1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
|
/*
Copyright (c) 2005-2025 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#ifndef __TBB_concurrent_queue_H
#define __TBB_concurrent_queue_H
#include "detail/_namespace_injection.h"
#include "detail/_concurrent_queue_base.h"
#include "detail/_allocator_traits.h"
#include "detail/_exception.h"
#include "detail/_containers_helpers.h"
#include "cache_aligned_allocator.h"
namespace tbb {
namespace detail {
namespace d2 {
template <typename QueueRep, typename Allocator>
std::pair<bool, ticket_type> internal_try_pop_impl(void* dst, QueueRep& queue, Allocator& alloc ) {
ticket_type ticket{};
do {
// Basically, we need to read `head_counter` before `tail_counter`. To achieve it we build happens-before on `head_counter`
ticket = queue.head_counter.load(std::memory_order_acquire);
do {
if (static_cast<std::ptrdiff_t>(queue.tail_counter.load(std::memory_order_relaxed) - ticket) <= 0) { // queue is empty
// Queue is empty
return { false, ticket };
}
// Queue had item with ticket k when we looked. Attempt to get that item.
// Another thread snatched the item, retry.
} while (!queue.head_counter.compare_exchange_strong(ticket, ticket + 1));
} while (!queue.choose(ticket).pop(dst, ticket, queue, alloc));
return { true, ticket };
}
// A high-performance thread-safe non-blocking concurrent queue.
// Multiple threads may each push and pop concurrently.
template <typename T, typename Allocator = tbb::cache_aligned_allocator<T>>
class concurrent_queue {
using allocator_traits_type = tbb::detail::allocator_traits<Allocator>;
using queue_representation_type = concurrent_queue_rep<T, Allocator>;
using queue_allocator_type = typename allocator_traits_type::template rebind_alloc<queue_representation_type>;
using queue_allocator_traits = tbb::detail::allocator_traits<queue_allocator_type>;
public:
using size_type = std::size_t;
using value_type = T;
using reference = T&;
using const_reference = const T&;
using difference_type = std::ptrdiff_t;
using allocator_type = Allocator;
using pointer = typename allocator_traits_type::pointer;
using const_pointer = typename allocator_traits_type::const_pointer;
using iterator = concurrent_queue_iterator<concurrent_queue, T, Allocator>;
using const_iterator = concurrent_queue_iterator<concurrent_queue, const T, Allocator>;
concurrent_queue() : concurrent_queue(allocator_type()) {}
explicit concurrent_queue(const allocator_type& a) :
my_allocator(a), my_queue_representation(nullptr)
{
my_queue_representation = static_cast<queue_representation_type*>(r1::cache_aligned_allocate(sizeof(queue_representation_type)));
queue_allocator_traits::construct(my_allocator, my_queue_representation);
__TBB_ASSERT(is_aligned(my_queue_representation, max_nfs_size), "alignment error" );
__TBB_ASSERT(is_aligned(&my_queue_representation->head_counter, max_nfs_size), "alignment error" );
__TBB_ASSERT(is_aligned(&my_queue_representation->tail_counter, max_nfs_size), "alignment error" );
__TBB_ASSERT(is_aligned(&my_queue_representation->array, max_nfs_size), "alignment error" );
}
template <typename InputIterator>
concurrent_queue(InputIterator begin, InputIterator end, const allocator_type& a = allocator_type()) :
concurrent_queue(a)
{
for (; begin != end; ++begin)
push(*begin);
}
concurrent_queue( std::initializer_list<value_type> init, const allocator_type& alloc = allocator_type() ) :
concurrent_queue(init.begin(), init.end(), alloc)
{}
concurrent_queue(const concurrent_queue& src, const allocator_type& a) :
concurrent_queue(a)
{
my_queue_representation->assign(*src.my_queue_representation, my_allocator, copy_construct_item);
}
concurrent_queue(const concurrent_queue& src) :
concurrent_queue(queue_allocator_traits::select_on_container_copy_construction(src.get_allocator()))
{
my_queue_representation->assign(*src.my_queue_representation, my_allocator, copy_construct_item);
}
// Move constructors
concurrent_queue(concurrent_queue&& src) :
concurrent_queue(std::move(src.my_allocator))
{
internal_swap(src);
}
concurrent_queue(concurrent_queue&& src, const allocator_type& a) :
concurrent_queue(a)
{
// checking that memory allocated by one instance of allocator can be deallocated
// with another
if (my_allocator == src.my_allocator) {
