1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
/*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2008, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Willow Garage nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/* Author: Ioan Sucan */
#define BOOST_TEST_MODULE "Random"
#include <boost/test/unit_test.hpp>
#include "ompl/config.h"
#include "ompl/util/RandomNumbers.h"
#include "../../BoostTestTeamCityReporter.h"
#include <cmath>
#include <vector>
#include <cstdio>
// For boost::make_shared
#include <boost/make_shared.hpp>
using namespace ompl;
struct SetSeedTo1
{
SetSeedTo1(void)
{
ompl::RNG::setSeed(1);
}
};
// make sure the test is deterministic
static SetSeedTo1 proxy;
// define a convenience macro
#define BOOST_OMPL_EXPECT_NEAR(a, b, diff) BOOST_CHECK_SMALL((a) - (b), diff)
/* Just test we get some random values */
BOOST_AUTO_TEST_CASE(DifferentSeeds)
{
RNG r1, r2, r3, r4;
int same = 0;
int eq = 0;
const int N = 100;
for (int i = 0 ; i < N ; ++i)
{
int v1 = r1.uniformInt(0, 100);
int v2 = r2.uniformInt(0, 100);
int v3 = r3.uniformInt(0, 100);
int v4 = r4.uniformInt(0, 100);
if (v1 == v2 && v2 == v3 && v3 == v4)
eq++;
if (v1 == r1.uniformInt(0, 100))
same++;
if (v2 == r2.uniformInt(0, 100))
same++;
if (v3 == r3.uniformInt(0, 100))
same++;
if (v4 == r4.uniformInt(0, 100))
same++;
}
BOOST_CHECK(!(eq > N / 2));
BOOST_CHECK(same < 2 * N);
}
BOOST_AUTO_TEST_CASE(ValidRangeInts)
{
RNG r;
const int N = 100;
const int V = 10000 * N;
std::vector<int> c(N + 1, 0);
for (int i = 0 ; i < V ; ++i)
{
int v = r.uniformInt(0, N);
BOOST_CHECK(v >= 0);
BOOST_CHECK(v <= N);
c[v]++;
}
for (unsigned int i = 0 ; i < c.size() ; ++i)
BOOST_CHECK(c[i] > V/N/3);
}
static const double NUM_INT_SAMPLES = 1000000;
static const double NUM_REAL_SAMPLES = 1000000;
/* The following widening factor is multiplied by the standard error of the mean
* in errUniformInt() and errUniformReal() to obtain a reasonable range to pass to BOOST_CHECK_CLOSE().
* 4 sigma events should only happen "twice a lifetime" on average, so this should be lienient enough. */
static const double STDERR_WIDENING_FACTOR = 4.0;
static double avgIntsN(int s, int l, const int N)
{
RNG r;
double sum = 0.0;
for (int i = 0 ; i < N ; ++i)
sum += r.uniformInt(s, l);
return sum / (double)N;
}
static double avgInts(int s, int l)
{
return avgIntsN(s, l, NUM_INT_SAMPLES);
}
static double errUniformInt(int s, int l)
{
const int length = l-s+1;
// standard error of mean for discrete uniform distribution over {s,s+1,...,l}
const double stdErr = sqrt((length*length-1)/(12.0*NUM_INT_SAMPLES));
return stdErr * STDERR_WIDENING_FACTOR + std::numeric_limits<double>::epsilon();
}
BOOST_AUTO_TEST_CASE(AvgInts)
{
BOOST_OMPL_EXPECT_NEAR(avgInts(0, 1), 0.5, errUniformInt(0,1));
BOOST_OMPL_EXPECT_NEAR(avgInts(0, 10), 5.0, errUniformInt(0,10));
BOOST_OMPL_EXPECT_NEAR(avgInts(-1, 1), 0.0, errUniformInt(-1,1));
BOOST_OMPL_EXPECT_NEAR(avgInts(-1, 0), -0.5, errUniformInt(-1,0));
BOOST_OMPL_EXPECT_NEAR(avgInts(-2, 4), 1.0, errUniformInt(-2,4));
BOOST_OMPL_EXPECT_NEAR(avgInts(2, 4), 3.0, errUniformInt(2,4));
BOOST_OMPL_EXPECT_NEAR(avgInts(-6, -2), -4.0, errUniformInt(-6,-2));
BOOST_OMPL_EXPECT_NEAR(avgIntsN(0, 0, 1000), 0.0, errUniformInt(0,0));
}
static double avgRealsN(double s, double l, const int N)
{
RNG r;
double sum = 0.0;
for (int i = 0 ; i < N ; ++i)
sum += r.uniformReal(s, l);
return sum / (double)N;
}
static double avgReals(double s, double l)
{
return avgRealsN(s, l, NUM_REAL_SAMPLES);
}
static double errUniformReal(double s, double l)
{
// standard error of mean for continuous uniform distribution over real interval [s,l].
