File: lm.cpp

package info (click to toggle)
onboard 1.4.1-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 31,548 kB
  • sloc: python: 29,215; cpp: 5,965; ansic: 5,735; xml: 1,026; sh: 163; makefile: 39
file content (752 lines) | stat: -rw-r--r-- 21,365 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
/*
 * Copyright © 2009-2010, 2012-2014 marmuta <marmvta@gmail.com>
 *
 * This file is part of Onboard.
 *
 * Onboard is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Onboard is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <stdlib.h>
#include <stdio.h>
#include <error.h>
#include <algorithm>
#include <cmath>
#include <string>
#include <wctype.h>

#include "lm.h"
#include "accent_transform.h"

using namespace std;


StrConv::StrConv()
{
    cd_mb_wc = iconv_open ("WCHAR_T", "UTF-8");
    if (cd_mb_wc == (iconv_t) -1)
    {
        if (errno == EINVAL)
            error (0, 0, "conversion from UTF-8 to wchar_t not available");
        else
            perror ("iconv_open mb2wc");
    }
    cd_wc_mb = iconv_open ("UTF-8", "WCHAR_T");
    if (cd_wc_mb == (iconv_t) -1)
    {
        if (errno == EINVAL)
            error (0, 0, "conversion from wchar_t to UTF-8 not available");
        else
            perror ("iconv_open wc2mb");
    }
}

StrConv::~StrConv()
{
    if (cd_mb_wc != (iconv_t) -1)
        if (iconv_close (cd_mb_wc) != 0)
            perror ("iconv_close mb2wc");
    if (cd_wc_mb != (iconv_t) -1)
        if (iconv_close (cd_wc_mb) != 0)
            perror ("iconv_close wc2mb");
}


// Sort an index array according to values from the cmp array, descending.
// Shellsort in place: stable and fast for already sorted arrays.
template <class T, class TCMP>
void stable_argsort_desc(vector<T>& v, const vector<TCMP>& cmp)
{
    int i, j, gap;
    int n = v.size();
    T t;

    for (gap = n/2; gap > 0; gap >>= 1)
    {
        for (i = gap; i < n; i++)
        {
            for (j = i-gap; j >= 0; j -= gap)
            {
                if (!(cmp[v[j]] < cmp[v[j+gap]]))
                    break;

                // Swap p with q
                t = v[j+gap];
                v[j+gap] = v[j];
                v[j] = t;
            }
        }
    }
}

// Replacement for wcscmp with optional case-
// and/or accent-insensitive comparison.
class PrefixCmp
{
    public:
        PrefixCmp(const wchar_t* _prefix, uint32_t _options)
        {
            if (_prefix)
                prefix = _prefix;
            options = _options;

            if (options & LanguageModel::CASE_INSENSITIVE_SMART)
                ;
            else
            if (options & LanguageModel::CASE_INSENSITIVE)
                transform (prefix.begin(), prefix.end(), prefix.begin(),
                           op_lower);

            if (options & LanguageModel::ACCENT_INSENSITIVE_SMART)
                ;
            else
            if (options & LanguageModel::ACCENT_INSENSITIVE)
                transform (prefix.begin(), prefix.end(), prefix.begin(),
                           op_remove_accent);
        }

        int matches(const char* s)
        {
            const wchar_t* stmp = conv.mb2wc(s);
            if (stmp)
                return matches(stmp);
            return false;
        }

        bool matches(const wchar_t* s)
        {
            wint_t c1, c2;
            const wchar_t* p = prefix.c_str();
            size_t n = prefix.size();

            wint_t c = s[0];
            if (c)
            {
                if ((options & LanguageModel::IGNORE_CAPITALIZED) &&
                    iswupper(c))
                    return false;

                if ((options & LanguageModel::IGNORE_NON_CAPITALIZED) &&
                    !iswupper(c))
                    return false;
            }

            if (n == 0)
                return true;

            do
            {
                c1 = (wint_t) *s++;
                c2 = (wint_t) *p++;