internal_swap(src);
} else {
// allocators are different => performing per-element move
my_queue_representation->assign(*src.my_queue_representation, my_allocator, move_construct_item);
src.clear();
}
}
// Destroy queue
~concurrent_queue() {
clear();
my_queue_representation->clear(my_allocator);
queue_allocator_traits::destroy(my_allocator, my_queue_representation);
r1::cache_aligned_deallocate(my_queue_representation);
}
concurrent_queue& operator=( const concurrent_queue& other ) {
//TODO: implement support for std::allocator_traits::propagate_on_container_copy_assignment
if (my_queue_representation != other.my_queue_representation) {
clear();
my_allocator = other.my_allocator;
my_queue_representation->assign(*other.my_queue_representation, my_allocator, copy_construct_item);
}
return *this;
}
concurrent_queue& operator=( concurrent_queue&& other ) {
//TODO: implement support for std::allocator_traits::propagate_on_container_move_assignment
if (my_queue_representation != other.my_queue_representation) {
clear();
if (my_allocator == other.my_allocator) {
internal_swap(other);
} else {
my_queue_representation->assign(*other.my_queue_representation, other.my_allocator, move_construct_item);
other.clear();
my_allocator = std::move(other.my_allocator);
}
}
return *this;
}
concurrent_queue& operator=( std::initializer_list<value_type> init ) {
assign(init);
return *this;
}
template <typename InputIterator>
void assign( InputIterator first, InputIterator last ) {
concurrent_queue src(first, last);
clear();
my_queue_representation->assign(*src.my_queue_representation, my_allocator, move_construct_item);
}
void assign( std::initializer_list<value_type> init ) {
assign(init.begin(), init.end());
}
void swap ( concurrent_queue& other ) {
//TODO: implement support for std::allocator_traits::propagate_on_container_swap
__TBB_ASSERT(my_allocator == other.my_allocator, "unequal allocators");
internal_swap(other);
}
// Enqueue an item at tail of queue.
void push(const T& value) {
internal_push(value);
}
void push(T&& value) {
internal_push(std::move(value));
}
template <typename... Args>
void emplace( Args&&... args ) {
internal_push(std::forward<Args>(args)...);
}
// Attempt to dequeue an item from head of queue.
/** Does not wait for item to become available.
Returns true if successful; false otherwise. */
bool try_pop( T& result ) {
return internal_try_pop(&result);
}
// Return the number of items in the queue; thread unsafe
size_type unsafe_size() const {
std::ptrdiff_t size = my_queue_representation->size();
return size < 0 ? 0 : size_type(size);
}
// Equivalent to size()==0.
__TBB_nodiscard bool empty() const {
return my_queue_representation->empty();
}
// Clear the queue. not thread-safe.
void clear() {
my_queue_representation->clear(my_allocator);
}
// Return allocator object
allocator_type get_allocator() const { return my_allocator; }
//------------------------------------------------------------------------
// The iterators are intended only for debugging. They are slow and not thread safe.
//------------------------------------------------------------------------
iterator unsafe_begin() { return concurrent_queue_iterator_provider::get<iterator>(*this); }
iterator unsafe_end() { return iterator(); }
const_iterator unsafe_begin() const { return concurrent_queue_iterator_provider::get<const_iterator>(*this); }
const_iterator unsafe_end() const { return const_iterator(); }
const_iterator unsafe_cbegin() const { return concurrent_queue_iterator_provider::get<const_iterator>(*this); }
const_iterator unsafe_cend() const { return const_iterator(); }
private:
void internal_swap(concurrent_queue& src) {
using std::swap;
swap(my_queue_representation, src.my_queue_representation);
}
template <typename... Args>
void internal_push( Args&&... args ) {
ticket_type k = my_queue_representation->tail_counter++;
my_queue_representation->choose(k).push(k, *my_queue_representation, my_allocator, std::forward<Args>(args)...);
}
bool internal_try_pop( void* dst ) {
return internal_try_pop_impl(dst, *my_queue_representation, my_allocator).first;
}
template <typename Container, typename Value, typename A>
friend class concurrent_queue_iterator;
static void copy_construct_item(T* location, const void* src) {