const double stdErr = (l-s)*sqrt(1.0/(12.0*NUM_REAL_SAMPLES));
return stdErr * STDERR_WIDENING_FACTOR + std::numeric_limits<double>::epsilon();
}
BOOST_AUTO_TEST_CASE(AvgReals)
{
BOOST_OMPL_EXPECT_NEAR(avgReals(-0.1, 0.3), 0.1, errUniformReal(-0.1,0.3));
BOOST_OMPL_EXPECT_NEAR(avgReals(0, 1), 0.5, errUniformReal(0,1));
BOOST_OMPL_EXPECT_NEAR(avgReals(0, 10), 5.0, errUniformReal(0,10));
BOOST_OMPL_EXPECT_NEAR(avgReals(-1, 1), 0.0, errUniformReal(-1,1));
BOOST_OMPL_EXPECT_NEAR(avgReals(-1, 0), -0.5, errUniformReal(-1,0));
BOOST_OMPL_EXPECT_NEAR(avgReals(-2, 4), 1.0, errUniformReal(-2,4));
BOOST_OMPL_EXPECT_NEAR(avgReals(2, 4), 3.0, errUniformReal(2,4));
BOOST_OMPL_EXPECT_NEAR(avgReals(-6, -2), -4.0, errUniformReal(-6,-2));
BOOST_OMPL_EXPECT_NEAR(avgRealsN(0, 0, 1000), 0.0, errUniformReal(0,0));
}
static double avgNormalRealsN(double mean, double stddev, const int N)
{
RNG r;
double sum = 0.0;
for (int i = 0 ; i < N ; ++i)
sum += r.gaussian(mean, stddev);
return sum / (double)N;
}
static double avgNormalReals(double m, double s)
{
return avgNormalRealsN(m, s, NUM_REAL_SAMPLES);
}
static double errNormal(double stddev)
{
// standard error of mean for gaussian with given stddev
return STDERR_WIDENING_FACTOR * stddev / sqrt(NUM_REAL_SAMPLES);
}
BOOST_AUTO_TEST_CASE(NormalReals)
{
BOOST_OMPL_EXPECT_NEAR(avgNormalReals(10.0, 1.0), 10.0, errNormal(1.0));
}
BOOST_AUTO_TEST_CASE(SampleUnitSphere)
{
// Variables
// The random number generator
RNG rng;
// The number of dimensions to test
unsigned int numDims = 25u;
// The number of samples to test per dimension
unsigned int numSamples = 1000u;
// The testing tolerance
double testTol = 10.0*std::numeric_limits<double>::epsilon();
// Iterate over a sequence of dimensions
for (unsigned int dim = 1u; dim <= numDims; ++dim)
{
// Iterate over a sequence of random samples
for (unsigned int j = 0u; j < numSamples; ++j)
{
// Variables
// Sample
std::vector<double> xRand(dim);
// Magnitude
double magnitude;
// Get the random sample
rng.uniformNormalVector(dim, &xRand[0]);
// Calculate the magnitude
magnitude = 0.0;
for (std::vector<double>::const_iterator iter = xRand.begin(); iter != xRand.end(); ++iter)
{
magnitude = magnitude + *iter * *iter;
}
magnitude = std::sqrt(magnitude);
// Check that it's close enough to 1.0
BOOST_OMPL_EXPECT_NEAR(magnitude, 1.0, testTol);
}
}
}
BOOST_AUTO_TEST_CASE(SampleBall)
{
// Variables
// The random number generator
RNG rng;
// The number of dimensions to test
unsigned int numDims = 25u;
// The number of samples to test per dimension
unsigned int numSamples = 1000u;
// Iterate over a sequence of dimensions
for (unsigned int dim = 1u; dim <= numDims; ++dim)
{
// Variables
// The radius
double radius;
// And a random radius
radius = rng.uniformReal(0.1, 10);
// Iterate over a sequence of random samples
for (unsigned int j = 0u; j < numSamples; ++j)
{
// Variables
// Sample
std::vector<double> xRand(dim);
// Magnitude
double magnitude;
// Get the random sample
rng.uniformInBall(radius, dim, &xRand[0]);
// Calculate the magnitude
magnitude = 0.0;