                if (options & LanguageModel::CASE_INSENSITIVE_SMART)
                {
                    if (!iswupper(c2))
                        c1 = (wint_t) towlower(c1);
                }
                else
                if (options & LanguageModel::CASE_INSENSITIVE)
                {
                    c1 = (wint_t) towlower(c1);
                }

                if (options & LanguageModel::ACCENT_INSENSITIVE_SMART)
                {
                    if (!has_accent(c2))
                        c1 = (wint_t) op_remove_accent(c1);
                }
                else
                if (options & LanguageModel::ACCENT_INSENSITIVE)
                {
                    c1 = (wint_t) op_remove_accent(c1);
                }

                if (c1 == L'\0' || c1 != c2)
                    return false;
            } while (--n > 0);

            return c1 == c2;
        }

    private:
        static wint_t op_lower(wint_t c)
        {
            return towlower(c);
        }

        static wint_t op_remove_accent(wint_t c)
        {
            if (c > 0x7f)
            {
                wint_t i = lookup_transform(c, _accent_transform,
                                                ALEN(_accent_transform));
                if (i<ALEN(_accent_transform) &&
                    _accent_transform[i][0] == c)
                    return _accent_transform[i][1];
            }
            return c;
        }

        static wint_t has_accent(wint_t c)
        {
            return op_remove_accent(c) != c;
        }

        static int lookup_transform(wint_t c, wint_t table[][2], int len)
        {
            int lo = 0;
            int hi = len;
            while (lo < hi)
            {
                int mid = (lo+hi)>>1;
                if (table[mid][0] < c)
                    lo = mid + 1;
                else
                    hi = mid;
            }
            return lo;
        }

    private:
        wstring prefix;
        uint32_t options;
        StrConv conv;
};


//------------------------------------------------------------------------
// Dictionary - holds the vocabulary of the language model
//------------------------------------------------------------------------

void Dictionary::clear()
{
    vector<char*>::iterator it;
    for (it=words.begin(); it < words.end(); it++)
        MemFree(*it);

    vector<char*>().swap(words);  // clear and really free the memory

    if (sorted)
    {
        delete sorted;
        sorted = NULL;
    }
    sorted_words_begin = 0;
}


struct cmp_str
{
    bool operator() (const char* w1, const char* w2)
    { return strcmp(w1, w2) < 0; }
};

// Set words in bulk.
// Allows us to sort "words" and ignore the "sorted" vector.
//
// Preconditions:
// - Control words and only those are expected to exist in
//   the dictionary already (vector "words").
// - If new_words contains control words, they are
//   located close to its begin.
LMError Dictionary::set_words(const vector<wchar_t*>& new_words)
{
    // This is the goal: keep "sorted" unallocated
    // (for large static system models).
    if (sorted)
    {
        delete sorted;
        sorted = NULL;
    }

    // encode as utf-8 and store in "words"
    int initial_size = words.size(); // number of initial control words
    int n = new_words.size();
    for (int i = 0; i<n; i++)
    {
        // encode word to utf-8, this is how it is stored in the dictionary
        const char* wtmp = conv.wc2mb(new_words[i]);
        if (!wtmp)
            return ERR_WC2MB;
        char* w = (char*)MemAlloc((strlen(wtmp) + 1) * sizeof(char));
        if (!w)
            return ERR_MEMORY;
        strcpy(w, wtmp);

        // is this a known control word?
        bool exists = false;
        if (i < 100) // control words have to come in as some
                     // of the first entries.
        {
            for (int j = 0; j<initial_size; j++)
            {
                if (strcmp(w, words[j]) == 0)
                {
                    exists = true;
                    break;
                }
            }
        }

        // add it, if it wasn't a known control word
        if (!exists)
            words.push_back(w);
    }

