File: 2dmap.cpp

package info (click to toggle)
ompl 1.1.0%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 37,164 kB
  • ctags: 8,045
  • sloc: cpp: 55,692; python: 3,843; sh: 147; makefile: 60
file content (564 lines) | stat: -rw-r--r-- 19,137 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
/*********************************************************************
* Software License Agreement (BSD License)
*
*  Copyright (c) 2008, Willow Garage, Inc.
*  All rights reserved.
*
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions
*  are met:
*
*   * Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   * Redistributions in binary form must reproduce the above
*     copyright notice, this list of conditions and the following
*     disclaimer in the documentation and/or other materials provided
*     with the distribution.
*   * Neither the name of the Willow Garage nor the names of its
*     contributors may be used to endorse or promote products derived
*     from this software without specific prior written permission.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
*  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
*  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
*  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
*  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
*  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
*  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
*  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
*  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*  POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/

/* Author: Ioan Sucan */

#define BOOST_TEST_MODULE "ControlPlanning"
#include <boost/test/unit_test.hpp>
#include <boost/filesystem.hpp>
#include <iostream>

#include "ompl/base/goals/GoalState.h"
#include "ompl/base/spaces/RealVectorStateSpace.h"
#include "ompl/control/spaces/RealVectorControlSpace.h"
#include "ompl/control/planners/rrt/RRT.h"
#include "ompl/control/planners/kpiece/KPIECE1.h"
#include "ompl/control/planners/est/EST.h"
#include "ompl/control/planners/pdst/PDST.h"
#include "ompl/control/planners/syclop/SyclopEST.h"
#include "ompl/control/planners/syclop/SyclopRRT.h"
#include "ompl/control/planners/syclop/GridDecomposition.h"

#include "../../BoostTestTeamCityReporter.h"
#include "../../resources/config.h"
#include "../../resources/environment2D.h"

using namespace ompl;

static const double SOLUTION_TIME = 1.0;
static const double MAX_VELOCITY = 3.0;
static const bool VERBOSE = true;

/** Declare a class used in validating states. Such a class definition is needed for any use
 * of a kinematic planner */
class myStateValidityChecker : public base::StateValidityChecker
{
public:

    myStateValidityChecker(base::SpaceInformation *si, const std::vector< std::vector<int> > &grid) : base::StateValidityChecker(si)
    {
        setGrid(grid);
    }

    virtual bool isValid(const base::State *state) const
    {
        /* planning is done in a continuous space, but our collision space representation is discrete */
        int x = (int)(state->as<base::RealVectorStateSpace::StateType>()->values[0]);
        int y = (int)(state->as<base::RealVectorStateSpace::StateType>()->values[1]);

        if (x < 0 || y < 0 || x >= w_ || y >= h_)
            return false;

        return grid_[x][y] == 0; // 0 means valid state
    }

    void setGrid(const std::vector< std::vector<int> > &grid)
    {
        grid_ = grid;
        w_ = grid_.size();
        h_ = grid_[0].size();
    }

protected:

    std::vector< std::vector<int> > grid_;
    int w_, h_;

};

class myStateSpace : public base::RealVectorStateSpace
{
public:

    myStateSpace() : base::RealVectorStateSpace(4)
    {
    }

    virtual double distance(const base::State *state1, const base::State *state2) const
    {
        /* planning is done in a continuous space, but our collision space representation is discrete */
        int x1 = (int)(state1->as<base::RealVectorStateSpace::StateType>()->values[0]);
        int y1 = (int)(state1->as<base::RealVectorStateSpace::StateType>()->values[1]);

        int x2 = (int)(state2->as<base::RealVectorStateSpace::StateType>()->values[0]);
        int y2 = (int)(state2->as<base::RealVectorStateSpace::StateType>()->values[1]);

        return abs(x1 - x2) + abs(y1 - y2);
    }
};

class myStatePropagator : public control::StatePropagator
{
public:

    myStatePropagator(const control::SpaceInformationPtr &si) : control::StatePropagator(si)
    {
    }

    virtual void propagate(const base::State *state, const control::Control* control, const double duration, base::State *result) const
    {
        result->as<base::RealVectorStateSpace::StateType>()->values[0] =
            state->as<base::RealVectorStateSpace::StateType>()->values[0] + duration * control->as<control::RealVectorControlSpace::ControlType>()->values[0];
        result->as<base::RealVectorStateSpace::StateType>()->values[1] =
            state->as<base::RealVectorStateSpace::StateType>()->values[1] + duration * control->as<control::RealVectorControlSpace::ControlType>()->values[1];

        result->as<base::RealVectorStateSpace::StateType>()->values[2] = control->as<control::RealVectorControlSpace::ControlType>()->values[0];
        result->as<base::RealVectorStateSpace::StateType>()->values[3] = control->as<control::RealVectorControlSpace::ControlType>()->values[1];
        si_->getStateSpace()->enforceBounds(result);
    }
};

