File: lm_dynamic_kn.h

package info (click to toggle)
onboard 1.4.1-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 31,548 kB
  • sloc: python: 29,215; cpp: 5,965; ansic: 5,735; xml: 1,026; sh: 163; makefile: 39
file content (419 lines) | stat: -rw-r--r-- 16,261 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

/*
 * Copyright © 2010, 2012-2014 marmuta <marmvta@gmail.com>
 *
 * This file is part of Onboard.
 *
 * Onboard is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Onboard is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef LM_DYNAMIC_KN_H
#define LM_DYNAMIC_KN_H

#include <assert.h>
#include "lm_dynamic.h"

#pragma pack(2)


//------------------------------------------------------------------------
// BeforeLastNodeKN - second to last node of the ngram trie, bigram for order 3
//------------------------------------------------------------------------
template <class TBASE>
class BeforeLastNodeKNBase : public TBASE
{
    public:
        BeforeLastNodeKNBase(WordId wid = (WordId)-1)
        : TBASE(wid)
        {
            N1pxr = 0;
        }
        int get_N1pxr() {return N1pxr;}

    public:
        uint32_t N1pxr;    // number of word types wid-n+1 that precede wid-n+2..wid in the training data
};

//------------------------------------------------------------------------
// TrieNodeKN - node for all lower levels of the ngram trie, unigrams for order 3
//------------------------------------------------------------------------
template <class TBASE>
class TrieNodeKNBase : public TBASE
{
    public:
        TrieNodeKNBase(WordId wid = (WordId)-1)
        : TBASE(wid)
        {
            clear();
        }

        void clear()
        {
            N1pxr = 0;
            N1pxrx = 0;
            TBASE::clear();
        }

        int get_N1pxrx()
        {
            return N1pxrx;
        }

    public:
        // Nomenclature:
        // N1p: number of word types with count>=1 (1p=one plus)
        // x: word, free running variable over all word types wi
        // r: remainder, remaining part of the full ngram
        uint32_t N1pxr;    // number of word types wi-n+1 that precede
                           // wi-n+2..wi in the training data
        uint32_t N1pxrx;   // number of permutations around center part
};

//------------------------------------------------------------------------
// NGramTrieKN - root node of the ngram trie
//------------------------------------------------------------------------
template <class TNODE, class TBEFORELASTNODE, class TLASTNODE>
class NGramTrieKN : public NGramTrie<TNODE, TBEFORELASTNODE, TLASTNODE>

{
    private:
        typedef NGramTrie<TNODE, TBEFORELASTNODE, TLASTNODE> Base;

    public:
        NGramTrieKN(WordId wid = (WordId)-1)
        : Base(wid)
        {
        }

        int increment_node_count(BaseNode* node, const WordId* wids, int n,
                                  int increment);

        int get_N1pxr(BaseNode* node, int level);
        int get_N1pxrx(BaseNode* node, int level);

        void get_probs_kneser_ney_i(const std::vector<WordId>& history,
                                    const std::vector<WordId>& words,
                                    std::vector<double>& vp,
                                    int num_word_types,
                                    const std::vector<double>& Ds);
};

// Add increment to node->count and incrementally update kneser-ney counts
template <class TNODE, class TBEFORELASTNODE, class TLASTNODE>
int NGramTrieKN<TNODE, TBEFORELASTNODE, TLASTNODE>::
    increment_node_count(BaseNode* node, const WordId* wids, int n,
                         int increment)
{
    // only the first time for each ngram
    if (node->count == 0 && increment > 0)
    {
        // get/add node for ngram (wids) excluding predecessor
        // ex: ngram = ["We", "saw"] -> wxr = ["saw"] with predecessor "We"
        // Predecessors exist for unigrams or greater, predecessor of unigrams
        // are all unigrams. In that case use the root to store N1pxr.
        std::vector<WordId> wxr(wids+1, wids+n);
        BaseNode *nd = this->add_node(wxr);
        if (!nd)
            return -1;
        ((TBEFORELASTNODE*)nd)->N1pxr++; // count number of word types wid-n+1
                                         // that precede wid-n+2..wid in the
                                         // training data

        // get/add node for ngram (wids) excluding predecessor and successor
        // ex: ngram = ["We", "saw", "whales"] -> wxrx = ["saw"]
        //     with predecessor "We" and successor "whales"
        // Predecessors and successors exist for bigrams or greater. wxrx is
        // an empty vector for bigrams. In that case use the root to store N1pxrx.
        if (n >= 2)
        {
            std::vector<WordId> wxrx(wids+1, wids+n-1);
            BaseNode* nd = this->add_node(wxrx);
            if (!nd)
                return -1;
            ((TNODE*)nd)->N1pxrx++;  // count number of word types wid-n+1 that precede wid-n+2..wid in the training data
        }
    }

