1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
/*
Copyright (c) 2005-2021 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include <cmath>
#include <cstdio>
#include <vector>
#include <atomic>
#include "oneapi/tbb/tick_count.h"
#include "oneapi/tbb/task_group.h"
#include "oneapi/tbb/concurrent_priority_queue.h"
#include "oneapi/tbb/spin_mutex.h"
#include "oneapi/tbb/parallel_for.h"
#include "oneapi/tbb/blocked_range.h"
#include "oneapi/tbb/global_control.h"
#include "common/utility/utility.hpp"
#include "common/utility/fast_random.hpp"
#include "common/utility/get_default_num_threads.hpp"
#if defined(_MSC_VER) && defined(_Wp64)
// Workaround for overzealous compiler warnings in /Wp64 mode
#pragma warning(disable : 4267)
#endif /* _MSC_VER && _Wp64 */
struct point {
double x, y;
point() {}
point(double _x, double _y) : x(_x), y(_y) {}
point(const point& p) : x(p.x), y(p.y) {}
};
double get_distance(const point& p1, const point& p2) {
double xdiff = p1.x - p2.x, ydiff = p1.y - p2.y;
return sqrt(xdiff * xdiff + ydiff * ydiff);
}
// generates random points on 2D plane within a box of maxsize width & height
point generate_random_point(utility::FastRandom& mr) {
const std::size_t maxsize = 500;
double x = (double)(mr.get() % maxsize);
double y = (double)(mr.get() % maxsize);
return point(x, y);
}
// weighted toss makes closer nodes (in the point vector) heavily connected
bool die_toss(std::size_t a, std::size_t b, utility::FastRandom& mr) {
int node_diff = std::abs(int(a - b));
// near nodes
if (node_diff < 16)
return true;
// mid nodes
if (node_diff < 64)
return ((int)mr.get() % 8 == 0);
// far nodes
if (node_diff < 512)
return ((int)mr.get() % 16 == 0);
return false;
}
typedef std::vector<point> point_set;
typedef std::size_t vertex_id;
typedef std::pair<vertex_id, double> vertex_rec;
typedef std::vector<std::vector<vertex_id>> edge_set;
bool verbose = false; // prints bin details and other diagnostics to screen
bool silent = false; // suppress all output except for time
std::size_t N = 1000; // number of vertices
std::size_t src = 0; // start of path
std::size_t dst = N - 1; // end of path
double INF = 100000.0; // infinity
std::size_t grainsize = 16; // number of vertices per task on average
std::size_t max_spawn; // max tasks to spawn
std::atomic<std::size_t> num_spawn; // number of active tasks
point_set vertices; // vertices
edge_set edges; // edges
std::vector<vertex_id> predecessor; // for recreating path from src to dst
std::vector<double> f_distance; // estimated distances at particular vertex
std::vector<double> g_distance; // current shortest distances from src vertex
oneapi::tbb::spin_mutex* locks; // a lock for each vertex
oneapi::tbb::task_group* sp_group; // task group for tasks executing sub-problems
struct compare_f {
bool operator()(const vertex_rec& u, const vertex_rec& v) const {
return u.second > v.second;
}
};
oneapi::tbb::concurrent_priority_queue<vertex_rec, compare_f> open_set; // tentative vertices
void shortpath_helper();
void shortpath() {
sp_group = new oneapi::tbb::task_group;
g_distance[src] = 0.0; // src's distance from src is zero
f_distance[src] =
get_distance(vertices[src], vertices[dst]); // estimate distance from src to dst
open_set.emplace(src, f_distance[src]); // emplace src into open_set
sp_group->run([]() {
shortpath_helper();
});
sp_group->wait();
delete sp_group;
}
void shortpath_helper() {
vertex_rec u_rec;
while (open_set.try_pop(u_rec)) {
vertex_id u = u_rec.first;
if (u == dst)
continue;
double f = u_rec.second;
double old_g_u = 0.0;
{
oneapi::tbb::spin_mutex::scoped_lock l(locks[u]);
if (f > f_distance[u])
continue; // prune search space
old_g_u = g_distance[u];
}
for (std::size_t i = 0; i < edges[u].size(); ++i) {
vertex_id v = edges[u][i];
double new_g_v = old_g_u + get_distance(vertices[u], vertices[v]);
double new_f_v = 0.0;
// the push flag lets us move some work out of the critical section below
bool push = false;
{
oneapi::tbb::spin_mutex::scoped_lock l(locks[v]);
if (new_g_v < g_distance[v]) {
predecessor[v] = u;
g_distance[v] = new_g_v;
new_f_v = f_distance[v] =
g_distance[v] + get_distance(vertices[v], vertices[dst]);
push = true;
}
}
if (push) {
open_set.push(std::make_pair(v, new_f_v));
std::size_t n_spawn = ++num_spawn;
if (n_spawn < max_spawn) {
sp_group->run([] {
shortpath_helper();
});
}
else
--num_spawn;