class myProjectionEvaluator : public base::ProjectionEvaluator
{
public:
    myProjectionEvaluator(const base::StateSpacePtr &space, const std::vector<double> &cellSizes) : base::ProjectionEvaluator(space)
    {
        setCellSizes(cellSizes);
        bounds_.resize(2);
        const base::RealVectorBounds& spacebounds = space->as<base::RealVectorStateSpace>()->getBounds();
        bounds_.setLow(0, spacebounds.low[0]);
        bounds_.setLow(1, spacebounds.low[1]);
        bounds_.setHigh(0, spacebounds.high[0]);
        bounds_.setHigh(1, spacebounds.high[1]);
    }

    virtual unsigned int getDimension(void) const
    {
        return 2;
    }

    virtual void project(const base::State *state, base::EuclideanProjection &projection) const
    {
        projection(0) = state->as<base::RealVectorStateSpace::StateType>()->values[0];
        projection(1) = state->as<base::RealVectorStateSpace::StateType>()->values[1];
    }
};

/** Space information */
control::SpaceInformationPtr mySpaceInformation(Environment2D &env)
{
    base::RealVectorStateSpace *sMan = new myStateSpace();

    base::RealVectorBounds sbounds(4);

    // dimension 0 (x) spans between [0, width)
    // dimension 1 (y) spans between [0, height)
    // since sampling is continuous and we round down, we allow values until just under the max limit
    // the resolution is 1.0 since we check cells only

    sbounds.low[0] = 0.0;
    sbounds.high[0] = (double)env.width - 0.000000001;

    sbounds.low[1] = 0.0;
    sbounds.high[1] = (double)env.height - 0.000000001;

    sbounds.low[2] = -MAX_VELOCITY;
    sbounds.high[2] = MAX_VELOCITY;

    sbounds.low[3] = -MAX_VELOCITY;
    sbounds.high[3] = MAX_VELOCITY;
    sMan->setBounds(sbounds);

    base::StateSpacePtr sManPtr(sMan);

    control::RealVectorControlSpace *cMan = new control::RealVectorControlSpace(sManPtr, 2);
    base::RealVectorBounds cbounds(2);

    cbounds.low[0] = -MAX_VELOCITY;
    cbounds.high[0] = MAX_VELOCITY;
    cbounds.low[1] = -MAX_VELOCITY;
    cbounds.high[1] = MAX_VELOCITY;
    cMan->setBounds(cbounds);

    control::SpaceInformationPtr si(new control::SpaceInformation(sManPtr, control::ControlSpacePtr(cMan)));
    si->setMinMaxControlDuration(2, 25);
    si->setPropagationStepSize(0.25);

    si->setStateValidityChecker(base::StateValidityCheckerPtr(new myStateValidityChecker(si.get(), env.grid)));
    si->setStatePropagator(control::StatePropagatorPtr(new myStatePropagator(si)));

    si->setup();

    return si;
}


/** A base class for testing planners */
class TestPlanner
{
public:
    TestPlanner(void)
    {
        msg::setLogLevel(msg::LOG_ERROR);
    }

    virtual ~TestPlanner(void)
    {
    }

    virtual bool execute(Environment2D &env, bool show = false, double *time = NULL, double *pathLength = NULL)
    {
        bool result = true;

        /* instantiate space information */
        control::SpaceInformationPtr si = mySpaceInformation(env);
        base::ProblemDefinitionPtr pdef(new base::ProblemDefinition(si));

        /* instantiate motion planner */
        base::PlannerPtr planner = newPlanner(si);
        planner->setProblemDefinition(pdef);
        planner->setup();

        /* set the initial state; the memory for this is automatically cleaned by SpaceInformation */
        base::ScopedState<base::RealVectorStateSpace> state(si);
        state->values[0] = env.start.first;
        state->values[1] = env.start.second;
        state->values[2] = 0.0;
        state->values[3] = 0.0;
        pdef->addStartState(state);

        /* set the goal state; the memory for this is automatically cleaned by SpaceInformation */
        base::GoalState *goal = new base::GoalState(si);
        base::ScopedState<base::RealVectorStateSpace> gstate(si);
        gstate->values[0] = env.goal.first;
        gstate->values[1] = env.goal.second;
        gstate->values[2] = 0.0;
        gstate->values[3] = 0.0;
        goal->setState(gstate);
        goal->setThreshold(1e-3); // this is basically 0, but we want to account for numerical instabilities
        pdef->setGoal(base::GoalPtr(goal));

        planner->getProblemDefinition()->isStraightLinePathValid();

        /* start counting time */
        ompl::time::point startTime = ompl::time::now();

