1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
/*
* Copyright © 2009-2010, 2012 marmuta <marmvta@gmail.com>
*
* This file is part of Onboard.
*
* Onboard is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Onboard is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdio.h>
#include <assert.h>
#include <cstring>
#include <set>
#include <map>
#include <algorithm>
#ifndef ALEN
#define ALEN(a) ((int)(sizeof(a)/sizeof(*a)))
#endif
#define USE_POOL_ALLOCATOR
using namespace std;
// define these somewhere to for example call malloc() and free()
extern void* HeapAlloc(size_t size);
extern void HeapFree(void* p);
#pragma pack(2)
class Slab
{
};
class SlabCtl
{
public:
#ifndef NDEBUG
size_t item_size;
class ItemPool* item_pool;
#endif
void* free_list;
uint32_t num_used;
};
#pragma pack()
// pool of items of a single size
// stores items in one or more slabs
class ItemPool
{
public:
ItemPool()
{
item_size = 0;
slab_size = 0;
items_per_slab = 0;
}
ItemPool(size_t size, size_t _slab_size)
{
item_size = size;
slab_size = _slab_size;
items_per_slab = (slab_size - sizeof(SlabCtl)) / item_size;
}
void* alloc_item(map<Slab*, ItemPool*>& slabmap)
{
Slab* slab = NULL;
if (partial.empty()) // no partial slabs there?
{
// allocate a new slab
slab = new_slab();
if (!slab)
return NULL;
partial.insert(slab);
slabmap[slab] = this;
}
else
{
slab = *partial.begin();
}
// allocate item in slab
void* p = alloc_slab_item(slab); // always succeeds
// slab full?
if (!*get_free_list(slab))
{
// move slab from partial to full list
partial.erase(slab);
full.insert(slab);
//printf("slab full: slab=%p item_size=%zu items=%zu\n", slab, item_size, items_per_slab);
}
return p;
}
void free_item(void* p, map<Slab*, ItemPool*>& slabmap)
{
Slab* slab = NULL;
set<Slab*>::iterator it;
// try full slabs first
if(!full.empty())
{
it = full.upper_bound((Slab*)p);
if (it != full.begin())
{
it--; // upper_bound: previous slab contains the address
if ((((uint8_t*)*it) + slab_size) >= p)
slab = *it;
}
}
// then partial slabs
if(!slab && !partial.empty())
{
it = partial.upper_bound((Slab*)p);
if (it != partial.begin())
{
it--; // upper_bound: previous slab contains the address
if ((((uint8_t*)*it) + slab_size) >= p)
slab = *it;
}
}
if(!slab)
{
printf("PoolAllocator: no slab found for item size %zd while freeing %p\n", item_size, p);
assert(false);
return;
}
// slab full?
SlabCtl* ctl = get_slab_ctl(slab);
if (!ctl->free_list)
{
// move slab from full to partial list
full.erase(slab);
partial.insert(slab);
#ifndef NDEBUG
//printf("full slab becomes partially full: slab=%p item_size=%zu items=%zu\n", slab, item_size, items_per_slab);
#endif
}
// free item
if (free_slab_item(slab, p) == 0)
{
// all items freed -> delete slab
#ifndef NDEBUG
printf("freeing slab %p item_size=%zu items=%zu\n", slab, item_size, items_per_slab);
#endif
partial.erase(slab);
slabmap.erase(slab);
HeapFree(slab);
}
}
Slab* new_slab()
{
// item_size must be large enough for an item pointer
// -> minimum item size = 8 byte on amd_64
assert(item_size >= sizeof(void*));
// Slabs are allocated from the heap
Slab* slab = (Slab*) HeapAlloc(slab_size);
if (!slab)
return NULL;
// SlabCtl is a small structure at the very end of each slab
SlabCtl* ctl = get_slab_ctl(slab);
ctl->num_used = 0;
#ifndef NDEBUG
ctl->item_size = item_size;
ctl->item_pool = this;
#endif
// Initialize the free list
// The free list uses empty item slots to store
// a linked list of free items. The nodes of the
// list are single pointers at the very beginning
// each item.
