1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
/*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2008, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Willow Garage nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/* Author: Ioan Sucan */
#define BOOST_TEST_MODULE "ControlPlanning"
#include <boost/test/unit_test.hpp>
#include <boost/filesystem.hpp>
#include <iostream>
#include "ompl/base/goals/GoalState.h"
#include "ompl/base/spaces/RealVectorStateSpace.h"
#include "ompl/control/spaces/RealVectorControlSpace.h"
#include "ompl/control/planners/rrt/RRT.h"
#include "ompl/control/planners/kpiece/KPIECE1.h"
#include "ompl/control/planners/est/EST.h"
#include "ompl/control/planners/pdst/PDST.h"
#include "ompl/control/planners/syclop/SyclopEST.h"
#include "ompl/control/planners/syclop/SyclopRRT.h"
#include "ompl/control/planners/syclop/GridDecomposition.h"
#include "../../BoostTestTeamCityReporter.h"
#include "../../resources/config.h"
#include "../../resources/environment2D.h"
using namespace ompl;
static const double SOLUTION_TIME = 1.0;
static const double MAX_VELOCITY = 3.0;
static const bool VERBOSE = true;
/** Declare a class used in validating states. Such a class definition is needed for any use
* of a kinematic planner */
class myStateValidityChecker : public base::StateValidityChecker
{
public:
myStateValidityChecker(base::SpaceInformation *si, const std::vector< std::vector<int> > &grid) : base::StateValidityChecker(si)
{
setGrid(grid);
}
virtual bool isValid(const base::State *state) const
{
/* planning is done in a continuous space, but our collision space representation is discrete */
int x = (int)(state->as<base::RealVectorStateSpace::StateType>()->values[0]);
int y = (int)(state->as<base::RealVectorStateSpace::StateType>()->values[1]);
if (x < 0 || y < 0 || x >= w_ || y >= h_)
return false;
return grid_[x][y] == 0; // 0 means valid state
}
void setGrid(const std::vector< std::vector<int> > &grid)
{
grid_ = grid;
w_ = grid_.size();
h_ = grid_[0].size();
}
protected:
std::vector< std::vector<int> > grid_;
int w_, h_;
};
class myStateSpace : public base::RealVectorStateSpace
{
public:
myStateSpace() : base::RealVectorStateSpace(4)
{
}
virtual double distance(const base::State *state1, const base::State *state2) const
{
/* planning is done in a continuous space, but our collision space representation is discrete */
int x1 = (int)(state1->as<base::RealVectorStateSpace::StateType>()->values[0]);
int y1 = (int)(state1->as<base::RealVectorStateSpace::StateType>()->values[1]);
int x2 = (int)(state2->as<base::RealVectorStateSpace::StateType>()->values[0]);
int y2 = (int)(state2->as<base::RealVectorStateSpace::StateType>()->values[1]);
return abs(x1 - x2) + abs(y1 - y2);
}
};
class myStatePropagator : public control::StatePropagator
{
public:
myStatePropagator(const control::SpaceInformationPtr &si) : control::StatePropagator(si)
{
}
virtual void propagate(const base::State *state, const control::Control* control, const double duration, base::State *result) const
{
result->as<base::RealVectorStateSpace::StateType>()->values[0] =
state->as<base::RealVectorStateSpace::StateType>()->values[0] + duration * control->as<control::RealVectorControlSpace::ControlType>()->values[0];
result->as<base::RealVectorStateSpace::StateType>()->values[1] =
state->as<base::RealVectorStateSpace::StateType>()->values[1] + duration * control->as<control::RealVectorControlSpace::ControlType>()->values[1];
result->as<base::RealVectorStateSpace::StateType>()->values[2] = control->as<control::RealVectorControlSpace::ControlType>()->values[0];
result->as<base::RealVectorStateSpace::StateType>()->values[3] = control->as<control::RealVectorControlSpace::ControlType>()->values[1];
