1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
/* Copyright 2015 OpenMarket Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "olm/crypto.h"
#include "testing.hh"
/* Curve25529 Test Case 1 */
TEST_CASE("Curve25529 Test Case 1") {
std::uint8_t alice_private[32] = {
0x77, 0x07, 0x6D, 0x0A, 0x73, 0x18, 0xA5, 0x7D,
0x3C, 0x16, 0xC1, 0x72, 0x51, 0xB2, 0x66, 0x45,
0xDF, 0x4C, 0x2F, 0x87, 0xEB, 0xC0, 0x99, 0x2A,
0xB1, 0x77, 0xFB, 0xA5, 0x1D, 0xB9, 0x2C, 0x2A
};
std::uint8_t alice_public[32] = {
0x85, 0x20, 0xF0, 0x09, 0x89, 0x30, 0xA7, 0x54,
0x74, 0x8B, 0x7D, 0xDC, 0xB4, 0x3E, 0xF7, 0x5A,
0x0D, 0xBF, 0x3A, 0x0D, 0x26, 0x38, 0x1A, 0xF4,
0xEB, 0xA4, 0xA9, 0x8E, 0xAA, 0x9B, 0x4E, 0x6A
};
std::uint8_t bob_private[32] = {
0x5D, 0xAB, 0x08, 0x7E, 0x62, 0x4A, 0x8A, 0x4B,
0x79, 0xE1, 0x7F, 0x8B, 0x83, 0x80, 0x0E, 0xE6,
0x6F, 0x3B, 0xB1, 0x29, 0x26, 0x18, 0xB6, 0xFD,
0x1C, 0x2F, 0x8B, 0x27, 0xFF, 0x88, 0xE0, 0xEB
};
std::uint8_t bob_public[32] = {
0xDE, 0x9E, 0xDB, 0x7D, 0x7B, 0x7D, 0xC1, 0xB4,
0xD3, 0x5B, 0x61, 0xC2, 0xEC, 0xE4, 0x35, 0x37,
0x3F, 0x83, 0x43, 0xC8, 0x5B, 0x78, 0x67, 0x4D,
0xAD, 0xFC, 0x7E, 0x14, 0x6F, 0x88, 0x2B, 0x4F
};
std::uint8_t expected_agreement[32] = {
0x4A, 0x5D, 0x9D, 0x5B, 0xA4, 0xCE, 0x2D, 0xE1,
0x72, 0x8E, 0x3B, 0xF4, 0x80, 0x35, 0x0F, 0x25,
0xE0, 0x7E, 0x21, 0xC9, 0x47, 0xD1, 0x9E, 0x33,
0x76, 0xF0, 0x9B, 0x3C, 0x1E, 0x16, 0x17, 0x42
};
_olm_curve25519_key_pair alice_pair;
_olm_crypto_curve25519_generate_key(alice_private, &alice_pair);
CHECK_EQ_SIZE(alice_private, alice_pair.private_key.private_key, 32);
CHECK_EQ_SIZE(alice_public, alice_pair.public_key.public_key, 32);
_olm_curve25519_key_pair bob_pair;
_olm_crypto_curve25519_generate_key(bob_private, &bob_pair);
CHECK_EQ_SIZE(bob_private, bob_pair.private_key.private_key, 32);
CHECK_EQ_SIZE(bob_public, bob_pair.public_key.public_key, 32);
std::uint8_t actual_agreement[CURVE25519_SHARED_SECRET_LENGTH] = {};
_olm_crypto_curve25519_shared_secret(&alice_pair, &bob_pair.public_key, actual_agreement);
CHECK_EQ_SIZE(expected_agreement, actual_agreement, 32);
_olm_crypto_curve25519_shared_secret(&bob_pair, &alice_pair.public_key, actual_agreement);
CHECK_EQ_SIZE(expected_agreement, actual_agreement, 32);
} /* Curve25529 Test Case 1 */
TEST_CASE("Ed25519 Signature Test Case 1") {
std::uint8_t private_key[33] = "This key is a string of 32 bytes";
std::uint8_t message[] = "Hello, World";
std::size_t message_length = sizeof(message) - 1;
_olm_ed25519_key_pair key_pair;
_olm_crypto_ed25519_generate_key(private_key, &key_pair);
std::uint8_t signature[64];
_olm_crypto_ed25519_sign(
&key_pair, message, message_length, signature
);
bool result = _olm_crypto_ed25519_verify(
&key_pair.public_key, message, message_length, signature
);
CHECK(result);
message[0] = 'n';
result = _olm_crypto_ed25519_verify(
&key_pair.public_key, message, message_length, signature
);
CHECK(!result);
}
/* AES Test Case 1 */
TEST_CASE("AES Test Case 1") {
_olm_aes256_key key = {};
_olm_aes256_iv iv = {};
std::uint8_t input[16] = {};
std::uint8_t expected[32] = {