void** p = &ctl->free_list; // start of free list
for (size_t i=0; i<items_per_slab; i++)
{
*p = ((uint8_t*)slab) + item_size*i;
p = (void**)*p;
}
*p = NULL; // end of the free list
return slab;
}
void* alloc_slab_item(Slab* slab)
{
SlabCtl* ctl = get_slab_ctl(slab);
void** plist = &ctl->free_list;
void* p = *plist;
*plist = *(void**)p;
ctl->num_used++;
return p;
}
size_t free_slab_item(Slab* slab, void* item)
{
// must be from the address range of the slab
assert((uint8_t*)slab <= item &&
item < ((uint8_t*)slab) + slab_size - sizeof(SlabCtl));
// must be start of an item
assert(size_t((uint8_t*)item - (uint8_t*)slab)/item_size*item_size ==
size_t((uint8_t*)item - (uint8_t*)slab));
// must be the right type of slab
assert(get_slab_ctl(slab)->item_size == item_size);
assert(get_slab_ctl(slab)->item_pool == this);
#ifndef NDEBUG
// fill with 1010... bit pattern to easily spot
// freed items in memory dumps.
memset(item, 0x55, item_size);
#endif
SlabCtl* ctl = get_slab_ctl(slab);
void** plist = &ctl->free_list;
*(void**)item = *plist;
*plist = item; // insert item into the free list
ctl->num_used--;
return ctl->num_used;
}
// is address of p part of this slab?
bool is_in_slab(Slab* slab, void* p)
{
return (uint8_t*)slab <= p &&
p < ((uint8_t*)slab) + slab_size - sizeof(SlabCtl);
}
// SlabCtl is a small structure at the very end of each slab
SlabCtl* get_slab_ctl(Slab* slab)
{
return (SlabCtl*)(((uint8_t*)slab) + slab_size - sizeof(SlabCtl));
}
// get start of free list
void** get_free_list(Slab* slab)
{
//return (void**)(((uint8_t*)slab) + slab_size - sizeof(uint32_t*));
return &get_slab_ctl(slab)->free_list;
}
private:
friend class PoolAllocator;
size_t item_size;
size_t items_per_slab;
size_t slab_size;
set<Slab*> partial;
set<Slab*> full;
};
// Manages multiple fixed size pools for arbitrary allocation sizes.
// Uses ItemPools for smallish items and falls back to heap
// allocation for larger ones.
class PoolAllocator
{
public:
PoolAllocator()
{
memset(pools, 0, sizeof(pools));
}
~PoolAllocator()
{
for (int i=0; i<ALEN(pools); i++)
if (pools[i])
{
pools[i]->~ItemPool();
HeapFree(pools[i]);
}
}
static PoolAllocator* instance()
{
static PoolAllocator allocator;
return &allocator;
}
void* alloc(size_t size)
{
//assert(size/4*4 == size); // item size must be multiple of 4
//size_t bin = size/4;
size_t bin = size; // items of any size allowed
if (bin < ALEN(pools))
{
// Minimum allocation size is the size of a pointer.
// (ItemPool uses pointers to store the free list)
// Wasteful for the smallest items, but still
// better than malloc.
if (size < sizeof(void*))
size = sizeof(void*);
// allocate small items in ItemPools
ItemPool*& pool = pools[bin];
if (!pool)
{
size_t page = 4096; // assumed vm page size
size_t n = size * 10; // at least 10 items per slab
size_t slab_size = ((n + page-1) / page * page);
pool = (ItemPool*)HeapAlloc(sizeof(ItemPool));
pool = new(pool) ItemPool(size, slab_size);
}
return pool->alloc_item(slabmap);
}
else
{
// allocate large items from the heap
//printf("HeapAlloc size=%zd\n", size);
return HeapAlloc(size);
}
}
void free(void* p)
{
// try to find a slab containing the address p
if(!slabmap.empty())
{
map<Slab*, ItemPool*>::iterator it;
it = slabmap.upper_bound((Slab*)p);
if (it != slabmap.begin())
{
it--; // upper_bound: previous slab contains the address
ItemPool* pool = it->second;
if (pool->is_in_slab(it->first, p))
{
pool->free_item(p, slabmap);
return;
}
}
}
// hope it's a large block and delegate to heap free()
HeapFree(p);
}
private:
ItemPool* pools[4096]; // max number of bins
map<Slab*, ItemPool*> slabmap; // find slab from pointer
};
#ifdef USE_POOL_ALLOCATOR
void* MemAlloc(size_t size)
{
return PoolAllocator::instance()->alloc(size);
}
void MemFree(void* p)
{
return PoolAllocator::instance()->free(p);
}
#else
void* MemAlloc(size_t size)
{
return HeapAlloc(size);
}
void MemFree(void* p)
{
return HeapFree(p);
}
#endif
|