1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
|
/*
* Copyright © 2009-2010, 2012-2014 marmuta <marmvta@gmail.com>
*
* This file is part of Onboard.
*
* Onboard is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Onboard is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef LM_DYNAMIC_H
#define LM_DYNAMIC_H
#include <math.h>
#include <assert.h>
#include <cstring> // memcpy
#include <string>
#include "lm.h"
#define HONOR_REMOVED_NODES true
#pragma pack(2)
//------------------------------------------------------------------------
// inplace_vector - expects its elements in anonymous memory right after itself
//------------------------------------------------------------------------
template <class T>
class inplace_vector
{
public:
inplace_vector()
{
num_items = 0;
}
int capacity()
{
return capacity(num_items);
}
static int capacity(int n)
{
if (n == 0)
n = 1;
// growth factor, lower for slower growth and less wasted memory
// g=2.0: quadratic growth, double capacity per step
// [int(1.25**math.ceil(math.log(x)/math.log(1.25))) for x in range (1,100)]
double g = 1.25;
return (int) pow(g,ceil(log(n)/log(g)));
}
int size()
{
return num_items;
}
T* buffer()
{
return (T*) (((uint8_t*)(this) + sizeof(inplace_vector<T>)));
}
T& operator [](int index)
{
ASSERT(index >= 0 && index <= capacity());
return buffer()[index];
}
T& back()
{
ASSERT(size() > 0);
return buffer()[size()-1];
}
void push_back(T& item)
{
buffer()[size()] = item;
num_items++;
ASSERT(size() <= capacity());
}
void insert(int index, T& item)
{
T* p = buffer();
for (int i=size()-1; i>=index; --i)
p[i+1] = p[i];
p[index] = item;
num_items++;
ASSERT(size() <= capacity());
}
public:
InplaceSize num_items;
};
//------------------------------------------------------------------------
// BaseNode - base class of all trie nodes
//------------------------------------------------------------------------
class BaseNode
{
public:
BaseNode(WordId wid = -1)
{
word_id = wid;
count = 0;
}
void clear()
{
count = 0;
}
const int get_count() const
{
return count;
}
void set_count(int c)
{
count = c;
}
public:
WordId word_id;
CountType count;
};
//------------------------------------------------------------------------
// LastNode - leaf node of the ngram trie, trigram for order 3
//------------------------------------------------------------------------
template <class TBASE>
class LastNode : public TBASE
{
public:
LastNode(WordId wid = (WordId)-1)
: TBASE(wid)
{
}
};
//------------------------------------------------------------------------
// BeforeLastNode - second to last node of the ngram trie, bigram for order 3
//------------------------------------------------------------------------
template <class TBASE, class TLASTNODE>
class BeforeLastNode : public TBASE
{
public:
BeforeLastNode(WordId wid = (WordId)-1)
: TBASE(wid)
{
}
TLASTNODE* add_child(WordId wid)
{
TLASTNODE node(wid);
if (children.size())
{
int index = search_index(wid);
children.insert(index, node);
//printf("insert: index=%d wid=%d\n",index, wid);
return &children[index];
}
else
{
children.push_back(node);
//printf("push_back: size=%d wid=%d\n",(int)children.size(), wid);
return &children.back();
}
}
BaseNode* get_child(WordId wid)
{
if (children.size())
{
int index = search_index(wid);
if (index < (int)children.size())
if (children[index].word_id == wid)
return &children[index];
}
return NULL;
}
BaseNode* get_child_at(int index)
{
return &children[index];
}
int search_index(WordId wid)
{
int lo = 0;
int hi = children.size();
while (lo < hi)
{
int mid = (lo+hi)>>1;
if (children[mid].word_id < wid)
lo = mid + 1;
else
hi = mid;
}
return lo;
}
int get_N1prx()
{
// Take removed nodes into account (count==0)
int n = 0;
if (HONOR_REMOVED_NODES) // any removed nodes in the model?
