File: random.cpp

package info (click to toggle)
ompl 1.1.0%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 37,164 kB
  • ctags: 8,045
  • sloc: cpp: 55,692; python: 3,843; sh: 147; makefile: 60
file content (413 lines) | stat: -rw-r--r-- 13,100 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
/*********************************************************************
* Software License Agreement (BSD License)
*
*  Copyright (c) 2008, Willow Garage, Inc.
*  All rights reserved.
*
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions
*  are met:
*
*   * Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   * Redistributions in binary form must reproduce the above
*     copyright notice, this list of conditions and the following
*     disclaimer in the documentation and/or other materials provided
*     with the distribution.
*   * Neither the name of the Willow Garage nor the names of its
*     contributors may be used to endorse or promote products derived
*     from this software without specific prior written permission.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
*  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
*  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
*  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
*  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
*  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
*  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
*  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
*  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*  POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/

/* Author: Ioan Sucan */

#define BOOST_TEST_MODULE "Random"
#include <boost/test/unit_test.hpp>

#include "ompl/config.h"
#include "ompl/util/RandomNumbers.h"
#include "../../BoostTestTeamCityReporter.h"
#include <cmath>
#include <vector>
#include <cstdio>
// For boost::make_shared
#include <boost/make_shared.hpp>

using namespace ompl;

struct SetSeedTo1
{
    SetSeedTo1(void)
    {
        ompl::RNG::setSeed(1);
    }
};
// make sure the test is deterministic
static SetSeedTo1 proxy;

// define a convenience macro
#define BOOST_OMPL_EXPECT_NEAR(a, b, diff) BOOST_CHECK_SMALL((a) - (b), diff)

/* Just test we get some random values */
BOOST_AUTO_TEST_CASE(DifferentSeeds)
{
    RNG r1, r2, r3, r4;
    int same = 0;
    int eq   = 0;
    const int N = 100;
    for (int i = 0 ; i < N ; ++i)
    {
        int v1 = r1.uniformInt(0, 100);
        int v2 = r2.uniformInt(0, 100);
        int v3 = r3.uniformInt(0, 100);
        int v4 = r4.uniformInt(0, 100);

        if (v1 == v2 && v2 == v3 && v3 == v4)
            eq++;
        if (v1 == r1.uniformInt(0, 100))
            same++;
        if (v2 == r2.uniformInt(0, 100))
            same++;
        if (v3 == r3.uniformInt(0, 100))
            same++;
        if (v4 == r4.uniformInt(0, 100))
            same++;
    }
    BOOST_CHECK(!(eq > N / 2));
    BOOST_CHECK(same < 2 * N);
}

BOOST_AUTO_TEST_CASE(ValidRangeInts)
{
    RNG r;
    const int N = 100;
    const int V = 10000 * N;
    std::vector<int> c(N + 1, 0);
    for (int i = 0 ; i < V ; ++i)
    {
        int v = r.uniformInt(0, N);
        BOOST_CHECK(v >= 0);
        BOOST_CHECK(v <= N);
        c[v]++;
    }

    for (unsigned int i = 0 ; i < c.size() ; ++i)
        BOOST_CHECK(c[i] > V/N/3);
}

static const double NUM_INT_SAMPLES =  1000000;
static const double NUM_REAL_SAMPLES = 1000000;
/* The following widening factor is multiplied by the standard error of the mean
 * in errUniformInt() and errUniformReal() to obtain a reasonable range to pass to BOOST_CHECK_CLOSE().
 * 4 sigma events should only happen "twice a lifetime" on average, so this should be lienient enough. */
static const double STDERR_WIDENING_FACTOR = 4.0;

static double avgIntsN(int s, int l, const int N)
{
    RNG r;
    double sum = 0.0;
    for (int i = 0 ; i < N ; ++i)
        sum += r.uniformInt(s, l);
    return sum / (double)N;
}

static double avgInts(int s, int l)
{
    return avgIntsN(s, l, NUM_INT_SAMPLES);
}

static double errUniformInt(int s, int l)
{
    const int length = l-s+1;
    // standard error of mean for discrete uniform distribution over {s,s+1,...,l}
    const double stdErr = sqrt((length*length-1)/(12.0*NUM_INT_SAMPLES));
    return stdErr * STDERR_WIDENING_FACTOR + std::numeric_limits<double>::epsilon();
}

