1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/*
* Copyright © 2009-2010, 2012-2013 marmuta <marmvta@gmail.com>
*
* This file is part of Onboard.
*
* Onboard is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Onboard is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cmath>
#include "lm_merged.h"
using namespace std;
//------------------------------------------------------------------------
// MergedModel - abstract container for one or more component language models
//------------------------------------------------------------------------
struct cmp_results_desc
{
bool operator() (const LanguageModel::Result& x,
const LanguageModel::Result& y)
{ return (y.p < x.p);}
};
struct cmp_results_word
{
bool operator() (const LanguageModel::Result& x,
const LanguageModel::Result& y)
{ return (x.word < y.word);}
};
void MergedModel::predict(vector<LanguageModel::Result>& results,
const vector<wchar_t*>& context,
int limit, uint32_t options)
{
int i;
init_merge();
// merge prediction results of all component models
ResultsMap m;
for (i=0; i<(int)components.size(); i++)
{
// Ask the derived class if a limit on the number of results
// is allowed. Otherwise assume a limit would change the
// outcome and get all results.
bool can_limit = can_limit_components();
// Setting a limit requires sorting of results by probabilities.
// Skip sorting for performance reasons if there is no limit.
uint32_t opt = options | NORMALIZE;
if (!can_limit)
opt |= NO_SORT;
// get predictions from the component model
vector<Result> rs;
components[i]->predict(rs, context,
can_limit ? limit : -1, // limit number of results
options);
merge(m, rs, i);
}
// copy the map to the results vector
results.resize(0);
results.reserve(m.size());
ResultsMap::iterator mit;
for (mit=m.begin(); mit != m.end(); mit++)
{
Result result = {mit->first, mit->second};
results.push_back(result);
}
if (!(options & NO_SORT))
{
// sort by descending probabilities
// Use stable sort to keep words of equal probabilities in a fixed
// order with little by little changing contexts.
cmp_results_desc cmp_results;
std::stable_sort(results.begin(), results.end(), cmp_results);
}
int result_size = results.size();
if (limit >= 0 && limit < (int)results.size())
result_size = limit;
// normalize the final probabilities as needed
// Only works as expected with all words included, no filtering, no prefix
if (options & NORMALIZE && needs_normalization())
normalize(results, result_size);
// limit results, can't really do this earlier
if (result_size < (int)results.size())
results.resize(result_size);
}
void MergedModel::normalize(vector<Result>& results, int result_size)
{
// The normalization factors for overlay and log-linear interpolation
// are hard to come by -> Normalize the final limited results instead.
double psum = 0.0;
vector<Result>::iterator it;
for(it=results.begin(); it!=results.end(); it++)
psum += (*it).p;
for(it=results.begin(); it!=results.begin()+result_size; it++)
(*it).p *= 1.0/psum;
}
//------------------------------------------------------------------------
// OverlayModel - merge by overlaying language models
//------------------------------------------------------------------------
// Merges component models by stacking them on top of each other.
// Existing words in later language models replace the probabilities of
// earlier language models. The order of language models is important,
// the last probability found for a word wins.
// merge vector of ngram probabilities
void OverlayModel::merge(ResultsMap& dst, const vector<Result>& values,
int model_index)
{
vector<Result>::const_iterator it;
ResultsMap::iterator mit = dst.begin();
for (it=values.begin(); it != values.end(); it++)
{
const wstring& word = it->word;
double p = it->p;
mit = dst.insert(dst.begin(), pair<wstring, double>(word, 0.0));
mit->second = p;
}
}
//------------------------------------------------------------------------
// LinintModel - linearly interpolate language models
//------------------------------------------------------------------------
void LinintModel::init_merge()
{
// pad weights with default value in case there are too few entries
weights.resize(components.size(), 1.0);
// precalculate divisor
weight_sum = 0.0;
for (int i=0; i<(int)components.size(); i++)
weight_sum += weights[i];
}
// interpolate vector of ngrams
void LinintModel::merge(ResultsMap& dst, const vector<Result>& values,
int model_index)
{
double weight = weights[model_index] / weight_sum;
vector<Result>::const_iterator it;
ResultsMap::iterator mit;
for (it=values.begin(); it != values.end(); it++)
{
const wstring& word = it->word;
double p = it->p;
mit = dst.insert(dst.begin(), pair<wstring, double>(word, 0.0));
mit->second += weight * p;
}
}
// interpolate probabilities of a single ngram
// result is normalized
double LinintModel::get_probability(const wchar_t* const* ngram, int n)
{
init_merge();
double p = 0.0;
for (int i=0; i<(int)components.size(); i++)
{
double weight = weights[i] / weight_sum;
p += weight * components[i]->get_probability(ngram, n);
}
return p;
}
//------------------------------------------------------------------------
// LoglinintModel - log-linear interpolation of language models
//------------------------------------------------------------------------
void LoglinintModel::init_merge()
{
// pad weights with default value in case there are too few entries
weights.resize(components.size(), 1.0);
}
// interpolate prediction results vector
void LoglinintModel::merge(ResultsMap& dst, const vector<Result>& values,
int model_index)
{
double weight = weights[model_index];
vector<Result>::const_iterator it;
ResultsMap::iterator mit;
for (it=values.begin(); it != values.end(); it++)
{
const wstring& word = it->word;
double p = it->p;
mit = dst.insert(dst.begin(), pair<wstring, double>(word, 1.0));
mit->second *= pow(p, weight);
}
}
|