1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/REC-html40/loose.dtd">
<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<META name="GENERATOR" content="hevea 1.10">
<LINK rel="stylesheet" type="text/css" href="omniORB.css">
<TITLE>The Basics</TITLE>
</HEAD>
<BODY >
<A HREF="omniORB001.html"><IMG SRC="previous_motif.gif" ALT="Previous"></A>
<A HREF="index.html"><IMG SRC="contents_motif.gif" ALT="Up"></A>
<A HREF="omniORB003.html"><IMG SRC="next_motif.gif" ALT="Next"></A>
<HR>
<H1 CLASS="chapter"><A NAME="htoc8">Chapter 2</A>  The Basics</H1><P>
<A NAME="chap:basic"></A></P><P>In this chapter, we go through three examples to illustrate the
practical steps to use omniORB. By going through the source code of
each example, the essential concepts and APIs are introduced. If you
have no previous experience with using CORBA, you should study this
chapter in detail. There are pointers to other essential documents you
should be familiar with.</P><P>If you have experience with using other ORBs, you should still go
through this chapter because it provides important information about
the features and APIs that are necessarily omniORB specific. With the
Portable Object Adapter, there are very few omniORB specific details.</P><H2 CLASS="section"><A NAME="toc4"></A><A NAME="htoc9">2.1</A>  The Echo Object Example</H2><P>Our example is an object which has only one method. The method simply
echos the argument string. We have to:</P><OL CLASS="enumerate" type=1><LI CLASS="li-enumerate">define the object interface in IDL;
</LI><LI CLASS="li-enumerate">use the IDL compiler to generate the stub code<SUP><A NAME="text3" HREF="#note3">1</A></SUP>;
</LI><LI CLASS="li-enumerate">provide the <I>servant</I> object implementation;
</LI><LI CLASS="li-enumerate">write the client code.</LI></OL><P>These examples are in the <TT>src/examples/echo</TT> directory of the
omniORB distribution; there are several other examples one directory
above that in <TT>src/examples</TT>.</P><H2 CLASS="section"><A NAME="toc5"></A><A NAME="htoc10">2.2</A>  Specifying the Echo interface in IDL</H2><P>We define an object interface, called <TT>Echo</TT>, as follows:</P><DIV CLASS="lstlisting"><B>interface</B> Echo {
<B>string</B> echoString(<B>in</B> <B>string</B> mesg);
};</DIV><P>If you are new to IDL, you can learn about its syntax in Chapter 3 of
the CORBA 2.6 specification [<A HREF="omniORB014.html#corba26-spec">OMG01</A>]. For the moment, you
only need to know that the interface consists of a single operation,
<TT>echoString()</TT>, which takes a string as an input argument and returns
a copy of the same string.</P><P>The interface is written in a file, called <TT>echo.idl</TT>. It is part
of the CORBA standard that all IDL files should have the extension
‘<TT>.idl</TT>’, although omniORB does not enforce this.</P><P>For simplicity, the interface is defined in the global IDL namespace.
You should avoid this practice for the sake of object reusability. If
every CORBA developer defines their interfaces in the global IDL
namespace, there is a danger of name clashes between two independently
defined interfaces. Therefore, it is better to qualify your interfaces
by defining them inside <TT>module</TT> names. Of course, this does not
eliminate the chance of a name clash unless some form of naming
convention is agreed globally. Nevertheless, a well-chosen module name
can help a lot.</P><H2 CLASS="section"><A NAME="toc6"></A><A NAME="htoc11">2.3</A>  Generating the C++ stubs</H2><P>From the IDL file, we use the IDL compiler to produce the C++ mapping
of the interface. The IDL compiler for omniORB is called omniidl.
Given the IDL file, omniidl produces two stub files: a C++ header file
and a C++ source file. For example, from the file <TT>echo.idl</TT>, the
following files are produced:</P><UL CLASS="itemize"><LI CLASS="li-itemize">
<TT>echo.hh</TT>
</LI><LI CLASS="li-itemize"><TT>echoSK.cc</TT>
</LI></UL><P>omniidl must be invoked with the <TT>-bcxx</TT> argument to
tell it to generate C++ stubs. The following command line generates
the stubs for <TT>echo.idl</TT>:</P><DIV CLASS="lstlisting">omniidl -bcxx echo.idl</DIV><P>If you are using our make environment (ODE), you don’t need
to invoke omniidl explicitly. In the example file <TT>dir.mk</TT>, we
have the following line:</P><DIV CLASS="lstlisting">CORBA_INTERFACES = echo</DIV><P>That is all we need to instruct ODE to generate the stubs.
Remember, you won’t find the stubs in your working directory because
all stubs are written into the <TT>stub</TT> directory at the top level
of your build tree.</P><P>The full arguments to omniidl are detailed in
chapter <A HREF="omniORB005.html#chap:omniidl">5</A>.</P><H2 CLASS="section"><A NAME="toc7"></A><A NAME="htoc12">2.4</A>  Object References and Servants</H2><P>We contact a CORBA object through an <I>object reference</I>. The
actual implementation of a CORBA object is termed a <I>servant</I>.</P><P>Object references and servants are quite separate entities, and it is
important not to confuse the two. Client code deals purely with object
references, so there can be no confusion; object implementation code
must deal with both object references and servants. omniORB 4 uses
distinct C++ types for object references and servants, so the C++
compiler will complain if you use a servant when an object reference
is expected, or vice-versa.</P><DIV CLASS="minipage"><HR SIZE=2><DL CLASS="list"><DT CLASS="dt-list">
</DT><DD CLASS="dd-list">
<DIV CLASS="center"><B>Warning</B></DIV><P>omniORB 2.x <EM>did not</EM> use distinct types for object references
and servants, and often accepted a pointer to a servant when the CORBA
specification says it should only accept an object reference. If you
have code which relies on this, it will not compile with omniORB 3.x
or 4.x, even under the BOA compatibility mode.
</P></DD></DL><HR SIZE=2></DIV><H2 CLASS="section"><A NAME="toc8"></A><A NAME="htoc13">2.5</A>  A Quick Tour of the C++ stubs</H2><P>The C++ stubs conform to the standard mapping defined in the CORBA
specification [<A HREF="omniORB014.html#cxxmapping">OMG03</A>]. It is important to understand the
mapping before you start writing any serious CORBA applications.
Before going any further, it is worth knowing what the mapping looks
like.</P><P>For the example interface <TT>Echo</TT>, the C++ mapping for its object
reference is <TT>Echo_ptr</TT>. The type is defined in <TT>echo.hh</TT>.
The relevant section of the code is reproduced below. The stub code
produced by other ORBs will be functionally equivalent to omniORB’s,
but will almost certainly look very different.</P><DIV CLASS="lstlisting"><B>class</B> Echo;
<B>class</B> _objref_Echo;
<B>class</B> _impl_Echo;
<B>typedef</B> _objref_Echo* Echo_ptr;
<B>class</B> Echo {
<B>public</B>:
<I>// Declarations for this interface type.</I>
<B>typedef</B> Echo_ptr _ptr_type;
<B>typedef</B> Echo_var _var_type;
<B>static</B> _ptr_type _duplicate(_ptr_type);
<B>static</B> _ptr_type _narrow(CORBA::Object_ptr);
<B>static</B> _ptr_type _nil();
<I>// ... methods generated for internal use</I>
};
<B>class</B> _objref_Echo :
<B>public</B> <B>virtual</B> CORBA::Object, <B>public</B> <B>virtual</B> omniObjRef {
<B>public</B>:
<B>char</B> * echoString(<B>const</B> <B>char</B>* mesg);
<I>// ... methods generated for internal use</I>
};</DIV><P>In a compliant application, the operations defined in an object
interface should <B>only</B> be invoked via an object reference.
This is done by using arrow (‘<TT>-></TT>’) on an object reference.
For example, the call to the operation <TT>echoString()</TT> would be
written as <TT>obj->echoString(mesg)</TT>.</P><P>It should be noted that the concrete type of an object reference is
opaque, i.e. you must not make any assumption about how an object
reference is implemented. In our example, even though <TT>Echo_ptr</TT>
is implemented as a pointer to the class <TT>_objref_Echo</TT>, it
should not be used as a C++ pointer, i.e. conversion to <TT>void*</TT>,
arithmetic operations, and relational operations including testing for
equality using <TT>operator==</TT>, must not be performed on the type.</P><P>In addition to class <TT>_objref_Echo</TT>, the mapping defines three
static member functions in the class <TT>Echo</TT>: <TT>_nil()</TT>,
<TT>_duplicate()</TT>, and <TT>_narrow()</TT>.</P><P>The <TT>_nil()</TT> function returns a nil object reference of the Echo
interface. The following call is guaranteed to return TRUE:</P><DIV CLASS="lstlisting">CORBA::Boolean true_result = CORBA::is_nil(Echo::_nil());</DIV><P>Remember, <TT>CORBA::is_nil()</TT> is the only compliant way to check if an
object reference is nil. You should not use the equality
<TT>operator==</TT>. Many C++ ORBs use the null pointer to represent a
nil object reference; <EM>omniORB does not</EM>.</P><P>The <TT>_duplicate()</TT> function returns a new object reference of the
<TT>Echo</TT> interface. The new object reference can be used
interchangeably with the old object reference to perform an operation
on the same object. Duplications are required to satisfy the C++
mapping’s reference counting memory management.</P><P>All CORBA objects inherit from the generic object
<TT>CORBA::Object</TT>. <TT>CORBA::Object_ptr</TT> is the object
reference type for <TT>CORBA::Object</TT>. Any <TT>_ptr</TT> object
reference is therefore conceptually inherited from
<TT>CORBA::Object_ptr</TT>. In other words, an object reference such as
<TT>Echo_ptr</TT> can be used in places where a
<TT>CORBA::Object_ptr</TT> is expected.</P><P>The <TT>_narrow()</TT> function takes an argument of type
<TT>CORBA::Object_ptr</TT> and returns a new object reference of the
<TT>Echo</TT> interface. If the actual (runtime) type of the argument
object reference can be narrowed to <TT>Echo_ptr</TT>, <TT>_narrow()</TT>
will return a valid object reference. Otherwise it will return a nil
object reference. Note that <TT>_narrow()</TT> performs an implicit
duplication of the object reference, so the result must be released.
