File: filter

package info (click to toggle)
onboard 1.4.1-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 31,548 kB
  • sloc: python: 29,215; cpp: 5,965; ansic: 5,735; xml: 1,026; sh: 163; makefile: 39
file content (409 lines) | stat: -rwxr-xr-x 14,136 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
#!/usr/bin/python3
# -*- coding: utf-8 -*-

# Copyright © 2013 marmuta <marmvta@gmail.com>
#
# This file is part of Onboard.
#
# Onboard is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# Onboard is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

import os
import sys
import fnmatch
import subprocess
import re
from optparse import OptionParser
from collections import Counter

import sys
from os.path import dirname, abspath

from pypredict import *


def main():
    parser = OptionParser(usage="Usage: %prog [options] model_in model_out")

    # pruning
    parser.add_option("-p", "--prune-counts",
              type="str", dest="prune_counts", default="",
              help="prune n-grams with counts below or equal <prune-count>")
    parser.add_option("-u", "--max-unigrams", 
              type="int", dest="max_unigrams", default=0,
              help="prune n-grams with counts below or equal the one of the "
                   "least frequent of the top <max-unigrams> unigrams;"
                   "default 0, disabled")

    # regex filters
    parser.add_option("-r", "--regex-unigram",
              type="str", dest="regex_unigram", default="",
              help="regular expression filter applied to unigrams. Matches are dropped.")
    parser.add_option("-n", "--regex-ngram",
              type="str", dest="regex_ngram", default="",
              help="regular expression filter applied to the space separated "
                   "ngram string. Matches are dropped.")
    parser.add_option("-t", "--title-case",
              action="store_true", dest="title_case", default=False,
              help="Keep only capitalized words for bigrams and up")

    # spell check
    parser.add_option("-l", "--language", type="str", dest="lang_id", default="",
              help="language id for the spell checker, e.g. en_US")
    parser.add_option("-N", "--filter-names",
              action="store_true", dest="filter_names", default=False,
              help="Remove capitalized word if the lower caps variant is "
                   "known to the spell checker too.")
    parser.add_option("-x", "--name-exceptions",
              type="str", dest="name_exceptions", default="",
              help="Exempt a comma separated list of words from being "
                   "removed by --filter-names")
    parser.add_option("-i", "--lu-ratio",
              type="float", dest="lu_ratio", default=5.0,
              help="Max. ratio of uppercase to lowercase occurrences of "
                   "capitalized words. Increase to drop more upper case words.")

    # diagnose
    parser.add_option("-d", "--diagnose-ngram",
              type="str", dest="diagnose_ngram", default="",
              help="Test for existence of a comma-separated n-gram "
                   "at every filter step.")

    # not currently used
    parser.add_option("-v", "--vocabulary", type="str", dest="vocabulary_file",
              help="list of words to consider during model creation")
    parser.add_option("-c", "--caps-ngram-len",
              type="int", dest="caps_bigram_len", default=0,
              help="capitalized word filter for bigrams, len=min word length")

    # options
    parser.add_option("-S", "--save-sorted",
              action="store_true", dest="save_sorted", default=False,
              help="Load and re-save the final model to take advantage of"
                   "unigram-sorting on load. Also verifies file integrity.")
    parser.add_option("-q", "--quiet",
              action="store_true", dest="quiet", default=False,
              help="only show the final summary")
    options, args = parser.parse_args()

    vocabulary = read_vocabulary(options.vocabulary_file) \
                 if options.vocabulary_file else None

    out = None if options.quiet else sys.stdout
    caps_bigram_len = options.caps_bigram_len
    model_in_filename = args[0]
    model_out_filename = args[1]
    lang_id = options.lang_id
    diagnose_ngram = None
    if options.diagnose_ngram:
        diagnose_ngram = options.diagnose_ngram.split(",")

    spell_checker = None
    if lang_id:
        spell_checker = SpellChecker()
        spell_checker.set_backend(0)
        if not spell_checker.set_dict_ids([lang_id]):
            print("No spell checker dictionary found for '{}'".format(lang_id),
                  file = sys.stderr)
            sys.exit(1)