// TODO: use allocator_traits for copy construction
new (location) value_type(*static_cast<const value_type*>(src));
// queue_allocator_traits::construct(my_allocator, location, *static_cast<const T*>(src));
}
static void move_construct_item(T* location, const void* src) {
// TODO: use allocator_traits for move construction
new (location) value_type(std::move(*static_cast<value_type*>(const_cast<void*>(src))));
}
queue_allocator_type my_allocator;
queue_representation_type* my_queue_representation;
friend void swap( concurrent_queue& lhs, concurrent_queue& rhs ) {
lhs.swap(rhs);
}
friend bool operator==( const concurrent_queue& lhs, const concurrent_queue& rhs ) {
return lhs.unsafe_size() == rhs.unsafe_size() && std::equal(lhs.unsafe_begin(), lhs.unsafe_end(), rhs.unsafe_begin());
}
#if !__TBB_CPP20_COMPARISONS_PRESENT
friend bool operator!=( const concurrent_queue& lhs, const concurrent_queue& rhs ) {
return !(lhs == rhs);
}
#endif // __TBB_CPP20_COMPARISONS_PRESENT
}; // class concurrent_queue
#if __TBB_CPP17_DEDUCTION_GUIDES_PRESENT
// Deduction guide for the constructor from two iterators
template <typename It, typename Alloc = tbb::cache_aligned_allocator<iterator_value_t<It>>,
typename = std::enable_if_t<is_input_iterator_v<It>>,
typename = std::enable_if_t<is_allocator_v<Alloc>>>
concurrent_queue( It, It, Alloc = Alloc() )
-> concurrent_queue<iterator_value_t<It>, Alloc>;
#endif /* __TBB_CPP17_DEDUCTION_GUIDES_PRESENT */
class concurrent_monitor;
// The concurrent monitor tags for concurrent_bounded_queue.
static constexpr std::size_t cbq_slots_avail_tag = 0;
static constexpr std::size_t cbq_items_avail_tag = 1;
} // namespace d2
namespace r1 {
class concurrent_monitor;
TBB_EXPORT std::uint8_t* __TBB_EXPORTED_FUNC allocate_bounded_queue_rep( std::size_t queue_rep_size );
TBB_EXPORT void __TBB_EXPORTED_FUNC deallocate_bounded_queue_rep( std::uint8_t* mem, std::size_t queue_rep_size );
TBB_EXPORT void __TBB_EXPORTED_FUNC abort_bounded_queue_monitors( concurrent_monitor* monitors );
TBB_EXPORT void __TBB_EXPORTED_FUNC notify_bounded_queue_monitor( concurrent_monitor* monitors, std::size_t monitor_tag
, std::size_t ticket );
TBB_EXPORT void __TBB_EXPORTED_FUNC wait_bounded_queue_monitor( concurrent_monitor* monitors, std::size_t monitor_tag,
std::ptrdiff_t target, d1::delegate_base& predicate );
} // namespace r1
namespace d2 {
// A high-performance thread-safe blocking concurrent bounded queue.
// Supports boundedness and blocking semantics.
// Multiple threads may each push and pop concurrently.
template <typename T, typename Allocator = tbb::cache_aligned_allocator<T>>
class concurrent_bounded_queue {
using allocator_traits_type = tbb::detail::allocator_traits<Allocator>;
using queue_representation_type = concurrent_queue_rep<T, Allocator>;
using queue_allocator_type = typename allocator_traits_type::template rebind_alloc<queue_representation_type>;
using queue_allocator_traits = tbb::detail::allocator_traits<queue_allocator_type>;
template <typename FuncType>
void internal_wait(r1::concurrent_monitor* monitors, std::size_t monitor_tag, std::ptrdiff_t target, FuncType pred) {
d1::delegated_function<FuncType> func(pred);
r1::wait_bounded_queue_monitor(monitors, monitor_tag, target, func);
}
public:
using size_type = std::ptrdiff_t;
using value_type = T;
using reference = T&;
using const_reference = const T&;
using difference_type = std::ptrdiff_t;
using allocator_type = Allocator;
using pointer = typename allocator_traits_type::pointer;
using const_pointer = typename allocator_traits_type::const_pointer;
using iterator = concurrent_queue_iterator<concurrent_bounded_queue, T, Allocator>;
using const_iterator = concurrent_queue_iterator<concurrent_bounded_queue, const T, Allocator> ;
concurrent_bounded_queue() : concurrent_bounded_queue(allocator_type()) {}
explicit concurrent_bounded_queue( const allocator_type& a ) :
my_allocator(a), my_capacity(0), my_abort_counter(0), my_queue_representation(nullptr)
{
my_queue_representation = reinterpret_cast<queue_representation_type*>(
r1::allocate_bounded_queue_rep(sizeof(queue_representation_type)));
my_monitors = reinterpret_cast<r1::concurrent_monitor*>(my_queue_representation + 1);
queue_allocator_traits::construct(my_allocator, my_queue_representation);