    // sort words, make sure to use the same comparison function
    // as Dictionary::search_index.
    cmp_str cmp;
    sort(words.begin()+initial_size, words.end(), cmp);

    sorted_words_begin = initial_size;

    return ERR_NONE;
}

// Lookup the given word and return its id, binary search
WordId Dictionary::word_to_id(const wchar_t* word)
{
    const char* w = conv.wc2mb(word);
    int index = search_index(w);
    if (index >= 0 && index < (int)words.size())
    {
        WordId wid = sorted ? (*sorted)[index] : index;
        if (strcmp(words[wid], w) == 0)
            return wid;
    }
    return WIDNONE;
}

vector<WordId> Dictionary::words_to_ids(const wchar_t** word, int n)
{
    vector<WordId> wids;
    for(int i=0; i<n; i++)
        wids.push_back(word_to_id(word[i]));
    return wids;
}

// return the word for the given id, fast index lookup
const wchar_t* Dictionary::id_to_word(WordId wid)
{
    if (0 <= wid && wid < (WordId)words.size())
    {
        const char* w = words[wid];
        const wchar_t* word = conv.mb2wc(w);
        return word;
    }
    return NULL;
}

// Add a word to the dictionary
WordId Dictionary::add_word(const wchar_t* word)
{
    const char* wtmp = conv.wc2mb(word);
    if (!wtmp)
        return -2;

    char* w = (char*)MemAlloc((strlen(wtmp) + 1) * sizeof(char));
    if (!w)
        return -1;
    strcpy(w, wtmp);

    WordId wid = (WordId)words.size();
    update_sorting(w, wid);

    words.push_back(w);

    return wid;
}

void Dictionary::update_sorting(const char* word, WordId wid)
{
    // first add_word() after set_words()?
    // -> create the sorted vector
    if (sorted == NULL)
    {
        int i;
        int size = words.size();
        sorted = new vector<WordId>;
        for (i = sorted_words_begin; i<size; i++)
            sorted->push_back(i);

        // Control words weren't sorted before, insert them sorted.
        // -> inefficient, but presumably there is few enough data
        //    to not matter.
        for (i = 0; i<sorted_words_begin; i++)
        {
            int index = binsearch_sorted(words[i]);
            sorted->insert(sorted->begin()+index, i);
        }
    }

    // Bottle neck here, this is rather inefficient.
    // Everything else just appends, this inserts.
    // Mitigated due to usage of set_words() for bulk data,
    // but eventually there should be a better performing
    // data structure (though this one is pretty memory efficient).
    int index = search_index(word);
    sorted->insert(sorted->begin()+index, wid);
}

// Find all word ids of words starting with prefix
void Dictionary::prefix_search(const wchar_t* prefix,
                               std::vector<WordId>* wids_in,  // may be NULL
                               std::vector<WordId>& wids_out,
                               uint32_t options)
{
    WordId min_wid = (options & LanguageModel::INCLUDE_CONTROL_WORDS) \
                     ? 0 : NUM_CONTROL_WORDS;

    // filter the given word ids only
    if (wids_in)
    {
        PrefixCmp cmp = PrefixCmp(prefix, options);
        std::vector<WordId>::const_iterator it;
        for(it = wids_in->begin(); it != wids_in->end(); it++)
        {
            WordId wid = *it;
            if (wid >= min_wid &&
                cmp.matches(words[wid]))
                wids_out.push_back(wid);
        }
    }
    else
    // exhaustive search through the dictionary
    {
        PrefixCmp cmp = PrefixCmp(prefix, options);
        int size = words.size();
        for (int i = min_wid; i<size; i++)
            if (cmp.matches(words[i]))
                wids_out.push_back(i);
    }
}

// lookup word
// return value: 0 = no match
//               1 = exact match
//              -n = number of partial matches (prefix search)
int Dictionary::lookup_word(const wchar_t* word)
{
    const char* w = conv.wc2mb(word);
    if (!w)
        return 0;

    // binary search for the first match
    // then linearly collect all subsequent matches
    int len = strlen(w);
    int size = words.size();
    int count = 0;

    int index = search_index(w);

    // try exact match first
    if (index >= 0 && index < (int)words.size())
    {
        WordId wid = sorted ? (*sorted)[index] : index;
        if (strcmp(words[wid], w) == 0)
            return 1;
    }

    // then count partial matches
    for (int i=index; i<size; i++)
    {
        WordId wid = sorted ? (*sorted)[index] : index;
        if (strncmp(words[wid], w, len) != 0)
            break;
        count++;
    }
    return -count;
}