    Base::increment_node_count(node, wids, n, increment);

    // Decrement kneser parameters after removal of the node
    if (node->count == 0 && increment < 0)
    {
        std::vector<WordId> wxr(wids+1, wids+n);
        BaseNode *nd = this->add_node(wxr);
        if (!nd)
            return -1;
        ((TBEFORELASTNODE*)nd)->N1pxr--;

        if (n >= 2)
        {
            std::vector<WordId> wxrx(wids+1, wids+n-1);
            BaseNode* nd = this->add_node(wxrx);
            if (!nd)
                return -1;
            ((TNODE*)nd)->N1pxrx--;
        }
    }

    return node->count;
}

template <class TNODE, class TBEFORELASTNODE, class TLASTNODE>
int NGramTrieKN<TNODE, TBEFORELASTNODE, TLASTNODE>::
    get_N1pxr(BaseNode* node, int level)
{
    if (level == this->order)
        return 0;
    if (level == this->order - 1)
        return static_cast<TBEFORELASTNODE*>(node)->N1pxr;
    return static_cast<TNODE*>(node)->N1pxr;
}

template <class TNODE, class TBEFORELASTNODE, class TLASTNODE>
int NGramTrieKN<TNODE, TBEFORELASTNODE, TLASTNODE>::
    get_N1pxrx(BaseNode* node, int level)
{
    if (level == this->order)
        return 0;
    if (level == this->order - 1)
        return 0;
    return static_cast<TNODE*>(node)->get_N1pxrx();
}

// kneser-ney smoothed probabilities
template <class TNODE, class TBEFORELASTNODE, class TLASTNODE>
void NGramTrieKN<TNODE, TBEFORELASTNODE, TLASTNODE>::
     get_probs_kneser_ney_i(const std::vector<WordId>& history,
                            const std::vector<WordId>& words,
                            std::vector<double>& vp,
                            int num_word_types,
                            const std::vector<double>& Ds)
{
    // only fixed history size allowed; don't remove unknown words
    // from the history, mark them with UNKNOWN_WORD_ID instead.
    ASSERT((int)history.size() == order-1);

    int i,j;
    int n = history.size() + 1;
    int size = words.size();   // number of candidate words
    std::vector<int32_t> vc(size);  // vector of counts, reused for order 1..n

    // order 0
    vp.resize(size);
    fill(vp.begin(), vp.end(), 1.0/num_word_types); // uniform distribution

    // order 1..n
    for(j=0; j<n; j++)
    {
        std::vector<WordId> h(history.begin()+(n-j-1), history.end()); // tmp history
        BaseNode* hnode = this->get_node(h);
        if (hnode)
        {
            int N1prx = this->get_N1prx(hnode, j);   // number of word types following the history
            if (!N1prx)  // break early, don't reset probabilities to 0
                break;   // for unknown histories

            // orders 1..n-1
            if (j < n-1)
            {
                // Exclude children without predecessor from the count of
                // successors. This corrects normalization errors for the case
                // that the language model wasn't trained from a single
                // continous stream of tokens, i.e. some tokens don't have
                // successors. This happenes by default with the predefined
                // control words <unk>, <s>, ..., but can also happen when
                // incrementally adding text fragments to a language model.
                int num_children = this->get_num_children(hnode, j);
                for(i=0; i<num_children; i++)
                {
                    // children here may be of type TrieNode or BeforeLastNode,
                    // play safe and cast to the latter.
                    TBEFORELASTNODE* child = static_cast<TBEFORELASTNODE*>
                                    (this->get_child_at(hnode, j, i));

                    if (child->get_N1pxr() == 0 &&  // no predecessors?
                        child->get_count())         // not removed?
                    {
                        N1prx--;  // exclude it from the count of successors
                    }
                }

                // number of permutations around history h
                int N1pxrx = get_N1pxrx(hnode, j);
                if (N1pxrx)
                {
                    // get number of word types seen to precede history h
                    if (h.size() == 0) // empty history?
                    {
                        // We're at the root and there are many children, all
                        // unigrams to be accurate. So the number of child nodes
                        // is >= the number of candidate words.
                        // Luckily a child's word_id can be directly looked up
                        // in the unigrams because they are always sorted by word_id
                        // as well. -> take that shortcut for root.
                        for(i=0; i<size; i++)
                        {
                            //printf("%d %d %d %d %d\n", size, j, i, words[i], (int)ngrams.children.size());
                            TNODE* node = static_cast<TNODE*>(this->children[words[i]]);
                            vc[i] = node->N1pxr;
                        }
                    }
                    else
                    {
                        // We're at some level > 0 and very likely there are a lot
                        // fewer child nodes than candidate words. E.g. everything
                        // from bigrams up has in all likelihood only few children.
                        // -> Turn the algorithm around and search the child nodes
                        // in the candidate words.
                        fill(vc.begin(), vc.end(), 0);
                        int num_children = this->get_num_children(hnode, j);
                        for(i=0; i<num_children; i++)
                        {
                            // children here may be of type TrieNode or BeforeLastNode,
                            // play safe and cast to the latter.
                            TBEFORELASTNODE* child = static_cast<TBEFORELASTNODE*>
                                            (this->get_child_at(hnode, j, i));