si_->getStateSpace()->enforceBounds(result);
}
};
class myProjectionEvaluator : public base::ProjectionEvaluator
{
public:
myProjectionEvaluator(const base::StateSpacePtr &space, const std::vector<double> &cellSizes) : base::ProjectionEvaluator(space)
{
setCellSizes(cellSizes);
bounds_.resize(2);
const base::RealVectorBounds& spacebounds = space->as<base::RealVectorStateSpace>()->getBounds();
bounds_.setLow(0, spacebounds.low[0]);
bounds_.setLow(1, spacebounds.low[1]);
bounds_.setHigh(0, spacebounds.high[0]);
bounds_.setHigh(1, spacebounds.high[1]);
}
virtual unsigned int getDimension(void) const
{
return 2;
}
virtual void project(const base::State *state, base::EuclideanProjection &projection) const
{
projection(0) = state->as<base::RealVectorStateSpace::StateType>()->values[0];
projection(1) = state->as<base::RealVectorStateSpace::StateType>()->values[1];
}
};
/** Space information */
control::SpaceInformationPtr mySpaceInformation(Environment2D &env)
{
base::RealVectorStateSpace *sMan = new myStateSpace();
base::RealVectorBounds sbounds(4);
// dimension 0 (x) spans between [0, width)
// dimension 1 (y) spans between [0, height)
// since sampling is continuous and we round down, we allow values until just under the max limit
// the resolution is 1.0 since we check cells only
sbounds.low[0] = 0.0;
sbounds.high[0] = (double)env.width - 0.000000001;
sbounds.low[1] = 0.0;
sbounds.high[1] = (double)env.height - 0.000000001;
sbounds.low[2] = -MAX_VELOCITY;
sbounds.high[2] = MAX_VELOCITY;
sbounds.low[3] = -MAX_VELOCITY;
sbounds.high[3] = MAX_VELOCITY;
sMan->setBounds(sbounds);
base::StateSpacePtr sManPtr(sMan);
control::RealVectorControlSpace *cMan = new control::RealVectorControlSpace(sManPtr, 2);
base::RealVectorBounds cbounds(2);
cbounds.low[0] = -MAX_VELOCITY;
cbounds.high[0] = MAX_VELOCITY;
cbounds.low[1] = -MAX_VELOCITY;
cbounds.high[1] = MAX_VELOCITY;
cMan->setBounds(cbounds);
control::SpaceInformationPtr si(new control::SpaceInformation(sManPtr, control::ControlSpacePtr(cMan)));
si->setMinMaxControlDuration(2, 25);
si->setPropagationStepSize(0.25);
si->setStateValidityChecker(base::StateValidityCheckerPtr(new myStateValidityChecker(si.get(), env.grid)));
si->setStatePropagator(control::StatePropagatorPtr(new myStatePropagator(si)));
si->setup();
return si;
}
/** A base class for testing planners */
class TestPlanner
{
public:
TestPlanner(void)
{
msg::setLogLevel(msg::LOG_ERROR);
}
virtual ~TestPlanner(void)
{
}
virtual bool execute(Environment2D &env, bool show = false, double *time = NULL, double *pathLength = NULL)
{
bool result = true;
/* instantiate space information */
control::SpaceInformationPtr si = mySpaceInformation(env);
base::ProblemDefinitionPtr pdef(new base::ProblemDefinition(si));
/* instantiate motion planner */
base::PlannerPtr planner = newPlanner(si);
planner->setProblemDefinition(pdef);
planner->setup();
/* set the initial state; the memory for this is automatically cleaned by SpaceInformation */
base::ScopedState<base::RealVectorStateSpace> state(si);
state->values[0] = env.start.first;
state->values[1] = env.start.second;
state->values[2] = 0.0;
state->values[3] = 0.0;
pdef->addStartState(state);
/* set the goal state; the memory for this is automatically cleaned by SpaceInformation */
base::GoalState *goal = new base::GoalState(si);
base::ScopedState<base::RealVectorStateSpace> gstate(si);
gstate->values[0] = env.goal.first;
gstate->values[1] = env.goal.second;
gstate->values[2] = 0.0;
gstate->values[3] = 0.0;
goal->setState(gstate);
goal->setThreshold(1e-3); // this is basically 0, but we want to account for numerical instabilities
pdef->setGoal(base::GoalPtr(goal));
