File: key.c

package info (click to toggle)
ofono 2.18-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 12,064 kB
  • sloc: ansic: 224,979; sh: 5,012; python: 4,040; makefile: 956
file content (811 lines) | stat: -rw-r--r-- 17,816 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
/*
 * Embedded Linux library
 * Copyright (C) 2016  Intel Corporation
 *
 * SPDX-License-Identifier: LGPL-2.1-or-later
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#define _GNU_SOURCE
#include <unistd.h>
#include <stdint.h>
#include <sys/syscall.h>
#include <linux/keyctl.h>
#include <errno.h>

#include "private.h"
#include "useful.h"
#include "key.h"
#include "string.h"
#include "random.h"
#include "missing.h"

#ifndef KEYCTL_DH_COMPUTE
#define KEYCTL_DH_COMPUTE 23
#endif

#ifndef KEYCTL_PKEY_QUERY
#define KEYCTL_PKEY_QUERY	24
#define KEYCTL_PKEY_ENCRYPT	25
#define KEYCTL_PKEY_DECRYPT	26
#define KEYCTL_PKEY_SIGN	27
#define KEYCTL_PKEY_VERIFY	28

#define KEYCTL_SUPPORTS_ENCRYPT	0x01
#define KEYCTL_SUPPORTS_DECRYPT	0x02
#define KEYCTL_SUPPORTS_SIGN	0x04
#define KEYCTL_SUPPORTS_VERIFY	0x08

struct keyctl_pkey_query {
	uint32_t supported_ops;
	uint32_t key_size;
	uint16_t max_data_size;
	uint16_t max_sig_size;
	uint16_t max_enc_size;
	uint16_t max_dec_size;

	uint32_t __spare[10];
};

struct keyctl_pkey_params {
	int32_t key_id;
	uint32_t in_len;
	union {
		uint32_t out_len;
		uint32_t in2_len;
	};
	uint32_t __spare[7];
};

/* Work around the missing (pre-4.7) or broken (4.14.{70,71,72} and
 * 4.18.{8,9,10}) kernel declaration of struct keyctl_dh_params
 */
struct dh_params {
	int32_t private;
	int32_t prime;
	int32_t base;
};
#else
/* When KEYCTL_PKEY_QUERY is defined by the kernel, the
 * struct keyctl_dh_params declaration is valid.
 */
#define dh_params keyctl_dh_params
#endif

#ifndef KEYCTL_RESTRICT_KEYRING
#define KEYCTL_RESTRICT_KEYRING 29
#endif

static int32_t internal_keyring;

struct l_key {
	int type;
	int32_t serial;
};

struct l_keyring {
	int32_t serial;
};

static const char * const key_type_names[] = {
	[L_KEY_RAW] = "user",
	[L_KEY_RSA] = "asymmetric",
	[L_KEY_ECC] = "asymmetric",
};

static long kernel_add_key(const char *type, const char *description,
				const void *payload, size_t len, int32_t keyring)
{
	long result;

	result = syscall(__NR_add_key, type, description, payload, len,
				keyring);

	return result >= 0 ? result : -errno;
}

static long kernel_read_key(int32_t serial, const void *payload, size_t len)
{
	long result;

	result = syscall(__NR_keyctl, KEYCTL_READ, serial, payload, len);

	return result >= 0 ? result : -errno;
}

static long kernel_update_key(int32_t serial, const void *payload, size_t len)
{
	long result;

	result = syscall(__NR_keyctl, KEYCTL_UPDATE, serial, payload, len);

	return result >= 0 ? result : -errno;
}

static long kernel_invalidate_key(int32_t serial)
{
	long result;

	result = syscall(__NR_keyctl, KEYCTL_INVALIDATE, serial);

	return result >= 0 ? result : -errno;
}

static long kernel_link_key(int32_t key_serial, int32_t ring_serial)
{
	long result;

	result = syscall(__NR_keyctl, KEYCTL_LINK, key_serial, ring_serial);

	return result >= 0 ? result : -errno;
}

static long kernel_unlink_key(int32_t key_serial, int32_t ring_serial)
{
	long result;

	result = syscall(__NR_keyctl, KEYCTL_UNLINK, key_serial, ring_serial);

	return result >= 0 ? result : -errno;
}

static char *format_key_info(const char *encoding, const char *hash)
{
	struct l_string *info;

	if (!encoding && !hash)
		return NULL;

	info = l_string_new(0);

