1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
/*
Copyright (c) 2005-2023 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#ifndef __TBB_parallel_invoke_H
#define __TBB_parallel_invoke_H
#include "detail/_config.h"
#include "detail/_namespace_injection.h"
#include "detail/_exception.h"
#include "detail/_task.h"
#include "detail/_template_helpers.h"
#include "detail/_small_object_pool.h"
#include "task_group.h"
#include <tuple>
#include <atomic>
#include <utility>
namespace tbb {
namespace detail {
namespace d1 {
//! Simple task object, executing user method
template<typename Function, typename WaitObject>
struct function_invoker : public task {
function_invoker(const Function& function, WaitObject& wait_ctx) :
my_function(function),
parent_wait_ctx(wait_ctx)
{}
task* execute(execution_data& ed) override {
my_function();
parent_wait_ctx.release(ed);
call_itt_task_notify(destroy, this);
return nullptr;
}
task* cancel(execution_data& ed) override {
parent_wait_ctx.release(ed);
return nullptr;
}
const Function& my_function;
WaitObject& parent_wait_ctx;
}; // struct function_invoker
//! Task object for managing subroots in trinary task trees.
// Endowed with additional synchronization logic (compatible with wait object interfaces) to support
// continuation passing execution. This task spawns 2 function_invoker tasks with first and second functors
// and then executes first functor by itself. But only the last executed functor must destruct and deallocate
// the subroot task.
template<typename F1, typename F2, typename F3>
struct invoke_subroot_task : public task {
wait_context& root_wait_ctx;
std::atomic<unsigned> ref_count{0};
bool child_spawned = false;
const F1& self_invoked_functor;
function_invoker<F2, invoke_subroot_task<F1, F2, F3>> f2_invoker;
function_invoker<F3, invoke_subroot_task<F1, F2, F3>> f3_invoker;
task_group_context& my_execution_context;
small_object_allocator my_allocator;
invoke_subroot_task(const F1& f1, const F2& f2, const F3& f3, wait_context& wait_ctx, task_group_context& context,
small_object_allocator& alloc) :
root_wait_ctx(wait_ctx),
self_invoked_functor(f1),
f2_invoker(f2, *this),
f3_invoker(f3, *this),
my_execution_context(context),
my_allocator(alloc)
{
root_wait_ctx.reserve();
}
void finalize(const execution_data& ed) {
root_wait_ctx.release();
my_allocator.delete_object(this, ed);
}
void release(const execution_data& ed) {
__TBB_ASSERT(ref_count > 0, nullptr);
call_itt_task_notify(releasing, this);
if( --ref_count == 0 ) {
call_itt_task_notify(acquired, this);
finalize(ed);
}
}
task* execute(execution_data& ed) override {
ref_count.fetch_add(3, std::memory_order_relaxed);
spawn(f3_invoker, my_execution_context);
spawn(f2_invoker, my_execution_context);
self_invoked_functor();
release(ed);
return nullptr;
}
task* cancel(execution_data& ed) override {
if( ref_count > 0 ) { // detect children spawn
release(ed);
} else {
finalize(ed);
}
return nullptr;
}
}; // struct subroot_task
class invoke_root_task {
public:
invoke_root_task(wait_context& wc) : my_wait_context(wc) {}
void release(const execution_data&) {
my_wait_context.release();
}
private:
wait_context& my_wait_context;
};
template<typename F1>
void invoke_recursive_separation(wait_context& root_wait_ctx, task_group_context& context, const F1& f1) {
root_wait_ctx.reserve(1);
invoke_root_task root(root_wait_ctx);
function_invoker<F1, invoke_root_task> invoker1(f1, root);
execute_and_wait(invoker1, context, root_wait_ctx, context);
}
template<typename F1, typename F2>
void invoke_recursive_separation(wait_context& root_wait_ctx, task_group_context& context, const F1& f1, const F2& f2) {
root_wait_ctx.reserve(2);
invoke_root_task root(root_wait_ctx);
function_invoker<F1, invoke_root_task> invoker1(f1, root);
function_invoker<F2, invoke_root_task> invoker2(f2, root);
spawn(invoker1, context);
execute_and_wait(invoker2, context, root_wait_ctx, context);
}
template<typename F1, typename F2, typename F3>
void invoke_recursive_separation(wait_context& root_wait_ctx, task_group_context& context, const F1& f1, const F2& f2, const F3& f3) {
root_wait_ctx.reserve(3);
invoke_root_task root(root_wait_ctx);
function_invoker<F1, invoke_root_task> invoker1(f1, root);
function_invoker<F2, invoke_root_task> invoker2(f2, root);
function_invoker<F3, invoke_root_task> invoker3(f3, root);
//TODO: implement sub root for two tasks (measure performance)
spawn(invoker1, context);
spawn(invoker2, context);
execute_and_wait(invoker3, context, root_wait_ctx, context);
}
template<typename F1, typename F2, typename F3, typename... Fs>
void invoke_recursive_separation(wait_context& root_wait_ctx, task_group_context& context,
const F1& f1, const F2& f2, const F3& f3, const Fs&... fs) {
small_object_allocator alloc{};
auto sub_root = alloc.new_object<invoke_subroot_task<F1, F2, F3>>(f1, f2, f3, root_wait_ctx, context, alloc);
spawn(*sub_root, context);
invoke_recursive_separation(root_wait_ctx, context, fs...);
}
template<typename... Fs>
void parallel_invoke_impl(task_group_context& context, const Fs&... fs) {
static_assert(sizeof...(Fs) >= 2, "Parallel invoke may be called with at least two callable");
wait_context root_wait_ctx{0};
invoke_recursive_separation(root_wait_ctx, context, fs...);
}
template<typename F1, typename... Fs>
void parallel_invoke_impl(const F1& f1, const Fs&... fs) {
static_assert(sizeof...(Fs) >= 1, "Parallel invoke may be called with at least two callable");
task_group_context context(PARALLEL_INVOKE);
wait_context root_wait_ctx{0};
invoke_recursive_separation(root_wait_ctx, context, fs..., f1);
}
//! Passes last argument of variadic pack as first for handling user provided task_group_context
template <typename Tuple, typename... Fs>
struct invoke_helper;
template <typename... Args, typename T, typename... Fs>
struct invoke_helper<std::tuple<Args...>, T, Fs...> : invoke_helper<std::tuple<Args..., T>, Fs...> {};
template <typename... Fs, typename T/*task_group_context or callable*/>
struct invoke_helper<std::tuple<Fs...>, T> {
void operator()(Fs&&... args, T&& t) {
parallel_invoke_impl(std::forward<T>(t), std::forward<Fs>(args)...);
}
};
//! Parallel execution of several function objects
// We need to pass parameter pack through forwarding reference,
// since this pack may contain task_group_context that must be passed via lvalue non-const reference
template<typename... Fs>
void parallel_invoke(Fs&&... fs) {
invoke_helper<std::tuple<>, Fs...>()(std::forward<Fs>(fs)...);
}
} // namespace d1
} // namespace detail
inline namespace v1 {
using detail::d1::parallel_invoke;
} // namespace v1
} // namespace tbb
#endif /* __TBB_parallel_invoke_H */
|