Note also that <TT>_narrow()</TT> may involve a remote call to check the
type of the object, so it may throw CORBA system exceptions such as
<TT>COMM_FAILURE</TT> or <TT>OBJECT_NOT_EXIST</TT>.</P><P>To indicate that an object reference will no longer be accessed, you
must call the <TT>CORBA::release()</TT> operation. Its signature is as
follows:</P><DIV CLASS="lstlisting"><B>namespace</B> CORBA {
<B>void</B> release(CORBA::Object_ptr obj);
... <I>// other methods</I>
};</DIV><P>Once you have called <TT>CORBA::release()</TT> on an object reference, you
must no longer use that reference. This is because the associated
resources may have been deallocated. Notice that we are referring to
the resources associated with the object reference and <B>not the
servant object</B>. Servant objects are not affected by the lifetimes of
object references. In particular, servants are not deleted when all
references to them have been released—CORBA does not perform
distributed garbage collection.</P><P>As described above, the equality <TT>operator==</TT> should not be used
on object references. To test if two object references are equivalent,
the member function <TT>_is_equivalent()</TT> of the generic object
<TT>CORBA::Object</TT> can be used. Here is an example of its usage:</P><DIV CLASS="lstlisting">Echo_ptr A;
... <I>// initialise A to a valid object reference </I>
Echo_ptr B = A;
CORBA::Boolean true_result = A->_is_equivalent(B);
<I>// Note: the above call is guaranteed to be TRUE</I></DIV><P>You have now been introduced to most of the operations that can be
invoked via <TT>Echo_ptr</TT>. The generic object <TT>CORBA::Object</TT>
provides a few more operations and all of them can be invoked via
<TT>Echo_ptr</TT>. These operations deal mainly with CORBA’s dynamic
interfaces. You do not have to understand them in order to use the C++
mapping provided via the stubs.</P><P>Since object references must be released explicitly, their usage is
prone to error and can lead to memory leakage. The mapping defines the
<I>object reference variable</I> type to make life easier. In our
example, the variable type <TT>Echo_var</TT> is defined<SUP><A NAME="text4" HREF="#note4">2</A></SUP>.</P><P>The <TT>Echo_var</TT> is more convenient to use because it will
automatically release its object reference when it is deallocated or
when assigned a new object reference. For many operations, mixing data
of type <TT>Echo_var</TT> and <TT>Echo_ptr</TT> is possible without any
explicit operations or castings<SUP><A NAME="text5" HREF="#note5">3</A></SUP>. For instance, the operation
<TT>echoString()</TT> can be called using the arrow (‘<TT>-></TT>’) on a
<TT>Echo_var</TT>, as one can do with a <TT>Echo_ptr</TT>.</P><P>The usage of <TT>Echo_var</TT> is illustrated below:</P><DIV CLASS="lstlisting">Echo_var a;
Echo_ptr p = ... <I>// somehow obtain an object reference</I>
a = p; <I>// a assumes ownership of p, must not use p any more</I>
Echo_var b = a; <I>// implicit _duplicate</I>
p = ... <I>// somehow obtain another object reference</I>
a = Echo::_duplicate(p); <I>// release old object reference</I>
<I>// a now holds a copy of p.</I></DIV><H3 CLASS="subsection"><A NAME="htoc14">2.5.1</A>  Servant Object Implementation</H3><P>
<A NAME="stubobjimpl"></A></P><P>Before the Portable Object Adapter (POA) specification, many of the
details of how servant objects should be implemented and registered
with the system were unspecified, so server-side code was not portable
between ORBs. The POA specification rectifies that. omniORB 4 still
supports the old omniORB 2.x BOA mapping, but you should always use
the POA mapping for new code. BOA code and POA code can coexist within
a single program. See section <A HREF="omniORB003.html#sec:BOAcompat">3.1</A> for details of the
BOA compatibility, and problems you may encounter.</P><P>For each object interface, a <I>skeleton</I> class is generated. In
our example, the POA specification says that the skeleton class for
interface <TT>Echo</TT> is named <TT>POA_Echo</TT>. A servant
implementation can be written by creating an implementation class that
derives from the skeleton class.</P><P>The skeleton class <TT>POA_Echo</TT> is defined in <TT>echo.hh</TT>. The
relevant section of the code is reproduced below.</P><DIV CLASS="lstlisting"><B>class</B> POA_Echo :
<B>public</B> <B>virtual</B> PortableServer::ServantBase
{
<B>public</B>:
Echo_ptr _this();
<B>virtual</B> <B>char</B> * echoString(<B>const</B> <B>char</B>* mesg) = 0;
<I>// ...</I>
};</DIV><P>The code fragment shows the only member functions that can be used in
the object implementation code. Other member functions are generated
for internal use only. As with the code generated for object
references, other POA-based ORBs will generate code which looks
different, but is functionally equivalent to this.</P><DL CLASS="description"><DT CLASS="dt-description"><B><TT>echoString()</TT></B></DT><DD CLASS="dd-description"><BR>
It is through this abstract function that an implementation class
provides the implementation of the <TT>echoString()</TT> operation. Notice
that its signature is the same as the <TT>echoString()</TT> function that
can be invoked via the <TT>Echo_ptr</TT> object reference.</DD><DT CLASS="dt-description"><B><TT>_this()</TT></B></DT><DD CLASS="dd-description"><BR>
This function returns an object reference for the target object,
provided the POA policies permit it. The returned value must be
deallocated via <TT>CORBA::release()</TT>. See section <A HREF="#objeg1">2.8</A>
for an example of how this function is used.</DD></DL><H2 CLASS="section"><A NAME="toc9"></A><A NAME="htoc15">2.6</A>  Writing the servant implementation</H2><P>
<A NAME="objimpl"></A></P><P>You define an implementation class to provide the servant
implementation. There is little constraint on how you design your
implementation class except that it has to inherit from the stubs’
skeleton class and to implement all the abstract functions defined in
the skeleton class. Each of these abstract functions corresponds to an
operation of the interface. They are the hooks for the ORB to perform
upcalls to your implementation.</P><P>Here is a simple implementation of the Echo object.</P><DIV CLASS="lstlisting"><B>class</B> Echo_i : <B>public</B> POA_Echo
{
<B>public</B>:
<B>inline</B> Echo_i() {}
<B>virtual</B> ~Echo_i() {}
<B>virtual</B> <B>char</B>* echoString(<B>const</B> <B>char</B>* mesg);
};
<B>char</B>* Echo_i::echoString(<B>const</B> <B>char</B>* mesg)
{
<B>return</B> CORBA::string_dup(mesg);
}</DIV><P>There are four points to note here:</P><DL CLASS="description"><DT CLASS="dt-description"><B>Storage Responsibilities</B></DT><DD CLASS="dd-description"><BR>
A string, which is used both as an in argument and the return value of
<TT>echoString()</TT>, is a variable size data type. Other examples of
variable size data types include sequences, type ‘any’, etc. For these
data types, you must be clear about whose responsibility it is to
allocate and release the associated storage. As a rule of thumb, the
client (or the caller to the implementation functions) owns the
storage of all IN arguments, the object implementation (or the callee)
must copy the data if it wants to retain a copy. For OUT arguments and
return values, the object implementation allocates the storage and
passes the ownership to the client. The client must release the
storage when the variables will no longer be used. For details,
please refer to the C++ mapping specification.</DD><DT CLASS="dt-description"><B>Multi-threading</B></DT><DD CLASS="dd-description"><BR>
As omniORB is fully multithreaded, multiple threads may perform the
same upcall to your implementation concurrently. It is up to your
implementation to synchronise the threads’ accesses to shared data.