	if (encoding)
		l_string_append_printf(info, "enc=%s ", encoding);

	if (hash)
		l_string_append_printf(info, "hash=%s", hash);

	return l_string_unwrap(info);
}

static long kernel_query_key(int32_t key_serial, const char *encoding,
				const char *hash, size_t *size, bool *public)
{
	long result;
	struct keyctl_pkey_query query;
	char *info = format_key_info(encoding, hash);

	memset(&query, 0, sizeof(query));

	result = syscall(__NR_keyctl, KEYCTL_PKEY_QUERY, key_serial, 0,
				info ?: "", &query);
	if (result == 0) {
		*size = query.key_size;
		*public = ((query.supported_ops & KEYCTL_SUPPORTS_ENCRYPT) &&
			!(query.supported_ops & KEYCTL_SUPPORTS_DECRYPT));
	}
	l_free(info);

	return result >= 0 ? result : -errno;
}

static long kernel_dh_compute(int32_t private, int32_t prime, int32_t base,
			      void *payload, size_t len)
{
	long result;

	struct dh_params params = { .private = private,
				    .prime = prime,
				    .base = base };

	result = syscall(__NR_keyctl, KEYCTL_DH_COMPUTE, &params, payload, len,
			NULL);

	return result >= 0 ? result : -errno;
}

static long kernel_restrict_keyring(int32_t serial, const char *keytype,
					const char *restriction)
{
	long result;

	result = syscall(__NR_keyctl, KEYCTL_RESTRICT_KEYRING, serial, keytype,
				restriction);

	return result >= 0 ? result : -errno;
}

static long kernel_key_eds(int op, int32_t serial, const char *encoding,
				const char *hash, const void *in, void *out,
				size_t len_in, size_t len_out)
{
	long result;
	struct keyctl_pkey_params params = { .key_id = serial,
					     .in_len = len_in,
					     .out_len = len_out };
	char *info = format_key_info(encoding, hash);

	memset(out, 0, len_out);

	result = syscall(__NR_keyctl, op, &params, info ?: "", in, out);
	l_free(info);

	return result >= 0 ? result : -errno;
}

static long kernel_key_verify(int32_t serial,
				const char *encoding, const char *hash,
				const void *data, size_t data_len,
				const void *sig, size_t sig_len)
{
	struct keyctl_pkey_params params = {
		.key_id		= serial,
		.in_len		= data_len,
		.in2_len	= sig_len,
	};
	char *info = format_key_info(encoding, hash);
	long result;

	result = syscall(__NR_keyctl, KEYCTL_PKEY_VERIFY, &params,
				info ?: "", data, sig);
	l_free(info);

	return result >= 0 ? result : -errno;
}

static bool setup_internal_keyring(void)
{
	internal_keyring = kernel_add_key("keyring", "ell-internal", NULL, 0,
						KEY_SPEC_THREAD_KEYRING);

	if (internal_keyring <= 0) {
		internal_keyring = 0;
		return false;
	}

	return true;
}

LIB_EXPORT struct l_key *l_key_new(enum l_key_type type, const void *payload,
					size_t payload_length)
{
	struct l_key *key;
	char *description;
	static unsigned long key_idx;

	if (unlikely(!payload))
		return NULL;

	if (unlikely((size_t)type >= L_ARRAY_SIZE(key_type_names)))
		return NULL;

	if (!internal_keyring && !setup_internal_keyring())
		return NULL;

	key = l_new(struct l_key, 1);
	key->type = type;
	description = l_strdup_printf("ell-key-%lu", key_idx++);
	key->serial = kernel_add_key(key_type_names[type], description, payload,
					payload_length, internal_keyring);
	l_free(description);

	if (key->serial < 0) {
		l_free(key);
		key = NULL;
	}

	/*
	 * TODO: Query asymmetric key algorithm from the kernel and
	 * ensure that it matches the expected l_key_type. This can
	 * currently be found by digging through /proc/keys, but a
	 * keyctl() op makes more sense.
	 */

	return key;
}

LIB_EXPORT void l_key_free(struct l_key *key)
{
	if (unlikely(!key))
		return;