{
for (int i=0; i<children.size(); i++)
if (children[i].get_count() > 0)
n++;
}
else
{
n = children.size(); // assumes all have counts>=1
}
return n;
}
int sum_child_counts()
{
int sum = 0;
for (int i=0; i<children.size(); i++)
sum += children[i].get_count();
return sum;
}
public:
inplace_vector<TLASTNODE> children; // has to be last
};
//------------------------------------------------------------------------
// TrieNode - node for all lower levels of the ngram trie, unigrams for order 3
//------------------------------------------------------------------------
template <class TBASE>
class TrieNode : public TBASE
{
public:
TrieNode(WordId wid = (WordId)-1)
: TBASE(wid)
{
}
void add_child(BaseNode* node)
{
if (children.size())
{
int index = search_index(node->word_id);
children.insert(children.begin()+index, node);
//printf("insert: index=%d wid=%d\n",index, wid);
}
else
{
children.push_back(node);
//printf("push_back: size=%d wid=%d\n",(int)children.size(), wid);
}
}
BaseNode* get_child(WordId wid, int& index)
{
if (children.size())
{
index = search_index(wid);
if (index < (int)children.size())
if (children[index]->word_id == wid)
return children[index];
}
return NULL;
}
BaseNode* get_child_at(int index)
{
return children[index];
}
int search_index(WordId wid)
{
// binary search like lower_bound()
int lo = 0;
int hi = children.size();
while (lo < hi)
{
int mid = (lo+hi)>>1;
if (children[mid]->word_id < wid)
lo = mid + 1;
else
hi = mid;
}
return lo;
}
int get_N1prx()
{
int n = 0;
if (HONOR_REMOVED_NODES) // any removed nodes in the model?
{
for (int i=0; i<(int)children.size(); i++)
if (children[i]->get_count() > 0)
n++;
}
else
{
n = children.size(); // assumes all children have counts > 0
// Unigrams <unk>, <s>,... may be empty initially. Don't count them
// or predictions for small models won't sum close to 1.0
for (int i=0; i<n && i<NUM_CONTROL_WORDS; i++)
if (children[0]->get_count() == 0)
n--;
}
return n;
}
int sum_child_counts()
{
int sum = 0;
std::vector<BaseNode*>::iterator it;
for (it=children.begin(); it!=children.end(); it++)
sum += (*it)->get_count();
return sum;
}
public:
std::vector<BaseNode*> children;
};
//------------------------------------------------------------------------
// NGramTrie - root node of the ngram trie
//------------------------------------------------------------------------
template <class TNODE, class TBEFORELASTNODE, class TLASTNODE>
class NGramTrie : public TNODE
{
public:
class iterator
{
public:
iterator()
{
root = NULL;
}
iterator(NGramTrie* root)
{
this->root = root;
nodes.push_back(root);
indexes.push_back(0);
operator++(0);
}
BaseNode* operator*() const // dereference operator
{
if (nodes.empty())
return NULL;
else
return nodes.back();
}
void operator++(int unused) // postfix operator
{
BaseNode* node;
for(;;)
{
node = next();
// skip removed nodes, i.e. nodes with count==0
if (node == NULL || node->count != 0)
break;
}
}
// next for all nodes, including deleted ones with count==0
BaseNode* next()
{
// preorder traversal with shallow stack
// nodes stack: path to node
// indexes stack: index of _next_ child
BaseNode* node = nodes.back();
int index = indexes.back();
int level = get_level();
while (index >= root->get_num_children(node, level))
{
nodes.pop_back();
indexes.pop_back();
if (nodes.empty())
return NULL;
node = nodes.back();
index = ++indexes.back();
level = nodes.size()-1;
//printf ("back %d %d\n", node->word_id, index);
}
node = root->get_child_at(node, level, index);
nodes.push_back(node);
indexes.push_back(0);
//printf ("pushed %d %d %d\n", nodes.back()->word_id, index, indexes.back());
return node;
}
void get_ngram(std::vector<WordId>& ngram)
{
ngram.resize(nodes.size()-1);
for(int i=1; i<(int)nodes.size(); i++)
ngram[i-1] = nodes[i]->word_id;
}
int get_level()
{
return nodes.size()-1;
}
int at_root()
{
return get_level() == 0;
}
private:
NGramTrie<TNODE, TBEFORELASTNODE, TLASTNODE>* root;
std::vector<BaseNode*> nodes; // path to node
std::vector<int> indexes; // index of _next_ child
};
NGramTrie::iterator begin()
{
return NGramTrie::iterator(this);
}
public:
NGramTrie(WordId wid = (WordId)-1)
: TNODE(wid)
{
order = 0;
}
void set_order(int order)
{
this->order = order;
clear();
}
void clear()
{
clear(this, 0);
num_ngrams = std::vector<int>(order, 0);
total_ngrams = std::vector<int>(order, 0);
TNODE::clear();
}
// Add increment to node->count
int increment_node_count(BaseNode* node, const WordId* wids, int n,
int increment)
{
total_ngrams[n-1] += increment;
// Adding n-gram?