In our simple example, we have no shared data to protect so no thread
synchronisation is necessary.<P>Alternatively, you can create a POA which has the
<TT>SINGLE_THREAD_MODEL</TT> Thread Policy. This guarantees that all
calls to that POA are processed sequentially.</P></DD><DT CLASS="dt-description"><B>Reference Counting</B></DT><DD CLASS="dd-description"><BR>
All servant objects are reference counted. The base
<TT>PortableServer::ServantBase</TT> class from which all servant
skeleton classes derive defines member functions named <TT>_add_ref()</TT>
and <TT>_remove_ref()</TT><SUP><A NAME="text6" HREF="#note6">4</A></SUP>. The reference
counting means that an <TT>Echo_i</TT> instance will be deleted when no
more references to it are held by application code or the POA
itself. Note that this is totally separate from the reference counting
which is associated with object references—a servant object is
<EM>never</EM> deleted due to a CORBA object reference being released.</DD><DT CLASS="dt-description"><B>Instantiation</B></DT><DD CLASS="dd-description"><BR>
Servants are usually instantiated on the heap, i.e. using the
<TT>new</TT> operator. However, they can also be created on the stack as
automatic variables. If you do that, it is vital to make sure that the
servant has been deactivated, and thus released by the POA, before the
variable goes out of scope and is destroyed.</DD></DL><H2 CLASS="section"><A NAME="toc10"></A><A NAME="htoc16">2.7</A>  Writing the client</H2><P>Here is an example of how an <TT>Echo_ptr</TT> object reference is
used.</P><DIV CLASS="lstlisting"><FONT SIZE=1> 1</FONT> <B>void</B>
<FONT SIZE=1> 2</FONT> hello(CORBA::Object_ptr obj)
<FONT SIZE=1> 3</FONT> {
<FONT SIZE=1> 4</FONT> Echo_var e = Echo::_narrow(obj);
<FONT SIZE=1> 5</FONT>
<FONT SIZE=1> 6</FONT> <B>if</B> (CORBA::is_nil(e)) {
<FONT SIZE=1> 7</FONT> cerr << "cannot invoke on a nil object reference."
<FONT SIZE=1> 8</FONT> << endl;
<FONT SIZE=1> 9</FONT> <B>return</B>;
<FONT SIZE=1> 10</FONT> }
<FONT SIZE=1> 11</FONT>
<FONT SIZE=1> 12</FONT> CORBA::String_var src = (<B>const</B> <B>char</B>*) "Hello!";
<FONT SIZE=1> 13</FONT> CORBA::String_var dest;
<FONT SIZE=1> 14</FONT>
<FONT SIZE=1> 15</FONT> dest = e->echoString(src);
<FONT SIZE=1> 16</FONT>
<FONT SIZE=1> 17</FONT> cerr << "I said,\"" << src << "\"."
<FONT SIZE=1> 18</FONT> << " The Object said,\"" << dest <<"\"" << endl;
<FONT SIZE=1> 19</FONT> }</DIV><P>Briefly, the <TT>hello()</TT> function accepts a generic object reference.
The object reference (<TT>obj</TT>) is narrowed to <TT>Echo_ptr</TT>. If
the object reference returned by <TT>Echo::_narrow()</TT> is not nil, the
operation <TT>echoString()</TT> is invoked. Finally, both the argument to
and the return value of <TT>echoString()</TT> are printed to <TT>cerr</TT>.</P><P>The example also illustrates how <TT>T_var</TT> types are used. As was
explained in the previous section, <TT>T_var</TT> types take care of
storage allocation and release automatically when variables are
reassigned or when the variables go out of scope.</P><P>In line 4, the variable <TT>e</TT> takes over the storage responsibility
of the object reference returned by <TT>Echo::_narrow()</TT>. The object
reference is released by the destructor of <TT>e</TT>. It is called
automatically when the function returns. Lines 6 and 15 show how a
<TT>Echo_var</TT> variable is used. As explained earlier, the
<TT>Echo_var</TT> type can be used interchangeably with the
<TT>Echo_ptr</TT> type.</P><P>The argument and the return value of <TT>echoString()</TT> are stored in
<TT>CORBA::String_var</TT> variables <TT>src</TT> and <TT>dest</TT>
respectively. The strings managed by the variables are deallocated by
the destructor of <TT>CORBA::String_var</TT>. It is called
automatically when the variable goes out of scope (as the function
returns). Line 15 shows how <TT>CORBA::String_var</TT> variables are
used. They can be used in place of a string (for which the mapping is
<TT>char*</TT>)<SUP><A NAME="text7" HREF="#note7">5</A></SUP>. As used in line 12, assigning a constant string
(<TT>const char*</TT>) to a <TT>CORBA::String_var</TT> causes the string
to be copied. On the other hand, assigning a <TT>char*</TT> to a
<TT>CORBA::String_var</TT>, as used in line 15, causes the latter to
assume the ownership of the string<SUP><A NAME="text8" HREF="#note8">6</A></SUP>.</P><P>Under the C++ mapping, <TT>T_var</TT> types are provided for all the
non-basic data types. It is obvious that one should use automatic
variables whenever possible both to avoid memory leaks and to maximise
performance. However, when one has to allocate data items on the heap,
it is a good practice to use the <TT>T_var</TT> types to manage the
heap storage.</P><H2 CLASS="section"><A NAME="toc11"></A><A NAME="htoc17">2.8</A>  Example 1 — Colocated Client and Implementation</H2><P>
<A NAME="objeg1"></A></P><P>Having introduced the client and the object implementation, we can now
describe how to link up the two via the ORB and POA. In this section,
we describe an example in which both the client and the object
implementation are in the same address space. In the next two
sections, we shall describe the case where the two are in different
address spaces.</P><P>The code for this example is reproduced below:</P><DIV CLASS="lstlisting"><FONT SIZE=1> 1</FONT> <B>int</B>
<FONT SIZE=1> 2</FONT> main(<B>int</B> argc, <B>char</B> **argv)
<FONT SIZE=1> 3</FONT> {
<FONT SIZE=1> 4</FONT> CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv,"omniORB4");
<FONT SIZE=1> 5</FONT>
<FONT SIZE=1> 6</FONT> CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
<FONT SIZE=1> 7</FONT> PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);
<FONT SIZE=1> 8</FONT>
<FONT SIZE=1> 9</FONT> Echo_i *myecho = <B>new</B> Echo_i();
<FONT SIZE=1> 10</FONT> PortableServer::ObjectId_var myechoid = poa->activate_object(myecho);
<FONT SIZE=1> 11</FONT>
<FONT SIZE=1> 12</FONT> Echo_var myechoref = myecho->_this();
<FONT SIZE=1> 13</FONT> myecho->_remove_ref();
<FONT SIZE=1> 14</FONT>
<FONT SIZE=1> 15</FONT> PortableServer::POAManager_var pman = poa->the_POAManager();
<FONT SIZE=1> 16</FONT> pman->activate();
<FONT SIZE=1> 17</FONT>
<FONT SIZE=1> 18</FONT> hello(myechoref);
<FONT SIZE=1> 19</FONT>
<FONT SIZE=1> 20</FONT> orb->destroy();
<FONT SIZE=1> 21</FONT> <B>return</B> 0;
<FONT SIZE=1> 22</FONT> }</DIV><P>The example illustrates several important interactions among the ORB,
the POA, the servant, and the client. Here are the details:</P><H3 CLASS="subsection"><A NAME="htoc18">2.8.1</A>  ORB initialisation</H3><DL CLASS="description"><DT CLASS="dt-description"><B>Line 4</B></DT><DD CLASS="dd-description"><BR>
The ORB is initialised by calling the <TT>CORBA::ORB_init()</TT>
function. The function uses the optional 3rd argument to determine
which ORB should be returned. Unless you are using omniORB specific
features, it is usually best to leave it out, and get the default
ORB. To explicitly ask for omniORB 4.x, this argument must be
‘omniORB4’<SUP><A NAME="text9" HREF="#note9">7</A></SUP>.<P><TT>CORBA::ORB_init()</TT> takes the list of command line arguments and
processes any that start ‘<TT>-ORB</TT>’. It removes these arguments
from the list, so application code does not have to deal with them.</P><P>If any error occurs during ORB initialisation, such as invalid ORB
arguments, or an invalid configuration file, the
<TT>CORBA::INITIALIZE</TT> system exception is raised.</P></DD></DL><H3 CLASS="subsection"><A NAME="htoc19">2.8.2</A>  Obtaining the Root POA</H3><DL CLASS="description"><DT CLASS="dt-description"><B>Lines 6–7</B></DT><DD CLASS="dd-description"><BR>
To activate our servant object and make it available to clients, we
must register it with a POA. In this example, we use the <I>Root
POA</I>, rather than creating any child POAs. The Root POA is found with
<TT>orb->resolve_initial_references()</TT>, which returns a plain
<TT>CORBA::Object</TT>. In line 7, we narrow the reference to the right
type for a POA.<P>A POA’s behaviour is governed by its <I>policies</I>. The Root POA has
suitable policies for many simple servers, and closely matches the
‘policies’ used by omniORB 2’s BOA. See Chapter 11 of the CORBA 2.6
specification[<A HREF="omniORB014.html#corba26-spec">OMG01</A>] for details of all the POA policies
which are available.</P></DD></DL><H3 CLASS="subsection"><A NAME="htoc20">2.8.3</A>  Object initialisation</H3><DL CLASS="description"><DT CLASS="dt-description"><B>Line 9</B></DT><DD CLASS="dd-description"><BR>
An instance of the Echo servant is initialised using the <TT>new</TT>
operator.</DD><DT CLASS="dt-description"><B>Line 10</B></DT><DD CLASS="dd-description"><BR>
The servant object is activated in the Root POA using
<TT>poa->activate_object()</TT>, which returns an object identifier
(of type <TT>PortableServer::ObjectId*</TT>). The object id must
be passed back to various POA operations. The caller is responsible
for freeing the object id, so it is assigned to a <TT>_var</TT> type.</DD><DT CLASS="dt-description"><B>Line 12</B></DT><DD CLASS="dd-description"><BR>
The object reference is obtained from the servant object by calling
<TT>_this()</TT>. Like all object references, the return value of
<TT>_this()</TT> must be released by <TT>CORBA::release()</TT> when it is no
longer needed. In this case, we assign it to a <TT>_var</TT> type, so
the release is implicit at the end of the function.<P>One of the important characteristics of an object reference is that it
is completely location transparent. A client can invoke on the object
using its object reference without any need to know whether the
servant object is colocated in the same address space or is in a
different address space.</P><P>In the case of colocated client and servant, omniORB is able to
short-circuit the client calls so they do not involve IIOP. The calls
still go through the POA, however, so the various POA policies affect
local calls in the same way as remote ones. This optimisation is
applicable not only to object references returned by <TT>_this()</TT>, but
to any object references that are passed around within the same
address space or received from other address spaces via remote calls.</P></DD><DT CLASS="dt-description"><B>Line 13</B></DT><DD CLASS="dd-description"><BR>
The server code releases the reference it holds to the servant
object. The only reference to that object is now held by the POA (it
gained the reference on the call to <TT>activate_object()</TT>), so when
the object is deactivated (or the POA is destroyed), the servant
object will be deleted automatically. After this point, the code must
no longer use the <TT>myecho</TT> pointer.</DD></DL><H3 CLASS="subsection"><A NAME="htoc21">2.8.4</A>  Activating the POA</H3><DL CLASS="description"><DT CLASS="dt-description"><B>Lines 15–16</B></DT><DD CLASS="dd-description"><BR>
POAs are initially in the <I>holding</I> state, meaning that incoming
requests are blocked. Lines 15 and 16 acquire a reference to the POA’s
POA manager, and use it to put the POA into the <I>active</I> state.