BOOST_AUTO_TEST_CASE(AvgInts)
{
    BOOST_OMPL_EXPECT_NEAR(avgInts(0, 1), 0.5, errUniformInt(0,1));
    BOOST_OMPL_EXPECT_NEAR(avgInts(0, 10), 5.0, errUniformInt(0,10));
    BOOST_OMPL_EXPECT_NEAR(avgInts(-1, 1), 0.0, errUniformInt(-1,1));
    BOOST_OMPL_EXPECT_NEAR(avgInts(-1, 0), -0.5, errUniformInt(-1,0));
    BOOST_OMPL_EXPECT_NEAR(avgInts(-2, 4), 1.0, errUniformInt(-2,4));
    BOOST_OMPL_EXPECT_NEAR(avgInts(2, 4), 3.0, errUniformInt(2,4));
    BOOST_OMPL_EXPECT_NEAR(avgInts(-6, -2), -4.0, errUniformInt(-6,-2));
    BOOST_OMPL_EXPECT_NEAR(avgIntsN(0, 0, 1000), 0.0, errUniformInt(0,0));
}

static double avgRealsN(double s, double l, const int N)
{
    RNG r;
    double sum = 0.0;
    for (int i = 0 ; i < N ; ++i)
        sum += r.uniformReal(s, l);
    return sum / (double)N;
}

static double avgReals(double s, double l)
{
    return avgRealsN(s, l, NUM_REAL_SAMPLES);
}

static double errUniformReal(double s, double l)
{
    // standard error of mean for continuous uniform distribution over real interval [s,l].
    const double stdErr = (l-s)*sqrt(1.0/(12.0*NUM_REAL_SAMPLES));
    return stdErr * STDERR_WIDENING_FACTOR + std::numeric_limits<double>::epsilon();
}

BOOST_AUTO_TEST_CASE(AvgReals)
{
    BOOST_OMPL_EXPECT_NEAR(avgReals(-0.1, 0.3), 0.1, errUniformReal(-0.1,0.3));
    BOOST_OMPL_EXPECT_NEAR(avgReals(0, 1), 0.5, errUniformReal(0,1));
    BOOST_OMPL_EXPECT_NEAR(avgReals(0, 10), 5.0, errUniformReal(0,10));
    BOOST_OMPL_EXPECT_NEAR(avgReals(-1, 1), 0.0, errUniformReal(-1,1));
    BOOST_OMPL_EXPECT_NEAR(avgReals(-1, 0), -0.5, errUniformReal(-1,0));
    BOOST_OMPL_EXPECT_NEAR(avgReals(-2, 4), 1.0, errUniformReal(-2,4));
    BOOST_OMPL_EXPECT_NEAR(avgReals(2, 4), 3.0, errUniformReal(2,4));
    BOOST_OMPL_EXPECT_NEAR(avgReals(-6, -2), -4.0, errUniformReal(-6,-2));
    BOOST_OMPL_EXPECT_NEAR(avgRealsN(0, 0, 1000), 0.0, errUniformReal(0,0));
}

static double avgNormalRealsN(double mean, double stddev, const int N)
{
    RNG r;
    double sum = 0.0;
    for (int i = 0 ; i < N ; ++i)
        sum += r.gaussian(mean, stddev);
    return sum / (double)N;
}

static double avgNormalReals(double m, double s)
{
    return avgNormalRealsN(m, s, NUM_REAL_SAMPLES);
}

static double errNormal(double stddev)
{
    // standard error of mean for gaussian with given stddev
    return STDERR_WIDENING_FACTOR * stddev / sqrt(NUM_REAL_SAMPLES);
}

BOOST_AUTO_TEST_CASE(NormalReals)
{
    BOOST_OMPL_EXPECT_NEAR(avgNormalReals(10.0, 1.0), 10.0, errNormal(1.0));
}


BOOST_AUTO_TEST_CASE(SampleUnitSphere)
{
    // Variables
    // The random number generator
    RNG rng;
    // The number of dimensions to test
    unsigned int numDims = 25u;
    // The number of samples to test per dimension
    unsigned int numSamples = 1000u;
    // The testing tolerance
    double testTol = 10.0*std::numeric_limits<double>::epsilon();

    // Iterate over a sequence of dimensions
    for (unsigned int dim = 1u; dim <= numDims; ++dim)
    {
        // Iterate over a sequence of random samples
        for (unsigned int j = 0u; j < numSamples; ++j)
        {
            // Variables
            // Sample
            std::vector<double> xRand(dim);
            // Magnitude
            double magnitude;

            // Get the random sample
            rng.uniformNormalVector(dim, &xRand[0]);

            // Calculate the magnitude
            magnitude = 0.0;
            for (std::vector<double>::const_iterator iter = xRand.begin(); iter != xRand.end(); ++iter)
            {
                magnitude = magnitude + *iter * *iter;
            }
            magnitude = std::sqrt(magnitude);

            // Check that it's close enough to 1.0
            BOOST_OMPL_EXPECT_NEAR(magnitude, 1.0, testTol);
        }
    }
}

BOOST_AUTO_TEST_CASE(SampleBall)
{
    // Variables
    // The random number generator
    RNG rng;
    // The number of dimensions to test
    unsigned int numDims = 25u;
    // The number of samples to test per dimension
    unsigned int numSamples = 1000u;

