File: train

package info (click to toggle)
onboard 1.4.1-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 31,548 kB
  • sloc: python: 29,215; cpp: 5,965; ansic: 5,735; xml: 1,026; sh: 163; makefile: 39
file content (254 lines) | stat: -rwxr-xr-x 8,359 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/python3
# -*- coding: utf-8 -*-

# Copyright © 2009-2010, 2012-2013 marmuta <marmvta@gmail.com>
#
# This file is part of Onboard.
#
# Onboard is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# Onboard is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

import os
import sys
import fnmatch
import subprocess
from optparse import OptionParser
from collections import Counter

import sys
from os.path import dirname, abspath

from pypredict import *



def main():
    global model # for debugging

    parser = OptionParser(usage="Usage: %prog [options] model corpus corpus-pattern")
    parser.add_option("-o", "--order", type="int", dest="order", default=3,
              help="order of the language model, defaults to 3")
    parser.add_option("-l", "--language", type="str", dest="lang_id", default="",
              help="language id for the spell checker, e.g. en_US")
    parser.add_option("-q", "--quiet",
              action="store_true", dest="quiet", default=False,
              help="only show the final summary")
    parser.add_option("-v", "--vocabulary", type="str", dest="vocabulary_file",
              help="list of words to consider during model creation")
    parser.add_option("-u", "--max-unigrams", type="int",
              dest="max_unigrams", default=0,
              help="prune n-grams with counts below or equal the one of the "
                   "least frequent of the top max_unigrams unigram;"
                   "default 0, disabled")
    options, args = parser.parse_args()

    order = options.order
    out = None if options.quiet else sys.stdout
    vocabulary = read_vocabulary(options.vocabulary_file) \
                 if options.vocabulary_file else None

    if order == 1:
        model = UnigramModel()
    else:
        model = DynamicModel()
        model.order = order
    max_unigrams = options.max_unigrams
    model_filename = args[0]
    lang_id = options.lang_id

    spell_checker = None
    if lang_id:
        spell_checker = SpellChecker()
        spell_checker.set_backend(0)
        if not spell_checker.set_dict_ids([lang_id]):
            print("No spell checker dictionary found for '{}'".format(lang_id))
        spelling_cache = {"<unk>" : True,
                          "<s>" : True,
                          "</s>" : True,
                          "<num>" : True,}

    if len(args) >= 3:
        filenames = rglob(args[1], args[2])
        n = len(filenames)
        for i, filename in enumerate(filenames):
            count = i + 1
            print("{:6}/{} {:7.2f}%: {}" \
                  .format(count, n, 100.0 * count / n, filename))
            text = read_corpus(filename)
            tokens, spans = tokenize_text(text)
            #tokens += ["Anti-Corrutpion","生辰八字"]

            if vocabulary:
                tokens = filter_tokens(tokens, vocabulary)

            if spell_checker:
                spell_check(spell_checker, spelling_cache, tokens)

            # Skip over the first word of each sentence? Those are usually
            # capitalized and we can't distinguish them from capitalized nouns.
            skip_sentence_begin = True
            if skip_sentence_begin:
                sections = split_tokens(tokens, "<s>")
                token_sections = []
                for section in sections:
                    token_sections.append(section[1:])
            else:
                token_sections = [tokens]

            for token_section in token_sections:
                model.learn_tokens(token_section)

            if count % 3000 == 0:
                print("saving", repr(model_filename))
                model.save(model_filename)
                #print_stats(model)

    elif len(args) >= 2:
        filename = args[1]
        with timeit("read_corpus", out):
            text = read_corpus(filename)

        with timeit("tokenize_text", out):
            tokens, spans = tokenize_text(text)

        if vocabulary:
            with timeit("filter_tokens", out):
                tokens = filter_tokens(tokens, vocabulary)

        with timeit("learn_tokens", out):
            model.learn_tokens(tokens)

    if max_unigrams:
        with timeit("prune n-grams", out):
            cnt = Counter(tokens)
            most_common = cnt.most_common(max_unigrams)
            if most_common:
                min_token = most_common[-1]
                prune_count = min_token[1]
                #print("pruning", min_token, prune_count)
                model = model.prune(prune_count)

    with timeit("save", out):
        model.save(model_filename)

    print_stats(model)

def spell_check(spell_checker, spelling_cache, tokens):
    unknowns = {}
    num_new = 0
    for itoken, token in enumerate(tokens):
        if not token in spelling_cache:
            try:
                unknowns[token].append(itoken)
            except KeyError:
                unknowns[token] = [itoken]

    if unknowns:
        print("spell-checking {} unknowns of {} total tokens" \
              .format(len(unknowns), len(tokens)))
        spell_tokens = unknowns.keys()
        correct_words = set(spell_checker.query(spell_tokens))
        incorrect_words = set(spell_tokens) - correct_words

        for token in spell_tokens:
            spelling_cache[token] = not token in incorrect_words

        print("known tokens {:7}, dropping {:6} of {:6}: " \
              .format(len(spelling_cache),
                      len(incorrect_words),
                      len(spell_tokens)))
        print (incorrect_words)

    # finally filter the tokens
    for itoken, token in enumerate(tokens):
        if not spelling_cache[token]:
            tokens[itoken] = "<unk>"

def print_stats(model):
    counts, totals = model.get_counts()
    print("calculating stats...")
    for i,c in enumerate(counts):
        sys.stdout.write("%d-grams: types %10d, occurences %10d\n" % \
              (i+1, counts[i], totals[i]))
    print(model.memory_size())

def rglob(dir_str, pattern_str):
    filenames = []
    dirs = dir_str.split(",")
    patterns = pattern_str.split(",")

    for dir in dirs:
        for root, dirs, files in os.walk(dir):
            for basename in files:
                for pattern in patterns:
                    if fnmatch.fnmatch(basename, pattern):
                        filenames.append(os.path.join(root, basename))
                        break

    filenames.sort()
    return filenames


class SpellChecker:

    def __init__(self):
        self.dict_ids = []

    def set_backend(self, backend):
        pass

    def set_dict_ids(self, dict_ids):
        self.dict_ids = dict_ids
        return True

    def query(self, tokens):
        correct_words = []

        args = ["hunspell", "-G", "-i", "UTF-8"]
        if self.dict_ids:
            args += ["-d", ",".join(self.dict_ids)]

        p = None
        try:
            p = subprocess.Popen(args, stdin=subprocess.PIPE,
                                       stdout=subprocess.PIPE,
                                       close_fds=True)
        except OSError as e:
            _logger.error(_format("Failed to execute '{}', {}", \
                            " ".join(args), e))

        # Check if the process is still running, it might have
        # exited on start due to an unknown dictinary name.
        if p and p.poll() is None:
            for token in tokens:
                line = (token + "\n").encode("UTF-8")
                p.stdin.write(line)
            p.stdin.close()

            while True:
                line = p.stdout.readline().decode("UTF-8")
                if not line:
                    break
                token = line.strip()
                correct_words.append(token)

        if p:
            p.terminate()
            p.wait()

        return correct_words


if __name__ == '__main__':
    main()