Incoming requests are now served. <B>Failing to activate the POA
is one of the most common programming mistakes. If your program
appears deadlocked, make sure you activated the POA!</B></DD></DL><H3 CLASS="subsection"><A NAME="htoc22">2.8.5</A>  Performing a call</H3><DL CLASS="description"><DT CLASS="dt-description"><B>Line 18</B></DT><DD CLASS="dd-description"><BR>
At long last, we can call <TT>hello()</TT> with this object reference. The
argument is widened implicitly to the generic object reference
<TT>CORBA::Object_ptr</TT>.</DD></DL><H3 CLASS="subsection"><A NAME="htoc23">2.8.6</A>  ORB destruction</H3><DL CLASS="description"><DT CLASS="dt-description"><B>Line 20</B></DT><DD CLASS="dd-description"><BR>
Shutdown the ORB permanently. This call causes the ORB to release all
its resources, e.g. internal threads, and also to deactivate any
servant objects which are currently active. When it deactivates the
<TT>Echo_i</TT> instance, the servant’s reference count drops to zero,
so the servant is deleted.<P>This call is particularly important when writing a CORBA DLL on
Windows NT that is to be used from ActiveX. If this call is absent,
the application will hang when the CORBA DLL is unloaded.</P></DD></DL><H2 CLASS="section"><A NAME="toc12"></A><A NAME="htoc24">2.9</A>  Example 2 — Different Address Spaces</H2><P>In this example, the client and the object implementation reside in
two different address spaces. The code of this example is almost the
same as the previous example. The only difference is the extra work
which needs to be done to pass the object reference from the object
implementation to the client.</P><P>The simplest (and quite primitive) way to pass an object reference
between two address spaces is to produce a <I>stringified</I> version
of the object reference and to pass this string to the client as a
command-line argument. The string is then converted by the client
into a proper object reference. This method is used in this
example. In the next example, we shall introduce a better way of
passing the object reference using the CORBA Naming Service.</P><H3 CLASS="subsection"><A NAME="htoc25">2.9.1</A>  Object Implementation: Making a Stringified Object Reference</H3><P>The <TT>main()</TT> function of the server side is reproduced below. The
full listing (<TT>eg2_impl.cc</TT>) can be found at the end of this
chapter.</P><DIV CLASS="lstlisting"><FONT SIZE=1> 1</FONT> <B>int</B> main(<B>int</B> argc, <B>char</B>** argv)
<FONT SIZE=1> 2</FONT> {
<FONT SIZE=1> 3</FONT> CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
<FONT SIZE=1> 4</FONT>
<FONT SIZE=1> 5</FONT> CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
<FONT SIZE=1> 6</FONT> PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);
<FONT SIZE=1> 7</FONT>
<FONT SIZE=1> 8</FONT> Echo_i* myecho = <B>new</B> Echo_i();
<FONT SIZE=1> 9</FONT>
<FONT SIZE=1> 10</FONT> PortableServer::ObjectId_var myechoid = poa->activate_object(myecho);
<FONT SIZE=1> 11</FONT>
<FONT SIZE=1> 12</FONT> obj = myecho->_this();
<FONT SIZE=1> 13</FONT> CORBA::String_var sior(orb->object_to_string(obj));
<FONT SIZE=1> 14</FONT> cerr << (<B>char</B>*)sior << endl;
<FONT SIZE=1> 15</FONT>
<FONT SIZE=1> 16</FONT> myecho->_remove_ref();
<FONT SIZE=1> 17</FONT>
<FONT SIZE=1> 18</FONT> PortableServer::POAManager_var pman = poa->the_POAManager();
<FONT SIZE=1> 19</FONT> pman->activate();
<FONT SIZE=1> 20</FONT>
<FONT SIZE=1> 21</FONT> orb->run();
<FONT SIZE=1> 22</FONT> orb->destroy();
<FONT SIZE=1> 23</FONT> <B>return</B> 0;
<FONT SIZE=1> 24</FONT> }</DIV><P>The stringified object reference is obtained by calling the ORB’s
<TT>object_to_string()</TT> function (line 13). This results in a
string starting with the signature ‘IOR:’ and followed by some
hexadecimal digits. All CORBA 2 compliant ORBs are able to convert the
string into its internal representation of a so-called Interoperable
Object Reference (IOR). The IOR contains the location information and
a key to uniquely identify the object implementation in its own
address space. From the IOR, an object reference can be constructed.</P><H3 CLASS="subsection"><A NAME="htoc26">2.9.2</A>  Client: Using a Stringified Object Reference</H3><P>
<A NAME="clnt2"></A></P><P>The stringified object reference is passed to the client as a
command-line argument. The client uses the ORB’s
<TT>string_to_object()</TT> function to convert the string into a generic
object reference (<TT>CORBA::Object_ptr</TT>). The relevant section of
the code is reproduced below. The full listing (<TT>eg2_clt.cc</TT>) can
be found at the end of this chapter.</P><DIV CLASS="lstlisting"><B>try</B> {
CORBA::Object_var obj = orb->string_to_object(argv[1]);
hello(obj);
}
<B>catch</B>(CORBA::TRANSIENT&) {
... <I>// code to handle transient exception...</I>
}</DIV><H3 CLASS="subsection"><A NAME="htoc27">2.9.3</A>  Catching System Exceptions</H3><P>When omniORB detects an error condition, it may raise a system
exception. The CORBA specification defines a series of exceptions
covering most of the error conditions that an ORB may encounter. The
client may choose to catch these exceptions and recover from the error
condition<SUP><A NAME="text10" HREF="#note10">8</A></SUP>. For instance, the code fragment, shown in
section <A HREF="#clnt2">2.9.2</A>, catches the <TT>TRANSIENT</TT> system exception
which indicates that the object could not be contacted at the time of
the call, usually meaning the server is not running.</P><P>All system exceptions inherit from <TT>CORBA::SystemException</TT>. With
compilers that properly support RTTI<SUP><A NAME="text11" HREF="#note11">9</A></SUP>, a single catch of <TT>CORBA::SystemException</TT> will
catch all the different system exceptions thrown by omniORB.</P><P>When omniORB detects an internal error such as corrupt data or invalid
conditions, it raises the exception <TT>omniORB::fatalException</TT>.