	/*
	 * Use invalidate as, unlike revoke, this doesn't delay the
	 * key garbage collection and causes the quota used by the
	 * key to be released sooner and more predictably.
	 */
	kernel_invalidate_key(key->serial);

	l_free(key);
}

LIB_EXPORT void l_key_free_norevoke(struct l_key *key)
{
	if (unlikely(!key))
		return;

	kernel_unlink_key(key->serial, internal_keyring);

	l_free(key);
}

LIB_EXPORT bool l_key_update(struct l_key *key, const void *payload, size_t len)
{
	long error;

	if (unlikely(!key))
		return false;

	error = kernel_update_key(key->serial, payload, len);

	return error == 0;
}

LIB_EXPORT bool l_key_extract(struct l_key *key, void *payload, size_t *len)
{
	long keylen;

	if (unlikely(!key))
		return false;

	keylen = kernel_read_key(key->serial, payload, *len);

	if (keylen < 0 || (size_t)keylen > *len) {
		explicit_bzero(payload, *len);
		return false;
	}

	*len = keylen;
	return true;
}

LIB_EXPORT ssize_t l_key_get_payload_size(struct l_key *key)
{
	return kernel_read_key(key->serial, NULL, 0);
}

static const char *lookup_cipher(enum l_key_cipher_type cipher)
{
	switch (cipher) {
	case L_KEY_RSA_PKCS1_V1_5:
		return "pkcs1";
	case L_KEY_RSA_RAW:
		return "raw";
	case L_KEY_ECDSA_X962:
		return "x962";
	}

	return NULL;
}

static const char *lookup_checksum(enum l_checksum_type checksum)
{
	const char* ret = NULL;

	switch (checksum) {
	case L_CHECKSUM_NONE:
		break;
	case L_CHECKSUM_MD4:
		ret = "md4";
		break;
	case L_CHECKSUM_MD5:
		ret = "md5";
		break;
	case L_CHECKSUM_SHA1:
		ret = "sha1";
		break;
	case L_CHECKSUM_SHA224:
		ret = "sha224";
		break;
	case L_CHECKSUM_SHA256:
		ret = "sha256";
		break;
	case L_CHECKSUM_SHA384:
		ret = "sha384";
		break;
	case L_CHECKSUM_SHA512:
		ret = "sha512";
		break;
	case L_CHECKSUM_SHA3_224:
		ret = "sha3-224";
		break;
	case L_CHECKSUM_SHA3_256:
		ret = "sha3-256";
		break;
	case L_CHECKSUM_SHA3_384:
		ret = "sha3-384";
		break;
	case L_CHECKSUM_SHA3_512:
		ret = "sha3-512";
		break;
	}

	return ret;
}

LIB_EXPORT bool l_key_get_info(struct l_key *key, enum l_key_cipher_type cipher,
			enum l_checksum_type checksum, size_t *bits,
			bool *public)
{
	if (unlikely(!key))
		return false;

	return !kernel_query_key(key->serial, lookup_cipher(cipher),
					lookup_checksum(checksum), bits,
					public);
}

LIB_EXPORT struct l_key *l_key_generate_dh_private(const void *prime_buf,
							size_t prime_len)
{
	uint8_t *buf;
	const uint8_t *prime = prime_buf;
	size_t prime_bits;
	unsigned int i;
	size_t private_bytes;
	size_t random_bytes;
	struct l_key *private;

	/* Find the prime's bit length excluding leading 0s */

	for (i = 0; i < prime_len && !prime[i]; i++);

	if (i == prime_len || (i == prime_len - 1 && prime[i] < 5))
		return NULL;

	prime_bits = (prime_len - i) * 8 - __builtin_clz(prime[i]);

	/*
	 * Generate a random DH private value conforming to 1 < x < p - 1.
	 * To do this covering all possible values in this range with the
	 * same probability of generating each value generally requires
	 * looping.  Instead we generate a value in the range
	 * [2 ^ (prime_bits - 2), 2 ^ (prime_bits - 1) - 1] by forcing bit
	 * prime_bits - 2 to 1, i.e. the range in PKCS #3 Section 7.1 for
	 * l equal to prime_bits - 1.  This means we're using between
	 * one half and one quarter of the full [2, p - 2] range, i.e.
	 * between 1 and 2 bits fewer.  Note that since p is odd
	 * p - 1 has the same bit length as p and so our maximum value
	 * 2 ^ (prime_bits - 1) - 1 is still less than p - 1.
	 */
	private_bytes = ((prime_bits - 1) + 7) / 8;
	random_bytes = ((prime_bits - 2) + 7) / 8;
	buf = l_malloc(private_bytes);
	l_getrandom(buf + private_bytes - random_bytes, random_bytes);

	buf[0] &= (1 << ((prime_bits - 2) % 8)) - 1;
	buf[0] |= 1 << ((prime_bits - 2) % 8);

	private = l_key_new(L_KEY_RAW, buf, private_bytes);
	explicit_bzero(buf, private_bytes);
	l_free(buf);
	return private;
}

static bool compute_common(struct l_key *base, struct l_key *private,
				struct l_key *prime, void *payload, size_t *len)
{
	long result_len;
	bool usable_payload = *len != 0;

	result_len = kernel_dh_compute(private->serial, prime->serial,
					base->serial, payload, *len);

	if (result_len > 0) {
		*len = result_len;
		return usable_payload;
	}
	return false;
}