if (node->count == 0 && increment > 0)
num_ngrams[n-1]++;
node->count += increment;
// Removing n-gram?
if (node->count <= 0 && increment < 0)
{
num_ngrams[n-1]--;
// Control words must not be removed.
if (n == 1 && wids[0] < NUM_CONTROL_WORDS)
{
node->count = 1;
}
}
return node->count;
}
BaseNode* add_node(const std::vector<WordId>& wids)
{return add_node(&wids[0], wids.size());}
BaseNode* add_node(const WordId* wids, int n);
void get_probs_witten_bell_i(const std::vector<WordId>& history,
const std::vector<WordId>& words,
std::vector<double>& vp,
int num_word_types);
void get_probs_abs_disc_i(const std::vector<WordId>& history,
const std::vector<WordId>& words,
std::vector<double>& vp,
int num_word_types,
const std::vector<double>& Ds);
// Get number of unique ngrams per level, excluding removed ones
// with count==0.
int get_num_ngrams(int level) { return num_ngrams[level]; }
// Get total number of all ngram occurences per level.
int get_total_ngrams(int level) { return total_ngrams[level]; }
// Number of distinct words excluding removed ones with count=0.
virtual int get_num_word_types() {return get_num_ngrams(0);}
// Get number of occurences of a specific ngram.
int get_ngram_count(const std::vector<WordId>& wids)
{
BaseNode* node = get_node(wids);
if (node)
return node->get_count();
return 0;
}
BaseNode* get_node(const std::vector<WordId>& wids)
{
BaseNode* node = this;
for (int i=0; i<(int)wids.size(); i++)
{
int index;
node = get_child(node, i, wids[i], index);
if (!node)
break;
}
return node;
}
int get_num_children(BaseNode* node, int level)
{
if (level == order)
return 0;
if (level == order - 1)
return static_cast<TBEFORELASTNODE*>(node)->children.size();
return static_cast<TNODE*>(node)->children.size();
}
int sum_child_counts(BaseNode* node, int level)
{
if (level == order)
return -1; // undefined for leaf nodes
if (level == order - 1)
return static_cast<TBEFORELASTNODE*>(node)->sum_child_counts();
return static_cast<TNODE*>(node)->sum_child_counts();
}
BaseNode* get_child_at(BaseNode* parent, int level, int index)
{
if (level == order)
return NULL;
if (level == order - 1)
return &static_cast<TBEFORELASTNODE*>(parent)->children[index];
return static_cast<TNODE*>(parent)->children[index];
}
// Return the word ids of all direct child nodes,
// excluding removed n-grams, i.g. count == 0.
