1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
/*
Copyright (c) 2005-2021 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
/* Bin-packing algorithm that attempts to use minimal number of bins B of
size desired_bin_capacity to contain elements_num items of varying sizes. */
#include <cmath>
#include <string>
#include <iostream>
#include <tuple>
#include <vector>
#include <atomic>
#include <algorithm>
#include "oneapi/tbb/tick_count.h"
#include "oneapi/tbb/flow_graph.h"
#include "oneapi/tbb/global_control.h"
#include "common/utility/utility.hpp"
#include "common/utility/get_default_num_threads.hpp"
typedef std::size_t size_type; // to represent non-zero indices, capacities, etc.
typedef std::size_t value_type; // the type of items we are attempting to pack into bins
typedef std::vector<value_type> bin; // we use a simple vector to represent a bin
// Our bin packers will be function nodes in the graph that take value_type items and
// return a dummy value. They will also implicitly send packed bins to the bin_buffer
// node, and unused items back to the value_pool node:
typedef oneapi::tbb::flow::
multifunction_node<value_type, std::tuple<value_type, bin>, oneapi::tbb::flow::rejecting>
bin_packer;
// Items are placed into a pool that all bin packers grab from, represent by a queue_node:
typedef oneapi::tbb::flow::queue_node<value_type> value_pool;
// Packed bins are placed in this buffer waiting to be serially printed and/or accounted for:
typedef oneapi::tbb::flow::buffer_node<bin> bin_buffer;
// Packed bins are taken from the_bin_buffer and processed by the_writer:
typedef oneapi::tbb::flow::
function_node<bin, oneapi::tbb::flow::continue_msg, oneapi::tbb::flow::rejecting>
bin_writer;
// Items are injected into the graph when this node sends them to the_value_pool:
typedef oneapi::tbb::flow::input_node<value_type> value_source;
// User-specified globals with default values
size_type desired_bin_capacity = 42;
size_type elements_num = 1000; // number of elements to generate
bool verbose = false; // prints bin details and other diagnostics to screen
bool silent = false; // suppress all output except for time
int num_bin_packers = -1; // number of concurrent bin packers in operation; default is #threads;
// larger values can result in more bins at less than full capacity
size_type optimality =
1; // 1 (default) is highest the algorithm can obtain; larger numbers run faster
// Calculated globals
size_type bins_num_min; // lower bound on the optimal number of bins
size_type bins_num; // the answer, i.e. number of bins used by the algorithm
std::vector<size_type> input_array; // stores randomly generated input values
value_type item_sum; // sum of all randomly generated input values
std::atomic<value_type> packed_sum; // sum of all values currently packed into all bins
std::atomic<size_type> packed_items; // number of values currently packed into all bins
std::atomic<size_type> active_bins; // number of active bin_packers
std::vector<bin_packer*> bins; // the array of bin packers
// This class is the Body type for bin_packer
class bin_filler {
typedef bin_packer::output_ports_type ports_type;
bin my_bin; // the current bin that this bin_filler is packing
size_type
my_used; // capacity of bin used by current contents (not to be confused with my_bin.size())
size_type relax,
relax_val; // relaxation counter for determining when to settle for a non-full bin
bin_packer* my_bin_packer; // ptr to the bin packer that this body object is associated with
size_type bin_index; // index of the encapsulating bin packer in the global bins array
value_type looking_for; // the minimum size of item this bin_packer will accept
value_pool* the_value_pool; // the queue of incoming values
bool done; // flag to indicate that this binpacker has been deactivated
public:
bin_filler(std::size_t bidx, value_pool* _q)