LIB_EXPORT bool l_key_compute_dh_public(struct l_key *generator,
					struct l_key *private,
					struct l_key *prime,
					void *payload, size_t *len)
{
	return compute_common(generator, private, prime, payload, len);
}

LIB_EXPORT bool l_key_compute_dh_secret(struct l_key *other_public,
					struct l_key *private,
					struct l_key *prime,
					void *payload, size_t *len)
{
	return compute_common(other_public, private, prime, payload, len);
}

static int be_bignum_compare(const uint8_t *a, size_t a_len,
				const uint8_t *b, size_t b_len)
{
	unsigned int i;

	if (a_len >= b_len) {
		for (i = 0; i < a_len - b_len; i++)
			if (a[i])
				return 1;

		return memcmp(a + i, b, b_len);
	}

	for (i = 0; i < b_len - a_len; i++)
		if (b[i])
			return -1;

	return memcmp(a, b + i, a_len);
}

/*
 * Validate that @payload is within range for a private and public key for
 * a DH computation in the finite field group defined by modulus @prime_buf,
 * both numbers stored as big-endian integers.  We require a key in the
 * [2, prime - 2] (inclusive) interval.  PKCS #3 does not exclude 1 as a
 * private key but other specs do.
 */
LIB_EXPORT bool l_key_validate_dh_payload(const void *payload, size_t len,
				const void *prime_buf, size_t prime_len)
{
	static const uint8_t one[] = { 1 };
	uint8_t prime_1[prime_len];

	/*
	 * Produce prime - 1 for the payload < prime - 1 check.
	 * prime is odd so just zero the LSB.
	 */
	memcpy(prime_1, prime_buf, prime_len);

	if (prime_len < 1 || !(prime_1[prime_len - 1] & 1))
		return false;

	prime_1[prime_len - 1] &= ~1;

	if (be_bignum_compare(payload, len, one, 1) <= 0)
		return false;

	if (be_bignum_compare(payload, len, prime_1, prime_len) >= 0)
		return false;

	return true;
}

/* Common code for encrypt/decrypt/sign */
static ssize_t eds_common(struct l_key *key,
				enum l_key_cipher_type cipher,
				enum l_checksum_type checksum, const void *in,
				void *out, size_t len_in, size_t len_out,
				int op)
{
	if (unlikely(!key))
		return -EINVAL;

	return kernel_key_eds(op, key->serial, lookup_cipher(cipher),
				lookup_checksum(checksum), in, out, len_in,
				len_out);
}

LIB_EXPORT ssize_t l_key_encrypt(struct l_key *key,
					enum l_key_cipher_type cipher,
					enum l_checksum_type checksum,
					const void *in, void *out,
					size_t len_in, size_t len_out)
{
	ssize_t ret_len;

	ret_len = eds_common(key, cipher, checksum, in, out,
				len_in, len_out,
				KEYCTL_PKEY_ENCRYPT);

	return ret_len;
}

LIB_EXPORT ssize_t l_key_decrypt(struct l_key *key,
					enum l_key_cipher_type cipher,
					enum l_checksum_type checksum,
					const void *in, void *out,
					size_t len_in, size_t len_out)
{
	ssize_t ret_len;

	ret_len = eds_common(key, cipher, checksum, in, out, len_in,
				len_out, KEYCTL_PKEY_DECRYPT);

	if (ret_len < 0)
		goto done;

done:
	return ret_len;
}

LIB_EXPORT ssize_t l_key_sign(struct l_key *key,
				enum l_key_cipher_type cipher,
				enum l_checksum_type checksum, const void *in,
				void *out, size_t len_in, size_t len_out)
{
	ssize_t ret_len;

	ret_len = eds_common(key, cipher, checksum, in, out,
				len_in, len_out,
				KEYCTL_PKEY_SIGN);