void get_child_wordids(const std::vector<WordId>& wids,
std::vector<WordId>& child_wids)
{
int level = wids.size();
BaseNode* node = get_node(wids);
if (node)
{
int num_children = get_num_children(node, level);
for(int i=0; i<num_children; i++)
{
BaseNode* child = get_child_at(node, level, i);
if (child->count)
child_wids.push_back(child->word_id);
}
}
}
int get_N1prx(BaseNode* node, int level)
{
if (level == order)
return 0;
if (level == order - 1)
return static_cast<TBEFORELASTNODE*>(node)->get_N1prx();
return static_cast<TNODE*>(node)->get_N1prx();
}
// -------------------------------------------------------------------
// implementation specific
// -------------------------------------------------------------------
// reserve an exact number of items to avoid unessarily
// overallocated memory when loading language models
void reserve_unigrams(int count)
{
clear();
TNODE::children.reserve(count);
}
// Estimate a lower bound for the memory usage of the whole trie.
// This includes overallocations by std::vector, but excludes memory
// used for heap management and possible heap fragmentation.
uint64_t get_memory_size()
{
NGramTrie::iterator it = begin();
uint64_t sum = 0;
for (; *it; it++)
sum += get_node_memory_size(*it, it.get_level());
return sum;
}
protected:
void clear(BaseNode* node, int level)
{
if (level < order-1)
{
TNODE* tn = static_cast<TNODE*>(node);
std::vector<BaseNode*>::iterator it;
for (it=tn->children.begin(); it<tn->children.end(); it++)
{
clear(*it, level+1);
if (level < order-2)
static_cast<TNODE*>(*it)->~TNODE();
else
if (level < order-1)
static_cast<TBEFORELASTNODE*>(*it)->~TBEFORELASTNODE();
MemFree(*it);
}
std::vector<BaseNode*>().swap(tn->children); // really free the memory
}
TNODE::set_count(0);
}
BaseNode* get_child(BaseNode* parent, int level, int wid, int& index)
{
if (level == order)
return NULL;
if (level == order - 1)
return static_cast<TBEFORELASTNODE*>(parent)->get_child(wid);
return static_cast<TNODE*>(parent)->get_child(wid, index);
}
int get_node_memory_size(BaseNode* node, int level)
{
if (level == order)
return sizeof(TLASTNODE);
if (level == order - 1)
{
TBEFORELASTNODE* nd = static_cast<TBEFORELASTNODE*>(node);
return sizeof(TBEFORELASTNODE) +
sizeof(TLASTNODE) *
(nd->children.capacity() - nd->children.size());
}
TNODE* nd = static_cast<TNODE*>(node);
return sizeof(TNODE) +
sizeof(TNODE*) * nd->children.capacity();
}
public:
int order;
// Keep track of these counts to avoid
// traversing the tree for these numbers.
//
// Number of unique ngrams with count > 0, per level.
std::vector<int> num_ngrams;
// Number of total occurences of all n-grams, per level.
std::vector<int> total_ngrams;
};
#pragma pack()
enum Smoothing
{
SMOOTHING_NONE,
JELINEK_MERCER_I, // jelinek-mercer interpolated
WITTEN_BELL_I, // witten-bell interpolated
ABS_DISC_I, // absolute discounting interpolated
KNESER_NEY_I, // kneser-ney interpolated
};
//------------------------------------------------------------------------
// DynamicModelBase - non-template abstract base class of all DynamicModels
//------------------------------------------------------------------------
class DynamicModelBase : public NGramModel
{
public:
// iterator for template-free, polymorphy based ngram traversel
class ngrams_iter
{
public:
virtual ~ngrams_iter() {}
virtual BaseNode* operator*() const = 0;
virtual void operator++(int unused) = 0;
virtual void get_ngram(std::vector<WordId>& ngram) = 0;
virtual int get_level() = 0;
virtual bool at_root() = 0;
};
virtual DynamicModelBase::ngrams_iter* ngrams_begin() = 0;
virtual void clear()
{
LanguageModel::clear();
assure_valid_control_words();
}
// Make sure control words exist as unigrams.