                            // word_indices have to be sorted by index
                            int index = binsearch(words, child->word_id);
                            if (index != -1)
                                vc[index] = child->N1pxr;
                        }
                    }

                    double D = Ds[j];
                    double l1 = D / float(N1pxrx) * N1prx; // normalization factor
                                                           // 1 - lambda
                    for(i=0; i<size; i++)
                    {
                        double a = vc[i] - D;
                        if (a < 0)
                            a = 0;
                        vp[i] = a / N1pxrx + l1 * vp[i];
                    }
                }

            }
            // order n
            else
            {
                // total number of occurences of the history
                int cs = this->sum_child_counts(hnode, j);
                if (cs)
                {
                    // get ngram counts
                    fill(vc.begin(), vc.end(), 0);
                    int num_children = this->get_num_children(hnode, j);
                    for(i=0; i<num_children; i++)
                    {
                        BaseNode* child = this->get_child_at(hnode, j, i);
                        int index = binsearch(words, child->word_id); // word_indices have to be sorted by index
                        if (index >= 0)
                            vc[index] = child->get_count();
                    }

                    double D = Ds[j];
                    double l1 = D / float(cs) * N1prx; // normalization factor
                                                           // 1 - lambda
                    for(i=0; i<size; i++)
                    {
                        double a = vc[i] - D;
                        if (a < 0)
                            a = 0;
                        vp[i] = a / float(cs) + l1 * vp[i];
                    }
                }
            }
        }
    }
}
#pragma pack()


//------------------------------------------------------------------------
// DynamicModelKN - dynamically updatable language model with kneser-ney support
//------------------------------------------------------------------------
template <class TNGRAMS>
class _DynamicModelKN : public _DynamicModel<TNGRAMS>
{
    public:
        typedef _DynamicModel<TNGRAMS> Base;

        static const Smoothing DEFAULT_SMOOTHING = KNESER_NEY_I;

    public:
        _DynamicModelKN()
        {
            this->smoothing = DEFAULT_SMOOTHING;
        }

        virtual std::vector<Smoothing> get_smoothings()
        {
            std::vector<Smoothing> smoothings = Base::get_smoothings();
            smoothings.push_back(KNESER_NEY_I);
            return smoothings;
        }

        virtual void get_node_values(BaseNode* node, int level,
                                    std::vector<int>& values)
        {
            Base::get_node_values(node, level, values);
            values.push_back(this->ngrams.get_N1pxrx(node, level));
            values.push_back(this->ngrams.get_N1pxr(node, level));
        }

    protected:
        virtual void get_probs(const std::vector<WordId>& history,
                                    const std::vector<WordId>& words,
                                    std::vector<double>& probabilities);

    private:
        virtual int increment_node_count(BaseNode* node, const WordId* wids,
                                         int n, int increment)
        {return this->ngrams.increment_node_count(node, wids, n, increment);}
};

typedef _DynamicModelKN<NGramTrieKN<TrieNode<TrieNodeKNBase<BaseNode> >,
                                  BeforeLastNode<BeforeLastNodeKNBase<BaseNode>,
                                                 LastNode<BaseNode> >,
                                  LastNode<BaseNode> > > DynamicModelKN;

// Calculate a vector of probabilities for the ngrams formed
// by history + word[i], for all i.
// input:  constant history and a vector of candidate words
// output: vector of probabilities, one value per candidate word
template <class TNGRAMS>
void _DynamicModelKN<TNGRAMS>::get_probs(const std::vector<WordId>& history,
                                         const std::vector<WordId>& words,
                                         std::vector<double>& probabilities)
{
    // pad/cut history so it's always of length order-1
    int n = std::min((int)history.size(), this->order-1);
    std::vector<WordId> h(this->order-1, UNKNOWN_WORD_ID);
    copy_backward(history.end()-n, history.end(), h.end());

    switch(this->smoothing)
    {
        case KNESER_NEY_I:
            this->ngrams.get_probs_kneser_ney_i(h, words, probabilities,
                                          this->get_num_word_types(), this->Ds);
            break;

        default:
            Base::get_probs(history, words, probabilities);
            break;
    }
}

#endif