my_capacity = std::size_t(-1) / (queue_representation_type::item_size > 1 ? queue_representation_type::item_size : 2);
__TBB_ASSERT(is_aligned(my_queue_representation, max_nfs_size), "alignment error" );
__TBB_ASSERT(is_aligned(&my_queue_representation->head_counter, max_nfs_size), "alignment error" );
__TBB_ASSERT(is_aligned(&my_queue_representation->tail_counter, max_nfs_size), "alignment error" );
__TBB_ASSERT(is_aligned(&my_queue_representation->array, max_nfs_size), "alignment error" );
}
template <typename InputIterator>
concurrent_bounded_queue( InputIterator begin, InputIterator end, const allocator_type& a = allocator_type() ) :
concurrent_bounded_queue(a)
{
for (; begin != end; ++begin)
push(*begin);
}
concurrent_bounded_queue( std::initializer_list<value_type> init, const allocator_type& alloc = allocator_type() ):
concurrent_bounded_queue(init.begin(), init.end(), alloc)
{}
concurrent_bounded_queue( const concurrent_bounded_queue& src, const allocator_type& a ) :
concurrent_bounded_queue(a)
{
my_capacity = src.my_capacity;
my_queue_representation->assign(*src.my_queue_representation, my_allocator, copy_construct_item);
}
concurrent_bounded_queue( const concurrent_bounded_queue& src ) :
concurrent_bounded_queue(queue_allocator_traits::select_on_container_copy_construction(src.get_allocator()))
{
my_capacity = src.my_capacity;
my_queue_representation->assign(*src.my_queue_representation, my_allocator, copy_construct_item);
}
// Move constructors
concurrent_bounded_queue( concurrent_bounded_queue&& src ) :
concurrent_bounded_queue(std::move(src.my_allocator))
{
internal_swap(src);
}
concurrent_bounded_queue( concurrent_bounded_queue&& src, const allocator_type& a ) :
concurrent_bounded_queue(a)
{
// checking that memory allocated by one instance of allocator can be deallocated
// with another
if (my_allocator == src.my_allocator) {
internal_swap(src);
} else {
// allocators are different => performing per-element move
my_queue_representation->assign(*src.my_queue_representation, my_allocator, move_construct_item);
src.clear();
}
}
// Destroy queue
~concurrent_bounded_queue() {
clear();
my_queue_representation->clear(my_allocator);
queue_allocator_traits::destroy(my_allocator, my_queue_representation);
r1::deallocate_bounded_queue_rep(reinterpret_cast<std::uint8_t*>(my_queue_representation),
sizeof(queue_representation_type));
}
concurrent_bounded_queue& operator=( const concurrent_bounded_queue& other ) {
//TODO: implement support for std::allocator_traits::propagate_on_container_copy_assignment
if (my_queue_representation != other.my_queue_representation) {
clear();
my_allocator = other.my_allocator;
my_capacity = other.my_capacity;
my_queue_representation->assign(*other.my_queue_representation, my_allocator, copy_construct_item);
}
return *this;
}
concurrent_bounded_queue& operator=( concurrent_bounded_queue&& other ) {
//TODO: implement support for std::allocator_traits::propagate_on_container_move_assignment
if (my_queue_representation != other.my_queue_representation) {
clear();
if (my_allocator == other.my_allocator) {
internal_swap(other);
} else {
my_queue_representation->assign(*other.my_queue_representation, other.my_allocator, move_construct_item);
other.clear();
my_allocator = std::move(other.my_allocator);
my_capacity = other.my_capacity;
}
}
return *this;
}
concurrent_bounded_queue& operator=( std::initializer_list<value_type> init ) {
assign(init);
return *this;
}
template <typename InputIterator>
void assign( InputIterator first, InputIterator last ) {
concurrent_bounded_queue src(first, last);
clear();
my_queue_representation->assign(*src.my_queue_representation, my_allocator, move_construct_item);
}
void assign( std::initializer_list<value_type> init ) {
assign(init.begin(), init.end());
}
void swap ( concurrent_bounded_queue& other ) {
//TODO: implement support for std::allocator_traits::propagate_on_container_swap
__TBB_ASSERT(my_allocator == other.my_allocator, "unequal allocators");
internal_swap(other);
}
// Enqueue an item at tail of queue.
void push( const T& value ) {
internal_push(value);
}
void push( T&& value ) {
internal_push(std::move(value));
}
// Enqueue an item at tail of queue if queue is not already full.