// They must have a count of at least 1. 0 means removed and
// it also throws off the normalization of witten-bell smoothing.
virtual void assure_valid_control_words()
{
const wchar_t* words[NUM_CONTROL_WORDS] =
{L"<unk>", L"<s>", L"</s>", L"<num>"};
for (WordId i=0; i<ALEN(words); i++)
{
// Control words must have fixed positions at
// the very beginning of the dictionary.
assert(dictionary.word_to_id(words[i]) == i);
if (get_ngram_count(words+i, 1) <= 0)
count_ngram(words+i, 1, 1);
}
}
virtual int get_ngram_count(const wchar_t* const* ngram, int n) = 0;
virtual void get_node_values(BaseNode* node, int level,
std::vector<int>& values) = 0;
virtual BaseNode* count_ngram(const wchar_t* const* ngram, int n,
int increment=1, bool allow_new_words=true) = 0;
virtual BaseNode* count_ngram(const WordId* wids,
int n, int increment) = 0;
virtual LMError load(const char* filename)
{return load_arpac(filename);}
virtual LMError save(const char* filename)
{return save_arpac(filename);}
// Debug output, dump all n-grams.
virtual void dump()
{
std::vector<WordId> wids;
DynamicModelBase::ngrams_iter* it;
for (it = ngrams_begin(); ; (*it)++)
{
BaseNode* node = *(*it);
if (!node)
break;
it->get_ngram(wids);
std::vector<int> values;
get_node_values(node, wids.size(), values);
unsigned i;
for (i=0; i<wids.size(); i++)
printf("%ls ", dictionary.id_to_word(wids[i]));
for (i=0; i<values.size(); i++)
printf("%d ", values[i]);
printf("\n");
}
printf("\n");
}
protected:
// temporary unigram, only used during loading
typedef struct
{
std::wstring word;
uint32_t count;
uint32_t time;
} Unigram;
virtual LMError set_unigrams(const std::vector<Unigram>& unigrams);
virtual LMError write_arpa_ngram(FILE* f,
const BaseNode* node,
const std::vector<WordId>& wids)
{
fwprintf(f, L"%d", node->get_count());
std::vector<WordId>::const_iterator it;
for(it = wids.begin(); it != wids.end(); it++)
fwprintf(f, L" %ls", id_to_word(*it));
fwprintf(f, L"\n");
return ERR_NONE;
}
virtual LMError write_arpa_ngrams(FILE* f);
virtual LMError load_arpac(const char* filename);
virtual LMError save_arpac(const char* filename);
virtual void set_node_time(BaseNode* node, uint32_t time)
{}
virtual int get_num_ngrams(int level) = 0;
virtual void reserve_unigrams(int count) = 0;
// Number of distinct words excluding removed ones with count=0.
virtual int get_num_word_types() {return get_num_ngrams(0);}
};
//------------------------------------------------------------------------
// DynamicModel - dynamically updatable language model
//------------------------------------------------------------------------
template <class TNGRAMS>
class _DynamicModel : public DynamicModelBase
{
public:
static const Smoothing DEFAULT_SMOOTHING = ABS_DISC_I;
class ngrams_iter : public DynamicModelBase::ngrams_iter
{
public:
ngrams_iter(_DynamicModel<TNGRAMS>* lm)
: it(&lm->ngrams)
{}
virtual BaseNode* operator*() const // dereference operator
{ return *it; }
virtual void operator++(int unused) // postfix operator
{ it++; }
virtual void get_ngram(std::vector<WordId>& ngram)
{ it.get_ngram(ngram); }
virtual int get_level()
{ return it.get_level(); }
virtual bool at_root()
{ return it.at_root(); }
public:
typename TNGRAMS::iterator it;
};
virtual DynamicModelBase::ngrams_iter* ngrams_begin()
{return new ngrams_iter(this);}
public:
_DynamicModel()
{
smoothing = DEFAULT_SMOOTHING;
set_order(3);
}
virtual ~_DynamicModel()
{
#ifndef NDEBUG
uint64_t v = dictionary.get_memory_size();
uint64_t n = ngrams.get_memory_size();
printf("memory: dictionary=%ld, ngrams=%ld, total=%ld\n", v, n, v+n);
#endif
clear();
}
virtual void clear();
virtual void set_order(int order);
virtual Smoothing get_smoothing() {return smoothing;}
virtual void set_smoothing(Smoothing s) {smoothing = s;}
virtual std::vector<Smoothing> get_smoothings()
{
std::vector<Smoothing> smoothings;
smoothings.push_back(WITTEN_BELL_I);
smoothings.push_back(ABS_DISC_I);
return smoothings;
}
virtual void filter_candidates(const std::vector<WordId>& in,
std::vector<WordId>& out)
{
// filter out removed unigrams
int num_candidates = in.size();
out.reserve(num_candidates);
for (int i=0; i<num_candidates; i++)
{
WordId wid = in[i];
// can crash if is_model_valid() == false
BaseNode* node = ngrams.get_child_at(&ngrams, 0, wid);
if (node->get_count())
out.push_back(wid);
}
}
// Plausibilty check befor predict() calls can be performed.