    // Iterate over a sequence of dimensions
    for (unsigned int dim = 1u; dim <= numDims; ++dim)
    {
        // Variables
        // The radius
        double radius;

        // And a random radius
        radius = rng.uniformReal(0.1, 10);

        // Iterate over a sequence of random samples
        for (unsigned int j = 0u; j < numSamples; ++j)
        {
            // Variables
            // Sample
            std::vector<double> xRand(dim);
            // Magnitude
            double magnitude;

            // Get the random sample
            rng.uniformInBall(radius, dim, &xRand[0]);

            // Calculate the magnitude
            magnitude = 0.0;
            for (std::vector<double>::const_iterator iter = xRand.begin(); iter != xRand.end(); ++iter)
            {
                magnitude = magnitude + *iter * *iter;
            }
            magnitude = std::sqrt(magnitude);

            // Check that it's close enough to 1.0
            BOOST_CHECK_LT(magnitude, radius);
        }
    }
}

#if OMPL_HAVE_EIGEN3

BOOST_AUTO_TEST_CASE(SamplePhsSurface)
{
    // Variables
    // The random number generator
    RNG rng;
    // The number of dimensions to test
    unsigned int numDims = 25u;
    // The number of samples to test per dimension
    unsigned int numSamples = 1000u;
    // The testing tolerance
    double testTol = 1E5*std::numeric_limits<double>::epsilon();

    // Iterate over a sequence of dimensions
    for (unsigned int dim = 1u; dim <= numDims; ++dim)
    {
        // Variables
        // The foci
        std::vector<double> v1(dim);
        std::vector<double> v2(dim);
        // The transverse diameter
        double tDiameter;
        // The PHS definition
        ompl::ProlateHyperspheroidPtr phsPtr;

        // Pick random foci
        for (unsigned int i = 0u; i < dim; ++i)
        {
            v1.at(i) = rng.uniformReal(-25.0, 25.0);
            v2.at(i) = rng.uniformReal(-25.0, 25.0);
        }

        // Create the PHS object
        phsPtr = boost::make_shared<ompl::ProlateHyperspheroid>(dim, &v1[0], &v2[0]);

        // Pick a random transverse diameter
        tDiameter = rng.uniformReal(1.01*phsPtr->getMinTransverseDiameter(), 2.5*phsPtr->getMinTransverseDiameter());

        // Set
        phsPtr->setTransverseDiameter(tDiameter);

        // Iterate over a sequence of random samples
        for (unsigned int j = 0u; j < numSamples; ++j)
        {
            // Variables
            // Sample
            std::vector<double> xRand(dim);

            // Get the random sample
            rng.uniformProlateHyperspheroidSurface(phsPtr, &xRand[0]);

            // Check that the point lies on the surface
            BOOST_OMPL_EXPECT_NEAR(phsPtr->getPathLength(&xRand[0]), tDiameter, testTol);
        }
    }
}


BOOST_AUTO_TEST_CASE(SampleInPhs)
{
    // Variables
    // The random number generator
    RNG rng;
    // The number of dimensions to test
    unsigned int numDims = 25u;
    // The number of samples to test per dimension
    unsigned int numSamples = 1000u;

    // Iterate over a sequence of dimensions
    for (unsigned int dim = 1u; dim <= numDims; ++dim)
    {
        // Variables
        // The foci
        std::vector<double> v1(dim);
        std::vector<double> v2(dim);
        // The transverse diameter
        double tDiameter;
        // The PHS definition
        ompl::ProlateHyperspheroidPtr phsPtr;

        // Pick random foci
        for (unsigned int i = 0u; i < dim; ++i)
        {
            v1.at(i) = rng.uniformReal(-25.0, 25.0);
            v2.at(i) = rng.uniformReal(-25.0, 25.0);
        }

        // Create the PHS object
        phsPtr = boost::make_shared<ompl::ProlateHyperspheroid>(dim, &v1[0], &v2[0]);

        // Pick a random transverse diameter
        tDiameter = rng.uniformReal(1.1*phsPtr->getMinTransverseDiameter(), 2.5*phsPtr->getMinTransverseDiameter());

        // Set
        phsPtr->setTransverseDiameter(tDiameter);

        // Iterate over a sequence of random samples
        for (unsigned int j = 0u; j < numSamples; ++j)
        {
            // Variables
            // Sample
            std::vector<double> xRand(dim);

            // Get the random sample
            rng.uniformProlateHyperspheroid(phsPtr, &xRand[0]);

            // Check that the point lies within the shape
            BOOST_CHECK_GE(phsPtr->getPathLength(&xRand[0]), phsPtr->getMinTransverseDiameter());
            BOOST_CHECK_LT(phsPtr->getPathLength(&xRand[0]), tDiameter);
        }
    }
}

#endif // OMPL_HAVE_EIGEN3