// Does not wait for queue to become not full.
// Returns true if item is pushed; false if queue was already full.
bool try_push( const T& value ) {
return internal_push_if_not_full(value);
}
bool try_push( T&& value ) {
return internal_push_if_not_full(std::move(value));
}
template <typename... Args>
void emplace( Args&&... args ) {
internal_push(std::forward<Args>(args)...);
}
template <typename... Args>
bool try_emplace( Args&&... args ) {
return internal_push_if_not_full(std::forward<Args>(args)...);
}
// Attempt to dequeue an item from head of queue.
void pop( T& result ) {
internal_pop(&result);
}
/** Does not wait for item to become available.
Returns true if successful; false otherwise. */
bool try_pop( T& result ) {
return internal_pop_if_present(&result);
}
void abort() {
internal_abort();
}
// Return the number of items in the queue; thread unsafe
std::ptrdiff_t size() const {
return my_queue_representation->size();
}
void set_capacity( size_type new_capacity ) {
std::ptrdiff_t c = new_capacity < 0 ? infinite_capacity : new_capacity;
my_capacity = c;
}
size_type capacity() const {
return my_capacity;
}
// Equivalent to size()==0.
__TBB_nodiscard bool empty() const {
return my_queue_representation->empty();
}
// Clear the queue. not thread-safe.
void clear() {
my_queue_representation->clear(my_allocator);
}
// Return allocator object
allocator_type get_allocator() const { return my_allocator; }
//------------------------------------------------------------------------
// The iterators are intended only for debugging. They are slow and not thread safe.
//------------------------------------------------------------------------
iterator unsafe_begin() { return concurrent_queue_iterator_provider::get<iterator>(*this); }
iterator unsafe_end() { return iterator(); }
const_iterator unsafe_begin() const { return concurrent_queue_iterator_provider::get<const_iterator>(*this); }
const_iterator unsafe_end() const { return const_iterator(); }
const_iterator unsafe_cbegin() const { return concurrent_queue_iterator_provider::get<const_iterator>(*this); }
const_iterator unsafe_cend() const { return const_iterator(); }
private:
void internal_swap( concurrent_bounded_queue& src ) {
using std::swap;
swap(my_queue_representation, src.my_queue_representation);
swap(my_capacity, src.my_capacity);
swap(my_monitors, src.my_monitors);
}
static constexpr std::ptrdiff_t infinite_capacity = std::ptrdiff_t(~size_type(0) / 2);
template <typename... Args>
void internal_push( Args&&... args ) {
unsigned old_abort_counter = my_abort_counter.load(std::memory_order_relaxed);
ticket_type ticket = my_queue_representation->tail_counter++;
std::ptrdiff_t target = ticket - my_capacity;
if (static_cast<std::ptrdiff_t>(my_queue_representation->head_counter.load(std::memory_order_relaxed)) <= target) { // queue is full
auto pred = [&] {
if (my_abort_counter.load(std::memory_order_relaxed) != old_abort_counter) {
throw_exception(exception_id::user_abort);
}
return static_cast<std::ptrdiff_t>(my_queue_representation->head_counter.load(std::memory_order_relaxed)) <= target;
};
try_call( [&] {
internal_wait(my_monitors, cbq_slots_avail_tag, target, pred);
}).on_exception( [&] {
my_queue_representation->choose(ticket).abort_push(ticket, *my_queue_representation, my_allocator);
});
}
__TBB_ASSERT((static_cast<std::ptrdiff_t>(my_queue_representation->head_counter.load(std::memory_order_relaxed)) > target), nullptr);
my_queue_representation->choose(ticket).push(ticket, *my_queue_representation, my_allocator, std::forward<Args>(args)...);
r1::notify_bounded_queue_monitor(my_monitors, cbq_items_avail_tag, ticket);
}
template <typename... Args>
bool internal_push_if_not_full( Args&&... args ) {
ticket_type ticket = my_queue_representation->tail_counter.load(std::memory_order_relaxed);
do {
if (static_cast<std::ptrdiff_t>(ticket - my_queue_representation->head_counter.load(std::memory_order_relaxed)) >= my_capacity) {
// Queue is full
return false;
}
// Queue had empty slot with ticket k when we looked. Attempt to claim that slot.
