1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
/*
Copyright (c) 2005-2022 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#ifndef __TBB_concurrent_priority_queue_H
#define __TBB_concurrent_priority_queue_H
#include "detail/_namespace_injection.h"
#include "detail/_aggregator.h"
#include "detail/_template_helpers.h"
#include "detail/_allocator_traits.h"
#include "detail/_range_common.h"
#include "detail/_exception.h"
#include "detail/_utils.h"
#include "detail/_containers_helpers.h"
#include "cache_aligned_allocator.h"
#include <vector>
#include <iterator>
#include <functional>
#include <utility>
#include <initializer_list>
#include <type_traits>
namespace tbb {
namespace detail {
namespace d1 {
template <typename T, typename Compare = std::less<T>, typename Allocator = cache_aligned_allocator<T>>
class concurrent_priority_queue {
public:
using value_type = T;
using reference = T&;
using const_reference = const T&;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using allocator_type = Allocator;
concurrent_priority_queue() : concurrent_priority_queue(allocator_type{}) {}
explicit concurrent_priority_queue( const allocator_type& alloc )
: mark(0), my_size(0), my_compare(), data(alloc)
{
my_aggregator.initialize_handler(functor{this});
}
explicit concurrent_priority_queue( const Compare& compare, const allocator_type& alloc = allocator_type() )
: mark(0), my_size(0), my_compare(compare), data(alloc)
{
my_aggregator.initialize_handler(functor{this});
}
explicit concurrent_priority_queue( size_type init_capacity, const allocator_type& alloc = allocator_type() )
: mark(0), my_size(0), my_compare(), data(alloc)
{
data.reserve(init_capacity);
my_aggregator.initialize_handler(functor{this});
}
explicit concurrent_priority_queue( size_type init_capacity, const Compare& compare, const allocator_type& alloc = allocator_type() )
: mark(0), my_size(0), my_compare(compare), data(alloc)
{
data.reserve(init_capacity);
my_aggregator.initialize_handler(functor{this});
}
template <typename InputIterator>
concurrent_priority_queue( InputIterator begin, InputIterator end, const Compare& compare, const allocator_type& alloc = allocator_type() )
: mark(0), my_compare(compare), data(begin, end, alloc)
{
my_aggregator.initialize_handler(functor{this});
heapify();
my_size.store(data.size(), std::memory_order_relaxed);
}
template <typename InputIterator>
concurrent_priority_queue( InputIterator begin, InputIterator end, const allocator_type& alloc = allocator_type() )
: concurrent_priority_queue(begin, end, Compare(), alloc) {}
concurrent_priority_queue( std::initializer_list<value_type> init, const Compare& compare, const allocator_type& alloc = allocator_type() )
: concurrent_priority_queue(init.begin(), init.end(), compare, alloc) {}
concurrent_priority_queue( std::initializer_list<value_type> init, const allocator_type& alloc = allocator_type() )
: concurrent_priority_queue(init, Compare(), alloc) {}
concurrent_priority_queue( const concurrent_priority_queue& other )
: mark(other.mark), my_size(other.my_size.load(std::memory_order_relaxed)), my_compare(other.my_compare),
data(other.data)
{
my_aggregator.initialize_handler(functor{this});
}
concurrent_priority_queue( const concurrent_priority_queue& other, const allocator_type& alloc )
: mark(other.mark), my_size(other.my_size.load(std::memory_order_relaxed)), my_compare(other.my_compare),
data(other.data, alloc)
{
my_aggregator.initialize_handler(functor{this});
}
concurrent_priority_queue( concurrent_priority_queue&& other )
: mark(other.mark), my_size(other.my_size.load(std::memory_order_relaxed)), my_compare(other.my_compare),
data(std::move(other.data))
{
my_aggregator.initialize_handler(functor{this});
}
concurrent_priority_queue( concurrent_priority_queue&& other, const allocator_type& alloc )
: mark(other.mark), my_size(other.my_size.load(std::memory_order_relaxed)), my_compare(other.my_compare),
data(std::move(other.data), alloc)
{
my_aggregator.initialize_handler(functor{this});
}
concurrent_priority_queue& operator=( const concurrent_priority_queue& other ) {
if (this != &other) {
data = other.data;
mark = other.mark;
my_size.store(other.my_size.load(std::memory_order_relaxed), std::memory_order_relaxed);
}
return *this;
}
concurrent_priority_queue& operator=( concurrent_priority_queue&& other ) {
if (this != &other) {
// TODO: check if exceptions from std::vector::operator=(vector&&) should be handled separately
data = std::move(other.data);
mark = other.mark;
my_size.store(other.my_size.load(std::memory_order_relaxed), std::memory_order_relaxed);
}
return *this;
}
concurrent_priority_queue& operator=( std::initializer_list<value_type> init ) {
assign(init.begin(), init.end());
return *this;
}
template <typename InputIterator>
void assign( InputIterator begin, InputIterator end ) {
data.assign(begin, end);
mark = 0;
my_size.store(data.size(), std::memory_order_relaxed);
heapify();
}
void assign( std::initializer_list<value_type> init ) {
assign(init.begin(), init.end());
}
/* Returned value may not reflect results of pending operations.