    with timeit("loading " + model_in_filename, out):

        if read_order(model_in_filename) == 1:
            model = UnigramModel()
        else:
            model = DynamicModel()
        model.load(model_in_filename)

    check_ngram(model, diagnose_ngram)

    if options.max_unigrams:
        with timeit("prune by max unigrams", out):
            cnt = Counter(tokens)
            most_common = cnt.most_common(options.max_unigrams)
            if most_common:
                min_token = most_common[-1]
                _prune_count = min_token[1]
                #print("pruning", min_token, prune_count)
                model = model.prune(_prune_count)

    check_ngram(model, diagnose_ngram)

    if options.prune_counts:
        prune_counts = [int(c) for c in options.prune_counts.split(",")]
        with timeit("prune by count", out):
            model = model.prune(prune_counts)

    check_ngram(model, diagnose_ngram)

    if options.regex_unigram:
        with timeit("regex unigram filter", out):
            model = regex_filter_unigram(model, options.regex_unigram)

    check_ngram(model, diagnose_ngram)

    if options.regex_ngram:
        with timeit("regex joined ngram filter", out):
            model = regex_filter_ngram(model, options.regex_ngram)

    check_ngram(model, diagnose_ngram)

    if options.title_case:
        with timeit("title case filter", out):
            model = title_case_filter(model)

    check_ngram(model, diagnose_ngram)

    if caps_bigram_len:
        with timeit("caps ngram filter", out):
            model = caps_bigram_filter(model, caps_bigram_len)

    check_ngram(model, diagnose_ngram)

    if spell_checker:
        name_exceptions = options.name_exceptions.split(",")
        model = spell_check_model(model, spell_checker,
                                  options.filter_names,
                                  name_exceptions, 
                                  options.lu_ratio,
                                  out)

    check_ngram(model, diagnose_ngram)

    with timeit("saving " + model_out_filename, out):
        model.save(model_out_filename)

    if options.save_sorted:
        with timeit("loading " + model_out_filename, out):
            model.load(model_out_filename)

        with timeit("saving " + model_out_filename, out):
            model.save(model_out_filename)

    print_stats(model)

def check_ngram(model, ngram):
    if ngram:
        count = model.get_ngram_count(ngram)
        print ("ngram {} has count {}".format(repr(ngram), count))

def regex_filter_unigram(model, regex):
    out_model = model.__class__(model.order)
    pattern = re.compile(regex, re.VERBOSE)

    for it in model.iter_ngrams():
        ngram = it[0]
        count = it[1]
        for token in ngram:
            if pattern.search(token):
                break
        else:
            out_model.count_ngram(ngram, count)
    return out_model

def regex_filter_ngram(model, regex):
    out_model = model.__class__(model.order)
    pattern = re.compile(regex, re.VERBOSE)

    for it in model.iter_ngrams():
        ngram = it[0]
        count = it[1]
        ngram_str = " ".join(ngram)
        if not pattern.search(ngram_str):
            out_model.count_ngram(ngram, count)
    return out_model

def caps_bigram_filter(model, word_length):
    """
    Rather hard-coded filter to keep only capitalized bigrams
    above a certain length.

    Pythone re doesn't support upper/lower character class,
    so we can't reliably use the regex filters for this.
    """
    out_model = model.__class__(model.order)

    for it in model.iter_ngrams():
        ngram = it[0]
        count = it[1]

        if len(ngram) == 1 or \
           _is_caps_ngram(ngram, word_length):
            out_model.count_ngram(ngram, count)

    return out_model

def title_case_filter(model):
    """ Leaves only bigrams and up with all words starting uppercase. """
    out_model = model.__class__(model.order)

    for it in model.iter_ngrams():
        ngram = it[0]
        count = it[1]

        if len(ngram) == 1:
            out_model.count_ngram(ngram, count)
        else:
            for word in ngram:
                if word[0].islower():
                    break
            else:
                out_model.count_ngram(ngram, count)