// Another thread claimed the slot, so retry.
} while (!my_queue_representation->tail_counter.compare_exchange_strong(ticket, ticket + 1));
my_queue_representation->choose(ticket).push(ticket, *my_queue_representation, my_allocator, std::forward<Args>(args)...);
r1::notify_bounded_queue_monitor(my_monitors, cbq_items_avail_tag, ticket);
return true;
}
void internal_pop( void* dst ) {
std::ptrdiff_t target;
// This loop is a single pop operation; abort_counter should not be re-read inside
unsigned old_abort_counter = my_abort_counter.load(std::memory_order_relaxed);
do {
target = my_queue_representation->head_counter++;
if (static_cast<std::ptrdiff_t>(my_queue_representation->tail_counter.load(std::memory_order_relaxed)) <= target) {
auto pred = [&] {
if (my_abort_counter.load(std::memory_order_relaxed) != old_abort_counter) {
throw_exception(exception_id::user_abort);
}
return static_cast<std::ptrdiff_t>(my_queue_representation->tail_counter.load(std::memory_order_relaxed)) <= target;
};
try_call( [&] {
internal_wait(my_monitors, cbq_items_avail_tag, target, pred);
}).on_exception( [&] {
my_queue_representation->head_counter--;
});
}
__TBB_ASSERT(static_cast<std::ptrdiff_t>(my_queue_representation->tail_counter.load(std::memory_order_relaxed)) > target, nullptr);
} while (!my_queue_representation->choose(target).pop(dst, target, *my_queue_representation, my_allocator));
r1::notify_bounded_queue_monitor(my_monitors, cbq_slots_avail_tag, target);
}
bool internal_pop_if_present( void* dst ) {
bool present{};
ticket_type ticket{};
std::tie(present, ticket) = internal_try_pop_impl(dst, *my_queue_representation, my_allocator);
if (present) {
r1::notify_bounded_queue_monitor(my_monitors, cbq_slots_avail_tag, ticket);
}
return present;
}
void internal_abort() {
++my_abort_counter;
r1::abort_bounded_queue_monitors(my_monitors);
}
static void copy_construct_item(T* location, const void* src) {
// TODO: use allocator_traits for copy construction
new (location) value_type(*static_cast<const value_type*>(src));
}
static void move_construct_item(T* location, const void* src) {
// TODO: use allocator_traits for move construction
new (location) value_type(std::move(*static_cast<value_type*>(const_cast<void*>(src))));
}
template <typename Container, typename Value, typename A>
friend class concurrent_queue_iterator;
queue_allocator_type my_allocator;
std::ptrdiff_t my_capacity;
std::atomic<unsigned> my_abort_counter;
queue_representation_type* my_queue_representation;
r1::concurrent_monitor* my_monitors;
friend void swap( concurrent_bounded_queue& lhs, concurrent_bounded_queue& rhs ) {
lhs.swap(rhs);
}
friend bool operator==( const concurrent_bounded_queue& lhs, const concurrent_bounded_queue& rhs ) {
return lhs.size() == rhs.size() && std::equal(lhs.unsafe_begin(), lhs.unsafe_end(), rhs.unsafe_begin());
}
#if !__TBB_CPP20_COMPARISONS_PRESENT
friend bool operator!=( const concurrent_bounded_queue& lhs, const concurrent_bounded_queue& rhs ) {
return !(lhs == rhs);
}
#endif // __TBB_CPP20_COMPARISONS_PRESENT
}; // class concurrent_bounded_queue
#if __TBB_CPP17_DEDUCTION_GUIDES_PRESENT
// Deduction guide for the constructor from two iterators
template <typename It, typename Alloc = tbb::cache_aligned_allocator<iterator_value_t<It>>>
concurrent_bounded_queue( It, It, Alloc = Alloc() )
-> concurrent_bounded_queue<iterator_value_t<It>, Alloc>;
#endif /* __TBB_CPP17_DEDUCTION_GUIDES_PRESENT */
} //namespace d2
} // namespace detail
inline namespace v1 {
using detail::d2::concurrent_queue;
using detail::d2::concurrent_bounded_queue;
using detail::r1::user_abort;
using detail::r1::bad_last_alloc;
} // inline namespace v1
} // namespace tbb
#endif // __TBB_concurrent_queue_H
|