: my_used(0),
relax(0),
relax_val(0),
my_bin_packer(nullptr),
bin_index(bidx),
looking_for(desired_bin_capacity),
the_value_pool(_q),
done(false) {}
void operator()(const value_type& item, ports_type& p) {
if (!my_bin_packer)
my_bin_packer = bins[bin_index];
if (done)
// this bin_packer is done packing items; put item back to pool
std::get<0>(p).try_put(item);
else if (
item >
desired_bin_capacity) { // signal that packed_sum has reached item_sum at some point
size_type remaining = active_bins--;
if (remaining == 1 &&
packed_sum == item_sum) { // this is the last bin and it has seen everything
// this bin_packer may not have seen everything, so stay active
if (my_used > 0)
std::get<1>(p).try_put(my_bin);
my_bin.clear();
my_used = 0;
looking_for = desired_bin_capacity;
++active_bins;
}
else if (remaining == 1) { // this is the last bin, but there are remaining items
std::get<0>(p).try_put(desired_bin_capacity + 1); // send out signal
++active_bins;
}
else if (remaining > 1) { // this is not the last bin; deactivate
// this bin is ill-utilized; throw back items and deactivate
if (my_used < desired_bin_capacity / (1 + optimality * .1)) {
packed_sum -= my_used;
packed_items -= my_bin.size();
for (size_type i = 0; i < my_bin.size(); ++i)
std::get<0>(p).try_put(my_bin[i]);
oneapi::tbb::flow::remove_edge(*the_value_pool, *my_bin_packer); // deactivate
done = true;
std::get<0>(p).try_put(desired_bin_capacity + 1); // send out signal
}
else { // this bin is well-utilized; send out bin and deactivate
oneapi::tbb::flow::remove_edge(*the_value_pool,
*my_bin_packer); // build no more bins
done = true;
if (my_used > 0)
std::get<1>(p).try_put(my_bin);
std::get<0>(p).try_put(desired_bin_capacity + 1); // send out signal
}
}
}
else if (item <= desired_bin_capacity - my_used &&
item >= looking_for) { // this item can be packed
my_bin.push_back(item);
my_used += item;
packed_sum += item;
++packed_items;
looking_for = desired_bin_capacity - my_used;
relax = 0;
if (packed_sum == item_sum) {
std::get<0>(p).try_put(desired_bin_capacity + 1); // send out signal
}
if (my_used == desired_bin_capacity) {
std::get<1>(p).try_put(my_bin);
my_bin.clear();
my_used = 0;
looking_for = desired_bin_capacity;
}
}
else { // this item can't be packed; relax constraints
++relax;
// this bin_packer has looked through enough items
if (relax >= (elements_num - packed_items) / optimality) {
relax = 0;
--looking_for; // accept a wider range of items
if (looking_for == 0 && my_used < desired_bin_capacity / (1 + optimality * .1) &&
my_used > 0 && active_bins > 1) {
// this bin_packer is ill-utilized and can't find items; deactivate and throw back items
size_type remaining = active_bins--;
if (remaining > 1) { // not the last bin_packer
oneapi::tbb::flow::remove_edge(*the_value_pool,
*my_bin_packer); // deactivate
done = true;
}
else
active_bins++; // can't deactivate last bin_packer
packed_sum -= my_used;
packed_items -= my_bin.size();
for (size_type i = 0; i < my_bin.size(); ++i)
std::get<0>(p).try_put(my_bin[i]);
my_bin.clear();
my_used = 0;
}
else if (looking_for == 0 &&
(my_used >= desired_bin_capacity / (1 + optimality * .1) ||
active_bins == 1)) {
// this bin_packer can't find items but is well-utilized, so send it out and reset
std::get<1>(p).try_put(my_bin);
my_bin.clear();
my_used = 0;
looking_for = desired_bin_capacity;
}
}
std::get<0>(p).try_put(item); // put unused item back to pool
}
}
};
// input node uses this to send the values to the value_pool
class item_generator {
size_type counter;
public:
item_generator() : counter(0) {}
value_type operator()(oneapi::tbb::flow_control& fc) {
if (counter < elements_num) {
value_type result = input_array[counter];
++counter;
return result;
}
fc.stop();
return value_type{};
}
};
// the terminal function_node uses this to gather stats and print bin information
class bin_printer {
