File: entropy

package info (click to toggle)
onboard 1.4.1-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 31,548 kB
  • sloc: python: 29,215; cpp: 5,965; ansic: 5,735; xml: 1,026; sh: 163; makefile: 39
file content (64 lines) | stat: -rwxr-xr-x 1,904 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/python3
# -*- coding: utf-8 -*-

# Copyright © 2009, 2012 marmuta <marmvta@gmail.com>
#
# This file is part of Onboard.
#
# Onboard is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# Onboard is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

import sys, re, codecs, math
import pypredict

def main():
    model = pypredict.DynamicModel()
    model.load(sys.argv[1])
    text = pypredict.read_corpus(sys.argv[2])

    word_count, ngram_count, entropy, perplexity = calc_stats(model, text)

    print "test: words %d, n-grams %d, entropy %f bit/word, perplexity %f" % \
          (word_count, ngram_count, entropy, perplexity)

def calc_stats(model, text):

    ngram_count = 0
    entropy = 0

    tokens, spans = pypredict.tokenize_text(text)
    word_count = len(tokens)

    # extract n-grams of maximum length
    for i in xrange(len(tokens)):
        b = max(i-(model.order-1),0)
        e = min(i-(model.order-1)+model.order, len(tokens))
        ngram = tokens[b:e]
        if len(ngram) != 1:
            p = model.get_probability(ngram)
            e = math.log(p,2) if p else float("infinity")
            entropy += e
            ngram_count += 1

    entropy = -entropy/word_count if word_count else 0
    try:
        perplexity = 2 ** entropy
    except:
        perplexity = 0

    return word_count, ngram_count, entropy, perplexity


if __name__ == '__main__':
    main()