1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
/***
Olive - Non-Linear Video Editor
Copyright (C) 2019 Olive Team
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
***/
#include "transition.h"
#include "common/clamp.h"
OLIVE_NAMESPACE_ENTER
TransitionBlock::TransitionBlock() :
connected_out_block_(nullptr),
connected_in_block_(nullptr)
{
out_block_input_ = new NodeInput(QStringLiteral("out_block_in"), NodeParam::kBuffer);
out_block_input_->set_is_keyframable(false);
connect(out_block_input_, &NodeParam::EdgeAdded, this, &TransitionBlock::BlockConnected);
connect(out_block_input_, &NodeParam::EdgeRemoved, this, &TransitionBlock::BlockDisconnected);
AddInput(out_block_input_);
in_block_input_ = new NodeInput(QStringLiteral("in_block_in"), NodeParam::kBuffer);
in_block_input_->set_is_keyframable(false);
connect(in_block_input_, &NodeParam::EdgeAdded, this, &TransitionBlock::BlockConnected);
connect(in_block_input_, &NodeParam::EdgeRemoved, this, &TransitionBlock::BlockDisconnected);
AddInput(in_block_input_);
curve_input_ = new NodeInput(QStringLiteral("curve_in"), NodeParam::kCombo);
curve_input_->set_is_keyframable(false);
curve_input_->set_connectable(false);
AddInput(curve_input_);
}
Block::Type TransitionBlock::type() const
{
return kTransition;
}
NodeInput *TransitionBlock::out_block_input() const
{
return out_block_input_;
}
NodeInput *TransitionBlock::in_block_input() const
{
return in_block_input_;
}
void TransitionBlock::Retranslate()
{
Block::Retranslate();
out_block_input_->set_name(tr("From"));
in_block_input_->set_name(tr("To"));
curve_input_->set_name(tr("Curve"));
// These must correspond to the CurveType enum
curve_input_->set_combobox_strings({ tr("Linear"), tr("Exponential"), tr("Logarithmic") });
}
rational TransitionBlock::in_offset() const
{
// If no in block is connected, there's no in offset
if (!connected_in_block()) {
return 0;
}
if (!connected_out_block()) {
// Assume only an in block is connected, in which case this entire transition length
return length();
}
// Assume both are connected
return length() + media_in();
}
rational TransitionBlock::out_offset() const
{
// If no in block is connected, there's no in offset
if (!connected_out_block()) {
return 0;
}
if (!connected_in_block()) {
// Assume only an in block is connected, in which case this entire transition length
return length();
}
// Assume both are connected
return -media_in();
}
Block *TransitionBlock::connected_out_block() const
{
return connected_out_block_;
}
Block *TransitionBlock::connected_in_block() const
{
return connected_in_block_;
}
double TransitionBlock::GetTotalProgress(const double &time) const
{
return GetInternalTransitionTime(time) / length().toDouble();
}
double TransitionBlock::GetOutProgress(const double &time) const
{
if (out_offset() == 0) {
return 0;
}
return clamp(1.0 - (GetInternalTransitionTime(time) / out_offset().toDouble()), 0.0, 1.0);
}
double TransitionBlock::GetInProgress(const double &time) const
{
if (in_offset() == 0) {
return 0;
}
return clamp((GetInternalTransitionTime(time) - out_offset().toDouble()) / in_offset().toDouble(), 0.0, 1.0);
}
void TransitionBlock::Hash(QCryptographicHash &hash, const rational &time) const
{
Node::Hash(hash, time);
double time_dbl = time.toDouble();
double all_prog = GetTotalProgress(time_dbl);
double in_prog = GetInProgress(time_dbl);
double out_prog = GetOutProgress(time_dbl);
hash.addData(reinterpret_cast<const char*>(&all_prog), sizeof(double));
hash.addData(reinterpret_cast<const char*>(&in_prog), sizeof(double));
hash.addData(reinterpret_cast<const char*>(&out_prog), sizeof(double));
}
double TransitionBlock::GetInternalTransitionTime(const double &time) const
{