value_type running_count;
size_type item_count;
value_type my_min, my_max;
double avg;
public:
bin_printer()
: running_count(0),
item_count(0),
my_min(desired_bin_capacity),
my_max(0),
avg(0) {}
oneapi::tbb::flow::continue_msg operator()(bin b) {
value_type sum = 0;
++bins_num;
if (verbose)
std::cout << "[ ";
for (size_type i = 0; i < b.size(); ++i) {
if (verbose)
std::cout << b[i] << " ";
sum += b[i];
++item_count;
}
my_min = std::min(sum, my_min);
my_max = std::max(sum, my_max);
avg += sum;
running_count += sum;
if (verbose) {
std::cout << "]=" << sum << "; Done/Packed/Total cap: " << running_count << "/"
<< packed_sum << "/" << item_sum << " items:" << item_count << "/"
<< packed_items << "/" << elements_num << " bins_num=" << bins_num << "\n";
}
if (item_count == elements_num) { // should be the last; print stats
avg = avg / (double)bins_num;
if (!silent)
std::cout << "SUMMARY: #Bins used: " << bins_num << "; Avg size: " << avg
<< "; Max size: " << my_max << "; Min size: " << my_min << "\n"
<< " Lower bound on optimal #bins: " << bins_num_min
<< "; Start #bins: " << num_bin_packers << "\n";
}
return oneapi::tbb::flow::continue_msg(); // need to return something
}
};
int main(int argc, char* argv[]) {
utility::thread_number_range threads(utility::get_default_num_threads);
utility::parse_cli_arguments(
argc,
argv,
utility::cli_argument_pack()
//"-h" option for displaying help is present implicitly
.positional_arg(threads, "#threads", utility::thread_number_range_desc)
.arg(verbose, "verbose", " print diagnostic output to screen")
.arg(silent, "silent", " limits output to timing info; overrides verbose")
.arg(elements_num, "elements_num", " number of values to pack")
.arg(desired_bin_capacity, "bin_capacity", " capacity of each bin")
.arg(num_bin_packers,
"#packers",
" number of concurrent bin packers to use "
"(default=#threads)")
.arg(optimality,
"optimality",
"controls optimality of solution; 1 is highest, use\n"
" larger numbers for less optimal but faster solution"));
if (silent)
verbose = false; // make silent override verbose
// Generate random input data
srand(42);
input_array.resize(elements_num);
item_sum = 0;
for (auto& item : input_array) {
item = rand() % desired_bin_capacity + 1; // generate items that fit in a bin
item_sum += item;
}
bins_num_min = (item_sum % desired_bin_capacity) ? item_sum / desired_bin_capacity + 1
: item_sum / desired_bin_capacity;
oneapi::tbb::tick_count start = oneapi::tbb::tick_count::now();
for (int p = threads.first; p <= threads.last; p = threads.step(p)) {
oneapi::tbb::global_control c(oneapi::tbb::global_control::max_allowed_parallelism, p);
packed_sum = 0;
packed_items = 0;
bins_num = 0;
if (num_bin_packers == -1)
num_bin_packers = p;
active_bins = num_bin_packers;
if (!silent)
std::cout << "binpack running with " << item_sum << " capacity over " << elements_num
<< " items, optimality=" << optimality << ", " << num_bin_packers
<< " bins of capacity=" << desired_bin_capacity << " on " << p << " threads."
<< "\n";
oneapi::tbb::flow::graph g;
value_source the_source(g, item_generator());
value_pool the_value_pool(g);
oneapi::tbb::flow::make_edge(the_source, the_value_pool);
bin_buffer the_bin_buffer(g);
bins.resize(num_bin_packers);
for (int i = 0; i < num_bin_packers; ++i) {
bins[i] = new bin_packer(g, 1, bin_filler(i, &the_value_pool));
oneapi::tbb::flow::make_edge(the_value_pool, *(bins[i]));
oneapi::tbb::flow::make_edge(oneapi::tbb::flow::output_port<0>(*(bins[i])),
the_value_pool);
oneapi::tbb::flow::make_edge(oneapi::tbb::flow::output_port<1>(*(bins[i])),
the_bin_buffer);
}
bin_writer the_writer(g, 1, bin_printer());
make_edge(the_bin_buffer, the_writer);
the_source.activate();
g.wait_for_all();
for (int i = 0; i < num_bin_packers; ++i) {
delete bins[i];
}
}
utility::report_elapsed_time((oneapi::tbb::tick_count::now() - start).seconds());
return 0;
}
|