//
// When count_ngram() is called manually, it isn't guaranteed
// that all nodes are created that are required for a valid model.
// Unigrams in particular may be missing. This can lead to crashes
// in filter_candidates or probability calculations.
//
// For filling models it's best to avoid count_ngram() and
// use the safer learn_tokens() instead.
virtual bool is_model_valid()
{
// including removed unigrams with count==0
int num_unigrams = ngrams.get_num_children(&ngrams, 0);
return num_unigrams == dictionary.get_num_word_types();
}
virtual BaseNode* count_ngram(const wchar_t* const* ngram, int n,
int increment=1, bool allow_new_words=true);
virtual BaseNode* count_ngram(const WordId* wids, int n, int increment);
virtual int get_ngram_count(const wchar_t* const* ngram, int n);
virtual void get_node_values(BaseNode* node, int level,
std::vector<int>& values)
{
values.push_back(node->count);
values.push_back(ngrams.get_N1prx(node, level));
}
virtual void get_memory_sizes(std::vector<long>& values)
{
values.push_back(dictionary.get_memory_size());
values.push_back(ngrams.get_memory_size());
}
protected:
virtual LMError write_arpa_ngrams(FILE* f);
virtual void get_words_with_predictions(
const std::vector<WordId>& history,
std::vector<WordId>& wids)
{
std::vector<WordId> h(history.end()-1, history.end()); // bigram history
ngrams.get_child_wordids(h, wids);
}
virtual void get_probs(const std::vector<WordId>& history,
const std::vector<WordId>& words,
std::vector<double>& probabilities);
virtual int increment_node_count(BaseNode* node, const WordId* wids,
int n, int increment)
{
return ngrams.increment_node_count(node, wids, n, increment);
}
// Number of n-grams per level, excluding removed ones with count==0.
virtual int get_num_ngrams(int level)
{
return ngrams.get_num_ngrams(level);
}
virtual void reserve_unigrams(int count)
{
ngrams.reserve_unigrams(count);
}
private:
BaseNode* get_ngram_node(const wchar_t* const* ngram, int n)
{
std::vector<WordId> wids(n);
for (int i=0; i<n; i++)
wids[i] = dictionary.word_to_id(ngram[i]);
return ngrams.get_node(wids);
}
protected:
// n-gram trie
TNGRAMS ngrams;
// smoothing
Smoothing smoothing;
// total number of n-grams with exactly one count, per level
std::vector<int> n1s;
// total number of n-grams with exactly two counts, per level
std::vector<int> n2s;
// discounting parameters for abs. discounting, kneser-ney, per level
std::vector<double> Ds;
};
typedef _DynamicModel<NGramTrie<TrieNode<BaseNode>,
BeforeLastNode<BaseNode, LastNode<BaseNode> >,
LastNode<BaseNode> > > DynamicModel;
#include "lm_dynamic_impl.h"
#endif
|