1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
# -*- coding: utf-8 -*-
# Part of Odoo. See LICENSE file for full copyright and licensing details.
from odoo import api, models, fields
from odoo.http import request
from odoo.tools import email_normalize, get_lang, html2plaintext, is_html_empty, plaintext2html
class ChatbotScript(models.Model):
_name = 'chatbot.script'
_description = 'Chatbot Script'
_inherit = ['image.mixin', 'utm.source.mixin']
_rec_name = 'title'
_order = 'title, id'
# we keep a separate field for UI since name is manipulated by 'utm.source.mixin'
title = fields.Char('Title', required=True, translate=True, default="Chatbot")
active = fields.Boolean(default=True)
image_1920 = fields.Image(related='operator_partner_id.image_1920', readonly=False)
script_step_ids = fields.One2many('chatbot.script.step', 'chatbot_script_id',
copy=True, string='Script Steps')
operator_partner_id = fields.Many2one('res.partner', string='Bot Operator',
ondelete='restrict', required=True, copy=False)
livechat_channel_count = fields.Integer(string='Livechat Channel Count', compute='_compute_livechat_channel_count')
first_step_warning = fields.Selection([
('first_step_operator', 'First Step Operator'),
('first_step_invalid', 'First Step Invalid'),
], compute="_compute_first_step_warning")
def _compute_livechat_channel_count(self):
channels_data = self.env['im_livechat.channel.rule']._read_group(
[('chatbot_script_id', 'in', self.ids)], ['chatbot_script_id'], ['channel_id:count_distinct'])
mapped_channels = {chatbot_script.id: count_distinct for chatbot_script, count_distinct in channels_data}
for script in self:
script.livechat_channel_count = mapped_channels.get(script.id, 0)
@api.depends('script_step_ids.step_type')
def _compute_first_step_warning(self):
for script in self:
allowed_first_step_types = [
'question_selection',
'question_email',
'question_phone',
'free_input_single',
'free_input_multi',
]
welcome_steps = script.script_step_ids and script._get_welcome_steps()
if welcome_steps and welcome_steps[-1].step_type == 'forward_operator':
script.first_step_warning = 'first_step_operator'
elif welcome_steps and welcome_steps[-1].step_type not in allowed_first_step_types:
script.first_step_warning = 'first_step_invalid'
else:
script.first_step_warning = False
def copy_data(self, default=None):
vals_list = super().copy_data(default=default)
return [dict(vals, title=self.env._("%s (copy)", script.title)) for script, vals in zip(self, vals_list)]
def copy(self, default=None):
""" Correctly copy the 'triggering_answer_ids' field from the original script_step_ids to the clone.
This needs to be done in post-processing to make sure we get references to the newly created
answers from the copy instead of references to the answers of the original.
This implementation assumes that the order of created steps and answers will be kept between
the original and the clone, using 'zip()' to match the records between the two. """
default = default or {}
new_scripts = super().copy(default=default)
if 'question_ids' in default:
return new_scripts
for old_script, new_script in zip(self, new_scripts):
original_steps = old_script.script_step_ids.sorted()
clone_steps = new_script.script_step_ids.sorted()
answers_map = {}
for clone_step, original_step in zip(clone_steps, original_steps):
for clone_answer, original_answer in zip(clone_step.answer_ids.sorted(), original_step.answer_ids.sorted()):
answers_map[original_answer] = clone_answer
for clone_step, original_step in zip(clone_steps, original_steps):
clone_step.write({
'triggering_answer_ids': [
(4, answer.id)
for answer in [
answers_map[original_answer]
for original_answer
in original_step.triggering_answer_ids
]
]
})
return new_scripts
@api.model_create_multi
def create(self, vals_list):
operator_partners_values = [{
'name': vals['title'],
'image_1920': vals.get('image_1920', False),
'active': False,
} for vals in vals_list if 'operator_partner_id' not in vals and 'title' in vals]
operator_partners = self.env['res.partner'].create(operator_partners_values)
for vals, partner in zip(
[vals for vals in vals_list if 'operator_partner_id' not in vals and 'title' in vals],
operator_partners
):
vals['operator_partner_id'] = partner.id
return super().create(vals_list)
def write(self, vals):
res = super().write(vals)
if 'title' in vals:
self.operator_partner_id.write({'name': vals['title']})
return res
def _get_welcome_steps(self):
""" Returns a sub-set of script_step_ids that only contains the "welcoming steps".
