'Y': r"(\d\d\d\d)",

    'p': r"(am|pm)",

    '%': '%',
}


def read_file_failed(exc: Exception, message: str) -> UserError:
    _logger.warning(message, exc_info=True)
    e = UserError(message)
    e.__cause__ = exc
    return e