// Estimate a lower bound for the memory usage of the dictionary.
// This includes overallocations by std::vector, but excludes memory
// used for heap management and possible heap fragmentation.
uint64_t Dictionary::get_memory_size()
{
    uint64_t sum = 0;

    uint64_t d = sizeof(Dictionary);
    sum += d;

    uint64_t w = 0;
    for (unsigned i=0; i<words.size(); i++)
        w += (strlen(words[i]) + 1);
    sum += w;

    uint64_t wc = sizeof(char*) * words.capacity();
    sum += wc;

    uint64_t sc = sorted ? sizeof(WordId) * sorted->capacity() : 0;
    sum += sc;

    #ifndef NDEBUG
    printf("dictionary object: %12ld Byte\n", d);
    printf("strings:           %12ld Byte (%u)\n", w, (unsigned)words.size());
    printf("words.capacity:    %12ld Byte (%u)\n", wc, (unsigned)words.capacity());
    printf("sorted.capacity:   %12ld Byte (%u)\n", sc, (unsigned)sorted.capacity());
    printf("Dictionary total:  %12ld Byte\n", sum);
    #endif

    return sum;
}


//------------------------------------------------------------------------
// LanguageModel - base class of all language models
//------------------------------------------------------------------------

// return a list of word ids to be considered during the prediction
void LanguageModel::get_candidates(const std::vector<WordId>& history,
                                   const wchar_t* prefix,
                                   std::vector<WordId>& candidates,
                                   uint32_t options)
{
    bool has_prefix = (prefix && wcslen(prefix));
    int history_size = history.size();
    bool only_predictions =
                  !has_prefix &&
                  history_size >= 1 &&
                  // turn it off when running some unit tests
                  !(options & LanguageModel::INCLUDE_CONTROL_WORDS);

    if (has_prefix ||
        only_predictions ||
        options & LanguageModel::FILTER_OPTIONS)
    {
        if (only_predictions)
        {
            // Return a list of word ids with existing predictions.
            // Reduces clutter predicted between words by ignoring
            // unigram-only matches.
            std::vector<WordId> wids_in;

            // Only words that have predecessors and
            // implicitely filter out words with removed unigrams
            get_words_with_predictions(history, wids_in);
            dictionary.prefix_search(NULL, &wids_in, candidates, options);
        }
        else
        {
            std::vector<WordId> wids;
            dictionary.prefix_search(prefix, NULL, wids, options);

            // Filter out words with removed unigrams.
            filter_candidates(wids, candidates);
        }

        // candidate word indices have to be sorted for binsearch in kneser-ney
        sort(candidates.begin(), candidates.end());
    }
    else
    {
        int min_wid = (options & INCLUDE_CONTROL_WORDS) ? 0 : NUM_CONTROL_WORDS;
        int size = dictionary.get_num_word_types();
        std::vector<WordId> wids;
        wids.reserve(size);
        for (int i=min_wid; i<size; i++)
        {
            wids.push_back(i);
        }

        // Filter out words with removed unigrams.
        filter_candidates(wids, candidates);
    }

}

void LanguageModel::predict(std::vector<LanguageModel::Result>& results,
                            const std::vector<wchar_t*>& context,
                            int limit, uint32_t options)
{
    int i;

    if (!context.size())
        return;

    // Must not crash in get_candidates().
    // When filling a model use learn_tokens() instead of count_ngram() to
    // ensure the model is valid.
    if (!is_model_valid())
        return;

    // split context into history and completion-prefix
    vector<wchar_t*> h;
    const wchar_t* prefix = split_context(context, h);
    vector<WordId> history = words_to_ids(h);

    // get candidate words, completion
    vector<WordId> wids;
    get_candidates(history, prefix, wids, options);

    // calculate probability vector
    vector<double> probabilities(wids.size());
    get_probs(history, wids, probabilities);