We consider those as all the steps the bot will say before expecting a first answer from
the end user.
Example 1:
- step 1 (question_selection): What do you want to do? - Create a Lead, -Create a Ticket
- step 2 (text): Thank you for visiting our website!
-> The welcoming steps will only contain step 1, since directly after that we expect an
input from the user
Example 2:
- step 1 (text): Hello! I'm a bot!
- step 2 (text): I am here to help lost users.
- step 3 (question_selection): What do you want to do? - Create a Lead, -Create a Ticket
- step 4 (text): Thank you for visiting our website!
-> The welcoming steps will contain steps 1, 2 and 3.
Meaning the bot will have a small monologue with himself before expecting an input from the
end user.
This is important because we need to display those welcoming steps in a special fashion on
the frontend, since those are not inserted into the discuss.channel as actual mail.messages,
to avoid bloating the channels with bot messages if the end-user never interacts with it. """
self.ensure_one()
welcome_steps = self.env['chatbot.script.step']
for step in self.script_step_ids:
welcome_steps += step
if step.step_type != 'text':
break
return welcome_steps
def _post_welcome_steps(self, discuss_channel):
""" Welcome messages are only posted after the visitor's first interaction with the chatbot.
See 'chatbot.script#_get_welcome_steps()' for more details.
Side note: it is important to set the 'chatbot_current_step_id' on each iteration so that
it's correctly set when going into 'discuss_channel#_message_post_after_hook()'. """
self.ensure_one()
posted_messages = self.env['mail.message']
for welcome_step in self._get_welcome_steps():
discuss_channel.chatbot_current_step_id = welcome_step.id
if not is_html_empty(welcome_step.message):
posted_messages += discuss_channel.with_context(mail_create_nosubscribe=True).message_post(
author_id=self.operator_partner_id.id,
body=plaintext2html(welcome_step.message),
message_type='comment',
subtype_xmlid='mail.mt_comment',
)
return posted_messages
def action_view_livechat_channels(self):
self.ensure_one()
action = self.env['ir.actions.act_window']._for_xml_id('im_livechat.im_livechat_channel_action')
action['domain'] = [('rule_ids.chatbot_script_id', 'in', self.ids)]
return action
# --------------------------
# Tooling / Misc
# --------------------------
def _format_for_frontend(self):
""" Small utility method that formats the script into a dict usable by the frontend code. """
self.ensure_one()
return {
'id': self.id,
'name': self.title,
'partner': {'id': self.operator_partner_id.id, 'type': 'partner', 'name': self.operator_partner_id.name},
'welcomeSteps': [
step._format_for_frontend()
for step in self._get_welcome_steps()
]
}
def _validate_email(self, email_address, discuss_channel):
email_address = html2plaintext(email_address)
email_normalized = email_normalize(email_address)
posted_message = False
error_message = False
if not email_normalized:
error_message = self.env._(
"'%(input_email)s' does not look like a valid email. Can you please try again?",
input_email=email_address
)
posted_message = discuss_channel._chatbot_post_message(self, plaintext2html(error_message))
return {
'success': bool(email_normalized),
'posted_message': posted_message,
'error_message': error_message,
}
def _get_chatbot_language(self):
frontend_lang = request and request.cookies.get('frontend_lang')
return frontend_lang or self.env.user.lang or get_lang(self.env).code
|