When this exception is raised, it is not sensible to proceed with any
operation that involves the ORB’s runtime. It is best to exit the
program immediately. The exception structure carried by
<TT>omniORB::fatalException</TT> contains the exact location (the file
name and the line number) where the exception is raised. In most
cases, <TT>fatalException</TT>s occur due to incorrect behaviour by the
application code, but they may be caused by bugs in omniORB.</P><H3 CLASS="subsection"><A NAME="htoc28">2.9.4</A>  Lifetime of a CORBA object</H3><P>CORBA objects are either <I>transient</I> or <I>persistent</I>. The
majority are transient, meaning that the lifetime of the CORBA object
(as contacted through an object reference) is the same as the lifetime
of its servant object. Persistent objects can live beyond the
destruction of their servant object, the POA they were created in, and
even their process. Persistent objects are, of course, only
contactable when their associated servants are active, or can be
activated by their POA with a servant manager<SUP><A NAME="text12" HREF="#note12">10</A></SUP>. A reference to
a persistent object can be published, and will remain valid even if
the server process is restarted.</P><P>A POA’s Lifespan Policy determines whether objects created within it
are transient or persistent. The Root POA has the <TT>TRANSIENT</TT>
policy.</P><P>An alternative to creating persistent objects is to register object
references in a <I>naming service</I> and bind them to fixed path
names. Clients can bind to the object implementations at run time by
asking the naming service to resolve the path names to the object
references. CORBA defines a standard naming service, which is a
component of the Common Object Services (COS) [<A HREF="omniORB014.html#corbaservices">OMG98</A>],
that can be used for this purpose. The next section describes an
example of how to use the COS Naming Service.</P><H2 CLASS="section"><A NAME="toc13"></A><A NAME="htoc29">2.10</A>  Example 3 — Using the Naming Service</H2><P>In this example, the object implementation uses the Naming
Service [<A HREF="omniORB014.html#corbaservices">OMG98</A>] to pass on the object reference to the
client. This method is far more practical than using stringified
object references. The full listing of the object implementation
(<TT>eg3_impl.cc</TT>) and the client (<TT>eg3_clt.cc</TT>) can be found
at the end of this chapter.</P><P>The names used by the Naming service consist of a sequence of
<I>name components</I>. Each name component has an <I>id</I> and a
<I>kind</I> field, both of which are strings. All name components
except the last one are bound to a naming context. A naming context is
analogous to a directory in a filing system: it can contain names of
object references or other naming contexts. The last name component is
bound to an object reference.</P><P>Sequences of name components can be represented as a flat string,
using ‘.’ to separate the id and kind fields, and ‘/’ to separate name
components from each other<SUP><A NAME="text13" HREF="#note13">11</A></SUP>. In our example, the Echo object
reference is bound to the stringified name
‘<TT>test.my_context/Echo.Object</TT>’.</P><P>The kind field is intended to describe the name in a
syntax-independent way. The naming service does not interpret, assign,
or manage these values. However, both the name and the kind attribute
must match for a name lookup to succeed. In this example, the kind
values for <TT>test</TT> and <TT>Echo</TT> are chosen to be
‘<TT>my_context</TT>’ and ‘<TT>Object</TT>’ respectively. This is an
arbitrary choice as there is no standardised set of kind values.</P><H3 CLASS="subsection"><A NAME="htoc30">2.10.1</A>  Obtaining the Root Context Object Reference</H3><P>
<A NAME="resolveinit"></A></P><P>The initial contact with the Naming Service can be established via the
<I>root</I> context. The object reference to the root context is
provided by the ORB and can be obtained by calling
<TT>resolve_initial_references()</TT>. The following code fragment shows
how it is used:</P><DIV CLASS="lstlisting">CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv);
CORBA::Object_var initServ;
initServ = orb->resolve_initial_references("NameService");
CosNaming::NamingContext_var rootContext;
rootContext = CosNaming::NamingContext::_narrow(initServ);</DIV><P>Remember, omniORB constructs its internal list of initial references
at initialisation time using the information provided in the
configuration file <TT>omniORB.cfg</TT>, or given on the command
line. If this file is not present, the internal list will be empty and
<TT>resolve_initial_references()</TT> will raise a
<TT>CORBA::ORB::InvalidName</TT> exception.</P><H3 CLASS="subsection"><A NAME="htoc31">2.10.2</A>  The Naming Service Interface</H3><P>It is beyond the scope of this chapter to describe in detail the
Naming Service interface. You should consult the CORBA services
specification [<A HREF="omniORB014.html#corbaservices">OMG98</A>] (chapter 3). The code listed in
<TT>eg3_impl.cc</TT> and <TT>eg3_clt.cc</TT> are good examples of how the
service can be used. Please spend time to study the examples
carefully.</P><H2 CLASS="section"><A NAME="toc14"></A><A NAME="htoc32">2.11</A>  Example 4 — Using tie implementation templates</H2><P>omniORB supports <I>tie</I> implementation templates as an alternative
way of providing servant classes. If you use the <TT>-Wbtp</TT> option
to omniidl, it generates an extra template class for each interface.
This template class can be used to tie a C++ class to the skeleton
class of the interface.</P><P>The source code in <TT>eg3_tieimpl.cc</TT> at the end of this chapter
illustrates how the template class can be used. The code is almost
identical to <TT>eg3_impl.cc</TT> with only a few changes.</P><P>Firstly, the servant class <TT>Echo_i</TT> does not inherit from any
stub classes. This is the main benefit of using the template class
because there are applications in which it is difficult to require
every servant class to derive from CORBA classes.</P><P>Secondly, the instantiation of a CORBA object now involves creating an
instance of the implementation class <EM>and</EM> an instance of the
template. Here is the relevant code fragment:</P><DIV CLASS="lstlisting"><B>class</B> Echo_i { ... };
Echo_i *myimpl = <B>new</B> Echo_i();
POA_Echo_tie<Echo_i> myecho(myimpl);
PortableServer::ObjectId_var myechoid = poa->activate_object(&myecho);</DIV><P>For interface <TT>Echo</TT>, the name of its tie implementation template
is <TT>POA_Echo_tie</TT>. The template parameter is the servant
class that contains an implementation of each of the operations
defined in the interface. As used above, the tie template takes
ownership of the <TT>Echo_i</TT> instance, and deletes it when the tie
object goes out of scope. The tie constructor has an optional boolean
argument (defaulted to true) which indicates whether or not it should
delete the servant object. For full details of using tie templates,
see the CORBA C++ mapping specification.</P><H2 CLASS="section"><A NAME="toc15"></A><A NAME="htoc33">2.12</A>  Source Listings</H2><H3 CLASS="subsection"><A NAME="htoc34">2.12.1</A>  eg1.cc</H3><DIV CLASS="lstlisting"><I>// eg1.cc - This is the source code of example 1 used in Chapter 2</I>
<I>// "The Basics" of the omniORB user guide.</I>
<I>//</I>
<I>// In this example, both the object implementation and the</I>
<I>// client are in the same process.</I>
<I>//</I>
<I>// Usage: eg1</I>
<I>//</I>
<B>#include</B> <echo.hh>
<B>#ifdef</B> HAVE_STD
<B># include</B> <iostream>
<B>using</B> <B>namespace</B> std;
<B>#else</B>
<B># include</B> <iostream.h>
<B>#endif</B>
<I>// This is the object implementation.</I>
<B>class</B> Echo_i : <B>public</B> POA_Echo
{
<B>public</B>:
<B>inline</B> Echo_i() {}
<B>virtual</B> ~Echo_i() {}
<B>virtual</B> <B>char</B>* echoString(<B>const</B> <B>char</B>* mesg);
};
<B>char</B>* Echo_i::echoString(<B>const</B> <B>char</B>* mesg)
{
<B>return</B> CORBA::string_dup(mesg);
}
<I>//////////////////////////////////////////////////////////////////////</I>
<I>// This function acts as a client to the object.</I>
<B>static</B> <B>void</B> hello(Echo_ptr e)
{
<B>if</B>( CORBA::is_nil(e) ) {
cerr << "hello: The object reference is nil!\n" << endl;
<B>return</B>;
}
CORBA::String_var src = (<B>const</B> <B>char</B>*) "Hello!";
<I>// String literals are (char*) rather than (const char*) on some</I>
<I>// old compilers. Thus it is essential to cast to (const char*)</I>
<I>// here to ensure that the string is copied, so that the</I>
<I>// CORBA::String_var does not attempt to 'delete' the string</I>
<I>// literal.</I>