planner->getProblemDefinition()->isStraightLinePathValid();
/* start counting time */
ompl::time::point startTime = ompl::time::now();
/* call the planner to solve the problem */
if (planner->solve(SOLUTION_TIME))
{
ompl::time::duration elapsed = ompl::time::now() - startTime;
if (time)
*time += ompl::time::seconds(elapsed);
if (show)
printf("Found solution in %f seconds!\n", ompl::time::seconds(elapsed));
control::PathControl *path = static_cast<control::PathControl*>(pdef->getSolutionPath().get());
path->interpolate();
if (!path->check())
exit(1);
elapsed = ompl::time::now() - startTime;
if (time)
*time += ompl::time::seconds(elapsed);
if (pathLength)
*pathLength += path->length();
if (show)
{
printEnvironment(std::cout, env);
std::cout << std::endl;
}
Environment2D temp = env;
/* display the solution */
for (unsigned int i = 0 ; i < path->getStateCount() ; ++i)
{
int x = (int)(path->getState(i)->as<base::RealVectorStateSpace::StateType>()->values[0]);
int y = (int)(path->getState(i)->as<base::RealVectorStateSpace::StateType>()->values[1]);
if (temp.grid[x][y] == T_FREE || temp.grid[x][y] == T_PATH)
temp.grid[x][y] = T_PATH;
else
{
temp.grid[x][y] = T_ERROR;
result = false;
}
}
if (show)
printEnvironment(std::cout, temp);
}
else
result = false;
return result;
}
protected:
virtual base::PlannerPtr newPlanner(const control::SpaceInformationPtr &si) = 0;
};
class RRTTest : public TestPlanner
{
protected:
base::PlannerPtr newPlanner(const control::SpaceInformationPtr &si)
{
control::RRT *rrt = new control::RRT(si);
rrt->setIntermediateStates(false);
return base::PlannerPtr(rrt);
}
};
class RRTIntermediateTest : public TestPlanner
{
protected:
base::PlannerPtr newPlanner(const control::SpaceInformationPtr &si)
{
control::RRT *rrt = new control::RRT(si);
rrt->setIntermediateStates(true);
return base::PlannerPtr(rrt);
}
};
// A 2D workspace grid-decomposition for Syclop planners
class SyclopDecomposition : public control::GridDecomposition
{
public:
SyclopDecomposition(const int len, const base::RealVectorBounds& b) : GridDecomposition(len, 2, b) {}
virtual void project(const base::State* s, std::vector<double>& coord) const
{
coord.resize(2);
coord[0] = s->as<base::RealVectorStateSpace::StateType>()->values[0];
coord[1] = s->as<base::RealVectorStateSpace::StateType>()->values[1];
}
virtual void sampleFullState(const base::StateSamplerPtr& sampler, const std::vector<double>& coord, base::State* s) const
{
sampler->sampleUniform(s);
s->as<base::RealVectorStateSpace::StateType>()->values[0] = coord[0];
s->as<base::RealVectorStateSpace::StateType>()->values[1] = coord[1];
}
private:
ompl::RNG rng_;
};
class SyclopRRTTest : public TestPlanner
{
base::PlannerPtr newPlanner(const control::SpaceInformationPtr &si)
{
base::RealVectorBounds bounds(2);
const base::RealVectorBounds& spacebounds = si->getStateSpace()->as<base::RealVectorStateSpace>()->getBounds();
bounds.setLow(0, spacebounds.low[0]);
bounds.setLow(1, spacebounds.low[1]);
bounds.setHigh(0, spacebounds.high[0]);
bounds.setHigh(1, spacebounds.high[1]);
// Create a 10x10 grid decomposition for Syclop
control::DecompositionPtr decomp(new SyclopDecomposition (10, bounds));
control::SyclopRRT *srrt = new control::SyclopRRT(si, decomp);
// Set syclop parameters conducive to a tiny workspace
srrt->setNumFreeVolumeSamples(1000);
srrt->setNumRegionExpansions(10);
srrt->setNumTreeExpansions(5);
return base::PlannerPtr(srrt);
}
};
class SyclopESTTest : public TestPlanner
{
base::PlannerPtr newPlanner(const control::SpaceInformationPtr &si)
{
base::RealVectorBounds bounds(2);
const base::RealVectorBounds& spacebounds = si->getStateSpace()->as<base::RealVectorStateSpace>()->getBounds();