        /* call the planner to solve the problem */
        if (planner->solve(SOLUTION_TIME))
        {
            ompl::time::duration elapsed = ompl::time::now() - startTime;
            if (time)
                *time += ompl::time::seconds(elapsed);
            if (show)
                printf("Found solution in %f seconds!\n", ompl::time::seconds(elapsed));

            control::PathControl *path = static_cast<control::PathControl*>(pdef->getSolutionPath().get());
            path->interpolate();

            if (!path->check())
                exit(1);

            elapsed = ompl::time::now() - startTime;

            if (time)
                *time += ompl::time::seconds(elapsed);

            if (pathLength)
                *pathLength += path->length();

            if (show)
            {
                printEnvironment(std::cout, env);
                std::cout << std::endl;
            }

            Environment2D temp = env;
            /* display the solution */
            for (unsigned int i = 0 ; i < path->getStateCount() ; ++i)
            {
                int x = (int)(path->getState(i)->as<base::RealVectorStateSpace::StateType>()->values[0]);
                int y = (int)(path->getState(i)->as<base::RealVectorStateSpace::StateType>()->values[1]);
                if (temp.grid[x][y] == T_FREE || temp.grid[x][y] == T_PATH)
                    temp.grid[x][y] = T_PATH;
                else
                {
                    temp.grid[x][y] = T_ERROR;
                    result = false;
                }
            }

            if (show)
                printEnvironment(std::cout, temp);
        }
        else
            result = false;

        return result;
    }

protected:

    virtual base::PlannerPtr newPlanner(const control::SpaceInformationPtr &si) = 0;

};

class RRTTest : public TestPlanner
{
protected:

    base::PlannerPtr newPlanner(const control::SpaceInformationPtr &si)
    {
        control::RRT *rrt = new control::RRT(si);
        rrt->setIntermediateStates(false);
        return base::PlannerPtr(rrt);
    }
};

class RRTIntermediateTest : public TestPlanner
{
protected:

    base::PlannerPtr newPlanner(const control::SpaceInformationPtr &si)
    {
        control::RRT *rrt = new control::RRT(si);
        rrt->setIntermediateStates(true);
        return base::PlannerPtr(rrt);
    }
};

// A 2D workspace grid-decomposition for Syclop planners
class SyclopDecomposition : public control::GridDecomposition
{
    public:
        SyclopDecomposition(const int len, const base::RealVectorBounds& b) : GridDecomposition(len, 2, b) {}

        virtual void project(const base::State* s, std::vector<double>& coord) const
        {
            coord.resize(2);
            coord[0] = s->as<base::RealVectorStateSpace::StateType>()->values[0];
            coord[1] = s->as<base::RealVectorStateSpace::StateType>()->values[1];
        }

        virtual void sampleFullState(const base::StateSamplerPtr& sampler, const std::vector<double>& coord, base::State* s) const
        {
            sampler->sampleUniform(s);
            s->as<base::RealVectorStateSpace::StateType>()->values[0] = coord[0];
            s->as<base::RealVectorStateSpace::StateType>()->values[1] = coord[1];
        }

    private:
        ompl::RNG rng_;
};

class SyclopRRTTest : public TestPlanner
{
    base::PlannerPtr newPlanner(const control::SpaceInformationPtr &si)
    {
        base::RealVectorBounds bounds(2);

        const base::RealVectorBounds& spacebounds = si->getStateSpace()->as<base::RealVectorStateSpace>()->getBounds();
        bounds.setLow(0, spacebounds.low[0]);
        bounds.setLow(1, spacebounds.low[1]);
        bounds.setHigh(0, spacebounds.high[0]);
        bounds.setHigh(1, spacebounds.high[1]);

        // Create a 10x10 grid decomposition for Syclop
        control::DecompositionPtr decomp(new SyclopDecomposition (10, bounds));

        control::SyclopRRT *srrt = new control::SyclopRRT(si, decomp);
        // Set syclop parameters conducive to a tiny workspace
        srrt->setNumFreeVolumeSamples(1000);
        srrt->setNumRegionExpansions(10);
        srrt->setNumTreeExpansions(5);
        return base::PlannerPtr(srrt);
    }
};

class SyclopESTTest : public TestPlanner
{
    base::PlannerPtr newPlanner(const control::SpaceInformationPtr &si)
    {
        base::RealVectorBounds bounds(2);

        const base::RealVectorBounds& spacebounds = si->getStateSpace()->as<base::RealVectorStateSpace>()->getBounds();
        bounds.setLow(0, spacebounds.low[0]);
        bounds.setLow(1, spacebounds.low[1]);
        bounds.setHigh(0, spacebounds.high[0]);
        bounds.setHigh(1, spacebounds.high[1]);