CORBA::String_var dest = e->echoString(src);
cout << "I said, \"" << (<B>char</B>*)src << "\"." << endl
<< "The Echo object replied, \"" << (<B>char</B>*)dest <<"\"." << endl;
}
<I>//////////////////////////////////////////////////////////////////////</I>
<B>int</B> main(<B>int</B> argc, <B>char</B>** argv)
{
<B>try</B> {
<I>// Initialise the ORB.</I>
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
<I>// Obtain a reference to the root POA.</I>
CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);
<I>// We allocate the object on the heap. Since this is a reference</I>
<I>// counted object, it will be deleted by the POA when it is no</I>
<I>// longer needed.</I>
Echo_i* myecho = <B>new</B> Echo_i();
<I>// Activate the object. This tells the POA that this object is</I>
<I>// ready to accept requests.</I>
PortableServer::ObjectId_var myechoid = poa->activate_object(myecho);
<I>// Obtain a reference to the object.</I>
Echo_var myechoref = myecho->_this();
<I>// Decrement the reference count of the object implementation, so</I>
<I>// that it will be properly cleaned up when the POA has determined</I>
<I>// that it is no longer needed.</I>
myecho->_remove_ref();
<I>// Obtain a POAManager, and tell the POA to start accepting</I>
<I>// requests on its objects.</I>
PortableServer::POAManager_var pman = poa->the_POAManager();
pman->activate();
<I>// Do the client-side call.</I>
hello(myechoref);
<I>// Clean up all the resources.</I>
orb->destroy();
}
<B>catch</B>(CORBA::SystemException& ex) {
cerr << "Caught CORBA::" << ex._name() << endl;
}
<B>catch</B>(CORBA::Exception& ex) {
cerr << "Caught CORBA::Exception: " << ex._name() << endl;
}
<B>catch</B>(omniORB::fatalException& fe) {
cerr << "Caught omniORB::fatalException:" << endl;
cerr << " file: " << fe.file() << endl;
cerr << " line: " << fe.line() << endl;
cerr << " mesg: " << fe.errmsg() << endl;
}
<B>return</B> 0;
}</DIV><H3 CLASS="subsection"><A NAME="htoc35">2.12.2</A>  eg2_impl.cc</H3><DIV CLASS="lstlisting"><I>// eg2_impl.cc - This is the source code of example 2 used in Chapter 2</I>
<I>// "The Basics" of the omniORB user guide.</I>
<I>//</I>
<I>// This is the object implementation.</I>
<I>//</I>
<I>// Usage: eg2_impl</I>
<I>//</I>
<I>// On startup, the object reference is printed to cerr as a</I>
<I>// stringified IOR. This string should be used as the argument to </I>
<I>// eg2_clt.</I>
<I>//</I>
<B>#include</B> <echo.hh>
<B>#ifdef</B> HAVE_STD
<B># include</B> <iostream>
<B>using</B> <B>namespace</B> std;
<B>#else</B>
<B># include</B> <iostream.h>
<B>#endif</B>
<B>class</B> Echo_i : <B>public</B> POA_Echo
{
<B>public</B>:
<B>inline</B> Echo_i() {}
<B>virtual</B> ~Echo_i() {}
<B>virtual</B> <B>char</B>* echoString(<B>const</B> <B>char</B>* mesg);
};
<B>char</B>* Echo_i::echoString(<B>const</B> <B>char</B>* mesg)
{
cout << "Upcall " << mesg << endl;
<B>return</B> CORBA::string_dup(mesg);
}
<I>//////////////////////////////////////////////////////////////////////</I>
<B>int</B> main(<B>int</B> argc, <B>char</B>** argv)
{
<B>try</B> {
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);
Echo_i* myecho = <B>new</B> Echo_i();
PortableServer::ObjectId_var myechoid = poa->activate_object(myecho);
<I>// Obtain a reference to the object, and print it out as a</I>
<I>// stringified IOR.</I>
obj = myecho->_this();
CORBA::String_var sior(orb->object_to_string(obj));
cout << (<B>char</B>*)sior << endl;
myecho->_remove_ref();
PortableServer::POAManager_var pman = poa->the_POAManager();
pman->activate();
orb->run();
}
<B>catch</B>(CORBA::SystemException& ex) {
cerr << "Caught CORBA::" << ex._name() << endl;
}
<B>catch</B>(CORBA::Exception& ex) {
cerr << "Caught CORBA::Exception: " << ex._name() << endl;
}
<B>catch</B>(omniORB::fatalException& fe) {
cerr << "Caught omniORB::fatalException:" << endl;
cerr << " file: " << fe.file() << endl;
cerr << " line: " << fe.line() << endl;
cerr << " mesg: " << fe.errmsg() << endl;
}
<B>return</B> 0;
}</DIV><H3 CLASS="subsection"><A NAME="htoc36">2.12.3</A>  eg2_clt.cc</H3><DIV CLASS="lstlisting"><I>// eg2_clt.cc - This is the source code of example 2 used in Chapter 2</I>
<I>// "The Basics" of the omniORB user guide.</I>
<I>//</I>
<I>// This is the client. The object reference is given as a</I>
<I>// stringified IOR on the command line.</I>
<I>//</I>
<I>// Usage: eg2_clt <object reference></I>
<I>//</I>
<B>#include</B> <echo.hh>
<B>#ifdef</B> HAVE_STD
<B># include</B> <iostream>
<B># include</B> <fstream>
<B>using</B> <B>namespace</B> std;
<B>#else</B>
<B># include</B> <iostream.h>
<B>#endif</B>
<B>static</B> <B>void</B> hello(Echo_ptr e)
{
CORBA::String_var src = (<B>const</B> <B>char</B>*) "Hello!";
CORBA::String_var dest = e->echoString(src);
cout << "I said, \"" << (<B>char</B>*)src << "\"." << endl
<< "The Echo object replied, \"" << (<B>char</B>*)dest <<"\"." << endl;
}
<I>//////////////////////////////////////////////////////////////////////</I>
<B>int</B> main(<B>int</B> argc, <B>char</B>** argv)
{
<B>try</B> {
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
<B>if</B>( argc != 2 ) {
cerr << "usage: eg2_clt <object reference>" << endl;
<B>return</B> 1;
}
CORBA::Object_var obj = orb->string_to_object(argv[1]);
Echo_var echoref = Echo::_narrow(obj);
<B>if</B>( CORBA::is_nil(echoref) ) {
cerr << "Can't narrow reference to type Echo (or it was nil)." << endl;
<B>return</B> 1;
}
<B>for</B> (CORBA::ULong count=0; count<10; count++)
hello(echoref);
orb->destroy();
}
<B>catch</B>(CORBA::TRANSIENT&) {
cerr << "Caught system exception TRANSIENT -- unable to contact the "
<< "server." << endl;
}
<B>catch</B>(CORBA::SystemException& ex) {
cerr << "Caught a CORBA::" << ex._name() << endl;
}
<B>catch</B>(CORBA::Exception& ex) {
cerr << "Caught CORBA::Exception: " << ex._name() << endl;
}
<B>catch</B>(omniORB::fatalException& fe) {
cerr << "Caught omniORB::fatalException:" << endl;
cerr << " file: " << fe.file() << endl;
cerr << " line: " << fe.line() << endl;
cerr << " mesg: " << fe.errmsg() << endl;
}
<B>return</B> 0;
}</DIV><H3 CLASS="subsection"><A NAME="htoc37">2.12.4</A>  eg3_impl.cc</H3><DIV CLASS="lstlisting"><I>// eg3_impl.cc - This is the source code of example 3 used in Chapter 2</I>
<I>// "The Basics" of the omniORB user guide.</I>
<I>//</I>
<I>// This is the object implementation.</I>
<I>//</I>
<I>// Usage: eg3_impl</I>
<I>//</I>
<I>// On startup, the object reference is registered with the</I>
<I>// COS naming service. The client uses the naming service to</I>
<I>// locate this object.</I>
<I>//</I>
<I>// The name which the object is bound to is as follows:</I>
<I>// root [context]</I>
<I>// |</I>
<I>// test [context] kind [my_context]</I>
<I>// |</I>
<I>// Echo [object] kind [Object]</I>
<I>//</I>
<B>#include</B> <echo.hh>
<B>#ifdef</B> HAVE_STD
<B># include</B> <iostream>
<B>using</B> <B>namespace</B> std;
<B>#else</B>
<B># include</B> <iostream.h>
<B>#endif</B>
<B>static</B> CORBA::Boolean bindObjectToName(CORBA::ORB_ptr, CORBA::Object_ptr);
<B>class</B> Echo_i : <B>public</B> POA_Echo
{
<B>public</B>:
<B>inline</B> Echo_i() {}
<B>virtual</B> ~Echo_i() {}
<B>virtual</B> <B>char</B>* echoString(<B>const</B> <B>char</B>* mesg);
};
<B>char</B>* Echo_i::echoString(<B>const</B> <B>char</B>* mesg)
{
<B>return</B> CORBA::string_dup(mesg);
}
<I>//////////////////////////////////////////////////////////////////////</I>
<B>int</B>
main(<B>int</B> argc, <B>char</B> **argv)
{
<B>try</B> {
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);
Echo_i* myecho = <B>new</B> Echo_i();
PortableServer::ObjectId_var myechoid = poa->activate_object(myecho);
<I>// Obtain a reference to the object, and register it in</I>
<I>// the naming service.</I>
obj = myecho->_this();
CORBA::String_var x;
x = orb->object_to_string(obj);
cout << x << endl;
<B>if</B>( !bindObjectToName(orb, obj) )
<B>return</B> 1;
myecho->_remove_ref();
PortableServer::POAManager_var pman = poa->the_POAManager();
pman->activate();
orb->run();
}
<B>catch</B>(CORBA::SystemException& ex) {
cerr << "Caught CORBA::" << ex._name() << endl;
}
<B>catch</B>(CORBA::Exception& ex) {
cerr << "Caught CORBA::Exception: " << ex._name() << endl;
}
<B>catch</B>(omniORB::fatalException& fe) {
cerr << "Caught omniORB::fatalException:" << endl;
cerr << " file: " << fe.file() << endl;
cerr << " line: " << fe.line() << endl;
cerr << " mesg: " << fe.errmsg() << endl;
}
<B>return</B> 0;
}
<I>//////////////////////////////////////////////////////////////////////</I>
<B>static</B> CORBA::Boolean
bindObjectToName(CORBA::ORB_ptr orb, CORBA::Object_ptr objref)
{
CosNaming::NamingContext_var rootContext;
<B>try</B> {
<I>// Obtain a reference to the root context of the Name service:</I>
CORBA::Object_var obj;