}
}
}
--num_spawn;
}
void make_path(vertex_id src, vertex_id dst, std::vector<vertex_id>& path) {
vertex_id at = predecessor[dst];
if (at == N)
path.push_back(src);
else if (at == src) {
path.push_back(src);
path.push_back(dst);
}
else {
make_path(src, at, path);
path.push_back(dst);
}
}
void print_path() {
std::vector<vertex_id> path;
double path_length = 0.0;
make_path(src, dst, path);
if (verbose)
printf("\n ");
for (std::size_t i = 0; i < path.size(); ++i) {
if (path[i] != dst) {
double seg_length = get_distance(vertices[path[i]], vertices[path[i + 1]]);
if (verbose)
printf("%6.1f ", seg_length);
path_length += seg_length;
}
else if (verbose)
printf("\n");
}
if (verbose) {
for (std::size_t i = 0; i < path.size(); ++i) {
if (path[i] != dst)
printf("(%4d)------>", (int)path[i]);
else
printf("(%4d)\n", (int)path[i]);
}
}
if (verbose)
printf("Total distance = %5.1f\n", path_length);
else if (!silent)
printf(" %5.1f\n", path_length);
}
void InitializeGraph() {
oneapi::tbb::global_control c(oneapi::tbb::global_control::max_allowed_parallelism,
utility::get_default_num_threads());
vertices.resize(N);
edges.resize(N);
predecessor.resize(N);
g_distance.resize(N);
f_distance.resize(N);
locks = new oneapi::tbb::spin_mutex[N];
if (verbose)
printf("Generating vertices...\n");
oneapi::tbb::parallel_for(
oneapi::tbb::blocked_range<std::size_t>(0, N, 64),
[&](oneapi::tbb::blocked_range<std::size_t>& r) {
utility::FastRandom my_random(r.begin());
for (std::size_t i = r.begin(); i != r.end(); ++i) {
vertices[i] = generate_random_point(my_random);
}
},
oneapi::tbb::simple_partitioner());
if (verbose)
printf("Generating edges...\n");
oneapi::tbb::parallel_for(
oneapi::tbb::blocked_range<std::size_t>(0, N, 64),
[&](oneapi::tbb::blocked_range<std::size_t>& r) {
utility::FastRandom my_random(r.begin());
for (std::size_t i = r.begin(); i != r.end(); ++i) {
for (std::size_t j = 0; j < i; ++j) {
if (die_toss(i, j, my_random))
edges[i].push_back(j);
}
}
},
oneapi::tbb::simple_partitioner());
for (std::size_t i = 0; i < N; ++i) {
for (std::size_t j = 0; j < edges[i].size(); ++j) {
vertex_id k = edges[i][j];
edges[k].push_back(i);
}
}
if (verbose)
printf("Done.\n");
}
void ReleaseGraph() {
delete[] locks;
}
void ResetGraph() {
oneapi::tbb::global_control c(oneapi::tbb::global_control::max_allowed_parallelism,
utility::get_default_num_threads());
oneapi::tbb::parallel_for(oneapi::tbb::blocked_range<std::size_t>(0, N),
[&](oneapi::tbb::blocked_range<std::size_t>& r) {
for (std::size_t i = r.begin(); i != r.end(); ++i) {
f_distance[i] = g_distance[i] = INF;
predecessor[i] = N;
}
});
}
int main(int argc, char* argv[]) {
utility::thread_number_range threads(utility::get_default_num_threads);
utility::parse_cli_arguments(
argc,
argv,
utility::cli_argument_pack()
//"-h" option for displaying help is present implicitly
.positional_arg(threads, "#threads", utility::thread_number_range_desc)
.arg(verbose, "verbose", " print diagnostic output to screen")
.arg(silent, "silent", " limits output to timing info; overrides verbose")
.arg(N, "N", " number of vertices")
.arg(src, "start", " start of path")
.arg(dst, "end", " end of path"));
if (silent)
verbose = false; // make silent override verbose
else
printf("shortpath will run with %d vertices to find shortest path between vertices"
" %d and %d using %d:%d threads.\n",
(int)N,
(int)src,
(int)dst,
(int)threads.first,
(int)threads.last);
if (dst >= N) {
if (verbose)
printf("end value %d is invalid for %d vertices; correcting to %d\n",
(int)dst,
(int)N,
(int)N - 1);
dst = N - 1;
}
num_spawn = 0;
max_spawn = N / grainsize;
oneapi::tbb::tick_count t0, t1;
InitializeGraph();
for (int n_thr = threads.first; n_thr <= threads.last; n_thr = threads.step(n_thr)) {
ResetGraph();
oneapi::tbb::global_control c(oneapi::tbb::global_control::max_allowed_parallelism, n_thr);
t0 = oneapi::tbb::tick_count::now();
shortpath();
t1 = oneapi::tbb::tick_count::now();
if (!silent) {
if (predecessor[dst] != N) {
printf("%d threads: [%6.6f] The shortest path from vertex %d to vertex %d is:",
(int)n_thr,
(t1 - t0).seconds(),
(int)src,
(int)dst);
print_path();
}
else {
printf("%d threads: [%6.6f] There is no path from vertex %d to vertex %d\n",
(int)n_thr,
(t1 - t0).seconds(),
(int)src,
(int)dst);
}
}
else
utility::report_elapsed_time((t1 - t0).seconds());
}
ReleaseGraph();
return 0;
}
|