bounds.setLow(0, spacebounds.low[0]);
bounds.setLow(1, spacebounds.low[1]);
bounds.setHigh(0, spacebounds.high[0]);
bounds.setHigh(1, spacebounds.high[1]);
// Create a 10x10 grid decomposition for Syclop
control::DecompositionPtr decomp(new SyclopDecomposition (10, bounds));
control::SyclopEST *sest = new control::SyclopEST(si, decomp);
// Set syclop parameters conducive to a tiny workspace
sest->setNumFreeVolumeSamples(1000);
sest->setNumRegionExpansions(10);
sest->setNumTreeExpansions(5);
return base::PlannerPtr(sest);
}
};
class KPIECETest : public TestPlanner
{
protected:
base::PlannerPtr newPlanner(const control::SpaceInformationPtr &si)
{
control::KPIECE1 *kpiece = new control::KPIECE1(si);
std::vector<double> cdim;
cdim.push_back(1);
cdim.push_back(1);
base::ProjectionEvaluatorPtr ope(new myProjectionEvaluator(si->getStateSpace(), cdim));
kpiece->setProjectionEvaluator(ope);
return base::PlannerPtr(kpiece);
}
};
class ESTTest : public TestPlanner
{
protected:
base::PlannerPtr newPlanner(const control::SpaceInformationPtr &si)
{
control::EST *est = new control::EST(si);
std::vector<double> cdim;
cdim.push_back(1);
cdim.push_back(1);
base::ProjectionEvaluatorPtr ope(new myProjectionEvaluator(si->getStateSpace(), cdim));
est->setProjectionEvaluator(ope);
return base::PlannerPtr(est);
}
};
class PDSTTest : public TestPlanner
{
protected:
base::PlannerPtr newPlanner(const control::SpaceInformationPtr &si)
{
control::PDST *pdst = new control::PDST(si);
std::vector<double> cdim;
cdim.push_back(1);
cdim.push_back(1);
base::ProjectionEvaluatorPtr ope(new myProjectionEvaluator(si->getStateSpace(), cdim));
pdst->setProjectionEvaluator(ope);
return base::PlannerPtr(pdst);
}
};
class PlanTest
{
public:
void runPlanTest(TestPlanner *p, double *success, double *avgruntime, double *avglength)
{
double time = 0.0;
double length = 0.0;
int good = 0;
int N = 100;
for (int i = 0 ; i < N ; ++i)
if (p->execute(env, false, &time, &length))
good++;
*success = 100.0 * (double)good / (double)N;
*avgruntime = time / (double)N;
*avglength = length / (double)N;
if (verbose)
{
printf(" Success rate: %f%%\n", *success);
printf(" Average runtime: %f\n", *avgruntime);
printf(" Average path length: %f\n", *avglength);
}
}
template<typename T>
void runAllTests(double min_success, double max_avgtime)
{
double success = 0.0;
double avgruntime = 0.0;
double avglength = 0.0;
TestPlanner *p = new T();
runPlanTest(p, &success, &avgruntime, &avglength);
delete p;
BOOST_CHECK(success >= min_success);
BOOST_CHECK(avgruntime < max_avgtime);
BOOST_CHECK(avglength < 100.0);
}
protected:
PlanTest(void)
{
verbose = true;
boost::filesystem::path path(TEST_RESOURCES_DIR);
path = path / "env1.txt";
loadEnvironment(path.string().c_str(), env);
if (env.width * env.height == 0)
{
BOOST_FAIL( "The environment has a 0 dimension. Cannot continue" );
}
}
Environment2D env;
bool verbose;
};
BOOST_FIXTURE_TEST_SUITE(MyPlanTestFixture, PlanTest)
#define MACHINE_SPEED_FACTOR 1.0
// define boost tests for a planner assuming the naming convention is followed
#define OMPL_PLANNER_TEST(Name, MinSuccess, MaxAvgTime) \
BOOST_AUTO_TEST_CASE(control_##Name) \
{ \
if (VERBOSE) \
printf("\n\n\n*****************************\nTesting %s ...\n", #Name); \
runAllTests<Name##Test>(MinSuccess, MaxAvgTime * MACHINE_SPEED_FACTOR); \
if (VERBOSE) \
printf("Done with %s.\n", #Name); \
}
OMPL_PLANNER_TEST(RRT, 99.0, 0.05)
OMPL_PLANNER_TEST(RRTIntermediate, 99.0, 0.25)
OMPL_PLANNER_TEST(KPIECE, 99.0, 0.05)
OMPL_PLANNER_TEST(EST, 99.0, 0.05)
OMPL_PLANNER_TEST(SyclopRRT, 99.0, 0.05)
OMPL_PLANNER_TEST(SyclopEST, 99.0, 0.05)
OMPL_PLANNER_TEST(PDST, 99.0, 0.05)
BOOST_AUTO_TEST_SUITE_END()
|