This operation reads shared data and will trigger a race condition. */
__TBB_nodiscard bool empty() const { return size() == 0; }
// Returns the current number of elements contained in the queue
/* Returned value may not reflect results of pending operations.
This operation reads shared data and will trigger a race condition. */
size_type size() const { return my_size.load(std::memory_order_relaxed); }
/* This operation can be safely used concurrently with other push, try_pop or emplace operations. */
void push( const value_type& value ) {
cpq_operation op_data(value, PUSH_OP);
my_aggregator.execute(&op_data);
if (op_data.status == FAILED)
throw_exception(exception_id::bad_alloc);
}
/* This operation can be safely used concurrently with other push, try_pop or emplace operations. */
void push( value_type&& value ) {
cpq_operation op_data(value, PUSH_RVALUE_OP);
my_aggregator.execute(&op_data);
if (op_data.status == FAILED)
throw_exception(exception_id::bad_alloc);
}
/* This operation can be safely used concurrently with other push, try_pop or emplace operations. */
template <typename... Args>
void emplace( Args&&... args ) {
// TODO: support uses allocator construction in this place
push(value_type(std::forward<Args>(args)...));
}
// Gets a reference to and removes highest priority element
/* If a highest priority element was found, sets elem and returns true,
otherwise returns false.
This operation can be safely used concurrently with other push, try_pop or emplace operations. */
bool try_pop( value_type& value ) {
cpq_operation op_data(value, POP_OP);
my_aggregator.execute(&op_data);
return op_data.status == SUCCEEDED;
}
// This operation affects the whole container => it is not thread-safe
void clear() {
data.clear();
mark = 0;
my_size.store(0, std::memory_order_relaxed);
}
// This operation affects the whole container => it is not thread-safe
void swap( concurrent_priority_queue& other ) {
if (this != &other) {
using std::swap;
swap(data, other.data);
swap(mark, other.mark);
size_type sz = my_size.load(std::memory_order_relaxed);
my_size.store(other.my_size.load(std::memory_order_relaxed), std::memory_order_relaxed);
other.my_size.store(sz, std::memory_order_relaxed);
}
}
allocator_type get_allocator() const { return data.get_allocator(); }
private:
enum operation_type {INVALID_OP, PUSH_OP, POP_OP, PUSH_RVALUE_OP};
enum operation_status {WAIT = 0, SUCCEEDED, FAILED};
class cpq_operation : public aggregated_operation<cpq_operation> {
public:
operation_type type;
union {
value_type* elem;
size_type sz;
};
cpq_operation( const value_type& value, operation_type t )
: type(t), elem(const_cast<value_type*>(&value)) {}
}; // class cpq_operation
class functor {
concurrent_priority_queue* my_cpq;
public:
functor() : my_cpq(nullptr) {}
functor( concurrent_priority_queue* cpq ) : my_cpq(cpq) {}
void operator()(cpq_operation* op_list) {
__TBB_ASSERT(my_cpq != nullptr, "Invalid functor");
my_cpq->handle_operations(op_list);
}
}; // class functor
void handle_operations( cpq_operation* op_list ) {
call_itt_notify(acquired, this);
cpq_operation* tmp, *pop_list = nullptr;
__TBB_ASSERT(mark == data.size(), nullptr);
// First pass processes all constant (amortized; reallocation may happen) time pushes and pops.
while(op_list) {
// ITT note: &(op_list->status) tag is used to cover accesses to op_list
// node. This thread is going to handle the operation, and so will acquire it
// and perform the associated operation w/o triggering a race condition; the
// thread that created the operation is waiting on the status field, so when
// this thread is done with the operation, it will perform a
// store_with_release to give control back to the waiting thread in
// aggregator::insert_operation.