obj = orb->resolve_initial_references("NameService");
<I>// Narrow the reference returned.</I>
rootContext = CosNaming::NamingContext::_narrow(obj);
<B>if</B>( CORBA::is_nil(rootContext) ) {
cerr << "Failed to narrow the root naming context." << endl;
<B>return</B> 0;
}
}
<B>catch</B> (CORBA::NO_RESOURCES&) {
cerr << "Caught NO_RESOURCES exception. You must configure omniORB "
<< "with the location" << endl
<< "of the naming service." << endl;
<B>return</B> 0;
}
<B>catch</B> (CORBA::ORB::InvalidName&) {
<I>// This should not happen!</I>
cerr << "Service required is invalid [does not exist]." << endl;
<B>return</B> 0;
}
<B>try</B> {
<I>// Bind a context called "test" to the root context:</I>
CosNaming::Name contextName;
contextName.length(1);
contextName[0].id = (<B>const</B> <B>char</B>*) "test"; <I>// string copied</I>
contextName[0].kind = (<B>const</B> <B>char</B>*) "my_context"; <I>// string copied</I>
<I>// Note on kind: The kind field is used to indicate the type</I>
<I>// of the object. This is to avoid conventions such as that used</I>
<I>// by files (name.type -- e.g. test.ps = postscript etc.)</I>
CosNaming::NamingContext_var testContext;
<B>try</B> {
<I>// Bind the context to root.</I>
testContext = rootContext->bind_new_context(contextName);
}
<B>catch</B>(CosNaming::NamingContext::AlreadyBound& ex) {
<I>// If the context already exists, this exception will be raised.</I>
<I>// In this case, just resolve the name and assign testContext</I>
<I>// to the object returned:</I>
CORBA::Object_var obj;
obj = rootContext->resolve(contextName);
testContext = CosNaming::NamingContext::_narrow(obj);
<B>if</B>( CORBA::is_nil(testContext) ) {
cerr << "Failed to narrow naming context." << endl;
<B>return</B> 0;
}
}
<I>// Bind objref with name Echo to the testContext:</I>
CosNaming::Name objectName;
objectName.length(1);
objectName[0].id = (<B>const</B> <B>char</B>*) "Echo"; <I>// string copied</I>
objectName[0].kind = (<B>const</B> <B>char</B>*) "Object"; <I>// string copied</I>
<B>try</B> {
testContext->bind(objectName, objref);
}
<B>catch</B>(CosNaming::NamingContext::AlreadyBound& ex) {
testContext->rebind(objectName, objref);
}
<I>// Note: Using rebind() will overwrite any Object previously bound</I>
<I>// to /test/Echo with obj.</I>
<I>// Alternatively, bind() can be used, which will raise a</I>
<I>// CosNaming::NamingContext::AlreadyBound exception if the name</I>
<I>// supplied is already bound to an object.</I>
<I>// Amendment: When using OrbixNames, it is necessary to first try bind</I>
<I>// and then rebind, as rebind on it's own will throw a NotFoundexception if</I>
<I>// the Name has not already been bound. [This is incorrect behaviour -</I>
<I>// it should just bind].</I>
}
<B>catch</B>(CORBA::TRANSIENT& ex) {
cerr << "Caught system exception TRANSIENT -- unable to contact the "
<< "naming service." << endl
<< "Make sure the naming server is running and that omniORB is "
<< "configured correctly." << endl;
<B>return</B> 0;
}
<B>catch</B>(CORBA::SystemException& ex) {
cerr << "Caught a CORBA::" << ex._name()
<< " while using the naming service." << endl;
<B>return</B> 0;
}
<B>return</B> 1;
}</DIV><H3 CLASS="subsection"><A NAME="htoc38">2.12.5</A>  eg3_clt.cc</H3><DIV CLASS="lstlisting"><I>// eg3_clt.cc - This is the source code of example 3 used in Chapter 2</I>
<I>// "The Basics" of the omniORB user guide.</I>
<I>//</I>
<I>// This is the client. It uses the COSS naming service</I>
<I>// to obtain the object reference.</I>
<I>//</I>
<I>// Usage: eg3_clt</I>
<I>//</I>
<I>//</I>
<I>// On startup, the client lookup the object reference from the</I>
<I>// COS naming service.</I>
<I>//</I>
<I>// The name which the object is bound to is as follows:</I>
<I>// root [context]</I>
<I>// |</I>
<I>// text [context] kind [my_context]</I>
<I>// |</I>
<I>// Echo [object] kind [Object]</I>
<I>//</I>
<B>#include</B> <echo.hh>
<B>#ifdef</B> HAVE_STD
<B># include</B> <iostream>
<B>using</B> <B>namespace</B> std;
<B>#else</B>
<B># include</B> <iostream.h>
<B>#endif</B>
<B>static</B> CORBA::Object_ptr getObjectReference(CORBA::ORB_ptr orb);
<B>static</B> <B>void</B> hello(Echo_ptr e)
{
<B>if</B>( CORBA::is_nil(e) ) {
cerr << "hello: The object reference is nil!\n" << endl;
<B>return</B>;
}
CORBA::String_var src = (<B>const</B> <B>char</B>*) "Hello!";
CORBA::String_var dest = e->echoString(src);
cerr << "I said, \"" << (<B>char</B>*)src << "\"." << endl
<< "The Echo object replied, \"" << (<B>char</B>*)dest <<"\"." << endl;
}
<I>//////////////////////////////////////////////////////////////////////</I>
<B>int</B>
main (<B>int</B> argc, <B>char</B> **argv)
{
<B>try</B> {
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::Object_var obj = getObjectReference(orb);
Echo_var echoref = Echo::_narrow(obj);
<B>for</B> (CORBA::ULong count=0; count < 10; count++)
hello(echoref);
orb->destroy();
}
<B>catch</B>(CORBA::TRANSIENT&) {
cerr << "Caught system exception TRANSIENT -- unable to contact the "
<< "server." << endl;
}
<B>catch</B>(CORBA::SystemException& ex) {
cerr << "Caught a CORBA::" << ex._name() << endl;
}
<B>catch</B>(CORBA::Exception& ex) {
cerr << "Caught CORBA::Exception: " << ex._name() << endl;
}
<B>catch</B>(omniORB::fatalException& fe) {
cerr << "Caught omniORB::fatalException:" << endl;
cerr << " file: " << fe.file() << endl;
cerr << " line: " << fe.line() << endl;
cerr << " mesg: " << fe.errmsg() << endl;
}
<B>return</B> 0;
}
<I>//////////////////////////////////////////////////////////////////////</I>
<B>static</B> CORBA::Object_ptr
getObjectReference(CORBA::ORB_ptr orb)
{
CosNaming::NamingContext_var rootContext;
<B>try</B> {
<I>// Obtain a reference to the root context of the Name service:</I>
CORBA::Object_var obj;
obj = orb->resolve_initial_references("NameService");
<I>// Narrow the reference returned.</I>
rootContext = CosNaming::NamingContext::_narrow(obj);
<B>if</B>( CORBA::is_nil(rootContext) ) {
cerr << "Failed to narrow the root naming context." << endl;
<B>return</B> CORBA::Object::_nil();
}
}
<B>catch</B> (CORBA::NO_RESOURCES&) {
cerr << "Caught NO_RESOURCES exception. You must configure omniORB "
<< "with the location" << endl
<< "of the naming service." << endl;
<B>return</B> 0;
}
<B>catch</B>(CORBA::ORB::InvalidName& ex) {
<I>// This should not happen!</I>
cerr << "Service required is invalid [does not exist]." << endl;
<B>return</B> CORBA::Object::_nil();
}
<I>// Create a name object, containing the name test/context:</I>
CosNaming::Name name;
name.length(2);
name[0].id = (<B>const</B> <B>char</B>*) "test"; <I>// string copied</I>
name[0].kind = (<B>const</B> <B>char</B>*) "my_context"; <I>// string copied</I>
name[1].id = (<B>const</B> <B>char</B>*) "Echo";
name[1].kind = (<B>const</B> <B>char</B>*) "Object";
<I>// Note on kind: The kind field is used to indicate the type</I>
<I>// of the object. This is to avoid conventions such as that used</I>
<I>// by files (name.type -- e.g. test.ps = postscript etc.)</I>
<B>try</B> {
<I>// Resolve the name to an object reference.</I>
<B>return</B> rootContext->resolve(name);
}
<B>catch</B>(CosNaming::NamingContext::NotFound& ex) {
<I>// This exception is thrown if any of the components of the</I>
<I>// path [contexts or the object] aren't found:</I>
cerr << "Context not found." << endl;
}
<B>catch</B>(CORBA::TRANSIENT& ex) {
cerr << "Caught system exception TRANSIENT -- unable to contact the "
<< "naming service." << endl
<< "Make sure the naming server is running and that omniORB is "
<< "configured correctly." << endl;
}
<B>catch</B>(CORBA::SystemException& ex) {
cerr << "Caught a CORBA::" << ex._name()
<< " while using the naming service." << endl;
<B>return</B> 0;
}
<B>return</B> CORBA::Object::_nil();
}</DIV><H3 CLASS="subsection"><A NAME="htoc39">2.12.6</A>  eg3_tieimpl.cc</H3><DIV CLASS="lstlisting"><I>// eg3_tieimpl.cc - This example is similar to eg3_impl.cc except that</I>
<I>// the tie implementation skeleton is used.</I>
<I>//</I>
<I>// This is the object implementation.</I>
<I>//</I>
<I>// Usage: eg3_tieimpl</I>
<I>//</I>
<I>// On startup, the object reference is registered with the </I>
<I>// COS naming service. The client uses the naming service to</I>
<I>// locate this object.</I>
<I>//</I>
<I>// The name which the object is bound to is as follows:</I>
<I>// root [context]</I>
<I>// |</I>
<I>// test [context] kind [my_context]</I>
<I>// |</I>
<I>// Echo [object] kind [Object]</I>
<I>//</I>
<B>#include</B> <echo.hh>
<B>#ifdef</B> HAVE_STD
<B># include</B> <iostream>
<B>using</B> <B>namespace</B> std;
<B>#else</B>
<B># include</B> <iostream.h>
<B>#endif</B>
<B>static</B> CORBA::Boolean bindObjectToName(CORBA::ORB_ptr,CORBA::Object_ptr);