    // prepare results vector
    int result_size = wids.size();
    if (limit >= 0 && limit < result_size)
        result_size = limit;
    results.clear();
    results.reserve(result_size);

    if (!(options & NO_SORT)) // allow to skip sorting for calls from another model, i.e. linint
    {
        // sort by descending probabilities
        vector<int32_t> argsort(wids.size());
        for (i=0; i<(int)wids.size(); i++)
            argsort[i] = i;
        stable_argsort_desc(argsort, probabilities);

        // merge word ids and probabilities into the return array
        for (i=0; i<result_size; i++)
        {
            int index = argsort[i];
            const wchar_t* word = id_to_word(wids[index]);
            if (word)
            {
                Result result = {word, probabilities[index]};
                results.push_back(result);
            }
        }
    }
    else
    {
        // merge word ids and probabilities into the return array
        for (int i=0; i<result_size; i++)
        {
            const wchar_t* word = id_to_word(wids[i]);
            if (word)
            {
                Result result = {word, probabilities[i]};
                results.push_back(result);
            }
        }
    }
}

// Return the probability of a single n-gram.
// This is very inefficient, not optimized for speed at all, but it's
// basically only there for entropy testing and not involved in
// actual word prediction tasks.
double LanguageModel::get_probability(const wchar_t* const* ngram, int n)
{
#if 1
    if (n)
    {
        // clear the last word of the context
        vector<wchar_t*> ctx((wchar_t**)ngram, (wchar_t**)ngram+n-1);
        const wchar_t* word = ngram[n-1];
        ctx.push_back((wchar_t*)L"");

        // run an unlimited prediction to get normalization right for
        // overlay and loglinint
        vector<Result> results;
        predict(results, ctx, -1, NORMALIZE);

        double psum = 0;
        for (int i=0; i<(int)results.size(); i++)
            psum += results[i].p;
        if (fabs(1.0 - psum) > 1e5)
            printf("%f\n", psum);

        for (int i=0; i<(int)results.size(); i++)
            if (results[i].word == word)
                return results[i].p;
        for (int i=0; i<(int)results.size(); i++)
            if (results[i].word == L"<unk>")
                return results[i].p;
    }
    return 0.0;
#else
    // split ngram into history and last word
    const wchar_t* word = ngram[n-1];
    vector<WordId> history;
    for (int i=0; i<n-1; i++)
        history.push_back(word_to_id(ngram[i]));

    // build candidate word vector
    vector<WordId> wids(1, word_to_id(word));

    // calculate probability
    vector<double> vp(1);
    get_probs(history, wids, vp);

    return vp[0];
#endif
}

// split context into history and prefix
const wchar_t* LanguageModel::split_context(const vector<wchar_t*>& context,
                                                  vector<wchar_t*>& history)
{
    int n = context.size();
    wchar_t* prefix = context[n-1];
    for (int i=0; i<n-1; i++)
        history.push_back(context[i]);
    return prefix;
}

LMError LanguageModel::read_utf8(const char* filename, wchar_t*& text)
{
    text = NULL;

    FILE* f = fopen(filename, "r,ccs=UTF-8");
    if (!f)
    {
        #ifndef NDEBUG
        printf( "Error opening %s\n", filename);
        #endif
        return ERR_FILE;
    }

    int size = 0;
    const size_t bufsize = 1024*1024;
    wchar_t* buf = new wchar_t[bufsize];
    if (!buf)
        return ERR_MEMORY;

    while(1)
    {
        if (fgetws(buf, bufsize, f) == NULL)
            break;
        int l = wcslen(buf);
        text = (wchar_t*) realloc(text, (size + l + 1) * sizeof(*text));
        wcscpy (text + size, buf);
        size += l;
    }

    delete [] buf;

    return ERR_NONE;
}


//------------------------------------------------------------------------
// NGramModel - base class of n-gram language models, may go away
//------------------------------------------------------------------------

#ifndef NDEBUG
void NGramModel::print_ngram(const std::vector<WordId>& wids)
{
    for (int i=0; i<(int)wids.size(); i++)
    {
        printf("%ls(%d)", id_to_word(wids[i]), wids[i]);
        if (i<(int)wids.size())
            printf(" ");
    }
    printf("\n");
}
#endif