// TODO: enable
call_itt_notify(acquired, &(op_list->status));
__TBB_ASSERT(op_list->type != INVALID_OP, nullptr);
tmp = op_list;
op_list = op_list->next.load(std::memory_order_relaxed);
if (tmp->type == POP_OP) {
if (mark < data.size() &&
my_compare(data[0], data.back()))
{
// there are newly pushed elems and the last one is higher than top
*(tmp->elem) = std::move(data.back());
my_size.store(my_size.load(std::memory_order_relaxed) - 1, std::memory_order_relaxed);
tmp->status.store(uintptr_t(SUCCEEDED), std::memory_order_release);
data.pop_back();
__TBB_ASSERT(mark <= data.size(), nullptr);
} else { // no convenient item to pop; postpone
tmp->next.store(pop_list, std::memory_order_relaxed);
pop_list = tmp;
}
} else { // PUSH_OP or PUSH_RVALUE_OP
__TBB_ASSERT(tmp->type == PUSH_OP || tmp->type == PUSH_RVALUE_OP, "Unknown operation");
#if TBB_USE_EXCEPTIONS
try
#endif
{
if (tmp->type == PUSH_OP) {
push_back_helper(*(tmp->elem));
} else {
data.push_back(std::move(*(tmp->elem)));
}
my_size.store(my_size.load(std::memory_order_relaxed) + 1, std::memory_order_relaxed);
tmp->status.store(uintptr_t(SUCCEEDED), std::memory_order_release);
}
#if TBB_USE_EXCEPTIONS
catch(...) {
tmp->status.store(uintptr_t(FAILED), std::memory_order_release);
}
#endif
}
}
// Second pass processes pop operations
while(pop_list) {
tmp = pop_list;
pop_list = pop_list->next.load(std::memory_order_relaxed);
__TBB_ASSERT(tmp->type == POP_OP, nullptr);
if (data.empty()) {
tmp->status.store(uintptr_t(FAILED), std::memory_order_release);
} else {
__TBB_ASSERT(mark <= data.size(), nullptr);
if (mark < data.size() &&
my_compare(data[0], data.back()))
{
// there are newly pushed elems and the last one is higher than top
*(tmp->elem) = std::move(data.back());
my_size.store(my_size.load(std::memory_order_relaxed) - 1, std::memory_order_relaxed);
tmp->status.store(uintptr_t(SUCCEEDED), std::memory_order_release);
data.pop_back();
} else { // extract top and push last element down heap
*(tmp->elem) = std::move(data[0]);
my_size.store(my_size.load(std::memory_order_relaxed) - 1, std::memory_order_relaxed);
tmp->status.store(uintptr_t(SUCCEEDED), std::memory_order_release);
reheap();
}
}
}
// heapify any leftover pushed elements before doing the next
// batch of operations
if (mark < data.size()) heapify();
__TBB_ASSERT(mark == data.size(), nullptr);
call_itt_notify(releasing, this);
}
// Merge unsorted elements into heap
void heapify() {
if (!mark && data.size() > 0) mark = 1;
for (; mark < data.size(); ++mark) {
// for each unheapified element under size
size_type cur_pos = mark;
value_type to_place = std::move(data[mark]);
do { // push to_place up the heap
size_type parent = (cur_pos - 1) >> 1;
if (!my_compare(data[parent], to_place))
break;
data[cur_pos] = std::move(data[parent]);
cur_pos = parent;
} while(cur_pos);
data[cur_pos] = std::move(to_place);
}
}
// Re-heapify after an extraction
// Re-heapify by pushing last element down the heap from the root.