for (std::vector<double>::const_iterator iter = xRand.begin(); iter != xRand.end(); ++iter)
{
magnitude = magnitude + *iter * *iter;
}
magnitude = std::sqrt(magnitude);
// Check that it's close enough to 1.0
BOOST_CHECK_LT(magnitude, radius);
}
}
}
#if OMPL_HAVE_EIGEN3
BOOST_AUTO_TEST_CASE(SamplePhsSurface)
{
// Variables
// The random number generator
RNG rng;
// The number of dimensions to test
unsigned int numDims = 25u;
// The number of samples to test per dimension
unsigned int numSamples = 1000u;
// The testing tolerance
double testTol = 1E5*std::numeric_limits<double>::epsilon();
// Iterate over a sequence of dimensions
for (unsigned int dim = 1u; dim <= numDims; ++dim)
{
// Variables
// The foci
std::vector<double> v1(dim);
std::vector<double> v2(dim);
// The transverse diameter
double tDiameter;
// The PHS definition
ompl::ProlateHyperspheroidPtr phsPtr;
// Pick random foci
for (unsigned int i = 0u; i < dim; ++i)
{
v1.at(i) = rng.uniformReal(-25.0, 25.0);
v2.at(i) = rng.uniformReal(-25.0, 25.0);
}
// Create the PHS object
phsPtr = boost::make_shared<ompl::ProlateHyperspheroid>(dim, &v1[0], &v2[0]);
// Pick a random transverse diameter
tDiameter = rng.uniformReal(1.01*phsPtr->getMinTransverseDiameter(), 2.5*phsPtr->getMinTransverseDiameter());
// Set
phsPtr->setTransverseDiameter(tDiameter);
// Iterate over a sequence of random samples
for (unsigned int j = 0u; j < numSamples; ++j)
{
// Variables
// Sample
std::vector<double> xRand(dim);
// Get the random sample
rng.uniformProlateHyperspheroidSurface(phsPtr, &xRand[0]);
// Check that the point lies on the surface
BOOST_OMPL_EXPECT_NEAR(phsPtr->getPathLength(&xRand[0]), tDiameter, testTol);
}
}
}
BOOST_AUTO_TEST_CASE(SampleInPhs)
{
// Variables
// The random number generator
RNG rng;
// The number of dimensions to test
unsigned int numDims = 25u;
// The number of samples to test per dimension
unsigned int numSamples = 1000u;
// Iterate over a sequence of dimensions
for (unsigned int dim = 1u; dim <= numDims; ++dim)
{
// Variables
// The foci
std::vector<double> v1(dim);
std::vector<double> v2(dim);
// The transverse diameter
double tDiameter;
// The PHS definition
ompl::ProlateHyperspheroidPtr phsPtr;
// Pick random foci
for (unsigned int i = 0u; i < dim; ++i)
{
v1.at(i) = rng.uniformReal(-25.0, 25.0);
v2.at(i) = rng.uniformReal(-25.0, 25.0);
}
// Create the PHS object
phsPtr = boost::make_shared<ompl::ProlateHyperspheroid>(dim, &v1[0], &v2[0]);
// Pick a random transverse diameter
tDiameter = rng.uniformReal(1.1*phsPtr->getMinTransverseDiameter(), 2.5*phsPtr->getMinTransverseDiameter());
// Set
phsPtr->setTransverseDiameter(tDiameter);
// Iterate over a sequence of random samples
for (unsigned int j = 0u; j < numSamples; ++j)
{
// Variables
// Sample
std::vector<double> xRand(dim);
// Get the random sample
rng.uniformProlateHyperspheroid(phsPtr, &xRand[0]);
// Check that the point lies within the shape
BOOST_CHECK_GE(phsPtr->getPathLength(&xRand[0]), phsPtr->getMinTransverseDiameter());
BOOST_CHECK_LT(phsPtr->getPathLength(&xRand[0]), tDiameter);
}
}
}
#endif // OMPL_HAVE_EIGEN3
|