    return out_model

def _is_caps_ngram(ngram, word_length):
    for i, word in enumerate(ngram):
        minlen = word_length if i else word_length + 1
        if not word[0].isupper() or len(word) < minlen:
            return False
    return True

def spell_check_model(model, spell_checker,
                      filter_names, name_exceptions, max_lu_ratio,
                      out):
    out_model = model.__class__(model.order)

    unigrams = []
    with timeit("reading model", out):
        for it in model.iter_ngrams():
            ngram = it[0]
            if len(ngram) == 1:
                unigrams.append(ngram[0])

    with timeit("checking spelling of {} unigrams".format(len(unigrams)), out):
        step = 1000
        correct_words = set()
        correct_words_non_caps = set()
        for i in range(0, len(unigrams), step):

            tokens = unigrams[i:i+step]
            print ("spell-checked {}/{} tokens, checking {} ...)" \
                   .format(i, len(unigrams), len(tokens)))
            results = spell_checker.query(tokens)

            tokens = [w.lower() for w in results]
            results_non_caps = spell_checker.query(tokens)

            correct_words.update(results)
            correct_words_non_caps.update(results_non_caps)

    with timeit("creating spell-checked model", out):
        dropped_caps = []
        name_exceptions += ["Delhi"]
        for it in model.iter_ngrams():
            ngram = it[0]
            count = it[1]

            for word in ngram:
                if not word in name_exceptions:

                    # drop unknown spellings
                    if not word in correct_words:
                        break

                    # drop uppercase words that can be correctly spelled
                    # as lower case words too.
                    word_lower = word.lower()
                    if filter_names and \
                       word[0].isupper() and \
                       word_lower in correct_words_non_caps:

                        # Only drop words that are more frequently
                        # written lower case.
                        count_upper = model.get_ngram_count([word])
                        count_lower = model.get_ngram_count([word_lower])
                        lu_ratio = count_lower / float(count_upper)
                        if lu_ratio > max_lu_ratio:
                            if len(ngram) == 1:
                                dropped_caps.append((lu_ratio,
                                                     count_upper,
                                                     count_lower,
                                                     word))
                            break
            else:
                out_model.count_ngram(ngram, count)

        if 1:
            dropped_caps.sort()
            for i, tpl in enumerate(dropped_caps):
                lu_ratio, count, count_lower, word = tpl
                print("dropping capitalized: "
                      "#{:6} upper {:8} lower {:8} l/u {:8.1f} {}" \
                      .format(i, count, count_lower, lu_ratio , word))

    return out_model

def print_stats(model):
    counts, totals = model.get_counts()
    print("calculating stats...")
    for i,c in enumerate(counts):
        sys.stdout.write("%d-grams: types %10d, occurences %10d\n" % \
              (i+1, counts[i], totals[i]))
    print("mem_size", model.memory_size(), sum(model.memory_size()),
          "(-S for best estimate)")


class SpellChecker:

    def __init__(self):
        self.dict_ids = []

    def set_backend(self, backend):
        pass

    def set_dict_ids(self, dict_ids):
        self.dict_ids = dict_ids
        return True

    def query(self, tokens):
        correct_words = []

        args = ["hunspell", "-G", "-i", "UTF-8"]
        if self.dict_ids:
            args += ["-d", ",".join(self.dict_ids)]

        p = None
        try:
            p = subprocess.Popen(args, stdin=subprocess.PIPE,
                                       stdout=subprocess.PIPE,
                                       close_fds=True)
        except OSError as e:
            _logger.error(_format("Failed to execute '{}', {}", \
                            " ".join(args), e))

        # Check if the process is still running, it might have
        # exited on start due to an unknown dictinary name.
        if p and p.poll() is None:
            for token in tokens:
                line = (token + "\n").encode("UTF-8")
                p.stdin.write(line)
            p.stdin.close()

            while True:
                line = p.stdout.readline().decode("UTF-8")
                if not line:
                    break
                token = line.strip()
                correct_words.append(token)

        if p:
            p.terminate()
            p.wait()

        return correct_words


if __name__ == '__main__':
    main()