0xDC, 0x95, 0xC0, 0x78, 0xA2, 0x40, 0x89, 0x89,
0xAD, 0x48, 0xA2, 0x14, 0x92, 0x84, 0x20, 0x87,
0xF3, 0xC0, 0x03, 0xDD, 0xC4, 0xA7, 0xB8, 0xA9,
0x4B, 0xAE, 0xDF, 0xFC, 0x3D, 0x21, 0x4C, 0x38
};
std::size_t length = _olm_crypto_aes_encrypt_cbc_length(sizeof(input));
CHECK_EQ(std::size_t(32), length);
std::uint8_t actual[32] = {};
_olm_crypto_aes_encrypt_cbc(&key, &iv, input, sizeof(input), actual);
CHECK_EQ_SIZE(expected, actual, 32);
length = _olm_crypto_aes_decrypt_cbc(&key, &iv, expected, sizeof(expected), actual);
CHECK_EQ(std::size_t(16), length);
CHECK_EQ_SIZE(input, actual, length);
} /* AES Test Case 1 */
/* SHA 256 Test Case 1 */
TEST_CASE("SHA 256 Test Case 1") {
// we want to take the hash of the empty string, but MSVC doesn't like
// allocating 0 bytes, so allocate one item, but pass a length of zero to
// sha256
std::uint8_t input[1] = {0};
std::uint8_t expected[32] = {
0xE3, 0xB0, 0xC4, 0x42, 0x98, 0xFC, 0x1C, 0x14,
0x9A, 0xFB, 0xF4, 0xC8, 0x99, 0x6F, 0xB9, 0x24,
0x27, 0xAE, 0x41, 0xE4, 0x64, 0x9B, 0x93, 0x4C,
0xA4, 0x95, 0x99, 0x1B, 0x78, 0x52, 0xB8, 0x55
};
std::uint8_t actual[32];
_olm_crypto_sha256(input, 0, actual);
CHECK_EQ_SIZE(expected, actual, 32);
} /* SHA 256 Test Case 1 */
/* HMAC Test Case 1 */
TEST_CASE("HMAC Test Case 1") {
// we want to take the hash of the empty string, but MSVC doesn't like
// allocating 0 bytes, so allocate one item, but pass a length of zero to
// hmac_sha256
std::uint8_t input[1] = {0};
std::uint8_t expected[32] = {
0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
};
std::uint8_t actual[32];
_olm_crypto_hmac_sha256(input, 0, input, 0, actual);
CHECK_EQ_SIZE(expected, actual, 32);
} /* HMAC Test Case 1 */
/* HDKF Test Case 1 */
TEST_CASE("HDKF Test Case 1") {
std::uint8_t input[22] = {
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b,
0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b
};
std::uint8_t salt[13] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c
};
std::uint8_t info[10] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9
};
std::uint8_t hmac_expected_output[32] = {
0x07, 0x77, 0x09, 0x36, 0x2c, 0x2e, 0x32, 0xdf,
0x0d, 0xdc, 0x3f, 0x0d, 0xc4, 0x7b, 0xba, 0x63,
0x90, 0xb6, 0xc7, 0x3b, 0xb5, 0x0f, 0x9c, 0x31,
0x22, 0xec, 0x84, 0x4a, 0xd7, 0xc2, 0xb3, 0xe5,
};
std::uint8_t hmac_actual_output[32] = {};
_olm_crypto_hmac_sha256(
salt, sizeof(salt),
input, sizeof(input),
hmac_actual_output
);
CHECK_EQ_SIZE(hmac_expected_output, hmac_actual_output, 32);
std::uint8_t hkdf_expected_output[42] = {
0x3c, 0xb2, 0x5f, 0x25, 0xfa, 0xac, 0xd5, 0x7a,
0x90, 0x43, 0x4f, 0x64, 0xd0, 0x36, 0x2f, 0x2a,
0x2d, 0x2d, 0x0a, 0x90, 0xcf, 0x1a, 0x5a, 0x4c,
0x5d, 0xb0, 0x2d, 0x56, 0xec, 0xc4, 0xc5, 0xbf,
0x34, 0x00, 0x72, 0x08, 0xd5, 0xb8, 0x87, 0x18,
0x58, 0x65
};
std::uint8_t hkdf_actual_output[42] = {};
_olm_crypto_hkdf_sha256(
input, sizeof(input),
salt, sizeof(salt),
info, sizeof(info),
hkdf_actual_output, sizeof(hkdf_actual_output)
);
CHECK_EQ_SIZE(hkdf_expected_output, hkdf_actual_output, 42);
} /* HDKF Test Case 1 */
|