<I>// This is the object implementation. Notice that it does not inherit</I>
<I>// from any stub class, and notice that the echoString() member</I>
<I>// function does not have to be virtual.</I>
<B>class</B> Echo_i {
<B>public</B>:
<B>inline</B> Echo_i() {}
<B>inline</B> ~Echo_i() {}
<B>char</B>* echoString(<B>const</B> <B>char</B>* mesg);
};
<B>char</B>* Echo_i::echoString(<B>const</B> <B>char</B>* mesg)
{
<B>return</B> CORBA::string_dup(mesg);
}
<I>//////////////////////////////////////////////////////////////////////</I>
<B>int</B> main(<B>int</B> argc, <B>char</B>** argv)
{
<B>try</B> {
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa = PortableServer::POA::_narrow(obj);
<I>// Note that the <myecho> tie object is constructed on the stack</I>
<I>// here. It will delete its implementation (myimpl) when it it</I>
<I>// itself destroyed (when it goes out of scope). It is essential</I>
<I>// however to ensure that such servants are not deleted whilst</I>
<I>// still activated.</I>
<I>//</I>
<I>// Tie objects can of course be allocated on the heap using new,</I>
<I>// in which case they are deleted when their reference count</I>
<I>// becomes zero, as with any other servant object.</I>
Echo_i* myimpl = <B>new</B> Echo_i();
POA_Echo_tie<Echo_i> myecho(myimpl);
PortableServer::ObjectId_var myechoid = poa->activate_object(&myecho);
<I>// Obtain a reference to the object, and register it in</I>
<I>// the naming service.</I>
obj = myecho._this();
<B>if</B>( !bindObjectToName(orb, obj) )
<B>return</B> 1;
PortableServer::POAManager_var pman = poa->the_POAManager();
pman->activate();
orb->run();
}
<B>catch</B>(CORBA::SystemException& ex) {
cerr << "Caught CORBA::" << ex._name() << endl;
}
<B>catch</B>(CORBA::Exception& ex) {
cerr << "Caught CORBA::Exception: " << ex._name() << endl;
}
<B>catch</B>(omniORB::fatalException& fe) {
cerr << "Caught omniORB::fatalException:" << endl;
cerr << " file: " << fe.file() << endl;
cerr << " line: " << fe.line() << endl;
cerr << " mesg: " << fe.errmsg() << endl;
}
<B>return</B> 0;
}
<I>//////////////////////////////////////////////////////////////////////</I>
<B>static</B> CORBA::Boolean
bindObjectToName(CORBA::ORB_ptr orb, CORBA::Object_ptr objref)
{
CosNaming::NamingContext_var rootContext;
<B>try</B> {
<I>// Obtain a reference to the root context of the Name service:</I>
CORBA::Object_var obj;
obj = orb->resolve_initial_references("NameService");
<I>// Narrow the reference returned.</I>
rootContext = CosNaming::NamingContext::_narrow(obj);
<B>if</B>( CORBA::is_nil(rootContext) ) {
cerr << "Failed to narrow the root naming context." << endl;
<B>return</B> 0;
}
}
<B>catch</B> (CORBA::NO_RESOURCES&) {
cerr << "Caught NO_RESOURCES exception. You must configure omniORB "
<< "with the location" << endl
<< "of the naming service." << endl;
<B>return</B> 0;
}
<B>catch</B> (CORBA::ORB::InvalidName&) {
<I>// This should not happen!</I>
cerr << "Service required is invalid [does not exist]." << endl;
<B>return</B> 0;
}
<B>try</B> {
<I>// Bind a context called "test" to the root context:</I>
CosNaming::Name contextName;
contextName.length(1);
contextName[0].id = (<B>const</B> <B>char</B>*) "test"; <I>// string copied</I>
contextName[0].kind = (<B>const</B> <B>char</B>*) "my_context"; <I>// string copied</I>
<I>// Note on kind: The kind field is used to indicate the type</I>
<I>// of the object. This is to avoid conventions such as that used</I>
<I>// by files (name.type -- e.g. test.ps = postscript etc.)</I>
CosNaming::NamingContext_var testContext;
<B>try</B> {
<I>// Bind the context to root.</I>
testContext = rootContext->bind_new_context(contextName);
}
<B>catch</B>(CosNaming::NamingContext::AlreadyBound& ex) {
<I>// If the context already exists, this exception will be raised.</I>
<I>// In this case, just resolve the name and assign testContext</I>
<I>// to the object returned:</I>
CORBA::Object_var obj;
obj = rootContext->resolve(contextName);
testContext = CosNaming::NamingContext::_narrow(obj);
<B>if</B>( CORBA::is_nil(testContext) ) {
cerr << "Failed to narrow naming context." << endl;
<B>return</B> 0;
}
}
<I>// Bind objref with name Echo to the testContext:</I>
CosNaming::Name objectName;
objectName.length(1);
objectName[0].id = (<B>const</B> <B>char</B>*) "Echo"; <I>// string copied</I>
objectName[0].kind = (<B>const</B> <B>char</B>*) "Object"; <I>// string copied</I>
<B>try</B> {
testContext->bind(objectName, objref);
}
<B>catch</B>(CosNaming::NamingContext::AlreadyBound& ex) {
testContext->rebind(objectName, objref);
}
<I>// Note: Using rebind() will overwrite any Object previously bound</I>
<I>// to /test/Echo with obj.</I>
<I>// Alternatively, bind() can be used, which will raise a</I>
<I>// CosNaming::NamingContext::AlreadyBound exception if the name</I>
<I>// supplied is already bound to an object.</I>
<I>// Amendment: When using OrbixNames, it is necessary to first try bind</I>
<I>// and then rebind, as rebind on it's own will throw a NotFoundexception if</I>
<I>// the Name has not already been bound. [This is incorrect behaviour -</I>
<I>// it should just bind].</I>
}
<B>catch</B>(CORBA::TRANSIENT& ex) {
cerr << "Caught system exception TRANSIENT -- unable to contact the "
<< "naming service." << endl
<< "Make sure the naming server is running and that omniORB is "
<< "configured correctly." << endl;
<B>return</B> 0;
}
<B>catch</B>(CORBA::SystemException& ex) {
cerr << "Caught a CORBA::" << ex._name()
<< " while using the naming service." << endl;
<B>return</B> 0;
}
<B>return</B> 1;
}</DIV><HR CLASS="footnoterule"><DL CLASS="thefootnotes"><DT CLASS="dt-thefootnotes">
<A NAME="note3" HREF="#text3">1</A></DT><DD CLASS="dd-thefootnotes">The stub
code is the C++ code that provides the object mapping as defined in
the CORBA specification.
</DD><DT CLASS="dt-thefootnotes"><A NAME="note4" HREF="#text4">2</A></DT><DD CLASS="dd-thefootnotes">In
omniORB, all object reference variable types are instantiated from the
template type <TT>_CORBA_ObjRef_Var</TT>.
</DD><DT CLASS="dt-thefootnotes"><A NAME="note5" HREF="#text5">3</A></DT><DD CLASS="dd-thefootnotes">However, the implementation
of the type conversion operator between <TT>Echo_var</TT> and
<TT>Echo_ptr</TT> varies slightly among different C++ compilers; you
may need to do an explicit cast if the compiler complains about the
conversion being ambiguous.
</DD><DT CLASS="dt-thefootnotes"><A NAME="note6" HREF="#text6">4</A></DT><DD CLASS="dd-thefootnotes">In the previous 1.0 version of the C++
mapping, servant reference counting was optional, chosen by inheriting
from a mixin class named <TT>RefCountServantBase</TT>. That has been
deprecated in the 1.1 version of the C++ mapping, but the class is
still available as an empty struct, so existing code that inherits
from <TT>RefCountServantBase</TT> will continue to work.
</DD><DT CLASS="dt-thefootnotes"><A NAME="note7" HREF="#text7">5</A></DT><DD CLASS="dd-thefootnotes">A conversion operator of
<TT>CORBA::String_var</TT> converts a <TT>CORBA::String_var</TT>
to a <TT>char*</TT>.
</DD><DT CLASS="dt-thefootnotes"><A NAME="note8" HREF="#text8">6</A></DT><DD CLASS="dd-thefootnotes">Please refer to the C++
mapping specification for details of the String_var mapping.
</DD><DT CLASS="dt-thefootnotes"><A NAME="note9" HREF="#text9">7</A></DT><DD CLASS="dd-thefootnotes">For backwards compatibility, the ORB identifiers
‘omniORB2’ and ‘omniORB3’ are also accepted.
</DD><DT CLASS="dt-thefootnotes"><A NAME="note10" HREF="#text10">8</A></DT><DD CLASS="dd-thefootnotes">If a system exception is not caught, the C++
runtime will call the <TT>terminate()</TT> function. This function is
defaulted to abort the whole process and on some systems will cause a
core file to be produced.
</DD><DT CLASS="dt-thefootnotes"><A NAME="note11" HREF="#text11">9</A></DT><DD CLASS="dd-thefootnotes">Run Time Type
Identification
</DD><DT CLASS="dt-thefootnotes"><A NAME="note12" HREF="#text12">10</A></DT><DD CLASS="dd-thefootnotes">The POA itself
can be activated on demand with an adapter activator.
</DD><DT CLASS="dt-thefootnotes"><A NAME="note13" HREF="#text13">11</A></DT><DD CLASS="dd-thefootnotes">There are escaping rules to cope
with id and kind fields which contain ‘.’ and ‘/’ characters. See
chapter <A HREF="omniORB006.html#chap:ins">6</A> of this manual, and chapter 3 of the CORBA
services specification, as updated for the Interoperable Naming
Service [<A HREF="omniORB014.html#inschapters">OMG00</A>].
</DD></DL>
<HR>
<A HREF="omniORB001.html"><IMG SRC="previous_motif.gif" ALT="Previous"></A>
<A HREF="index.html"><IMG SRC="contents_motif.gif" ALT="Up"></A>
<A HREF="omniORB003.html"><IMG SRC="next_motif.gif" ALT="Next"></A>
</BODY>
</HTML>
|