return time - in().toDouble();
}
void TransitionBlock::InsertTransitionTimes(AcceleratedJob *job, const double &time) const
{
// Provides total transition progress from 0.0 (start) - 1.0 (end)
job->InsertValue(QStringLiteral("ove_tprog_all"),
NodeValue(NodeParam::kFloat, GetTotalProgress(time), this));
// Provides progress of out section from 1.0 (start) - 0.0 (end)
job->InsertValue(QStringLiteral("ove_tprog_out"),
NodeValue(NodeParam::kFloat, GetOutProgress(time), this));
// Provides progress of in section from 0.0 (start) - 1.0 (end)
job->InsertValue(QStringLiteral("ove_tprog_in"),
NodeValue(NodeParam::kFloat, GetInProgress(time), this));
}
void TransitionBlock::BlockConnected(NodeEdgePtr edge)
{
if (!edge->output()->parentNode()->IsBlock()) {
return;
}
Block* block = static_cast<Block*>(edge->output()->parentNode());
if (edge->input() == out_block_input_) {
connected_out_block_ = block;
} else {
connected_in_block_ = block;
}
}
void TransitionBlock::BlockDisconnected(NodeEdgePtr edge)
{
if (edge->input() == out_block_input_) {
connected_out_block_ = nullptr;
} else {
connected_in_block_ = nullptr;
}
}
NodeValueTable TransitionBlock::Value(NodeValueDatabase &value) const
{
NodeParam::DataType data_type;
if (out_block_input()->is_connected()) {
data_type = value[out_block_input()].GetWithMeta(NodeParam::kBuffer).type();
} else if (in_block_input()->is_connected()) {
data_type = value[in_block_input()].GetWithMeta(NodeParam::kBuffer).type();
} else {
data_type = NodeParam::kNone;
}
NodeParam::DataType job_type;
QVariant push_job;
if (data_type == NodeParam::kTexture) {
// This must be a visual transition
ShaderJob job;
job.InsertValue(out_block_input(), value);
job.InsertValue(in_block_input(), value);
job.InsertValue(curve_input_, value);
double time = value[QStringLiteral("global")].Get(NodeParam::kFloat, QStringLiteral("time_in")).toDouble();
InsertTransitionTimes(&job, time);
ShaderJobEvent(value, job);
job_type = NodeParam::kShaderJob;
push_job = QVariant::fromValue(job);
} else if (data_type == NodeParam::kSamples) {
// This must be an audio transition
SampleBufferPtr from_samples = value[out_block_input()].Take(NodeParam::kBuffer).value<SampleBufferPtr>();
SampleBufferPtr to_samples = value[in_block_input()].Take(NodeParam::kBuffer).value<SampleBufferPtr>();
if (from_samples || to_samples) {
double time_in = value[QStringLiteral("global")].Get(NodeParam::kFloat, QStringLiteral("time_in")).toDouble();
double time_out = value[QStringLiteral("global")].Get(NodeParam::kFloat, QStringLiteral("time_out")).toDouble();
const AudioParams& params = (from_samples) ? from_samples->audio_params() : to_samples->audio_params();
int nb_samples = params.time_to_samples(time_out - time_in);
SampleBufferPtr out_samples = SampleBuffer::CreateAllocated(params, nb_samples);
SampleJobEvent(from_samples, to_samples, out_samples, time_in);
job_type = NodeParam::kSamples;
push_job = QVariant::fromValue(out_samples);
}
}
NodeValueTable table = value.Merge();
if (!push_job.isNull()) {
table.Push(job_type, push_job, this);
}
return table;
}
void TransitionBlock::ShaderJobEvent(NodeValueDatabase &value, ShaderJob &job) const
{
Q_UNUSED(value)
Q_UNUSED(job)
}
void TransitionBlock::SampleJobEvent(SampleBufferPtr from_samples, SampleBufferPtr to_samples, SampleBufferPtr out_samples, double time_in) const
{
Q_UNUSED(from_samples)
Q_UNUSED(to_samples)
Q_UNUSED(out_samples)
Q_UNUSED(time_in)
}
double TransitionBlock::TransformCurve(double linear) const
{
switch (static_cast<CurveType>(curve_input_->get_standard_value().toInt())) {
case kLinear:
break;
case kExponential:
linear *= linear;
break;
case kLogarithmic:
linear = qSqrt(linear);
break;
}
return linear;
}
OLIVE_NAMESPACE_EXIT
|