	return ret_len;
}

LIB_EXPORT bool l_key_verify(struct l_key *key,
				enum l_key_cipher_type cipher,
				enum l_checksum_type checksum, const void *data,
				const void *sig, size_t len_data,
				size_t len_sig)
{
	long result;

	if (unlikely(!key))
		return false;

	result = kernel_key_verify(key->serial, lookup_cipher(cipher),
					lookup_checksum(checksum),
					data, len_data,
					sig, len_sig);

	return result >= 0;
}

LIB_EXPORT struct l_keyring *l_keyring_new(void)
{
	struct l_keyring *keyring;
	char *description;
	static unsigned long keyring_idx;

	if (!internal_keyring && !setup_internal_keyring())
		return NULL;

	keyring = l_new(struct l_keyring, 1);
	description = l_strdup_printf("ell-keyring-%lu", keyring_idx++);
	keyring->serial = kernel_add_key("keyring", description, NULL, 0,
						internal_keyring);
	l_free(description);

	if (keyring->serial < 0) {
		l_free(keyring);
		return NULL;
	}

	return keyring;
}

LIB_EXPORT bool l_keyring_restrict(struct l_keyring *keyring,
					enum l_keyring_restriction res,
					const struct l_keyring *trusted)
{
	char *restriction = NULL;
	long result;

	switch (res) {
	case L_KEYRING_RESTRICT_ASYM:
	case L_KEYRING_RESTRICT_ASYM_CHAIN:
	{
		char *option = "";

		if (res == L_KEYRING_RESTRICT_ASYM_CHAIN)
			option = ":chain";

		restriction = l_strdup_printf("key_or_keyring:%d%s",
						trusted ? trusted->serial : 0,
						option);

		break;
	}
	default:
		/* Unsupported type */
		return NULL;
	}

	result = kernel_restrict_keyring(keyring->serial, "asymmetric",
						restriction);

	l_free(restriction);

	return result == 0;
}

LIB_EXPORT void l_keyring_free(struct l_keyring *keyring)
{
	if (unlikely(!keyring))
		return;

	kernel_invalidate_key(keyring->serial);

	l_free(keyring);
}

LIB_EXPORT void l_keyring_free_norevoke(struct l_keyring *keyring)
{
	if (unlikely(!keyring))
		return;

	kernel_unlink_key(keyring->serial, internal_keyring);

	l_free(keyring);
}

LIB_EXPORT bool l_keyring_link(struct l_keyring *keyring,
							const struct l_key *key)
{
	long error;

	if (unlikely(!keyring) || unlikely(!key))
		return false;

	error = kernel_link_key(key->serial, keyring->serial);

	return error == 0;
}

LIB_EXPORT bool l_keyring_unlink(struct l_keyring *keyring,
							const struct l_key *key)
{
	long error;

	if (unlikely(!keyring) || unlikely(!key))
		return false;

	error = kernel_unlink_key(key->serial, keyring->serial);

	return error == 0;
}

LIB_EXPORT bool l_keyring_link_nested(struct l_keyring *keyring,
						const struct l_keyring *nested)
{
	long error;

	if (unlikely(!keyring) || unlikely(!nested))
		return false;

	error = kernel_link_key(nested->serial, keyring->serial);

	return error == 0;
}

LIB_EXPORT bool l_keyring_unlink_nested(struct l_keyring *keyring,
						const struct l_keyring *nested)
{
	long error;

	if (unlikely(!keyring) || unlikely(!nested))
		return false;

	error = kernel_unlink_key(nested->serial, keyring->serial);

	return error == 0;
}

LIB_EXPORT bool l_key_is_supported(uint32_t features)
{
	long result;

	if (features & L_KEY_FEATURE_DH) {
		result = syscall(__NR_keyctl, KEYCTL_DH_COMPUTE, NULL, "x", 1,
					NULL);

		if (result == -1 && errno == EOPNOTSUPP)
			return false;
	}

	if (features & L_KEY_FEATURE_RESTRICT) {
		result = syscall(__NR_keyctl, KEYCTL_RESTRICT_KEYRING, 0,
					"asymmetric", "");

		if (result == -1 && errno == EOPNOTSUPP)
			return false;
	}

	if (features & L_KEY_FEATURE_CRYPTO) {
		result = syscall(__NR_keyctl, KEYCTL_PKEY_QUERY, 0, 0, "", 0);

		if (result == -1 && errno == EOPNOTSUPP)
			return false;
	}

	return true;
}