void reheap() {
size_type cur_pos = 0, child = 1;
while(child < mark) {
size_type target = child;
if (child + 1 < mark && my_compare(data[child], data[child + 1]))
++target;
// target now has the higher priority child
if (my_compare(data[target], data.back()))
break;
data[cur_pos] = std::move(data[target]);
cur_pos = target;
child = (cur_pos << 1) + 1;
}
if (cur_pos != data.size() - 1)
data[cur_pos] = std::move(data.back());
data.pop_back();
if (mark > data.size()) mark = data.size();
}
void push_back_helper( const T& value ) {
push_back_helper_impl(value, std::is_copy_constructible<T>{});
}
void push_back_helper_impl( const T& value, /*is_copy_constructible = */std::true_type ) {
data.push_back(value);
}
void push_back_helper_impl( const T&, /*is_copy_constructible = */std::false_type ) {
__TBB_ASSERT(false, "error: calling tbb::concurrent_priority_queue.push(const value_type&) for move-only type");
}
using aggregator_type = aggregator<functor, cpq_operation>;
aggregator_type my_aggregator;
// Padding added to avoid false sharing
char padding1[max_nfs_size - sizeof(aggregator_type)];
// The point at which unsorted elements begin
size_type mark;
std::atomic<size_type> my_size;
Compare my_compare;
// Padding added to avoid false sharing
char padding2[max_nfs_size - (2*sizeof(size_type)) - sizeof(Compare)];
//! Storage for the heap of elements in queue, plus unheapified elements
/** data has the following structure:
binary unheapified
heap elements
____|_______|____
| | |
v v v
[_|...|_|_|...|_| |...| ]
0 ^ ^ ^
| | |__capacity
| |__my_size
|__mark
Thus, data stores the binary heap starting at position 0 through
mark-1 (it may be empty). Then there are 0 or more elements
that have not yet been inserted into the heap, in positions
mark through my_size-1. */
using vector_type = std::vector<value_type, allocator_type>;
vector_type data;
friend bool operator==( const concurrent_priority_queue& lhs,
const concurrent_priority_queue& rhs )
{
return lhs.data == rhs.data;
}
#if !__TBB_CPP20_COMPARISONS_PRESENT
friend bool operator!=( const concurrent_priority_queue& lhs,
const concurrent_priority_queue& rhs )
{
return !(lhs == rhs);
}
#endif
}; // class concurrent_priority_queue
#if __TBB_CPP17_DEDUCTION_GUIDES_PRESENT
template <typename It,
typename Comp = std::less<iterator_value_t<It>>,
typename Alloc = tbb::cache_aligned_allocator<iterator_value_t<It>>,
typename = std::enable_if_t<is_input_iterator_v<It>>,
typename = std::enable_if_t<is_allocator_v<Alloc>>,
typename = std::enable_if_t<!is_allocator_v<Comp>>>
concurrent_priority_queue( It, It, Comp = Comp(), Alloc = Alloc() )
-> concurrent_priority_queue<iterator_value_t<It>, Comp, Alloc>;
template <typename It, typename Alloc,
typename = std::enable_if_t<is_input_iterator_v<It>>,
typename = std::enable_if_t<is_allocator_v<Alloc>>>
concurrent_priority_queue( It, It, Alloc )
-> concurrent_priority_queue<iterator_value_t<It>, std::less<iterator_value_t<It>>, Alloc>;
template <typename T,
typename Comp = std::less<T>,
typename Alloc = tbb::cache_aligned_allocator<T>,
typename = std::enable_if_t<is_allocator_v<Alloc>>,
typename = std::enable_if_t<!is_allocator_v<Comp>>>
concurrent_priority_queue( std::initializer_list<T>, Comp = Comp(), Alloc = Alloc() )
-> concurrent_priority_queue<T, Comp, Alloc>;
template <typename T, typename Alloc,
typename = std::enable_if_t<is_allocator_v<Alloc>>>
concurrent_priority_queue( std::initializer_list<T>, Alloc )
-> concurrent_priority_queue<T, std::less<T>, Alloc>;
#endif // __TBB_CPP17_DEDUCTION_GUIDES_PRESENT
template <typename T, typename Compare, typename Allocator>
void swap( concurrent_priority_queue<T, Compare, Allocator>& lhs,
concurrent_priority_queue<T, Compare, Allocator>& rhs )
{
lhs.swap(rhs);
}
} // namespace d1
} // namespace detail
inline namespace v1 {
using detail::d1::concurrent_priority_queue;
} // inline namespace v1
} // namespace tbb
#endif // __TBB_concurrent_priority_queue_H
|