        // Create a 10x10 grid decomposition for Syclop
        control::DecompositionPtr decomp(new SyclopDecomposition (10, bounds));

        control::SyclopEST *sest = new control::SyclopEST(si, decomp);
        // Set syclop parameters conducive to a tiny workspace
        sest->setNumFreeVolumeSamples(1000);
        sest->setNumRegionExpansions(10);
        sest->setNumTreeExpansions(5);
        return base::PlannerPtr(sest);
    }
};

class KPIECETest : public TestPlanner
{
protected:

    base::PlannerPtr newPlanner(const control::SpaceInformationPtr &si)
    {
        control::KPIECE1 *kpiece = new control::KPIECE1(si);

        std::vector<double> cdim;
        cdim.push_back(1);
        cdim.push_back(1);
        base::ProjectionEvaluatorPtr ope(new myProjectionEvaluator(si->getStateSpace(), cdim));

        kpiece->setProjectionEvaluator(ope);

        return base::PlannerPtr(kpiece);
    }
};

class ESTTest : public TestPlanner
{
protected:

    base::PlannerPtr newPlanner(const control::SpaceInformationPtr &si)
    {
        control::EST *est = new control::EST(si);

        std::vector<double> cdim;
        cdim.push_back(1);
        cdim.push_back(1);
        base::ProjectionEvaluatorPtr ope(new myProjectionEvaluator(si->getStateSpace(), cdim));

        est->setProjectionEvaluator(ope);

        return base::PlannerPtr(est);
    }
};

class PDSTTest : public TestPlanner
{
protected:

    base::PlannerPtr newPlanner(const control::SpaceInformationPtr &si)
    {
        control::PDST *pdst = new control::PDST(si);

        std::vector<double> cdim;
        cdim.push_back(1);
        cdim.push_back(1);
        base::ProjectionEvaluatorPtr ope(new myProjectionEvaluator(si->getStateSpace(), cdim));

        pdst->setProjectionEvaluator(ope);

        return base::PlannerPtr(pdst);
    }
};

class PlanTest
{
public:

    void runPlanTest(TestPlanner *p, double *success, double *avgruntime, double *avglength)
    {
        double time   = 0.0;
        double length = 0.0;
        int    good   = 0;
        int    N      = 100;

        for (int i = 0 ; i < N ; ++i)
            if (p->execute(env, false, &time, &length))
                good++;

        *success    = 100.0 * (double)good / (double)N;
        *avgruntime = time / (double)N;
        *avglength  = length / (double)N;

        if (verbose)
        {
            printf("    Success rate: %f%%\n", *success);
            printf("    Average runtime: %f\n", *avgruntime);
            printf("    Average path length: %f\n", *avglength);
        }
    }

    template<typename T>
    void runAllTests(double min_success, double max_avgtime)
    {
        double success    = 0.0;
        double avgruntime = 0.0;
        double avglength  = 0.0;

        TestPlanner *p = new T();
        runPlanTest(p, &success, &avgruntime, &avglength);
        delete p;

        BOOST_CHECK(success >= min_success);
        BOOST_CHECK(avgruntime < max_avgtime);
        BOOST_CHECK(avglength < 100.0);
    }

protected:

    PlanTest(void)
    {
        verbose = true;
        boost::filesystem::path path(TEST_RESOURCES_DIR);
        path = path / "env1.txt";
        loadEnvironment(path.string().c_str(), env);

        if (env.width * env.height == 0)
        {
            BOOST_FAIL( "The environment has a 0 dimension. Cannot continue" );
        }
    }

    Environment2D env;
    bool          verbose;
};

BOOST_FIXTURE_TEST_SUITE(MyPlanTestFixture, PlanTest)

#define MACHINE_SPEED_FACTOR 1.0

// define boost tests for a planner assuming the naming convention is followed
#define OMPL_PLANNER_TEST(Name, MinSuccess, MaxAvgTime)                 \
    BOOST_AUTO_TEST_CASE(control_##Name)                                \
    {                                                                        \
        if (VERBOSE)                                                        \
            printf("\n\n\n*****************************\nTesting %s ...\n", #Name); \
        runAllTests<Name##Test>(MinSuccess, MaxAvgTime * MACHINE_SPEED_FACTOR); \
        if (VERBOSE)                                                        \
            printf("Done with %s.\n", #Name);                                \
    }

OMPL_PLANNER_TEST(RRT, 99.0, 0.05)
OMPL_PLANNER_TEST(RRTIntermediate, 99.0, 0.25)
OMPL_PLANNER_TEST(KPIECE, 99.0, 0.05)
OMPL_PLANNER_TEST(EST, 99.0, 0.05)
OMPL_PLANNER_TEST(SyclopRRT, 99.0, 0.05)
OMPL_PLANNER_TEST(SyclopEST, 99.0, 0.05)
OMPL_PLANNER_TEST(PDST, 99.0, 0.05)

BOOST_AUTO_TEST_SUITE_END()